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In its promise to contribute to considerable cost savings and improved patient care through efficient analysis of the tremendous 

amount of data stored in electronic health records (EHR), there is currently a strong push for the proliferation of artificial intelligence 

(AI) in health-care. We identify, through a study of AI being used to predict patient no-show’s, that for the AI to gain full potential 

there lies a need to balance the introduction of AI with a proper focus on the patients and the clinicians’ interests. We call for a 

Participatory Design (PD) approach to understand and reconfigure the socio-technical setup in health-care, especially where AI is 

being used on EHR data that are manually being submitted by health-care personnel. 

CCS Concepts: • Human-centered computing → Participatory design; Empirical studies in collaborative and social computing . 
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Use data, precision medicine 
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1 INTRODUCTION 

Large scale implementations of Electronic Health Record systems (EHR) are transforming the health-care sector into 

an arena for data capture used for health-care statistics and benchmarking, governance, decision support, efficient 

resource allocation, and cost savings in general [3, 12]. The increasing amount of EHR data opens for unprecedented 

potentials for Artificial Intelligence (AI). In this paper, we focus on distinguishing between primary and secondary use 

of EHR data: Primary use of data here covers data’s intended use by the health care worker, such as treatment and 

delivery of direct care. Secondary use covers statistical use-cases, and other insights made through AI technologies. 

The prospects of secondary use of big data by AI are, above all, visible and tempting at administrative, economic, and 

decision maker levels [17, 19]. Hospitals around the world acquire AI systems pre-developed to fit the hospital sector, 
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to be re-engineered to different national contexts, and furthermore to be adapted to local needs at the department level 

of hospitals. 

As an example, the largest EHR vendor in the world, Epic, offers a suite of applications for AI and analytics, including 

a cloud-based and highly configurable platform of machine learning algorithms (epic.com/software). Epic was recently 

implemented as a hospital-wide EHR system in two out of five regions in Denmark. The transformation from paperbased 

records to EHR also implied the clinicians having to meticulously enter vast amounts of EHR data through a complicated 

interface to Epic [9]. Physicians, nurses and health-care staff at all hospital levels are experiencing the data-capturing as 

a burden to their work focusing on patient treatment and care [6]. After several years of highly voiced critique from the 

clinicians, hospital management are eager to create success projects that utilize the growing amount of EHR data and 

demonstrate the value of the clinicians’ recording efforts: This forms a starting point for introducing AI in health-care. 

An initial project in Denmark was established applying a predictive AI model for patients not showing up for their 

outpatient surgery at an out-patient clinic. The AI algorithm was applied to historical EHR data and proved being able 

to predict 98 % of patients showing up and 70 % not-showing up [8]. This is an impressive result that potentially may 

improve patient treatment, streamline surgery planning, and result in cost reductions, both for the specific out-patient 

clinic and, with a general prospect, for various outpatient treatments. However, applying AI to these EHR data also 

discovered that 80 % of the data had to be removed from training-data (i.e. the prediction could only be completed for 

20% of the patients) due to incomplete patient records, lack of consistency in the recordings, redundancy, and proximity 

to events in fatal variables. This ambiguity in the primary use data – often labeled as a “data quality issue” [e.g. [1]] – is 

a result of different local documentation practices and work-arounds established to cope with a poorly designed and 

introduced system with cumbersome and ambiguous interfaces. 

In this paper we demonstrate how applying AI to EHR data introduce a dual purpose and a potential conflict between 

primary and secondary use. On one hand, the clinicians’ struggle to use EHR as a workable tool to communicate, 

coordinate, document, and support their treatment and care of the patients. On the other hand, the managerial and 

administrative interests in utilizing the potential of big data analytics push a demand for detailed, plausible, and 

proximate EHR data. This calls for a PD agenda resembling the heritage of PD [13]: PD should support clinicians to 

gain a voice in the technologies that affect their patient treatment and care, introduce a sensitivity to existing work 

practices and power relations, and contend that the work to obtain AI requirements are not obtained blindly at the 

expense of the clinicians’ patient focus. 

