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A b s t r a c t . The estimation and control of resource usage is now an 
important challenge in an increasing number of computing systems. In 
particular, requirements on timing and energy arise in a wide variety of 
applications such as internet of things, cloud computing, health, trans
portation, and robots. At the same time, parallel computing, with (het
erogeneous) multi-core platforms in particular, has become the dominant 
paradigm in computer architecture. Predicting resource usage on such 
platforms poses a difficult challenge. Most work on static resource analy
sis has focused on sequential programs, and relatively little progress has 
been made on the analysis of parallel programs, or more specifically on 
parallel logic programs. We propose a novel, general, and flexible frame
work for setting up cost equations/relations which can be instantiated 
for performing resource usage analysis of parallel logic programs for a 
wide range of resources, platforms, and execution models. The analysis 
estimates both lower and upper bounds on the resource usage of a par
allel program (without executing it) as functions on input data sizes. 
In addition, it also infers other meaningful information to better exploit 
and assess the potential and actual parallelism of a system. We develop 
a method for solving cost relations involving the max function that arise 
in the analysis of parallel programs. Finally , we instantiate our general 
framework for the analysis of logic programs with Independent And-
Parallelism, report on an implementation within the CiaoPP system, 
and provide some experimental results. To our knowledge, this is the 
first approach to the cost analysis of parallel logic programs. 

Research partially funded by Spanish MINECO TIN2015-67522-C3-1-R TRACES 
pro ject, and the Madrid P2018/TCS-4339 BLOQUES-CM program. W e are also grate
ful to the anonymous reviewers for their useful comments. 



1 Introduction 

Estimating in advance the resource usage of computations is useful for a num
ber of applications; examples include granularity control in parallel/distributed 
systems, automatic program optimization, verification of resource-related speci
fications and detection of performance bugs, as well as helping developers make 
resource-related design decisions. Besides time and energy, we assume a broad 
concept of resources as numerical properties of the execution of a program, 
including the number of execution steps, the number of cal ls to a procedure, the 
number of network accesses, number of transactions in a database, and other 
user-definable resources. The goal of automatic static analysis is to estimate 
such properties without running the program with concrete data, as a function 
of input data sizes and possibly other (environmental) parameters. 

Due to the heat generation barrier in traditional sequential architectures, 
parallel computing, with (heterogeneous) multi-core processors in particular, 
has become the dominant paradigm in current computer architecture. Predict
ing resource usage on such platforms poses important challenges. Most work on 
static resource analysis has focused on sequential programs, and relatively little 
progress has been made on the analysis of parallel programs, or on parallel logic 
programs in particular. The significant body of work on static analysis of sequen
tial logic programs has already been applied to the analysis of other programming 
paradigms, including imperative programs. This is achieved via a transformation 
into Horn clauses [22]. In this paper we concentrate on the analysis of parallel 
Horn clause programs, which could be the result of such a translation from a 
parallel imperative program or be themselves the source program. Our starting 
point is the well-developed technique of setting up recurrence relations represent
ing resource usage functions parameterized by input data sizes [2,7–9,24–26,29], 
which are then solved to obtain (exact or safely approximated) closed forms of 
such functions (i.e., functions that provide upper or lower bounds on resource 
usage). We build on this and propose a novel, general, and flexible framework 
for setting up cost equations/relations which can be instantiated for perform
ing static resource usage analysis of parallel logic programs for a wide range 
of resources, platforms, and execution models. Such an analysis estimates both 
lower and upper bounds on the resource usage of a parallel program as functions 
on input data sizes. We have instantiated the framework for dealing with Inde
pendent And-Parallelism (IAP) [10,14], which refers to the parallel execution of 
conjuncts in a goal. However, the results can be applied to other languages and 
types of parallelism, by performing suitable transformations into Horn clauses. 

The main contributions of this paper can be summarized as follows: 

– We have extended a general static analysis framework for the analysis of 
sequential Horn clause programs [24,26], to deal with parallel programs. 

– Our extensions and further generalizations support a wide range of resources, 
platforms, and parallel/distributed execution models, and allow the inference 
of both lower and upper bounds on resource usage. This is the first approach, 
to our knowledge, to the cost analysis of pa ral l e l logic programs that can deal 



with features such as backtracking, multiple solutions (i.e., non-determinism), 
and failure. 

- We have instantiated the developed framework to infer useful information for 
assessing and exploiting the potential and actual parallelism of a system. 

- We have developed a method for finding closed-form functions of cost relations 
involving the max function that arise in the analysis of parallel programs. 

- We have developed a prototype implementation that instantiates the frame
work for the analysis of logic programs with Independent And-Parallelism 
within the CiaoPP system [13,24,26], and provided some experimental 
results. 

2 Overview of the Approach 

Prior to explaining our approach, we provide some preliminary concepts. Inde
pendent And-Parallelism arises between two goals when their corresponding exe
cutions do not affect each other. For pure goals (i.e., without side effects) a suf
ficient condition for the correctness of IAP is the absence of variable sharing at 
run-time among such goals. IAP has traditionally been expressed using the &/2 
meta-predicate as the constructor to represent the parallel execution of goals. In 
this way, the conjunction of goals (i.e., literals) p & q in the body of a clause will 
trigger the execution of goals p and q in parallel, finishing when both executions 
finish. 

