
Roskilde
University

A General Framework for Static Cost Analysis of Parallel Logic Programs

Klemen, Maximiliano; López-García, Pedro; Gallagher, John Patrick; Morales, José F.;
Hermenegildo, Manuel
Published in:
Logic-Based Program Synthesis and Transformation - 29th International Symposium

DOI:
10.1007/978-3-030-45260-5_2

Publication date:
2020

Document Version
Peer reviewed version

Citation for published version (APA):
Klemen, M., López-García, P., Gallagher, J. P., Morales, J. F., & Hermenegildo, M. (2020). A General
Framework for Static Cost Analysis of Parallel Logic Programs. In M. Gabbrielli (Ed.), Logic-Based Program
Synthesis and Transformation - 29th International Symposium: LOPSTR 2019 Revised Selected Papers (Vol.
12042, pp. 19-35). Springer. Lecture Notes in Computer Science Vol. 12042 Theoretical Computer Science and
General Issues Vol. 12042 https://doi.org/10.1007/978-3-030-45260-5_2

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 26. Dec. 2021

https://doi.org/10.1007/978-3-030-45260-5_2
https://doi.org/10.1007/978-3-030-45260-5_2

A General Framework for Static Cost
Analysis of Parallel Logic Programs

Maximiliano K l e m e n 1 ' 2 ^ - , Pedro Lopez-Garcia1 '3 , John P. Gallagher1 '4 ,

Jose F . Morales1 , and Manuel V. Hermenegildo1 '2

IMDEA Software Institute, Madrid, Spain
{maximiliano.klemen,pedro.lopez,john.gallagher,

josef.morales,manuel.hermenegildo}@imdea.org

ETSI Informaticos, Universidad Politecnica de Madrid (UPM), Madrid, Spain
Spanish Council for Scientific Research (CSIC), Madrid, Spain

Roskilde University, Roskilde, Denmark

A b s t r a c t . The estimation and control of resource usage is now an
important challenge in an increasing number of computing systems. In
particular, requirements on timing and energy arise in a wide variety of
applications such as internet of things, cloud computing, health, trans
portation, and robots. At the same time, parallel computing, with (het
erogeneous) multi-core platforms in particular, has become the dominant
paradigm in computer architecture. Predicting resource usage on such
platforms poses a difficult challenge. Most work on static resource analy
sis has focused on sequential programs, and relatively little progress has
been made on the analysis of parallel programs, or more specifically on
parallel logic programs. We propose a novel, general, and flexible frame
work for setting up cost equations/relations which can be instantiated
for performing resource usage analysis of parallel logic programs for a
wide range of resources, platforms, and execution models. The analysis
estimates both lower and upper bounds on the resource usage of a par
allel program (without executing it) as functions on input data sizes.
In addition, it also infers other meaningful information to better exploit
and assess the potential and actual parallelism of a system. We develop
a method for solving cost relations involving the max function that arise
in the analysis of parallel programs. Finally , we instantiate our general
framework for the analysis of logic programs with Independent And-
Parallelism, report on an implementation within the CiaoPP system,
and provide some experimental results. To our knowledge, this is the
first approach to the cost analysis of parallel logic programs.

Research partially funded by Spanish MINECO TIN2015-67522-C3-1-R TRACES
pro ject, and the Madrid P2018/TCS-4339 BLOQUES-CM program. W e are also grate
ful to the anonymous reviewers for their useful comments.

1 Introduction

Estimating in advance the resource usage of computations is useful for a num
ber of applications; examples include granularity control in parallel/distributed
systems, automatic program optimization, verification of resource-related speci
fications and detection of performance bugs, as well as helping developers make
resource-related design decisions. Besides time and energy, we assume a broad
concept of resources as numerical properties of the execution of a program,
including the number of execution steps, the number of cal ls to a procedure, the
number of network accesses, number of transactions in a database, and other
user-definable resources. The goal of automatic static analysis is to estimate
such properties without running the program with concrete data, as a function
of input data sizes and possibly other (environmental) parameters.

Due to the heat generation barrier in traditional sequential architectures,
parallel computing, with (heterogeneous) multi-core processors in particular,
has become the dominant paradigm in current computer architecture. Predict
ing resource usage on such platforms poses important challenges. Most work on
static resource analysis has focused on sequential programs, and relatively little
progress has been made on the analysis of parallel programs, or on parallel logic
programs in particular. The significant body of work on static analysis of sequen
tial logic programs has already been applied to the analysis of other programming
paradigms, including imperative programs. This is achieved via a transformation
into Horn clauses [22]. In this paper we concentrate on the analysis of parallel
Horn clause programs, which could be the result of such a translation from a
parallel imperative program or be themselves the source program. Our starting
point is the well-developed technique of setting up recurrence relations represent
ing resource usage functions parameterized by input data sizes [2,7–9,24–26,29],
which are then solved to obtain (exact or safely approximated) closed forms of
such functions (i.e., functions that provide upper or lower bounds on resource
usage). We build on this and propose a novel, general, and flexible framework
for setting up cost equations/relations which can be instantiated for perform
ing static resource usage analysis of parallel logic programs for a wide range
of resources, platforms, and execution models. Such an analysis estimates both
lower and upper bounds on the resource usage of a parallel program as functions
on input data sizes. We have instantiated the framework for dealing with Inde
pendent And-Parallelism (IAP) [10,14], which refers to the parallel execution of
conjuncts in a goal. However, the results can be applied to other languages and
types of parallelism, by performing suitable transformations into Horn clauses.

The main contributions of this paper can be summarized as follows:

– We have extended a general static analysis framework for the analysis of
sequential Horn clause programs [24,26], to deal with parallel programs.