This paper is co-authored by researchers and the quality responsible chief physician who have been deeply involved 

in the project since 2017. The first author conducted the initial project as part of a master’s thesis [8], and, since 2018, 

as a Ph.D.-project. The analysis is additionally informed by another master’s thesis project [11]. The empirical activities 

comprise 4 months of situated work with hospital data management team (administration), 8 work-observations, 6 

experience exchange group meetings (department staff, administration and data management team) and 4 PD workshops. 

In the following, we present the project as an exemplary case of applying a predictive AI model to primary-use EHR 

data. We discuss the different characteristics of primary- and secondary use of EHR data and conclude by outlining 

implications for PD. 

2 APPLYING AI TO PRIMARY-USE EHR DATA 

Our case takes place at the Digestive Disease Centre, named in Danish “Abdominalcenter K” (AK), an out-patient clinic 

comprising the specialities surgery and gastroenterologyhepatology. 10 % of the patients are not showing up for their 

surgical appointments at AK. This challenges staff, economy, and patients’ access to care. Interventions such as 
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reminder letters and phone calls have shown to bring down the number of patients failing to show up but this is also 

very resource intensive to staff, taking away time from clinical work. If AK could predict the patients with high risks of 

not showing up, they could prioritize and target interventions to help these patients, improve operations planning, and 

reduce unoccupied operating theatres and empty beds at AK. 

In response to this challenge, a predictive AI model was developed at AK and trained on local historical data of patient 

no-shows extracted from the EHR. Through a process known as feature engineering [15], this data was modelled into 13 

variables known from public health literature to be predictive for patient no-show rates [5, 10]. As the most important 

output, the resulting AI model was able to differentiate between factors related to the health-care provider and factors 

related to the patient as these would initiate different responses from the clinical staff. During the training of the AI 

model it was revealed that the history of the patient’s former no-shows critically affected its ability to predict future no-

shows. It was important that clinicians reported the reason for why a patient did not receive the planned operational 

procedure, referred to as the cancellation-reason, through a drop-down menu with 19 different options.     In order to 

predict all patient no-shows, the AI model required the cancellation-reason variable to (1) be completed (that is, entered 

with a correct value) for all patient cases and (2) that each of the 19 different cancellation-reasons   was clearly binary 

distinguished as either a reason related to the behavior of the patient (e.g. the patient neglected     the appointment) or 

caused by an event from the health-care system, i.e. the hospital or AK (e.g. the patient’s elective surgery was postponed 

due to an acute patient). While the current practice of recording the cancellation-reason satisfied the clinicians’ primary 

use, it did not comply with the AI models’ requirements causing the predictions to only be possible to calculate for 20 

% of the patient population. In the following, we elaborate the analysis of this specific recording issue. Specifically, we 

have found that this is primarily due to the different documentation practices at AK and to ambiguities among the 

cancellation-reason categories. 

 

2.1 Different documentation practices 

In the years following the deployment of the EHR at the hospital several updates and re-configurations were released, 

including the functionality for reporting cancellation-reason. This effectively rendered the guidelines for use of the EHR 

partially obsolete, which left the clinicians in a situation where they had to continually reinvent their documentation 

practices [8, 11]. This was particularly visible at three departments that refer patients to surgical procedures, where the 

documentation practices of cancellation-reasons developed in different ways. 

In department A the physicians recorded a cancellation on a hand-written note that they later, by the end of their 

shift, handed over to the medical secretaries. The medical secretaries then recorded all cancellation-reasons based on 

translating these notes and with limited additional context information. 

In contrast, clinicians at department B refrained from recording cancellation-reasons as this was not relevant to 

their primary use of the EHR. The reason was a procedure in this department to re-book patients immediately after 

a cancellation, through another interface-part of the EHR. As a result, the cancellation-reason variable was left 

uncategorized and therefore unusable to the AI model. 