Given a program V and a predicate p G V of arity k and a set II of A;-tuples 
of calling data to p, we refer to the (standard) cost of a call p(e) (i.e., a call to 
p with actual data e G II), as the resource usage (under a given cost metric) 
of the complete execution of p(e). The standard cost is formalized as a function 
Cp : II —• 72.QO, where TZ-oo is the set of real numbers augmented with the special 
symbol oo (which is used to represent non-termination). We extend the function 
Cp to the powerset of II, i.e., Cp : 2n —• 2 °°, where Cp(E) = {Cp(e) | e G E}. 
Our goal is to abstract (safely approximate, as accurately as possible) Cp (note 
that Cp(e) = Cp({e})). Intuitively, this abstraction is the composition of two 
abstractions: a size abstraction and a cost abstraction. The goal of the analysis 
is to infer two functions C ˆ and C ˆ : A/"™ —• TZ-oo that give lower and upper 
bounds respectively on the cost function C p , where A/"™ is the set of m-tuples 
whose elements are natural numbers or the special symbol T, meaning that the 
size of a given term under a given size metric is undefined. Such bounds are 
given as a function of tuples of data sizes (representing the concrete tuples of 
data of the concrete function Cp). Typical size metrics are the actual value of a 
number, the length of a list, the size (number of constant and function symbols) 
of a term, etc. [24,26]. 

We now enumerate different metrics used to evaluate the performance of par
allel logic programs, compared against its corresponding sequential version [27]. 
Here, these metrics are parameterized with respect to the resource in which 
the cost is expressed (e.g., number of resolution steps, execution time, or energy 
consumption): 



– Sequential cost ( W o r k ) : It is the standard cost of executing a program, 
assuming no parallelism. 

– Paral lel cost (Depth ) : It is the cost of executing a program in parallel, 
considering an unbounded number of processors. 

– M a x i m u m n u m b e r of processes runn ing in parallel: It is the maximum 
number of processes that may run simultaneously in a program. This is useful 
to determine what is the minimum number of processors that are required to 
guarantee that all the processes run in parallel. 

The following example illustrates our approach. 

Example 1. Consider the predicate scalar/3 below, and a calling mode to it 
with the first argument bound to an integer n and the second one bound to a 
list of integers [x1, x2, . . . , xk]. Upon success, the third argument is bound to the 
list of products [n · x1, n · x2, . . . , n · xk]. Each product is recursively computed 
by predicate mult/3. The calling modes are automatically inferred by CiaoPP 
(see [13] and its references): the first two arguments of both predicates are input, 
and their last arguments are output. 

mult(0,_,0). 
mult(N,X,Y):-

scalar(_,[] ,[]). 
N>1, 

scalar(N,[X|Xs],[Y|Ys]):-
N1 is N - 1, 

mult(N,X,Y) & scalar(N,Xs,Ys). 
mult(N1,X,Y0), 
Y is Y0 + X. 

The call to the parallel &/2 operator in the body of the second clause of scalar/3 
causes the calls to mult/3 and scalar/3 to be executed in parallel. We want to 
infer the cost of such a call to scalar/3, in terms of the number of resolution 
steps, as a function of its input data sizes. We use the CiaoPP system to infer size 
relations for the different arguments in the clauses, as well as dealing with a rich 
set of size metrics (see [24,26] for details). Assume that the size metrics used in 
this example are the actual value of N (denoted int(N)), for the first argument, 
and the list-length for the second and third arguments (denoted length(X) and 
length(Y), respectively). Since size relations are obvious in this example, we 
focus only on the setting up of cost relations for the sake of brevity. Regarding 
the number of solutions, in this example all the predicates generate at most 
one solution. For simplicity we assume that all builtin predicates, such as is/2 
and the comparison operators have zero cost (in practice they have a “trust” 
assertion that specifies their cost as if it had been inferred by the system). As 
the program contains parallel calls, we are interested in inferring both total 
resolution steps, i.e., considering a sequential execution (represented by the seq 
identifier), and the number of parallel steps, considering a parallel execution, 
with an unbounded number of processors (represented by par). In the latter 
case, the definition of this resource establishes that the aggregator of the costs 
of the parallel calls that are arguments of the &/2 meta-predicate is the max/2 
function. Thus, the number of resolution steps performed in parallel for p & q is 
the maximum between the parallel steps performed by p and the ones performed 
by q. However, for computing the total resolution steps, the aggregation operator 
we use is the addition, both for parallel and sequential calls. For brevity, in this 
example we only infer upper bounds on resource usages. 



We now set up the cost relations for scalar/3 and mult/3. Note that the 
cost functions have two arguments, corresponding to the sizes of the input argu
ments.1 In the equations, we underline the operation applied as cost aggregator 
for &/2. 