– Our extensions and further generalizations support a wide range of resources,
platforms, and parallel/distributed execution models, and allow the inference
of both lower and upper bounds on resource usage. This is the first approach,
to our knowledge, to the cost analysis of pa ral l e l logic programs that can deal

with features such as backtracking, multiple solutions (i.e., non-determinism),
and failure.

- We have instantiated the developed framework to infer useful information for
assessing and exploiting the potential and actual parallelism of a system.

- We have developed a method for finding closed-form functions of cost relations
involving the max function that arise in the analysis of parallel programs.

- We have developed a prototype implementation that instantiates the frame
work for the analysis of logic programs with Independent And-Parallelism
within the CiaoPP system [13,24,26], and provided some experimental
results.

2 Overview of the Approach

Prior to explaining our approach, we provide some preliminary concepts. Inde
pendent And-Parallelism arises between two goals when their corresponding exe
cutions do not affect each other. For pure goals (i.e., without side effects) a suf
ficient condition for the correctness of IAP is the absence of variable sharing at
run-time among such goals. IAP has traditionally been expressed using the &/2
meta-predicate as the constructor to represent the parallel execution of goals. In
this way, the conjunction of goals (i.e., literals) p & q in the body of a clause will
trigger the execution of goals p and q in parallel, finishing when both executions
finish.

Given a program V and a predicate p G V of arity k and a set II of A;-tuples
of calling data to p, we refer to the (standard) cost of a call p(e) (i.e., a call to
p with actual data e G II), as the resource usage (under a given cost metric)
of the complete execution of p(e). The standard cost is formalized as a function
Cp : II —• 72.QO, where TZ-oo is the set of real numbers augmented with the special
symbol oo (which is used to represent non-termination). We extend the function
Cp to the powerset of II, i.e., Cp : 2n —• 2 °°, where Cp(E) = {Cp(e) | e G E}.
Our goal is to abstract (safely approximate, as accurately as possible) Cp (note
that Cp(e) = Cp({e})). Intuitively, this abstraction is the composition of two
abstractions: a size abstraction and a cost abstraction. The goal of the analysis
is to infer two functions C ˆ and C ˆ : A/"™ —• TZ-oo that give lower and upper
bounds respectively on the cost function C p , where A/"™ is the set of m-tuples
whose elements are natural numbers or the special symbol T, meaning that the
size of a given term under a given size metric is undefined. Such bounds are
given as a function of tuples of data sizes (representing the concrete tuples of
data of the concrete function Cp). Typical size metrics are the actual value of a
number, the length of a list, the size (number of constant and function symbols)
of a term, etc. [24,26].

We now enumerate different metrics used to evaluate the performance of par
allel logic programs, compared against its corresponding sequential version [27].
Here, these metrics are parameterized with respect to the resource in which
the cost is expressed (e.g., number of resolution steps, execution time, or energy
consumption):

– Sequential cost (W o r k) : It is the standard cost of executing a program,
assuming no parallelism.

– Paral lel cost (Depth) : It is the cost of executing a program in parallel,
considering an unbounded number of processors.

– M a x i m u m n u m b e r of processes runn ing in parallel: It is the maximum
number of processes that may run simultaneously in a program. This is useful
to determine what is the minimum number of processors that are required to
guarantee that all the processes run in parallel.

The following example illustrates our approach.

Example 1. Consider the predicate scalar/3 below, and a calling mode to it
with the first argument bound to an integer n and the second one bound to a
list of integers [x1, x2, . . . , xk]. Upon success, the third argument is bound to the
list of products [n · x1, n · x2, . . . , n · xk]. Each product is recursively computed
by predicate mult/3. The calling modes are automatically inferred by CiaoPP
(see [13] and its references): the first two arguments of both predicates are input,
and their last arguments are output.

mult(0,_,0).
mult(N,X,Y):-

scalar(_,[] ,[]).
N>1,

scalar(N,[X|Xs],[Y|Ys]):-
N1 is N - 1,

mult(N,X,Y) & scalar(N,Xs,Ys).
mult(N1,X,Y0),
Y is Y0 + X.

The call to the parallel &/2 operator in the body of the second clause of scalar/3
causes the calls to mult/3 and scalar/3 to be executed in parallel. We want to
infer the cost of such a call to scalar/3, in terms of the number of resolution
steps, as a function of its input data sizes. We use the CiaoPP system to infer size
relations for the different arguments in the clauses, as well as dealing with a rich
set of size metrics (see [24,26] for details). Assume that the size metrics used in
this example are the actual value of N (denoted int(N)), for the first argument,
and the list-length for the second and third arguments (denoted length(X) and
length(Y), respectively). Since size relations are obvious in this example, we
focus only on the setting up of cost relations for the sake of brevity. Regarding
the number of solutions, in this example all the predicates generate at most
one solution. For simplicity we assume that all builtin predicates, such as is/2
and the comparison operators have zero cost (in practice they have a “trust”
assertion that specifies their cost as if it had been inferred by the system). As
the program contains parallel calls, we are interested in inferring both total
resolution steps, i.e., considering a sequential execution (represented by the seq
identifier), and the number of parallel steps, considering a parallel execution,
with an unbounded number of processors (represented by par). In the latter
case, the definition of this resource establishes that the aggregator of the costs
of the parallel calls that are arguments of the &/2 meta-predicate is the max/2
function. Thus, the number of resolution steps performed in parallel for p & q is
the maximum between the parallel steps performed by p and the ones performed
by q. However, for computing the total resolution steps, the aggregation operator
we use is the addition, both for parallel and sequential calls. For brevity, in this
example we only infer upper bounds on resource usages.

We now set up the cost relations for scalar/3 and mult/3. Note that the
cost functions have two arguments, corresponding to the sizes of the input argu
ments.1 In the equations, we underline the operation applied as cost aggregator
for &/2.

