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Abstract: Recently, a tight coupling has been observed between inflammation and blood cancer such
as the Myeloproliferative Neoplasms (MPNs). A mechanism based six-dimensional model - the Canci-
tis model - describing the progression of blood cancer coupled to the inflammatory system is analyzed.
An analytical investigation provides criteria for the existence of physiological steady states, trivial,
hematopoietic, malignant and co-existing steady states. The classification of steady states is explicitly
done in terms of the inflammatory stimuli. Several parameters are crucial in determining the attract-
ing steady state(s). In particular, increasing inflammatory stimuli may transform a healthy state into
a malignant state under certain circumstances. In contrast for the co-existing steady state, increasing
inflammatory stimuli may reduce the malignant cell burden. The model provides an overview of the
possible dynamics which may inform clinical practice such as whether to use inflammatory inhibitors
during treatment.

Keywords: cancer; inflammation; mathematical modelling; steady states; stability

1. Introduction

Myeloproliferative Neoplasms (MPNs) is a group of hematopoietic stem cell disorders, including
essential thrombocytosis (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) [1, 2]. The
pathogenesis of these neoplasms is yet to be fully discovered. For patients with MPNs, the mutation
JAK2V617F is found present in the most cases of ET (50%) and in 95% of the cases with PV and
PMF ultimately leading to acute myeloid leukemia (AML) [3,4]. This suggests a biological continuum
where the diseases evolve from early cancers (ET and PV) into the advanced myelofibrosis stage, with
an increasing load of JAK2V617F mutations from a low burden at ET and PV to a high load [2, 5].
MPNs imply an increased risk for the development of other cancers [1, 4].

Recent research supports that MPNs can be regarded as chronic inflammatory diseases and MPNs
has been described as a ”human inflammation model”, which leads to premature atherosclerosis, clonal
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evolution and an increased risk of second cancers. [2, 3, 6]. This is based on evidence from clinical
observations, experiments and molecular studies [3].

Several insightful theoretical studies have been published on control dynamics of biological net-
works. Mathematical models have been proposed [7–9] describing the control networks for regulation
of stem cell lineage. Mathematical modelling of cancer is useful for understanding of cancer initia-
tion, progression [10, 11], to confirm or dismiss biological/medical hypotheses, and to study effects of
single or multi modality treatments in silico. The mathematical model presented in [12] shows that
successful therapy may eliminate tumour stem cells. A five-dimensional model given in [13] includes
active and quiescent stem cells, progenitor cells, mature cells and one immune compartment describ-
ing chronic myelogenous leukemia. In [14] a mathematical model of cancer stem cell dynamics is
proposed and the different scenarios of cancer initiation and possible treatments strategies have been
discussed. The mathematical model given in [15] is useful for investigating the impact of cytokine-
dependence of acute myeloid leukemic cells. In addition, the model allows distinguishing between
cytokine-dependent and cytokine-independent acute myeloid leukemia (AML) and both scenarios are
supported by patient data.

However, only a few mathematical models of MPNs exist. Some work includes investigation of the
origin of myeloid malignancies with MPNs as a particular example [16]. In [17], a two dimensional
model of MPNs is investigated without including the immune response dynamically. The Cancitis
model including chronic inflammation as the trigger and driver of MPNs was proposed in [5]. In
[5], T-cells are not explicitly considered whereas, in [18], the effect of these cells has been included
specifically. The analysis of a two dimensional mathematical model [18] is used to discuss in silico
effect of existing and novel treatments. The model presented here is identical to the model presented
in [5] except for the simpler functional form of the stem cells niche interaction used here and in [18].

In the present paper we conduct a thorough mathematical investigation of the Cancitis model and
explore the intricate coupling between inflammation and MPNs. We address the following questions
which have not been systematically investigated previously: Which steady states of the system are
feasible and which trajectories are attracted to the steady states? How do the number and stability of the
steady states change when varying the parameters, in particular, the exogenous inflammatory stimuli,
self-renewal and death rates of stem cells, and inhibitory strength of the stem cell niche interaction?
Which set of clustered parameters control the dynamics of the system? Does the analysis suggest
correlated parameters? The bio-medical applications of the model analysis are discussed, e.g. how the
inflammation influences the transition between healthy and diseased states. In addition, the analysis
predicts effects of ongoing and potential combination therapies.

2. The Cancitis model

The Cancitis model stated in [5] is illustrated in Figure 1, with the system of differential equations
shown in system (2.1). In this section the details of the model and the reasoning behind it is presented.