For the sequential execution (seq), we obtain the following cost relations: 

Cscaiar(n, / ) = 1 if / = 0 

Cscalar(n, /) = 1 + Cmult(n)+Cscaiar(n, / — 1) if / > 0 
Cm u i t (n )=1 if n =0 
Cmuit(^)=1 + Cmuit(n — 1) if n> 0 

After solving these equations and composing the closed-form solutions, we obtain 
the following closed-form functions: 

Cscaiar(n, /) = (n + 2) x / + 1 if n > 0 A / > 0 
Cmui t(n)= n + 1 if n > 0 

For the parallel execution (par), we obtain the following cost relations: 

Cscaiar(n, / ) = 1 if / = 0 
Cscaiar(n, /) = 1 + max(Cmnit.(w), Cscaiar(n, / — 1)) if / > 0 

Cm u i t (n )=1 if n =0 
Cmuit(n)=1 + Cmuit(n — 1) if n> 0 

Similarly, we obtain the following closed-form functions: 

Cscaiar(n, /) = n + / + 1 if n > 0 A / > 0 
Cnuit("-)= n + 1 if n > 0 

By comparing the complexity order (in terms of resolution steps) of the sequen
tial execution of scalar/3, 0(n • I), with the complexity order of its parallel 
execution (assuming an ideal parallel model with an unbounded number of pro
cessors) 0(n+l), we can get a hint about the maximum achievable parallelization 
of the program. 

Another useful piece of information about scalar/3 that we want to infer 
is the maximum number of processes that may run in parallel, considering all 
possible executions. For this purpose, we define a resource named sthreads. 
The operation count_process/3 aggregates the cost of both arguments of the 
meta-predicate &/2 for the sthreads resource, by adding the maximum number 
of processes for each argument plus one additional process, corresponding to 
the one created by the call to &/2. The sequential cost aggregator is now the 
maximum operator, in order to keep track of the maximum number of processes 
created along the different instructions of the program executed sequentially. 
Note that if the instruction p executes at most Prp processes in parallel, and 

For the sake of clarity, we abuse notation in the examples when representing the cost 
functions that depend on data sizes. 



the instruction q executes at most Prq processes, then the program p, q will 
execute at most max(Prp,Prq) processes in parallel, because all the parallel 
processes created by p will finish before the execution of q. Note also tha t for 
the sequential execution of both p and q, the cost in terms of the sthreads 
resource is always zero, because no additional process is created. The analysis 
sets up the following recurrences for the sthreads resource and the predicates 
scalar/3 and mult/3 of our example: 

Cscaiar(n, / ) = 0 if / = 0 

Cscaiar(n, /) = Cmuit(n) + Cscaiar(n, / — 1) + 1 if / > 0 

C m u l t ( n ) = 0 if n > 0 

For which we obtain the following closed-form functions: 

Cscaiar(n, I) = I if n > 0 A / > 0 

Cmuit(^) = 0 if n > 0 

As we can see, this predicate will execute, in the worst case, as many processes 
as there are elements in the input list. 

3 The Parametric Cost Relations Framework 
for Sequential Programs 

The start ing point of our work is the s tandard general framework described 
in [24] for setting up parametric relations representing the resource usage (and 
size relations) of programs and predicates.2 The analysis infers size relations 
for each predicate in a program: arithmetic expressions tha t provide the size of 
output arguments of the predicate as a function of its input da ta sizes. It also 
infers size relations for each clause, which give the input da ta sizes of the body 
literals as functions of the input da ta sizes to the clause head. Such size relations 
are instrumental for setting up cost relations. 

The framework is doubly parametric: first, the costs inferred are functions of 
input da ta sizes, and second, the framework itself is parametric with respect to 
the type of approximation made (upper or lower bounds), and to the resource 
analyzed. Each concrete resource r to be tracked is defined by two sets of (user-
provided) functions, which can be constants, or general expressions of input da ta 
sizes: 

1. Head cost (^[apr](i7): a function tha t returns an approximation of type ap of 
the amount of resource r used by the unification of the calling literal (subgoal) 
p and the head H of a clause matching p, plus any preparation for entering 
a clause (i.e., call and parameter passing cost). 

We give equivalent but simpler descriptions than in [24], which are allowed by assum
ing that programs are the result of a normalization process that makes all unifications 
explicit in the clause body, so that the arguments of the clause head and the body 
literals are all unique variables. We also change some notation for readability and 
illustrative purposes. 



2. Predicate cost H/iap ri(p,x): it is also possible to define the full cost for a 
particular predicate p for resource r and approximation ap, i.e., the function 
^[ap,r] (p) : N'-j ~^ 72-oo (with the sizes of p’s input data as parameters, x) 
that returns the usage of resource r made by a call to this predicate. This is 
especially useful for built-in or external predicates, i.e., predicates for which 
the source code is not available and thus cannot be analyzed, or for providing 
a more accurate function than analysis can infer. In the implementation, 
this information can be provided by the user to the analyzer through trust 
assertions. 