Finally, at department C, the staff deliberately did not record cancellation-reasons: The reason was that the clinicians 

learned that the system automatically called in patients if no re-booking has been scheduled and the cancellation reason 

has not been recorded within three days. The EHR then automatically informed the patient and asked for a re-booking 

through a national e-postal system, and set the cancellation reason to ‘annulled’. The annulled status was unusable for 

the AI model as it did not enable it to distinguish between patient-related or hospital-related reasons for the cancellation. 
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2.2 Ambiguity of categories 

The 19 different available categories for recording a cancellation- reason was likely a result of the updates continuously 

introduced in the EHR, to accommodate the various needs of different departments. Some of the categories were 

irrelevant at AK, including, for example, the category “Birth” (that is, the patient has been giving birth to a child). 

The development of these categories was, however, not aligned with the requirements imposed by the AI model: Seven 

of the 19 categories did not distinguish between binary criteria of patient or hospital related reason for cancellation. 

For example, one category option was labelled “Rebooked, postponed” which indicated a postponed booking without 

specifying a reason that could be related to either the hospital or to the patient. Of the 19 categories, “Other” was 

frequently used. This particular option enabled the user to report an explanation in an adjacent free-text field. Due to 

the absence of text-mining capability and classification algorithms [4], this data was, however, not useful for the AI. 

The reason for the extended use of the “Other” option at AK is partly because of ambiguous categories and partly in 

order to produce better primary data, as the following example demonstrates. 

 
3 DISCUSSION 

A fundamental promise for using AIs in health-care is their ability to harness the tremendous amounts of data stored in 

EHRs and efficiently elicit unique insights. This secondary use entails that data is analyzed in a different context and 

for a different purpose than the primary uses it was originally produced for. While AI technologies offer unprecedented 

potential for secondary data analysis in health-care, they are also vulnerable to the availability and quality of data. 

According to Raghupati and Raghupati (2014) a fundamental challenge for secondary analysis of big health-care data is 

that the algorithms and system must be able to handle the volume (the sheer amount of data), velocity (the rapid speed 

by which new data is produced), variety (the various data sources and formats), and veracity of the data (the quality of 

the data and extent to which it represents the intended phenomenon). While these challenges may in part be solved 

by developing robust and sophisticated infrastructures for data retrieval and management, our study suggests that 

the requirements to the data and the data infrastructure imposed by the AI in some cases are altering the conditions 

for, the work involved in producing and using the data performed by clinicians. In other words, to ensure an effective 

deployment and use of AI in health-care it is necessary to align the primary and secondary uses of the data. The velocity 

and variety of the data required by the AI in our case proved to be of little significance for the challenge of producing 

and retrieving the data necessary for the AI. While the velocity of data production may be an important challenge for 

AIs used to perform real-time analytics, for instance as part of diagnostics processes [16], the prediction performed by 

the AI at AK was not time-critical and did not depend on a constant inflow of clinician-produced data. This enabled 

the clinicians to maintain a great deal of flexibility to align data production with the rhythms of their local practices. 

In similar lines, the variety of data is in many cases a significant challenge for AIs in health-care. This implies that 

data is produced and stored in various formats, often in different data repositories [2]. In particular unstructured or 

semi-structured data, including progress notes and admission and discharge letters, require that AIs are able to cover 

and convert a variety of formats to enable the secondary analysis to take place [16]. In our case, however, the variety of 

data was reduced to a bare minimum and the data retrieval was efficiently supported by the existing EHR system that is 

designed as a platform for data-sharing among different sources in the Danish health-care system (i.e. brings in data 

from central governmental registration of citizens such as date of birth, gender, etc.). In contrast to velocity and variety, 

the volume of data was a challenge for the AI. This was essentially not a technical challenge, as the limited amount of 

data needed to produce precise prediction of patient no-shows was well handled by the technical infrastructure. For 
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the clinicians, an extra workload imposed to increase this data production, caused challenges. First, it introduced yet 

another type of work in an already busy documentation practice, hereby taking away time from patient-related activities. 