The model describes the proliferation of hematopoietic stem cells (HSC) into hematopoietic mature
cells (HMC) and likewise malignant stem cells (MSC) into malignant mature cells (MMC). Addition-
ally, the model considers the number of dead cells and the level of inflammation. The debris from the
dead cells stimulates the immune response, which in turn affects the self-renewal rate of both HSCs
and MSCs.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268–8289.
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Figure 1. The boxes illustrate the compartments of the Cancitis model. The arrows represent
the rates of the flows between and out of these compartments. Red stipulated arrows represent
the effect of inflammation which is stimulated by exogenous inflammatory stimuli, I. Green
stipulated lines represent the bone marrow niches interaction with a ’crowding’ competition
between HSC and MSC. Stem cells (HSC and MSC) may self-renew, die or differentiate,
while mature cells die after a while (MMC, HMC). Dead cells (a) are engulfed by the immune
cells (s), that stimulate production of stem cells, increase risk of mutation and increase the
removal of dead cells (For more details, see main text).

The model consists of six ordinary differential equations one for each compartment; the number of
HSC (x0), the number of HMC (x1), the number of MSC (y0), the number of MMC (y1), the number
of dead cells (a), and the level of inflammation (s).
The equations are of the general form,

{
Change in amount of a
compartment per time

}
=

{
rate of production times
the producing source

}
−

{
rate of elimination times the
amount in the compartment

}
.

and read specifically,

ẋ0 = rx(φxs − αx)x0 − rmsx0, (2.1a)
ẋ1 = axAxx0 − dx1 x1, (2.1b)
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ẏ0 = ry(φys − αy)y0 + rmsx0, (2.1c)
ẏ1 = ayAyy0 − dy1y1, (2.1d)
ȧ = dx0x0 + dy0y0 + dx1x1 + dy1y1 − eaas, (2.1e)
ṡ = rsa − ess + I, (2.1f)

with

αx =
dx0 + ax

rx
and αy =

dy0 + ay

ry
. (2.2)

The expressions for the inhibitory niche feedback are chosen as Michaelis-Menten-like functions in
contrast to [5],

φx ≡ φx(x0, y0) =
1

1 + cxxx0 + cxyy0
, (2.3a)

φy ≡ φy(x0, y0) =
1

1 + cyxx0 + cyyy0
. (2.3b)

A stem cell can proliferate in three ways; symmetric self-renewal (resulting in two new stem cells),
asymmetric self-renewal (resulting in one stem cell and one progenitor cell) and symmetric differen-
tiation (resulting in two progenitor cells). The rate of self-renewal is denoted as rx and ry for HSC
and MSC respectively. The self-renewal of stem cells is known to be inhibited by self-regulating niche
feedback [19], resulting in decreased self-renewal when the level of stem cells in the bone marrow is
high. Adopting the approach taken in [12], [20] and [21], this is implemented by Michaelis-Menten-
like functions φx(x0, y0) and φy(x0, y0), shown in Eq (2.3b). Allowing the feedback to be different for
HSC and MSC, the constants cxx and cxy capture the effects of HSC and MSC on the self-renewal of
HSC, while cyx and cyy capture the corresponding effects on the self-renewal of MSC. Additionally, the
inflammatory level also affects the self-renewal [22, 23]. This leads a to self-renewal term per cell of
rxφxs and ryφys for HSC and MSC respectively. The parameter ci j describes the inhibitory strength of
the signalling bone marrow niche feedback from cell type j onto cell type i. It is generally assumed
that cyy ≤ cyx ≤ cxy ≤ cxx, since malignant cells are less sensitive to inhibitive niche feedback than
hematopoietic cells [22, 24].

In [25], a multi compartmental model is proposed relying on a single external feedback mechanism.
It is shown that the equilibrium level of mature cells depends only on the self-renewal parameters
for the HSC and it is independent of the other compartments. Therefore, the progenitor cells are
considered as intermediate steps between stem cells and mature cells, and are implicitly accounted
for by multiplication factors Ax and Ay for HSC and MSC respectively. The rate at which the HSC
reduces in transforming to HMC is denoted by ax while the similar rate for MSC transforming to
MMC is denoted by ay. As such, the HMC and MMC accordingly increase with rates axAx and ayAy

respectively. To account for the cell apoptosis, the four types of cells are removed with rates dx0 , dx1 ,
dy0 and dy1 , for the corresponding cell types.