For simplicity we only show the equations related to our standard definition of 
cost. However, our framework has also been extended to allow the inference of 
a more general definition of cost, called accumulated cost, which is useful for 
performing static profiling, obtaining more detailed information regarding how 
the cost is distributed among a set of user-defined cost centers. See [11,21] for 
more details. In order to infer the resource usage functions, all predicates in the 
program are processed in a single traversal of the call graph in reverse topological 
order. Consider a predicate p defined by clauses Ci,..., Cm. Assume x are the 
sizes of p’s input parameters. Then, the resource usage (expressed in units of 
resource r with approximation ap) of a call to p, for an input of size x, denoted 
as Cpre(i[ap,r] (PJ X), can be expressed as: 

Cpred[ap,r] (P , x ) = Qj (C c ; [ a p > r ] ( C ; , x ) ) ( 1 ) 

l<i<m 

where f • J = ClauseAggregator(ap, r) is a function that takes an approximation 
identifier ap and returns a function that applies over the cost of all the clauses, 
Cci[ap,r] (Cjj x), for 1 < « < TO, in order to obtain the cost of a call to the predicate 
p. For example, if ap is the identifier for approximation “upper bound” (ub), 
then a possible conservative definition for ClauseAggregator(ub, r) is the ^ 
function. In this case, and since the number of solutions generated by a predicate 
that will be demanded is generally not known in advance, a conservative upper 
bound on the computational cost of a predicate is obtained by assuming that 
all solutions are needed, and that all clauses are executed (thus the cost of the 
predicate is assumed to be the sum of the costs of all of its clauses). However, it 
is straightforward to take mutual exclusion into account to obtain a more precise 
estimate of the cost of a predicate, using the maximum of the costs of mutually 
exclusive groups of clauses, as done in [26]. 

Let us see now how to compute the resource usage of a clause. Consider a 
clause C of predicate p of the form H :- L\,...,Li~ where Lj, 1 < j < k, is 
a literal (either a predicate call, or an external or builtin predicate), and H is 
the clause head. Assume that V'j(x) is a tuple with the sizes of all the input 
arguments to literal Lj, given as functions of the sizes of the input arguments 
to the clause head. Note that these V'j(x) size relations have previously been 
computed during size analysis for all input arguments to literals in the bodies of 
all clauses. Then, the cost relation for clause C and a single call to p (obtaining 
all solutions), is: 



lim(ap,C) 

Ccl[ap,r}{C, x ) = ifi[ap^(H) + ^ SOlSj(x) X Clit[aP:r](Lj,1pj(x)) ( 2 ) 

J = l 

where lim(ap, C) gives the index of the last body literal that is called in the 
execution of clause C, and solsj represents the product of the number of solutions 
produced by the predecessor literals of Lj in the clause body: 

j ' - i 

solsjfx) = I I spr£d(Li,tpi(x)) (3) 
i=l 

where spred(Li, V'i(x)) gives the number of solutions produced by Lj, with argu
ments of size V'i(x). The number of solutions and size relations are both inferred 
automatically by the framework (we refer the reader to [7-9,26] for a descrip
tion). 

Finally, Ciitiap ri(Lj, tj)j( ̄ )) is replaced by one of the following expressions, 
depending on Lj: 

- If Lj is a call to a predicate q which is in the same strongly connected compo
nent as p (the predicate under analysis), then Cm^ap^(Lj, V>j(x)) is replaced 
by the symbolic call CpT.e(j[aj,iT.](q, V'j(x)), giving rise to a recurrence relation 
that needs to be bounded with a closed-form expression by the solver after
wards. 

- If Lj is a call to a predicate q which is in a different strongly connected 
component than p, then Cin^ap^(Lj,tj)j( ¯)) is replaced by the closed-form 
expression that bounds Cpred[ap}r] (q.j V'j (*)). The analysis guarantees that this 
expression has been inferred beforehand, due to the fact that the analysis is 
performed for each strongly connected component, in a reverse topological 
order. 

- If Lj is a call to a predicate q, whose cost is specified (with a trust asser
tion) as ^[ap,r](9)y), then Cin^ap^(Lj,tj)j( ¯)) is replaced by the expression 
*'[ap,r]('?,V'j(x)). 

4 Our Extended Resource Analysis Framework 
for Parallel Programs 

In this section, we describe how we extend the resource analysis framework 
detailed above, in order to handle logic programs with Independent And-
Parallelism, using the binary parallel &/2 operator. First, we introduce a new 
general parameter that indicates the execution model the analysis has to con
sider. For our current prototype, we have defined two different execution models: 
standard sequential execution, represented by seq, and an abstract parallel exe
cution model, represented by par(n), where n G 7Vu{oo}. The abstract execution 
model par(oo) is similar to the work and depth model, presented in [6] and used 



extensively in previous work such as [16]. Basically, this model is based on con
sidering an unbounded number of available processors to infer bounds on the 
depth of the computation tree. The work measure is the amount of work to be 
performed considering a sequential execution. These two measures together give 
an idea on the impact of the parallelization of a particular program. The abstract 
execution model par(n), where n G TV, assumes a finite number n of processors. 

In order to obtain the cost of a predicate, Eq. (1) remains almost identical, the 
only difference being the addition of the new parameter to indicate the execution 
model. 