For the sequential execution (seq), we obtain the following cost relations:

Cscaiar(n, /) = 1 if / = 0

Cscalar(n, /) = 1 + Cmult(n)+Cscaiar(n, / — 1) if / > 0
Cm u i t (n)=1 if n =0
Cmuit(^)=1 + Cmuit(n — 1) if n> 0

After solving these equations and composing the closed-form solutions, we obtain
the following closed-form functions:

Cscaiar(n, /) = (n + 2) x / + 1 if n > 0 A / > 0
Cmui t(n)= n + 1 if n > 0

For the parallel execution (par), we obtain the following cost relations:

Cscaiar(n, /) = 1 if / = 0
Cscaiar(n, /) = 1 + max(Cmnit.(w), Cscaiar(n, / — 1)) if / > 0

Cm u i t (n)=1 if n =0
Cmuit(n)=1 + Cmuit(n — 1) if n> 0

Similarly, we obtain the following closed-form functions:

Cscaiar(n, /) = n + / + 1 if n > 0 A / > 0
Cnuit("-)= n + 1 if n > 0

By comparing the complexity order (in terms of resolution steps) of the sequen
tial execution of scalar/3, 0(n • I), with the complexity order of its parallel
execution (assuming an ideal parallel model with an unbounded number of pro
cessors) 0(n+l), we can get a hint about the maximum achievable parallelization
of the program.

Another useful piece of information about scalar/3 that we want to infer
is the maximum number of processes that may run in parallel, considering all
possible executions. For this purpose, we define a resource named sthreads.
The operation count_process/3 aggregates the cost of both arguments of the
meta-predicate &/2 for the sthreads resource, by adding the maximum number
of processes for each argument plus one additional process, corresponding to
the one created by the call to &/2. The sequential cost aggregator is now the
maximum operator, in order to keep track of the maximum number of processes
created along the different instructions of the program executed sequentially.
Note that if the instruction p executes at most Prp processes in parallel, and

For the sake of clarity, we abuse notation in the examples when representing the cost
functions that depend on data sizes.

the instruction q executes at most Prq processes, then the program p, q will
execute at most max(Prp,Prq) processes in parallel, because all the parallel
processes created by p will finish before the execution of q. Note also tha t for
the sequential execution of both p and q, the cost in terms of the sthreads
resource is always zero, because no additional process is created. The analysis
sets up the following recurrences for the sthreads resource and the predicates
scalar/3 and mult/3 of our example:

Cscaiar(n, /) = 0 if / = 0

Cscaiar(n, /) = Cmuit(n) + Cscaiar(n, / — 1) + 1 if / > 0

C m u l t (n) = 0 if n > 0

For which we obtain the following closed-form functions:

Cscaiar(n, I) = I if n > 0 A / > 0

Cmuit(^) = 0 if n > 0

As we can see, this predicate will execute, in the worst case, as many processes
as there are elements in the input list.

3 The Parametric Cost Relations Framework
for Sequential Programs

The start ing point of our work is the s tandard general framework described
in [24] for setting up parametric relations representing the resource usage (and
size relations) of programs and predicates.2 The analysis infers size relations
for each predicate in a program: arithmetic expressions tha t provide the size of
output arguments of the predicate as a function of its input da ta sizes. It also
infers size relations for each clause, which give the input da ta sizes of the body
literals as functions of the input da ta sizes to the clause head. Such size relations
are instrumental for setting up cost relations.

The framework is doubly parametric: first, the costs inferred are functions of
input da ta sizes, and second, the framework itself is parametric with respect to
the type of approximation made (upper or lower bounds), and to the resource
analyzed. Each concrete resource r to be tracked is defined by two sets of (user-
provided) functions, which can be constants, or general expressions of input da ta
sizes:

1. Head cost (^[apr](i7): a function tha t returns an approximation of type ap of
the amount of resource r used by the unification of the calling literal (subgoal)
p and the head H of a clause matching p, plus any preparation for entering
a clause (i.e., call and parameter passing cost).

We give equivalent but simpler descriptions than in [24], which are allowed by assum
ing that programs are the result of a normalization process that makes all unifications
explicit in the clause body, so that the arguments of the clause head and the body
literals are all unique variables. We also change some notation for readability and
illustrative purposes.

2. Predicate cost H/iap ri(p,x): it is also possible to define the full cost for a
particular predicate p for resource r and approximation ap, i.e., the function
^[ap,r] (p) : N'-j ~^ 72-oo (with the sizes of p’s input data as parameters, x)
that returns the usage of resource r made by a call to this predicate. This is
especially useful for built-in or external predicates, i.e., predicates for which
the source code is not available and thus cannot be analyzed, or for providing
a more accurate function than analysis can infer. In the implementation,
this information can be provided by the user to the analyzer through trust
assertions.

For simplicity we only show the equations related to our standard definition of
cost. However, our framework has also been extended to allow the inference of
a more general definition of cost, called accumulated cost, which is useful for
performing static profiling, obtaining more detailed information regarding how
the cost is distributed among a set of user-defined cost centers. See [11,21] for
more details. In order to infer the resource usage functions, all predicates in the
program are processed in a single traversal of the call graph in reverse topological
order. Consider a predicate p defined by clauses Ci,..., Cm. Assume x are the
sizes of p’s input parameters. Then, the resource usage (expressed in units of
resource r with approximation ap) of a call to p, for an input of size x, denoted
as Cpre(i[ap,r] (PJ X), can be expressed as:

Cpred[ap,r] (P , x) = Qj (C c ; [a p > r] (C ; , x)) (1)

l<i<m

where f • J = ClauseAggregator(ap, r) is a function that takes an approximation
identifier ap and returns a function that applies over the cost of all the clauses,
Cci[ap,r] (Cjj x), for 1 < « < TO, in order to obtain the cost of a call to the predicate
p. For example, if ap is the identifier for approximation “upper bound” (ub),
then a possible conservative definition for ClauseAggregator(ub, r) is the ^
function. In this case, and since the number of solutions generated by a predicate
that will be demanded is generally not known in advance, a conservative upper
bound on the computational cost of a predicate is obtained by assuming that
all solutions are needed, and that all clauses are executed (thus the cost of the
predicate is assumed to be the sum of the costs of all of its clauses). However, it
is straightforward to take mutual exclusion into account to obtain a more precise
estimate of the cost of a predicate, using the maximum of the costs of mutually
exclusive groups of clauses, as done in [26].