Genetic mutations are by nature to be described as Poisson processes [26–29]. However, not all
mutations are malignant; only mutation which happens on a particular location of the DNA, i.e. at
specific amino acids causes a specific mutation, e.g. the JAK2V617F mutation. The probability for
hitting a specific location is about 1/30000. In [30] the average mutation probability is estimated to
0.0035 per year, which corresponds to a specific mutation probability of 0.0035/30000 = 1.210−7
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per year. Thus, the probability for one specific malignant mutation is about 10−7 per cell per year.
Moreover, the mutation is affected by the inflammation, s [31, 32], which is explicitly stated, and
resulting in the effective mutation rate rms. Assuming three sequential mutations are needed to generate
a specific malignant stem cell the resulting probability becomes much higher (10−25 per year per cell
if the mutations are assumed independent). This could be implemented in the otherwise deterministic
model but it would increase the computational cost, since it depends on both the probability of a single
cell mutation and the number of potential mutating cells at a given time, which itself is determined by
the preceding mutational history. To avoid such complications we initialize by having a single MSC
and none MMC, and put the mutation rate to zero. This is justified by the fact that the probability of a
single cell mutating is small compared to the self-renewal of the MSCs. Thus, the first mutation drives
the development leaving a later identical mutation insignificant to the dynamics, which is confirmed
by numerical simulations.

The number of dead cells has an up-regulatory effect on the immune response denoted rs. External
environmental factors also influence the inflammatory level. This is captured in the model by the
term I. Throughout we take I > 0, as a perfect sterile environment is an utopic idealization. This term
may vary over time due to environmental changes, but in our mathematical analysis we will consider I
as piecewise constant. The inflammation, s, is down-regulated naturally by the eliminating rate es.

Additionally, the change in the amount of dead cells per time is given by the death rate times the
number of cells minus the clearance by the immune system. As given in [33] clearance is described by
a second order equation −eaas since the engulfed immune cells have to meet the dead cells debris to
mediate endocytosis. Thus, clearance is bilinear in both a and s representing the activity of the immune
system, eliminating the dead cells with an elimination rate ea.

Initial conditions for the Cancitis model in equations are needed for the given system of differential
equations (2.1–2.3b) . Here, we mainly focus on the model after the first mutation, i.e. with y0(0) = 1,
y1(0) = 0, rm = 0, and the remaining variables as those in the healthy steady state (see below). All
other parameter values are assumed to be positive.

2.1. Steady states of the model

The stable steady states are attractors in the six dimensional phase space. This motivates systematic
study of the existence and location of steady states and how this is affected by perturbing parameter
values.

Motivated by the biology where the number of cells and concentrations are required to be non-
negative numbers, we will use the terminology that a steady state is admissible if and only if all the
components are non-negative, i.e. if and only if a steady state is in the non-negative octahedron.

Consider the system of Eqs (2.1–2.3b). For steady state solutions, ẋ0 = ẋ1 = ẏ0 = ẏ1 = ȧ = ṡ = 0,

(
s̄
αx
− (1 + cxx x̄0 + cxyȳ0)

)
x̄0 = 0, (2.4a)(

s̄
αy
− (1 + cyx x̄0 + cyyȳ0)

)
ȳ0 = 0, (2.4b)

x̄1 =
axAx x̄0

dx1
, (2.4c)
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ȳ1 =
ayAyȳ0

dy1
, (2.4d)

dx0 x̄1 + dx1 x̄1 + dy0ȳ0 + dy1ȳ1 − eaās̄ = 0, (2.4e)

ā =
es

rs

(
s̄ −

I
es

)
. (2.4f)

The values of x0, x1, y0, y1, a and s at steady state are denoted as x̄0, x̄1, ȳ0, ȳ1, ā and s̄ respectively.
The admissible steady states can be classified as,

• a trivial steady state if and only if x̄0 = ȳ0 = 0,
• a (purely) hematopoietic steady state if and only if ȳ0 = 0 and x̄0 > 0,
• a (purely) malignant steady state if and only if x̄0 = 0 and ȳ0 > 0, or
• a co-existing steady state if and only if x̄0 > 0 and ȳ0 > 0.

The admissibility of steady states necessitates certain inequalities to be fulfilled, which leads to restric-
tion on the parameters, e.g. from Eq (2.4f), non-negativity of ā requires s̄ ≥ I

es
. I is assumed to be

positive thus I
es
> 0. Hence

s̄ ≥
I
es
> 0, (2.5)

for any admissible steady state. Note that, x̄1 and ȳ1 are non-negative if and only if x̄0 and ȳ0 are
non-negative, respectively. Substituting expressions of x̄1 and ȳ1 in Eq (2.4e) gives,

eaās̄ = βx x̄0 + βyȳ0, (2.6)

where βx = axAx + dx0 and βy = ayAy + dy0. Thus, Eqs (2.4e–2.4f) and (2.6) result in a second order
equation in s̄ having the general solution,

s̄± =
I

2es

(
1 ±

√
1 + ζ(βx x̄0 + βyȳ0)

)
, (2.7)

where ζ = 4rses
eaI2 > 0. s̄− is negative for positive x̄0 or ȳ0. In case, (x̄0, ȳ0) = (0, 0), Eq (2.7) leads to

s̄− = 0 contradicting s̄ > 0. Thus, s = s̄− is not biologically realizable and we therefore put s̄ = s̄+ in
the further analysis. Note that, for non-trivial steady states, s̄ > I

es
. In addition, non-negativity of x̄0

and ȳ0 implies non-negativity of x̄1, ȳ1, s̄ and ā.
Hence, the existence of admissible steady states x̄0, ȳ0, x̄1, ȳ1, s̄ and ā follows from Eqs (2.4a), (2.4b)
and (2.7).