Now we address how to set up the cost for clauses. In this case, Eq. (2) is 
extended with the execution model ex, and also the default sequential cost aggre
gation, ^2, is replaced by a parametric associative operator (J), that depends on 
the resource being defined, the approximation, and the execution model. For 
ex = par(oo) or ex = seq, the following equation is set up: 

lim(ap :ex :G) 

Ccl[av,r,ex]{C, x) = ifi[ap^(H)+ H | H (solSj (x) X Cm [ap,r,ex] (Lj , Ipj ( x ) ) ) ( 4 ) 

J = l 

Note that the cost aggregation operators must depend on the resource r 
(besides the other parameters). For example, if r is execution time, then the cost 
of executing two tasks in parallel must be aggregated by taking the maximum 
of the execution times of the two tasks. In contrast, if r is energy consumption, 
then the aggregation is the addition of the energy of the two tasks. 

Finally, we extend how the cost of a literal Lj, expressed as 
Cut[ap,r,ex](Li,il)i(x)), is set up. The previous definition is extended consider
ing the new case where the literal is a call to the meta-predicate &/2. In this 
case, we introduce a new parallel aggregation associative operator, denoted by 
^ . Concretely, if Lj = B1&B2, where B\ and B-i are two sequences of goals, 
then: 

Clit[ap,r,ex](Bl&zB2,x) = Cbody[ap)T)ex} ( B l , x) ^ Cbody[ap)T)ex} (B2 , x ) ( 5 ) 

lim(ap :ex :B) 

Cbody[ap,r,ex](B,x)= (+) (solSj(x) X Cm[ap,r,ex](Lj ,1pj(x))) ( 6 ) 

J = l 

where B = Lf,...,L^. 
Consider now the execution model ex = par(n), where n G TV (i.e., assuming 

a finite number n of processors), and a recursive parallel predicate p that creates 
a parallel task q̂  in each recursion i. Assume that we are interested in obtaining 
an upper bound on the cost of a call to p, for an input of size x. We first infer 
the number k of parallel tasks created by p as a function of x. This can be easily 
done by using our cost analysis framework and providing the suitable assertions 
for inferring a resource named “ptasks.” Intuitively, the “counter” associated 
to such resource must be incremented by the (symbolic) execution of the &/2 
parallel operator. More formally, k = Cpre(i[M6jj,tasfcs](p,x). To this point, an 



upper bound TO on the number of tasks executed by any of the n processors is 
given by TO = [ - ] . Then, an upper bound on the cost (in terms of resolution 
steps, i.e., r = steps) of a call to p, for an input of size x can be given by: 

^pred[ub,r,par(n)]\p>xJ O -\- OJJCIWTI (7) 

where C can be computed in two possible ways: C = z^i=i ^t; or C = TO of, 
where C" denotes an upper bound on the cost of parallel task q̂ , and C",..., C^ 
are ordered in descending order of cost. Each C" can be considered as the sum 
of two components: C" = Sched" + T", where Sched" denotes the cost from 
the point in which the parallel subtask q̂  is created until its execution is started 
by a processor (possibly the same processor that created the subtask), i.e. the 
cost of task preparation, scheduling, communication overheads, etc. T" denotes 
the cost of the execution of q̂  disregarding all the overheads mentioned before, 
i.e., T" = Cprediubrseqi(q, ?/>q(x)), where V'q(x) is a tuple with the sizes of all 
the input arguments to predicate q in the body of p. Spawn11 denotes an upper 
bound on the cost of creating the k parallel tasks q̂ . It will be dependent on 
the particular system in which p is going to be executed. It can be a constant, 
or a function of several parameters, (such as input data size, number of input 
arguments, or number of tasks) and can be experimentally determined. 

4.1 Solving Cost Recurrence Relations Involving max Operation 

We propose a method for finding closed-form functions for cost relations that use 
the parallel and sequential cost aggregation operators (̂ ) and (J), which include 
the max function in their definitions. 

Automatically finding closed-form upper and lower bounds for recurrence 
relations is an uncomputable problem. For some special classes of recurrences, 
exact solutions are known, for example for linear recurrences with one variable. 
For some other classes, it is possible to apply transformations to fit a class of 
recurrences with known solutions, even if this transformation obtains an appro
priate approximation rather than an equivalent expression. 

Particularly for the case of analyzing independent and-parallel logic pro
grams, recurrences involving the max operator are quite common. For example, 
if we are analyzing elapsed time of a parallel logic program, a proper parallel 
aggregation operator is the maximum between the times elapsed for each literal 
running in parallel. To the best of our knowledge, no general solution exists for 
recurrences of this particular type. However, in this paper we identify some com
mon classes of this type of recurrences, for which we obtain closed forms that are 
proven to be correct. In this section, we present these different classes, together 
with the corresponding method to obtain a correct bound. 