Let us see now how to compute the resource usage of a clause. Consider a
clause C of predicate p of the form H :- L\,...,Li~ where Lj, 1 < j < k, is
a literal (either a predicate call, or an external or builtin predicate), and H is
the clause head. Assume that V'j(x) is a tuple with the sizes of all the input
arguments to literal Lj, given as functions of the sizes of the input arguments
to the clause head. Note that these V'j(x) size relations have previously been
computed during size analysis for all input arguments to literals in the bodies of
all clauses. Then, the cost relation for clause C and a single call to p (obtaining
all solutions), is:

lim(ap,C)

Ccl[ap,r}{C, x) = ifi[ap^(H) + ^ SOlSj(x) X Clit[aP:r](Lj,1pj(x)) (2)

J = l

where lim(ap, C) gives the index of the last body literal that is called in the
execution of clause C, and solsj represents the product of the number of solutions
produced by the predecessor literals of Lj in the clause body:

j ' - i

solsjfx) = I I spr£d(Li,tpi(x)) (3)
i=l

where spred(Li, V'i(x)) gives the number of solutions produced by Lj, with argu
ments of size V'i(x). The number of solutions and size relations are both inferred
automatically by the framework (we refer the reader to [7-9,26] for a descrip
tion).

Finally, Ciitiap ri(Lj, tj)j(̄)) is replaced by one of the following expressions,
depending on Lj:

- If Lj is a call to a predicate q which is in the same strongly connected compo
nent as p (the predicate under analysis), then Cm^ap^(Lj, V>j(x)) is replaced
by the symbolic call CpT.e(j[aj,iT.](q, V'j(x)), giving rise to a recurrence relation
that needs to be bounded with a closed-form expression by the solver after
wards.

- If Lj is a call to a predicate q which is in a different strongly connected
component than p, then Cin^ap^(Lj,tj)j(¯)) is replaced by the closed-form
expression that bounds Cpred[ap}r] (q.j V'j (*)). The analysis guarantees that this
expression has been inferred beforehand, due to the fact that the analysis is
performed for each strongly connected component, in a reverse topological
order.

- If Lj is a call to a predicate q, whose cost is specified (with a trust asser
tion) as ^[ap,r](9)y), then Cin^ap^(Lj,tj)j(¯)) is replaced by the expression
*'[ap,r]('?,V'j(x)).

4 Our Extended Resource Analysis Framework
for Parallel Programs

In this section, we describe how we extend the resource analysis framework
detailed above, in order to handle logic programs with Independent And-
Parallelism, using the binary parallel &/2 operator. First, we introduce a new
general parameter that indicates the execution model the analysis has to con
sider. For our current prototype, we have defined two different execution models:
standard sequential execution, represented by seq, and an abstract parallel exe
cution model, represented by par(n), where n G 7Vu{oo}. The abstract execution
model par(oo) is similar to the work and depth model, presented in [6] and used

extensively in previous work such as [16]. Basically, this model is based on con
sidering an unbounded number of available processors to infer bounds on the
depth of the computation tree. The work measure is the amount of work to be
performed considering a sequential execution. These two measures together give
an idea on the impact of the parallelization of a particular program. The abstract
execution model par(n), where n G TV, assumes a finite number n of processors.

In order to obtain the cost of a predicate, Eq. (1) remains almost identical, the
only difference being the addition of the new parameter to indicate the execution
model.

Now we address how to set up the cost for clauses. In this case, Eq. (2) is
extended with the execution model ex, and also the default sequential cost aggre
gation, ^2, is replaced by a parametric associative operator (J), that depends on
the resource being defined, the approximation, and the execution model. For
ex = par(oo) or ex = seq, the following equation is set up:

lim(ap :ex :G)

Ccl[av,r,ex]{C, x) = ifi[ap^(H)+ H | H (solSj (x) X Cm [ap,r,ex] (Lj , Ipj (x))) (4)

J = l

Note that the cost aggregation operators must depend on the resource r
(besides the other parameters). For example, if r is execution time, then the cost
of executing two tasks in parallel must be aggregated by taking the maximum
of the execution times of the two tasks. In contrast, if r is energy consumption,
then the aggregation is the addition of the energy of the two tasks.

Finally, we extend how the cost of a literal Lj, expressed as
Cut[ap,r,ex](Li,il)i(x)), is set up. The previous definition is extended consider
ing the new case where the literal is a call to the meta-predicate &/2. In this
case, we introduce a new parallel aggregation associative operator, denoted by
^ . Concretely, if Lj = B1&B2, where B\ and B-i are two sequences of goals,
then:

Clit[ap,r,ex](Bl&zB2,x) = Cbody[ap)T)ex} (B l , x) ^ Cbody[ap)T)ex} (B2 , x) (5)

lim(ap :ex :B)

Cbody[ap,r,ex](B,x)= (+) (solSj(x) X Cm[ap,r,ex](Lj ,1pj(x))) (6)