Below we make a complete analysis of the existence of various steady states depending on how I
relates to the remaining parameters. This choice is due to the fact that the external inflammatory stimuli
I is of great interest in health care and to elucidate consequences of using inflammation inhibitors as
part of treatment.

Proposition 1. A trivial steady state E0 always exists,

E0 =

(
0, 0, 0, 0, 0,

I
es

)
. (2.8)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268–8289.
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Proof. Follow directly from Eqs (2.4e) and (2.5). �

Hematopoietic steady states may exist depending on the rest of the parameter values. As above
we chose the inflammatory stimuli I as the leading parameter and make a complete analysis of possible
hematopoietic steady states. The analysis of the existence of the hematopoietic steady states depends
crucially on the following lumped parameters,

IH = 2

√
esrsβx

eacxx
−

rsβx

eacxxαx
, (2.9)

ζH1 = 2esαx −
rsβx

eacxxαx
, (2.10)

ζH2 = esαx, (2.11)

ζH3 =
rsβx

eseacxx
, (2.12)

the last two always being positive.

Proposition 2. Two hematopoietic steady states EH± may exist in the following cases,

• If α2
x ≤

ζH3
4 then EH+ exists if and only if I > 0.

• If ζH3
4 < α2

x ≤ ζH3 then EH+ exists if and only if I ≥ IH.
• If ζH3 < α

2
x then EH+ exists if and only if I > ζH2.

• If α2
x ≤

ζH3
4 then EH− exists if and only if I ≤ ζH2.

• If ζH3
4 < α2

x ≤ ζH3 then EH− exists if and only if IH ≤ I ≤ ζH2.
• If ζH3 < α

2
x then EH− does not exist.

In case of existence, EH+ = (x̄0H+, x̄1H+, 0, 0, āH+, s̄H+) is given by x̄0H+ =
1

2escxxαx

(
I − ζH1 +

√
(ζH1 − I)2 − 4esαx(ζH2 − I)

)
, s̄H+ = αx(1 + cxx x̄0H+), āH+ =

βx x̄0H+

ea s̄H+
,

and x̄1H+ = axAx x̄0H+

dx1
whereas EH− = (x̄0H−, x̄0H−, 0, 0, āH−, s̄H−) is given by x̄0H− =

1
2escxxαx

(
I − ζH1 −

√
(ζH1 − I)2 − 4esαx(ζH2 − I)

)
, s̄H− = αx(1 + cxx x̄0H−), āH− =

βx x̄0H−
ea s̄H−

, and
x̄1H− = axAx x̄0H−

dx1
.

Proof. A hematopoietic steady state EH follows from Eqs (2.4a) and (2.7) with y0 = y1 = 0 as
possible positive solutions to

x̄2
0H +

1
escxxαx

(ζH1 − I)x̄0H +
1

esc2
xxαx

(ζH2 − I) = 0. (2.13)

For the solutions to (2.13) to be real,

(ζH1 − I)2 ≥ 4ζH2(ζH2 − I). (2.14)

In case I ≥ ζH2, (2.14) is always fulfilled. In case I < ζH2, (2.14) is equivalent to

I2 +
2rsβx

eacxxαx
I +

rsβx

eacxxαx

(
rsβx

eacxxαx
− 4esαx

)
≥ 0. (2.15)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268–8289.
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Solving for I we get,

I ≥ IH = γx

(
α2

x −
ζH3

4

)
, (2.16)

with

γx =

4esrsβx

eacxxα
2
x

rsβx
eacxxαx

+ 2
√

esrsβx
eacxx

> 0. (2.17)

From Eqs (2.14) and (2.16) it follows that the solutions to Eq (2.13) are real for I ≥ ζH2 or IH ≤ I <
ζH2 in case IH < ζH2.

Whenever the solutions to (2.13) are real, they are given by

x̄0H± :=
1

2escxxαx

(
I − ζH1 ±

√
(ζH1 − I)2 − 4esαx(ζH2 − I)

)
, (2.18)

which depends on the sign of the following five quantities,

ζH1 = 2
es

αx

(
α2

x −
ζH3

2

)
, (2.19)

IH = γx

(
α2

x −
ζH3

4

)
, (2.20)

∆12 = ζH1 − ζH2 =
es

αx

(
α2

x − ζH3

)
, (2.21)

∆H1 = ζH1 − IH =
es

αx +
√
ζH3

(
α2

x − ζH3

)
, and (2.22)

∆H2 = IH − ζH2 = −
es

αx(αx +
√
ζH3)2

(
α2

x − ζH3

)2
≤ 0, (2.23)

where the last one immediately implies that the criteria for real solutions of Eq (2.13) is I ≥ IH. If the
solutions, x̄0H±, are positive and real, then the formulas for the remaining variables easily follow from
Eqs (2.4a–2.4f).