Consider the following function / : Mm —• TV, defined as a general form of a 
first-order recurrence equation with a max operator: 

. rnaxiC f(xu — 1)) + D Xi > a 
j ( x ) = < ( 8 ) 

B Xi < a 



where a G TV, and C, D, and B are arbitrary expressions possibly depending on 
x. Note tha t x = xi, X2, • • • , x m . We define xu — 1 = xi,..., Xj — 1 , . . . , x m , for 
a given i, 1 < i < m. If C and D do not depend on Xj, then C and D do not 
change through the different recursive instances of / . In this case, an equivalent 
closed form is defined by the following theorem: 

T h e o r e m 1. Given f : J\fm —s- J\f as defined in (8), where C and D are func
tions of x \ Xj (i.e., they do not depend on Xi). Then, Vx: 

( ) ' (̄  x) \rnax(C, B)+(xi — a) • D Xi > a 
_o Xi < a 

For the case where C = g(x) and D = h(x) are functions non-decreasing on 
Xj, then the upper bound is given by the following closed form: 

T h e o r e m 2. Given f : J\fm —s- J\f as defined in (8), where g and h are functions 
of x, non-decreasing onxi. Then, Vx: 

£(¯ x ) ri(¯ x ) I rnax(g(x),B) + ( c — a — 1) x max(g(x),h(x\i — 1)) + /i(x) Xi > a 
/ < J = < n 

_o i < a 
The proofs of bo th theorems are available in [18]. If the recurrence is not included 
in the classes defined by Theorems 1 and 2, we t ry to eliminate the max opera
tor by simplification. Consider an expression max(ei,e2) appearing in a recur
rence relation. First, we use the function comparison capabilities of CiaoPP, pre
sented in [19,20]. If an ej contains non-closed recurrence function calls, we use 
an SMT solver [23] representing non-closed functions as uninterpreted functions, 
assuming tha t they are positive and non-decreasing. Concretely, for each non-
closed function call / ( x ) appearing in ei, we add the properties Vx . /(x) > 0 and 
Vx,y.x < y -<=> / ( x ) < / ( y ) to a set M. Then, we check if either M \= e\ < ei 
or M = &2 < ei hold.3 

Finally, if no proof is found, we replace the max operator with an addition, 
losing precision but still finding safe upper bounds. 

Table 1 . Description of the benchmarks. 

map add1/2 

fib/2 

add mat/3, mmatrix/3 

blur/2 

3 

Parallel increment by one of each element of a list 

Parallel computation of the nth Fibonacci number 

Parallel matrix multiplication and addition 

Generic parallel image filter 

intersect/3, union/3, diff/3 Set operations 

dyade/3, dyade map/3 Dyadic product of two vectors (and on a set of vectors) 

append all/3 Appends a prefix to each list of a list of lists 

As the algorithm used by SMT solvers in this case is not guaranteed to terminate, 
we set a timeout. 



5 Implementation and Experimental Results 

We have implemented a prototype of our approach, leveraging the existing 
resource usage analysis framework of CiaoPP. The implementation basically 
consists of the parameterization of the operators used for sequential and par
allel cost aggregation, i.e., for the aggregation of the costs corresponding to the 
arguments of ,/2 and &/2, respectively. This allows the user to define resources 
in a general way, taking into account the underlying execution model. We use 
off-the-shelf Computer Algebra Systems, as well as a builtin recurrence solver 
extended with the techniques presented in this paper, in order to solve recur
rence relations that arise during analysis. We also use an external SMT Solver 
(Z3 [23]), for the simplification of some recurrences with a max operator. 

We selected a set of benchmarks that exhibit different common parallel 
patterns, briefly described in Table 1, together with the definition of a set of 
resources that help understand the overall behavior of the parallelization. Table 2 
shows some results of the experiments that we have performed with our proto
type implementation. Column Bench shows the main predicates analyzed for 
each benchmark. Set operations (intersect, union and diff), as well as the pro
grams append all, dyade and add mat, are Prolog versions of the benchmarks 
analyzed in [16], which is the closest related work we are aware of. Column Res 
indicates the name of each of the resources inferred for each benchmark: sequen
tial resolution steps (SCost) , paral lel reso lu tion s teps assuming an unbounded 
number of processors (PCos t ) , and maximum number of processes executing in 
paral lel (SThreads) . The latter gives an indication of the maximum parallelism 
that can potentially be exploited. We are considering a resolution step as the 
overhead of spawning a new thread. Column Bound Inferred shows the upper 
bounds obtained for each of the resources indicated in Column Res . While in the 
experiments both upper and lower bounds were inferred, for the sake of brevity, 
we only show upper-bound functions. Column BigO shows the complexity order, 
in big O notation, corresponding to each resource. For all the benchmarks in 
Table 2 we obtain the exact complexity orders. We also obtain the same com
plexity order as in [16] for the Prolog versions of the benchmarks taken from 
that work. Finally, Column T A ( m s ) shows the analysis times in milliseconds. 
The results show that most of the benchmarks have different asymptotic behav
ior in the sequential and parallel execution models. In particular, for fib(x), 
the analysis infers an exponential upper bound for sequential execution steps, 
and a linear upper bound for parallel execution steps. As mentioned before, this 
is an upper bound for an ideal case, assuming an unbounded number of pro
cessors. Nevertheless, such upper-bound information is useful for understanding 
how the cost behavior evolves in architectures with different levels of parallelism. 
In addition, this dual cost measure can be combined together with a bound on 
the number of processors in order to obtain a general asymptotic upper bound 
(see for example Brent’s Theorem [12], which is also mentioned in [16]). The 
program map add1(l) exhibits a different behavior: both sequential and parallel 
upper bounds are linear. This happens because we are considering resolution 
steps, i.e., we are counting each head unification produced from an initial call 



Table 2 . Resource usage inferred for independent and-parallel programs. 