J = l

where B = Lf,...,L^.
Consider now the execution model ex = par(n), where n G TV (i.e., assuming

a finite number n of processors), and a recursive parallel predicate p that creates
a parallel task q̂ in each recursion i. Assume that we are interested in obtaining
an upper bound on the cost of a call to p, for an input of size x. We first infer
the number k of parallel tasks created by p as a function of x. This can be easily
done by using our cost analysis framework and providing the suitable assertions
for inferring a resource named “ptasks.” Intuitively, the “counter” associated
to such resource must be incremented by the (symbolic) execution of the &/2
parallel operator. More formally, k = Cpre(i[M6jj,tasfcs](p,x). To this point, an

upper bound TO on the number of tasks executed by any of the n processors is
given by TO = [-] . Then, an upper bound on the cost (in terms of resolution
steps, i.e., r = steps) of a call to p, for an input of size x can be given by:

^pred[ub,r,par(n)]\p>xJ O -\- OJJCIWTI (7)

where C can be computed in two possible ways: C = z^i=i ^t; or C = TO of,
where C" denotes an upper bound on the cost of parallel task q̂ , and C",..., C^
are ordered in descending order of cost. Each C" can be considered as the sum
of two components: C" = Sched" + T", where Sched" denotes the cost from
the point in which the parallel subtask q̂ is created until its execution is started
by a processor (possibly the same processor that created the subtask), i.e. the
cost of task preparation, scheduling, communication overheads, etc. T" denotes
the cost of the execution of q̂ disregarding all the overheads mentioned before,
i.e., T" = Cprediubrseqi(q, ?/>q(x)), where V'q(x) is a tuple with the sizes of all
the input arguments to predicate q in the body of p. Spawn11 denotes an upper
bound on the cost of creating the k parallel tasks q̂ . It will be dependent on
the particular system in which p is going to be executed. It can be a constant,
or a function of several parameters, (such as input data size, number of input
arguments, or number of tasks) and can be experimentally determined.

4.1 Solving Cost Recurrence Relations Involving max Operation

We propose a method for finding closed-form functions for cost relations that use
the parallel and sequential cost aggregation operators (̂) and (J), which include
the max function in their definitions.

Automatically finding closed-form upper and lower bounds for recurrence
relations is an uncomputable problem. For some special classes of recurrences,
exact solutions are known, for example for linear recurrences with one variable.
For some other classes, it is possible to apply transformations to fit a class of
recurrences with known solutions, even if this transformation obtains an appro
priate approximation rather than an equivalent expression.

Particularly for the case of analyzing independent and-parallel logic pro
grams, recurrences involving the max operator are quite common. For example,
if we are analyzing elapsed time of a parallel logic program, a proper parallel
aggregation operator is the maximum between the times elapsed for each literal
running in parallel. To the best of our knowledge, no general solution exists for
recurrences of this particular type. However, in this paper we identify some com
mon classes of this type of recurrences, for which we obtain closed forms that are
proven to be correct. In this section, we present these different classes, together
with the corresponding method to obtain a correct bound.

Consider the following function / : Mm —• TV, defined as a general form of a
first-order recurrence equation with a max operator:

. rnaxiC f(xu — 1)) + D Xi > a
j (x) = < (8)

B Xi < a

where a G TV, and C, D, and B are arbitrary expressions possibly depending on
x. Note tha t x = xi, X2, • • • , x m . We define xu — 1 = xi,..., Xj — 1 , . . . , x m , for
a given i, 1 < i < m. If C and D do not depend on Xj, then C and D do not
change through the different recursive instances of / . In this case, an equivalent
closed form is defined by the following theorem:

T h e o r e m 1. Given f : J\fm —s- J\f as defined in (8), where C and D are func
tions of x \ Xj (i.e., they do not depend on Xi). Then, Vx:

() ' (̄ x) \rnax(C, B)+(xi — a) • D Xi > a
_o Xi < a

For the case where C = g(x) and D = h(x) are functions non-decreasing on
Xj, then the upper bound is given by the following closed form:

T h e o r e m 2. Given f : J\fm —s- J\f as defined in (8), where g and h are functions
of x, non-decreasing onxi. Then, Vx:

£(¯ x) ri(¯ x) I rnax(g(x),B) + (c — a — 1) x max(g(x),h(x\i — 1)) + /i(x) Xi > a
/ < J = < n

_o i < a
The proofs of bo th theorems are available in [18]. If the recurrence is not included
in the classes defined by Theorems 1 and 2, we t ry to eliminate the max opera
tor by simplification. Consider an expression max(ei,e2) appearing in a recur
rence relation. First, we use the function comparison capabilities of CiaoPP, pre
sented in [19,20]. If an ej contains non-closed recurrence function calls, we use
an SMT solver [23] representing non-closed functions as uninterpreted functions,
assuming tha t they are positive and non-decreasing. Concretely, for each non-
closed function call / (x) appearing in ei, we add the properties Vx . /(x) > 0 and
Vx,y.x < y -<=> / (x) < / (y) to a set M. Then, we check if either M \= e\ < ei
or M = &2 < ei hold.3

Finally, if no proof is found, we replace the max operator with an addition,
losing precision but still finding safe upper bounds.

Table 1 . Description of the benchmarks.

map add1/2

fib/2

add mat/3, mmatrix/3

blur/2

3

Parallel increment by one of each element of a list

Parallel computation of the nth Fibonacci number

Parallel matrix multiplication and addition

Generic parallel image filter

intersect/3, union/3, diff/3 Set operations

dyade/3, dyade map/3 Dyadic product of two vectors (and on a set of vectors)

append all/3 Appends a prefix to each list of a list of lists

As the algorithm used by SMT solvers in this case is not guaranteed to terminate,
we set a timeout.

5 Implementation and Experimental Results

We have implemented a prototype of our approach, leveraging the existing
resource usage analysis framework of CiaoPP. The implementation basically
consists of the parameterization of the operators used for sequential and par
allel cost aggregation, i.e., for the aggregation of the costs corresponding to the
arguments of ,/2 and &/2, respectively. This allows the user to define resources
in a general way, taking into account the underlying execution model. We use
off-the-shelf Computer Algebra Systems, as well as a builtin recurrence solver
extended with the techniques presented in this paper, in order to solve recur
rence relations that arise during analysis. We also use an external SMT Solver
(Z3 [23]), for the simplification of some recurrences with a max operator.