Furthermore, since registration of reasons for no-shows had no immediate benefit for many clinicians, this effectively 

created a disparity between work and benefit – between primary and secondary use – closely resembling what is known 

to be a challenge when designing collaborative systems [7]. Because of this, clinicians at all three departments found 

ways to manage patient no-shows that were meaningful in their clinical practice. While department A maintained 

registration of the data, albeit in a way that reduced quality of the data, department B and C found work-arounds, 

either by completely avoiding registration of no-shows or by resorting to the standard functionality in the EHR that 

automatically report a no-show three days after the appointment, i.e. without requiring human intervention. Hereby, 

two out of three departments did not contribute to the accumulation of a volume of data necessary for the AI, effectively 

resulting in a less precise performance of the algorithm. Furthermore, if 80 % of the data is useless for AI purposes, 

there is a risk of the model for prediction being heavily biased towards conclusions that does not represent the general 

patient population. The different procedures of data production were adapted to fit with the documentation practices 

at the departments driven by the interests of primary uses of the data. This adaptation has evolved without a clear 

conception of how workarounds and local practices affect the intended secondary use of data. An implication for PD 

would be to enable clinicians to take the interests of the AI into account. The AI model’s requirement of a sufficient 

volume of data needs to be acknowledged and accepted by the clinicians. The requirement for data volume should be 

aligned with primary use by (1) efforts to minimize the work involved in this data production and (2) a documentation 

procedure designed to provide concurrent benefits of the data for clinical practice. The veracity of the data surfaced 

inherent tensions between, most notably, the AI’s need for detailed and unambiguous data and the heterogeneity of 

information practices The need for veracity of data for AIs entail that the data on which the analysis is based must be 

error-free, credible and offer a precise representation of the phenomena that the AI is assumed to offer insights into. 

The notion of veracity assumes that the meaning or semantics of the data is shared by all producers. This is, however, 

often not the case as categories sometimes produces different meanings for different groups of health professionals as 

well as for patients [14]. As a practical consequence, different health professionals may document identical activities in 

different ways. Traditionally, this has not been a significant issue as data in health-care is predominantly produced 

to serve its primary use, such as support communication between nurses, document specific examinations of the 

patient, etc. The precision of the data analysis performed by AIs typically depends on the granularity of the data as 

they generally operate better with a high number of unique categories. This may impose restrictions on how health 

professionals produce data, for instance by requiring them to document using aggregated, different, and possibly more 

specific categories than they would otherwise do. In our case, the AI model introduced new requirements to the use of 

the 19 existing categories for cancellation-reasons. From the perspective of primary data use, the 19 categories were 

partially overlapping and, as shown in the case, different uses of these had developed in the three departments. To 

alleviate the need to synthesize some of the categories to express a cancellation-reason that was meaningful from a 

clinical perspective, clinicians would often resort to using the input field ‘other’. This, however, effectively decreased 

the veracity of the data from the perspective of secondary data use. The inconsistent use of the 19 categories, the fact 

that seven of the categories did not differentiate between the two factors required by the AI model, and the extensive 

use of the ‘other’ category crippled the ability of the AI model to differentiate between the if a no-show was caused by 

the patient or by the hospital. 

The AI model in our case require a reconfiguration of the categories to unequivocally distinguish cancellation- 

reasons as caused by patient behavior or hospital events. To PD this presents an obligation to align a reconfiguration of 
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categories needed by the AI with an efficient and meaningful documentation practice for clinicians. In other words, the 

participation of clinicians’ is important in order to (1) clarify the extent to which the AI-required binary distinction can 

differentiate cancellation-reasons, and (2) to design a consistent category system serving both primary and secondary 

data use. 

4 CONCLUSION 

The dissemination of AI is pushed for many reasons and from many stakeholders. AI alter the conditions for human 

entered primary-use EHR data. AI introduces a dual purpose of EHR data where the primary-use from clinicians treating 

patients may compete with a secondary-use from AI governed by administrative and economic concerns. The role      of 

PD is to ensure the voice of the user and end-user, that is, balance the introduction of AI by maintaining a proper focus 

on the patients and the clinicians closely involved in their treatment and care. The premise for PD is to establish “shared 

and agreed-upon goals” [18, p. 5] and to enable a tight alignment between primary- and secondary-use of EHR data. As 

we have demonstrated, AI introduces an occasion where PD might contribute by designing re-configurations of work 

and technologies that benefit both types of use and purpose of EHR data. 
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