To continue we first consider x̄0H+ and afterwards x̄0H−.
For α2

x ≤
ζH3
4 , it follows from Eqs (2.19)–(2.22) that ζH1 < 0, ζH1 < ζH2, IH ≤ 0, and ζH1 < IH. Thus,

x̄0H+ > 0 if and only if I > 0.
For ζH3

4 < α2
x ≤

ζH3
2 , it follows from Eqs (2.19)–(2.22) that ζH1 ≤ 0, ζH1 < ζH2, IH > 0, and ζH1 < IH.

Thus, x̄0H+ > 0 if and only if I > IH.
For ζH3

2 < α2
x ≤ ζH3 , it follows from Eqs (2.19)–(2.22) that ζH1 > 0, ζH1 ≤ ζH2, IH > 0, ζH1 < IH, and

IH ≤ ζH2. Thus, x̄0H+ > 0 if and only if I > IH.
For ζH3 < α2

x are ζH1 > 0 , it follows from Eqs (2.19)–(2.23) that ζH1 > ζH2, IH > 0, ζH1 > IH, and
IH ≤ ζH2. Thus, x̄0H+ > 0 if and only if I > ζH2.

Similar, x̄0H− is real if and only if I ≥ IH and ζH1 < I < ζH2.
For α2

x ≤
ζH3
4 , it follows from Eqs (2.19) and (2.20) that ζH1 < 0 < ζH2, and IH ≤ 0. Thus, x̄0H− > 0 if

and only if I < ζH2.
For ζH3

4 < α2
x ≤

ζH3
2 , it follows from Eqs (2.19), (2.20) and (2.23) that ζH1 ≤ 0 < ζH2, IH > 0, and

IH < ζH2. Thus, x̄0H− > 0 if and only if IH ≤ I < ζH2.
For ζH3

2 < α2
x ≤ ζH3 , it follows from Eqs (2.19)- (2.21) and (2.23) that 0 < ζH1 < ζH2, IH > 0, and

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268–8289.
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IH < ζH2. Thus, x̄0H− > 0 if and only if IH ≤ I < ζH2.
For ζH3 < α2

x , it follows from Eqs (2.20) and (2.21) that ζH1 > ζH2 and IH > 0. Thus, x̄0H− > 0 if and
only if ζH1 < I < ζH2, which is a contradiction.

�

The conditions for the existence of the hematopoietic steady states are summarized in Table 1.

Table 1. Summarizing necessary and sufficient criteria for admissibility of EH. The first
column conditions how αx is related to ζH3, the middle column shows the existence conditions
for EH+ and the last column shows the existence conditions for EH± explicitly in terms of I.

For Only EH+ if Both EH+ and EH− if

α2
x <

ζH3
4 I > ζH2 I ≤ ζH2

ζH3
4 < α2

x < ζH3 I > ζH2 IH ≤ I ≤ ζH2

ζH3 < α
2
x I > ζH2 ∅

Malignant steady states may exist depending on the range of the parameters. As above we chose
the inflammatory stimuli I as our leading parameter and make a complete analysis of possible malig-
nant steady states. The analysis of the existence of the malignant steady states depends crucially on
the following lumped parameters,

IH = 2

√
esrsβy

eacyy
−

rsβy

eacyyαy
, (2.24)

ζL1 = 2esαy −
rsβy

eacyyαy
, (2.25)

ζL2 = esαy, (2.26)

ζL3 =
rsβy

eseacyy
, (2.27)

the last two being positive.

Proposition 3. Two malignant steady states EL± may exist in the following cases,

• If α2
y ≤

ζL3
4 then EL+ exists if and only if I > 0.

• If ζL3
4 < α2

y ≤ ζL3 then EL+ exists if and only if I ≥ IL.
• If ζL3 < α

2
y then EL+ exists if and only if I > ζL2.

• If α2
y ≤

ζL3
4 then EL− exists if and only if I ≤ ζL2.

• If ζL3
4 < α2

y ≤ ζL3 then EL− exists if and only if IL ≤ I ≤ ζL2.
• If ζL3 < α

2
y then EL− does not exist.