We selected a set of benchmarks that exhibit different common parallel
patterns, briefly described in Table 1, together with the definition of a set of
resources that help understand the overall behavior of the parallelization. Table 2
shows some results of the experiments that we have performed with our proto
type implementation. Column Bench shows the main predicates analyzed for
each benchmark. Set operations (intersect, union and diff), as well as the pro
grams append all, dyade and add mat, are Prolog versions of the benchmarks
analyzed in [16], which is the closest related work we are aware of. Column Res
indicates the name of each of the resources inferred for each benchmark: sequen
tial resolution steps (SCost) , paral lel reso lu tion s teps assuming an unbounded
number of processors (PCos t) , and maximum number of processes executing in
paral lel (SThreads) . The latter gives an indication of the maximum parallelism
that can potentially be exploited. We are considering a resolution step as the
overhead of spawning a new thread. Column Bound Inferred shows the upper
bounds obtained for each of the resources indicated in Column Res . While in the
experiments both upper and lower bounds were inferred, for the sake of brevity,
we only show upper-bound functions. Column BigO shows the complexity order,
in big O notation, corresponding to each resource. For all the benchmarks in
Table 2 we obtain the exact complexity orders. We also obtain the same com
plexity order as in [16] for the Prolog versions of the benchmarks taken from
that work. Finally, Column T A (m s) shows the analysis times in milliseconds.
The results show that most of the benchmarks have different asymptotic behav
ior in the sequential and parallel execution models. In particular, for fib(x),
the analysis infers an exponential upper bound for sequential execution steps,
and a linear upper bound for parallel execution steps. As mentioned before, this
is an upper bound for an ideal case, assuming an unbounded number of pro
cessors. Nevertheless, such upper-bound information is useful for understanding
how the cost behavior evolves in architectures with different levels of parallelism.
In addition, this dual cost measure can be combined together with a bound on
the number of processors in order to obtain a general asymptotic upper bound
(see for example Brent’s Theorem [12], which is also mentioned in [16]). The
program map add1(l) exhibits a different behavior: both sequential and parallel
upper bounds are linear. This happens because we are considering resolution
steps, i.e., we are counting each head unification produced from an initial call

Table 2 . Resource usage inferred for independent and-parallel programs.

Bench

map add1(x)

fib(x)

mmatrixCmi ,

ni,m2,n2)

blur Cm, n)

add mat(m, n)

intersect(a, b)

union(a, b)

diff(a, b)

dyade(a, b)

dyade map(l, m)

append all(l, m)

Res Bound Inferred

SCost |2 • lx + 1

PCost 2 • lx + 1

SThreads

SCost

PCost

SThreads

SCost

i x

- f (^ x) + ^ (* x) ~~ 1

2 - i x + l

- f (^ x) + ^ (* x) ~~ 1

^ n 2 ' ^ m 2 ' ^ m ^ T~ -̂ ' m2 ' * m I ~T~ ' ^m-^ T~ -L

PCost in2 + 2 • im2 + 2 • i m i + 1

SThreads

SCost

PCost

SThreads

SCost

PCost

SThreads

SCost

*m2 ' * m ^ T~ * m ^

-̂ ' ^ m ' * n ~T -̂ ' 'i-n \ 1

2 • i m + 2 • i n + 1

in

*m ' * n T~ ^ ' * n T~ J-

i m + 2 • in + 1

*n
la • h + 3 • la + 3

PCost lb + 3 • la + 3

SThreads

SCost

PCost

SThreads

SCost

PCost

SThreads

SCost

la

*a ' 'b + 3 • la + 3

2 . i b + 3 . i a + 3

la

la • lb + 3 • la + 3

ib + 3 • i a + 3

la

!a ' *b + 2 ' la + 1

PCost \lb + 2 • la + 1

SThreads

SCost

la

imax(m) · l m ·ll + 2 · l m · l l + 2 · l m + 1
PCost i m a x (m) + 2 · l m + 2 · l l + 1
SThreads

SCost

PCost

SThreads

'l • im T 'l

il • Im +2 • lm +1

!l + 2 • i m + 1

'm

B i g O

O(ix)

O(ix)

O(ix)

0 (2 i x)

0 (i x)

0 (2 i x)

^ C ^ n 2 ' ' m 2 ' ' m l /

^ C ' n ^ T ^m-^ T ^m^)

G (i m 2 • m !)

d (i m • in)

0 (i m + in)

O(in)

d (i m • in)

0 (i m + in)

0(in)

0(la • lb)

O(la + lb)

O(la)

0(la • lb)

O(la + lb)

O(la)

0(la • lb)

O(la + lb)

O(la)

0(la • lb)

O(la + lb)

O(la)

O(imax(m) · l m · ll) O(imax(m) + l m + ll)

o(im • h)

CJ(tl • I m)

0(ll + lm)

o(im)

T A (m s)

31.17

127.81

194.45

126.63

128.93

233.14

218.31

232.55

82.71

177.91

81.97

F(n), L(n) r e p r e s e n t t h e n t h . e l e m e n t of t h e F i b o n a c c i s equence a n d
l n , i n r e p r e s e n t t h e s ize of n in t e r m s of t h e m e t r i c s length a n d int,

t h e n t h . L u c a s n u m b e r , r e spec t ive ly .
r espec t ive ly .

map add1(l). Even under the parallel execution model, we have a chain of head
unifications whose length depends linearly on the length of the input list. It
follows from the results of this particular case that this simple, non-associative
parallelization will not be useful for improving the number of resolution steps
performed in parallel.