Bench 

map add1(x) 

fib(x) 

mmatrixCmi , 

ni,m2,n2) 

blur Cm, n) 

add mat(m, n) 

intersect(a, b) 

union(a, b) 

diff(a, b) 

dyade(a, b) 

dyade map(l, m) 

append all(l, m) 

Res Bound Inferred 

SCost |2 • lx + 1 

PCost 2 • lx + 1 

SThreads 

SCost 

PCost 

SThreads 

SCost 

i x 

- f ( ^ x ) + ^ ( * x ) ~~ 1 

2 - i x + l 

- f ( ^ x ) + ^ ( * x ) ~~ 1 

^ n 2 ' ^ m 2 ' ^ m ^ T~ -̂  ' m2 ' * m I ~T~ ' ^m-^ T~ -L 

PCost in2 + 2 • im2 + 2 • i m i + 1 

SThreads 

SCost 

PCost 

SThreads 

SCost 

PCost 

SThreads 

SCost 

*m2 ' * m ^ T~ * m ^ 

-̂  ' ^ m ' * n ~T -̂  ' 'i-n \ 1 

2 • i m + 2 • i n + 1 

in 

*m ' * n T~ ^ ' * n T~ J-

i m + 2 • in + 1 

*n 
la • h + 3 • la + 3 

PCost lb + 3 • la + 3 

SThreads 

SCost 

PCost 

SThreads 

SCost 

PCost 

SThreads 

SCost 

la 

*a ' 'b + 3 • la + 3 

2 . i b + 3 . i a + 3 

la 

la • lb + 3 • la + 3 

ib + 3 • i a + 3 

la 

!a ' *b + 2 ' la + 1 

PCost \lb + 2 • la + 1 

SThreads 

SCost 

la 

imax(m) · l m ·ll + 2 · l m · l l + 2 · l m + 1 
PCost i m a x ( m ) + 2 · l m + 2 · l l + 1 
SThreads 

SCost 

PCost 

SThreads 

'l • im T 'l 

il • Im +2 • lm +1 

!l + 2 • i m + 1 

'm 

B i g O 

O(ix) 

O(ix) 

O(ix) 

0 ( 2 i x ) 

0 ( i x ) 

0 ( 2 i x ) 

^ C ^ n 2 ' ' m 2 ' ' m l / 

^ C ' n ^ T ^m-^ T ^m^ ) 

G ( i m 2 • m ! ) 

d ( i m • in) 

0 ( i m + in) 

O(in) 

d ( i m • in) 

0 ( i m + in) 

0(in) 

0(la • lb) 

O(la + lb) 

O(la) 

0(la • lb) 

O(la + lb) 

O(la) 

0(la • lb) 

O(la + lb) 

O(la) 

0(la • lb) 

O(la + lb) 

O(la) 

O(imax(m) · l m · ll) O(imax(m) + l m + ll) 

o(im • h) 

CJ(tl • I m ) 

0(ll + lm) 

o(im) 

T A ( m s ) 

31.17 

127.81 

194.45 

126.63 

128.93 

233.14 

218.31 

232.55 

82.71 

177.91 

81.97 

F(n), L(n) r e p r e s e n t t h e n t h . e l e m e n t of t h e F i b o n a c c i s equence a n d 
l n , i n r e p r e s e n t t h e s ize of n in t e r m s of t h e m e t r i c s length a n d int, 

t h e n t h . L u c a s n u m b e r , r e spec t ive ly . 
r espec t ive ly . 

map add1(l). Even under the parallel execution model, we have a chain of head 
unifications whose length depends linearly on the length of the input list. It 
follows from the results of this particular case that this simple, non-associative 
parallelization will not be useful for improving the number of resolution steps 
performed in parallel. 

Another useful information inferred in our experiments is the maximum num
ber of processes that can be executed in parallel, represented by the resource 
named SThreads . We can see that for most of our examples the analysis obtains 
a linear upper bound for this resource, in terms of the size of some of the inputs. 
For example, the execution of intersect(a,b) (parallel set intersection) will 
create at most la processes, where la represents the length of the list a. For 
other examples, the analysis shows a quadratic upper bound (as in mmatrix), 
or even exponential bounds (as in fib). The information about upper bounds 



Table 3. Resource usage inferred for a bounded number of processors. 