In case of existence, EL+ = (0, 0, ȳ0L+, ȳ1L+, āL+, s̄L+) is given by ȳ0L+ =
1

2escyyαy

(
I − ζL1 +

√
(ζL1 − I)2 − 4esαy(ζL2 − I)

)
, s̄L+ = αy(1 + cyyȳ0L+), āL+ =

βyȳ0L+

ea s̄L+
,
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and ȳ1L+ =
axAxȳ0L+

dy1
whereas EL− = (0, 0, ȳ0L−, ȳ0L−, āL−, s̄L−) is given by ȳ0L− =

1
2escyyαy

(
I − ζL1 −

√
(ζL1 − I)2 − 4esαy(ζL2 − I)

)
, s̄L− = αy(1 + cyyȳ0L−), āL− =

βyȳ0L−

ea s̄L−
, and ȳ1L− =

axAxȳ0L−
dy1

.

Proof. Due to symmetry in indices x and y, the proof for the malignant case is equivalent to that for
the hematopoietic case except index H has to be substituted by L. �

The result is summarized in Table 2.

Table 2. Summarizing necessary and sufficient criteria for admissibility of EL. The first
column conditions how αy is related to ζL3, the middle column shows the existence conditions
for EL+ and the last column shows the existence conditions for EL± explicitly formulated in
terms of I.

For Only EL+ if Both EL+ and EL− if

α2
y <

ζL3
4 I > ζL2 I ≤ ζL2

ζL3
4 < α2

y < ζL3 I > ζL2 IL ≤ I ≤ ζL2

ζL3 < α
2
y I > ζL2 ∅

The existence of a co-existing steady state

EC = (x̄0C, x̄1C, ȳ0C, ȳ1C, āC, s̄C) ,

is far more cumbersome to deal with, since a wealth of sub-cases may arrive depending on various
inequality-relations between the parameters. To avoid many tedious but straight forward calculations
we limit ourself to the non-degenerate cases where ζC1 = αycyx−αxcxx , 0 and ζC2 = αycyy−αxcxy , 0.

From Eqs (2.4a and 2.4b), a linear relation between x̄0 and ȳ0 directly follows,

ζC1 x̄0C + ζC2ȳ0C − ζC3 = 0, (2.28)

where ζC3 = αx − αy. Thus, for the non-degenerate cases,

ȳ0C =
ζC1

ζC2

(
ζC3

ζC1
− x̄0C

)
, (2.29)

which geometrically corresponds to a straight line through
(
0, ζC3

ζC2

)
and

(
ζC3
ζC1
, 0

)
. Hence, two generic

cases arrive, for
(
0, ζC1

ζC2

)
corresponding to positive slope, ζC1

ζC2
< 0 corresponding to negative slope, ζC1

ζC2
>

0 . The first case defines a half line in the positive octahedron and in this case x̄0C ∈ (max{0, ζC3
ζC1
};∞)

and ȳ0C ∈ (max{0, ζC3
ζC2
};∞). The second case corresponds to either no admissible solution (if and only

if ζC3
ζC2

< 0 and ζC3
ζC1

< 0) or a line segment in the positive octahedron which requires that ζC3
ζC2

> 0 and
ζC3
ζC1

> 0 and in that case are x̄0C ∈ (0, ζC3
ζC1

) and ȳ0C ∈ (0, ζC3
ζC2

). From Eq (2.4a) and (2.29),

s̄C = m1 x̄0C + m0, (2.30)
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with m0 = αx(cxy
ζC3
ζC2

+ 1) and m1 = αx(cxx − cxy
ζC1
ζC2

). Before continuing, it is emphasized that ζ1, ζ2, ζ3,
m0, and m1 all are independent of I but may be positive, negative or in case of m0 and m1 zero. From
Eq (2.7) it follows that a real and positive s̄ exist for (x̄0C, ȳ0C) ∈ R+ × R+,

s̄C =
I

2es

1 +

√
1 +

ζ0

I2 (βx x̄0C + βyȳ0C)

 (2.31)

where ζ0 = 4rses
ea

> 0. Similarly, a negative real root exists. Substituting (2.29) into (2.31) give,

s̄C =
I

2es
+

√(
I

2es

)2

+
ζ0βyζC3

4e2
sζC2

+
ζ0

4e2
s

(
βx − βy

ζC3

ζC2

)
x̄0C. (2.32)

Combining Eq (2.30) and (2.32) results in,

n0 − I + n1 x̄0C =
√

I2 + n2 + n3 x̄0C, (2.33)

where n0 = 2esm0, n1 = 2esm1, n2 =
ζ0βyζC3

ζC2
and n3 = ζ0

(
βx − βy

ζC1
ζC2

)
.