Another useful information inferred in our experiments is the maximum num
ber of processes that can be executed in parallel, represented by the resource
named SThreads . We can see that for most of our examples the analysis obtains
a linear upper bound for this resource, in terms of the size of some of the inputs.
For example, the execution of intersect(a,b) (parallel set intersection) will
create at most la processes, where la represents the length of the list a. For
other examples, the analysis shows a quadratic upper bound (as in mmatrix),
or even exponential bounds (as in fib). The information about upper bounds

Table 3. Resource usage inferred for a bounded number of processors.

Bench Bound Inferred BigO TA(ms)
map add1(x)

blur(m, n)

add mat(m, n)

intersect(a, b)

union(a, b)

diff(a, b)

dyade(a, b)

append all(l, m)

2 . [ixl -\- 1
I p I

2 • r n i • im +2 • r n i + 1
H - i m + 2 - r n i + i

p \ i p i '

a1 - Zi, +2 - r a i + / a + 2
p i ^ i p i

M • /(, +2 • r a +ia + h
p \ V I p I I V

a1 - Zi, +2 - r a i + / a + 2
p i " I p I

la 1 - zb +2 - r a i + I
p i i p i •

1 -h +2-\l
1 + 1

|e>(rH)
v i p i /

\ i p i " " >

v i P i Hi' J

c(rai -w
vi P i ^ /

+ 2 o r r a i •/(,)
v i p i " y

c(ra i -h)
\ i p i ^ /

c(rai -w
v i p i " y

54.36
205.97
185.89
330.47
311.3
339.01
120.93
117.8

p is defined as
SThreads.

the minimum between the number of processors and

on the maximum level of parallelism required by a program is useful for under
standing its scalability in different parallel architectures, or for optimizing the
number of processors that a particular call will use, depending on the size of the
input data.

Finally, the results of our experiments considering a bounded number of
processors are shown in Table 3.

6 R e l a t e d W o r k

Our approach is an extension of an existing cost analysis framework for sequential
logic programs [9,11,20], which extends the classical cost analysis techniques
based on setting up and solving recurrence relations, pioneered by [29], with
solutions for relations involving max and min functions. The framework handles
characteristics such as backtracking, multiple solutions (i.e., non-determinism),
failure, and inference of both upper and lower bounds including non-polynomial
bounds. These features are inherited by our approach, and are absent from other
approaches to parallel cost analysis in the literature.

The most closely-related work to our approach is [16], which describes an
automatic analysis for deriving bounds on the worst-case evaluation cost of first
order functional programs. The analysis derives bounds under an abstract dual
cost model based on two measures: work and depth, which over-approximate the
sequential and parallel evaluation cost of programs, respectively, considering an
unlimited number of processors. Such an abstract cost model was introduced
by [6] to formally analyze parallel programs. The work is based on type judg
ments annotated with a cost metric, which generate a set of inequalities which
are then solved by linear programming techniques. Their analysis is only able
to infer multivariate resource polynomial bounds, while non-polynomial bounds
are left as future work. In [15] the authors propose an automatic analysis based
on the work and depth model, for a simple imperative language with explicit
parallel loops.

There are other approaches to cost analysis of parallel and distributed sys
tems, based on different models of computation than the independent and-
parallel model in our work. In [3] the authors present a static analysis which
is able to infer upper bounds on the maximum number of active (i.e., not fin
ished nor suspended) processes running in parallel, and the total number of
processes created for imperative async-finish parallel programs. The approach
described in [1] uses recurrence (cost) relations to derive upper bounds on the
cost of concurrent object-oriented programs, with shared-memory communica
tion and future variables. They address concurrent execution for loops with
semi-controlled scheduling, i.e., with no arbitrary interleavings. In [4] the authors
address the cost of parallel execution of object-oriented distributed programs.
The approach is to identify the synchronization points in the program, use serial
cost analysis of the blocks between these points, and then, exploiting the tech
niques mentioned, construct a graph structure to capture the possible parallel
execution of the program. The path of maximal cost is then computed. The allo
cation of tasks to processors (called “locations”) is part of the program in these
works, and thus, although independent and-parallel programs could be modeled
in this computation style, it is not directly comparable to our more abstract
model of parallelism.

Solving, or safely bounding recurrence relations with max and min functions
has been addressed mainly for recurrences derived from divide-and-conquer algo
rithms [5,17,28]. In [2] the authors present solutions for Cost Relation Systems
by obtaining upper bounds for both the number of nodes and the cost added in
each node in the derived evaluation tree. These bounds are then combined in
order to obtain a closed-form upper-bound expression. This closed form possibly
contains maximization operations to express upper bounds for a set of subex
pressions. However, each cost relation is defined as a summatory of costs, while
in our approach, in addition to summations, we also consider other operations
for aggregating the costs, including max operators. The presence of these opera
tors often produces recurrence relations where the recursive calls are under the
scope of such a max operator, for which we present a method to obtain a closed-
form bound. This class of recurrences are not handled by most of the current
computer algebra systems, as the authors in [2] mention.

7 Conclusions

We have presented a novel, general, and flexible analysis framework that can
be instantiated for estimating the resource usage of parallel logic programs, for
a wide range of resources, platforms, and execution models. To the best of our
knowledge, this is the first approach to the cost analysis of paral lel l ogic p rograms.
Such estimations include both lower and upper bounds, given as functions on
input data sizes. In addition, our analysis also infers other information which
is useful for improving the exploitation and assessing the potential and actual
parallelism of a program. We have also developed a method for solving the cost
relations that arise in this particular type of analysis, which involve the max

function. Finally, we have developed a prototype implementation of our general
framework, instantiated it for the analysis of logic programs with Independent
And-Parallelism, and performed an experimental evaluation, obtaining encour
aging results w.r.t. accuracy and efficiency.