Bench Bound Inferred BigO TA(ms) 
map add1(x) 

blur(m, n) 

add mat(m, n) 

intersect(a, b) 

union(a, b) 

diff(a, b) 

dyade(a, b) 

append all(l, m) 

2 . [ixl -\- 1 
I p I 

2 • r n i • im +2 • r n i + 1 
H - i m + 2 - r n i + i 

p \ i p i ' 

a1 - Zi, +2 - r a i + / a + 2 
p i ^ i p i 

M • /(, +2 • r a +ia + h 
p \ V I p I I V 

a1 - Zi, +2 - r a i + / a + 2 
p i " I p I 

la 1 - zb +2 - r a i + I 
p i i p i • 

1 -h +2-\l 
1 + 1 

|e>(rH) 
v i p i / 

\ i p i " " > 

v i P i Hi' J 

c(rai -w 
vi P i ^ / 

+ 2 o r r a i •/(,) 
v i p i " y 

c( ra i -h) 
\ i p i ^ / 

c(rai -w 
v i p i " y 

54.36 
205.97 
185.89 
330.47 
311.3 
339.01 
120.93 
117.8 

p is defined as 
SThreads. 

the minimum between the number of processors and 

on the maximum level of parallelism required by a program is useful for under
standing its scalability in different parallel architectures, or for optimizing the 
number of processors that a particular call will use, depending on the size of the 
input data. 

Finally, the results of our experiments considering a bounded number of 
processors are shown in Table 3. 

6 R e l a t e d W o r k 

Our approach is an extension of an existing cost analysis framework for sequential 
logic programs [9,11,20], which extends the classical cost analysis techniques 
based on setting up and solving recurrence relations, pioneered by [29], with 
solutions for relations involving max and min functions. The framework handles 
characteristics such as backtracking, multiple solutions (i.e., non-determinism), 
failure, and inference of both upper and lower bounds including non-polynomial 
bounds. These features are inherited by our approach, and are absent from other 
approaches to parallel cost analysis in the literature. 

The most closely-related work to our approach is [16], which describes an 
automatic analysis for deriving bounds on the worst-case evaluation cost of first 
order functional programs. The analysis derives bounds under an abstract dual 
cost model based on two measures: work and depth, which over-approximate the 
sequential and parallel evaluation cost of programs, respectively, considering an 
unlimited number of processors. Such an abstract cost model was introduced 
by [6] to formally analyze parallel programs. The work is based on type judg
ments annotated with a cost metric, which generate a set of inequalities which 
are then solved by linear programming techniques. Their analysis is only able 
to infer multivariate resource polynomial bounds, while non-polynomial bounds 
are left as future work. In [15] the authors propose an automatic analysis based 
on the work and depth model, for a simple imperative language with explicit 
parallel loops. 



There are other approaches to cost analysis of parallel and distributed sys
tems, based on different models of computation than the independent and-
parallel model in our work. In [3] the authors present a static analysis which 
is able to infer upper bounds on the maximum number of active (i.e., not fin
ished nor suspended) processes running in parallel, and the total number of 
processes created for imperative async-finish parallel programs. The approach 
described in [1] uses recurrence (cost) relations to derive upper bounds on the 
cost of concurrent object-oriented programs, with shared-memory communica
tion and future variables. They address concurrent execution for loops with 
semi-controlled scheduling, i.e., with no arbitrary interleavings. In [4] the authors 
address the cost of parallel execution of object-oriented distributed programs. 
The approach is to identify the synchronization points in the program, use serial 
cost analysis of the blocks between these points, and then, exploiting the tech
niques mentioned, construct a graph structure to capture the possible parallel 
execution of the program. The path of maximal cost is then computed. The allo
cation of tasks to processors (called “locations”) is part of the program in these 
works, and thus, although independent and-parallel programs could be modeled 
in this computation style, it is not directly comparable to our more abstract 
model of parallelism. 

Solving, or safely bounding recurrence relations with max and min functions 
has been addressed mainly for recurrences derived from divide-and-conquer algo
rithms [5,17,28]. In [2] the authors present solutions for Cost Relation Systems 
by obtaining upper bounds for both the number of nodes and the cost added in 
each node in the derived evaluation tree. These bounds are then combined in 
order to obtain a closed-form upper-bound expression. This closed form possibly 
contains maximization operations to express upper bounds for a set of subex
pressions. However, each cost relation is defined as a summatory of costs, while 
in our approach, in addition to summations, we also consider other operations 
for aggregating the costs, including max operators. The presence of these opera
tors often produces recurrence relations where the recursive calls are under the 
scope of such a max operator, for which we present a method to obtain a closed-
form bound. This class of recurrences are not handled by most of the current 
computer algebra systems, as the authors in [2] mention. 

7 Conclusions 

We have presented a novel, general, and flexible analysis framework that can 
be instantiated for estimating the resource usage of parallel logic programs, for 
a wide range of resources, platforms, and execution models. To the best of our 
knowledge, this is the first approach to the cost analysis of paral lel l ogic p rograms. 
Such estimations include both lower and upper bounds, given as functions on 
input data sizes. In addition, our analysis also infers other information which 
is useful for improving the exploitation and assessing the potential and actual 
parallelism of a program. We have also developed a method for solving the cost 
relations that arise in this particular type of analysis, which involve the max 



function. Finally, we have developed a prototype implementation of our general 
framework, instantiated it for the analysis of logic programs with Independent 
And-Parallelism, and performed an experimental evaluation, obtaining encour
aging results w.r.t. accuracy and efficiency. 
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