Note that Eq (2.33) has no real solution if either of f (x) = n0 − I + n1x and g(x) = I2 + n2 + n3x are
negative. Thus, if both f (x) and g(x) are positive, Eq (2.33) is equivalent to,

n2
1x2 + (2n1(n0 − I) − n3) x +

(
n2

0 − n2 − 2n0I
)

= 0, (2.34)

which may have up to two real positive solutions. Hence, there can be at most two coexistence steady
states. More specifically,

x0C+ = −
2n1(n0 − I) − n3

2n2
1

+

√(
2n1(n0 − I) − n3

2n2
1

)2

−
n2

0 − n2 − 2n0I
n1

, (2.35)

is positive if and only if f (x0C+) > 0, g(x0C+) > 0, and

n2
0 − n2 − 2n0I

n1
< 0 or

2n1(n0 − I) − n3

n2
1

< 0. (2.36)

Similar,

x0C− = −
2n1(n0 − I) − n3

2n2
1

−

√(
2n1(n0 − I) − n3

2n2
1

)2

−
n2

0 − n2 − 2n0I
n1

, (2.37)

is positive if and only if f (x0C−) > 0, g(x0C−) > 0, and

2n1(n0 − I) − n3

2n2
1

>
n2

0 − n2 − 2n0I
n1

> 0 and
2n1(n0 − I) − n3

2n2
1

< 0. (2.38)

Note, some possibilities of equality signs in the inequalities are left out for simplification reasons.
Equality may occur on a set of measure zero which is unlikely for a noisy biological system and
including these possibilities makes the analysis much more messy. For practical purposes one may
first calculate the two (possibly complex) roots x of Eq (2.34) and afterwards examine whether these
are real and positive, whether f (x) > 0 and g(x) > 0, and whether the corresponding ȳ0C calculated
from Eq (2.29) is positive, thus the remaining component of EC will be positive too and the steady state
admissible.

Continuing analytically is possible but becomes somehow cumbersome and instead we point out
that for any choice of parameter values, there can be at most two coexistence steady states, their
existence and value depending on the admissibility of x0C+ (Eq (2.35)) and x0C− (Eq (2.37)).
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3. Stability and bifurcation analysis

In this section we analytically and numerically examine the stability properties of the various ad-
missible steady states of Eq (2.1) in terms of selected parameters.

3.1. Stability properties of the trivial steady state

The Jacobian of the trivial steady states E0 is a triangular matrix and four of the six eigenvalues,
−dx1,−dy1,−es and −Iea

es
, are negative but the two, rx

es
(I − esαx) and ry

es

(
I − esαy

)
, may be positive, neg-

ative, zero. Thus, by the Hartman-Grobman Theorem [34]

Lemma 1. E0 is asymptotically stable if I < es min{αx, αy}, whereas it is unstable if I > es min{αx, αy}.

At EH± the Jacobian for the hematopoietic states can be calculated (see Supplementary) and the
resulting sixth order characteristic equation shows that EH± are stable for

s̄H < αy(1 + cyx x̄0H). (3.1)

However, this is not the generic case, since αy < αx (and cyx ≤ cxx), which contradicts s̄H = αx(1 +

cxx x̄0H). Intensive numerical investigations shows that EH± are unstable.

The stability of EL is similar to that for the hematopoietic steady state except that it is stable if

s̄L < αx(1 + cxyȳ0L), (3.2)

which is fulfilled in the generic case, since αx < αy (and cxy ≤ cyy). This follows from s̄L = αy(1 +

cyyȳ0L). The Jacobian may be found in supplementary.

Lastly, consider the co-existing steady state. The Jacobian at EC may be found in supplementary.
However, it is hard to prove any result analytically and we therefore do the stability investigation
numerically the in next section.

3.1.1. Numerical Simulations and treatment scenarios

In this section, we focus on numerical results. The default values of parameters used in Figure 2 are
given in Table 3. The values are the same as given in [18].
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Table 3. Default parameter values and their lumped counterpart.

Parameter Value Unit Parameter Value Unit
rx 8.7 · 10−4 day−1 ry 1.3 · 10−3 day−1

ax 1.1 · 10−5 day−1 ay 1.1 · 10−5 day−1

Ax 4.7 · 1013 - Ay 4.7 · 1013 -
dx0 2 · 10−3 day−1 dy0 2 · 10−3 day−1

dx1 129 day−1 dy1 129 day−1

cxx 5.6 · 10−5 - cyx 5.2 · 10−5 -
cxy 5.4 · 10−5 - cyy 5.0 · 10−5 -
es 2 day−1 rs 3 · 10−4 day−1

ea 2 · 109 day−1 I 7 day
αx 2.31 - αy 1.54 -
βx 5.17 · 108 - βy 5.17 · 108 -
ζ0 1.2 · 10−12 - ζC1 −4.9 · 10−5 -
ζC2 7.4146 · 10−4 - ζC3 0.7646 -
n0 9.76 - n1 −0.51 -
n2 0.64 - n3 6.61 · 10−4 -
ζH1 8.65 - ζH2 4.62 -
ζL1 5.18 - ζL2 3.09 -
ζH3 0.69 - ζL3 0.7646 -