References

1. Albert, E., Arenas, P., Genaim, S., G´omez-Zamalloa, M., Puebla, G.: Cost analysis
of concurrent OO programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp.
238–254. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25318-
8 19

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. J . Autom. Reason. 46(2), 161–203 (2011)

3. Albert, E., Arenas, P., Genaim, S., Zanardini, D.: Task-level analysis for a language
with async-finish parallelism. In: Proceedings of LCTES 2011, pp. 21–30. ACM
Press (2011)

4. Albert, E., Correas, J., Johnsen, E., Pu, K., Rom´an-D´ıez, G.: Parallel cost analysis.
ACM Trans. Comput. Logic 19(4), 1–37 (2018)

5. Alonso, L., Reingold, E., Schott, R.: Multidimensional divide-and-conquer maximin
recurrences. SIAM J. Discret. Math. 8(3), 428–447 (1995)

6. Blelloch, G.E., Greiner, J.: A provable time and space efficient implementation of
NESL. In: ACM International Conference on Functional Programming, pp. 213–
225, May 1996

7. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. ACM TOPLAS 15(5),
826–875 (1993)

8. Debray, S.K., Lin, N.W., Hermenegildo, M.V.: Task granularity analysis in logic
programs. In: Proceedings of the PLDI 1990, pp. 174–188. ACM, June 1990

9. Debray, S.K., Lopez-Garcia, P., Hermenegildo, M.V., Lin, N.W.: Lower bound cost
estimation for logic programs. In: ILPS 1997, pp. 291–305. MIT Press (1997)

10. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.V.: Parallel exe
cution of prolog programs: a survey. ACM TOPLAS 23(4), 472–602 (2001)

11. Haemmerl´e, R., L´opez-Garc´ıa, P., Liqat, U., Klemen, M., Gallagher, J.P.,
Hermenegildo, M.V.: A transformational approach to parametric accumulated-cost
static profiling. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp.
163–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29604-3 11

12. Harper, R.: Practical Foundations for Programming Languages, 2 edn. Cambridge
University Press (2016). https://doi.org/10.1017/CBO9781316576892

13. Hermenegildo, M., Puebla, G., Bueno, F., Garcia, P.L.: Integrated program debug
ging, verification, and optimization using abstract interpretation (and the Ciao
system preprocessor). Sci. Comput. Program. 58(1–2), 115–140 (2005)

14. Hermenegildo, M., Rossi, F.: Strict And non-strict independent and-parallelism in
logic programs: correctness, efficiency, and compile-time conditions. J. Log. Pro
gram. 22(1), 1–45 (1995)

15. Hoefler, T., Kwasniewski, G.: Automatic complexity analysis of explicitly parallel
programs. In: 26th ACM Symposium on Parallelism in Algorithms and Architec
tures, SPAA 2014, pp. 226–235 (2014)

16. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In:
Vitek, J . (ed.) ESOP 2015. LNCS, vol. 9032, pp. 132–157. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46669-8 6

https://doi.org/10.1007/978-3-642-253188
https://doi.org/10.1007/978-3-642-253188
https://doi.org/10.1007/978-3-319-29604-3
https://doi.org/10.1017/CBO9781316576892
https://doi.org/10.1007/978-3-662-46669-8

17. Hwang, H., Tsai, T.H.: An asymptotic theory for recurrence relations based on
minimization and maximization. Theoret. Comput. Sci. 290(3), 1475–1501 (2003)

18. Klemen, M., Lopez-Garcia, P., Gallagher, J., Morales, J., Hermenegildo, M.V.:
Towards a general framework for static cost analysis of parallel logic programs.
Technical report CLIP-1/2019.0, The CLIP Lab, IMDEA Software Institute and
T.U. Madrid, July 2019. http://arxiv.org/abs/1907.13272

19. Lopez-Garcia, P., Darmawan, L., Bueno, F. : A framework for verification and
debugging of resource usage properties. In: Technical Communications of ICLP.
LIPIcs, vol. 7, pp. 104–113. Schloss Dagstuhl, July 2010

20. Lopez-Garcia, P., Darmawan, L., Klemen, M., Liqat, U., Bueno, F., Hermenegildo,
M.V.: Interval-based resource usage verification by translation into Horn clauses
and an application to energy consumption. TPLP 18 , 167–223 (2018)

21. Lopez-Garcia, P., Klemen, M., Liqat, U., Hermenegildo, M.V.: A general framework
for static profiling of parametric resource usage. TPLP 16(5–6), 849–865 (2016)

22. M´endez-Lojo, M., Navas, J., Hermenegildo, M.V.: A flexible, (C)LP-based app
roach to the analysis of object-oriented programs. In: King, A. (ed.) LOPSTR
2007. LNCS, vol. 4915, pp. 154–168. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78769-3 11

23. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J . (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

24. Navas, J., Mera, E., L´opez-Garc´ıa, P., Hermenegildo, M.V.: User-definable resource
bounds analysis for logic programs. In: Dahl, V., Niemel¨a, I. (eds.) ICLP 2007.
LNCS, vol. 4670, pp. 348–363. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74610-2 24

25. Rosendahl, M.: Automatic complexity analysis. In: Proceedings of FPCA 1989, pp.
144–156. ACM Press (1989)

26. Serrano, A., Lopez-Garcia, P., Hermenegildo, M.V.: Resource usage analysis of
logic programs via abstract interpretation using sized types. TPLP 14(4–5), 739–
754 (2014). ICLP 2014 Special Issue

27. Shen, K., Hermenegildo, M.: High-level characteristics of or- and Independent and-
parallelism in Prolog. Int. J . Parallel Prog. 24(5), 433–478 (1996). https://doi.org/
10.1007/BF02583023

28. Wang, B.F.: Tight bounds on the solutions of multidimensional divide-and-conquer
maximin recurrences. Theoret. Comput. Sci. 242(1), 377–401 (2000)

29. Wegbreit, B.: Mechanical program analysis. Comm. ACM 18(9), 528–539 (1975)