The model has been investigated for various choices of parameter values. In Figure 2, clusters of
five important parameters, C = cxx

cyy
, R =

ζH2
ζL2

= αx
αy

and I are considered to investigate the number of
steady states and their stability. In the default case R > 1 (Figure 2a), a trivial steady state always
exists, and for low inflammation, i.e., I < ζL2 it is stable otherwise it is unstable. For I > ζL2, a purely
malignant steady state becomes admissible. For values of I where the trivial and the malignant steady
states are admissible, the malignant steady state is stable whereas the trivial steady state is unstable. An
unstable hematopoietic steady state becomes admissible as I becomes larger than the threshold value
ζH2, and increasing I further causes emergence of a stable co-existing steady state while the malignant
steady state becomes unstable. Thus, for I > ζH2 and C sufficiently small, four steady states appear
namely the trivial, the hematopoietic, the malignant and the co-existing steady states where the co-
existing steady state is stable and the rest are unstable. This illustrates that the co-existing steady state
depends on I, C and R. Increasing C from a small, initial value makes the co-existing steady state
vanish and the malignant steady state becomes stable whereas the trivial and the hematopoietic steady
states remain unstable.

Secondly, consider the second case where R = 1 implying that ζH2 = ζL2 (Figure 2b). Increasing I
across this value generates an unstable hematopoietic steady state and a malignant steady state simul-
taneously. For C < 1 the malignant steady state is unstable, and a stable coexistence steady state is
created as I increase past ζH2. For C > 1 no coexistence steady state is created, instead the malignant
steady state is stable. Hence, for R = 1, decreasing Cmay change the topology from a stable malignant
steady state to a stable coexistence steady state i.e. improving the prognosis from disease escape to
disease equilibrium. The stable co-existing steady state bifurcates from the trivial steady state and re-
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mains stable until C = 1. As C exceeds 1, the co-existing steady state disappears, the malignant steady
state becomes stable and the trivial and the hematopoietic steady state become unstable.

4 5 6 7 8
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e

2 4 6 8
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0.6

0.8

1
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f

Figure 2. Admissibility and stability of the steady states depending on the parameters I and
C for different values of R. Crossing a solid curve implies a change in which type of stable
steady state exists i.e. trivial, malignant, hematopoietic or coexistence. Crossing a dotted
curves implies the same steady state is stable in both regions but the number of steady states
is changed. The stable steady states are written as subscript of E and unstable steady states
are written as superscript of E.

In the remaining panels, R < 1, which implies that a stable hematopoietic steady state is created as
the first transition to appear when increasing I from low values past the threshold value ζH2. Simultane-
ously, the trivial steady state becomes unstable. In Figure 2c where R = 0.97 the hematopoietic steady
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state remains stable for low values of C until I passes a threshold value where a stable coexistence
steady state is created leaving the hematopoietic steady state unstable.

For larger values of C there is no coexistence steady state. Instead, as I is increased, a region
of bistability appears with a stable hematopoietic steady state and a stable malignant steady state.
Increasing I further the hematopoietic steady state becomes unstable. Hence, to reduce disease load, in
the case of R < 1, and large values of C and I, it may be optimal treatment to reduce the C value prior
to reducing the inflammatory level to avoid being stuck in the bassin of attraction of the malignant
steady state.

In Figure 2d whereR = 0.93, the coexistence steady state no longer appears, the region of bistability
has shrunk and a hematopoietic stable steady state is more dominant.

In Figure 2e and f, R is decreased to 0.77 and 0.5 respectively, and the bistability region is no longer
visible. For I > ζH2 a hematopoietic steady state is the only stable steady state. Figure 2 indicates that
reducing C and R should be targets of intervention. A reduction of I may improve prognosis as well,
for example for parameter values as in 2c.

4. Discussion and conclusion

A mechanism-based model published in [5] - the Cancitis model - describing the interaction of
the hematopoietic cells, malignant cells and inflammation is analysed here. A thorough mathematical
investigation of the model is presented in this paper which did not appear previously. We conducted an
analytical analysis of the steady states and showed that four kinds of steady states may exist i.e. trivial,
hematopoietic, malignant and co-existing steady states. We characterized the stability of each of these
steady states and identified transitions conditions in the number of steady states and in their stability.
Trivial, hematopoietic, malignant and coexistence steady states all appear for some parameter values.
The steady states are highly relevant as all trajectories appear to approach a steady state after some time
- see Figure 3. The case of bistability is visualized in the bottom right panel of Figure 3, with the basin
of attraction shown in the (x0, y0)-plane using initial condition (x1, y1, a, s) = (4×1011, 4×1011, 600, 2).
The initial conditions for x0 and y0 are varied in a range 1− 105. The malignant steady state has a large
bassin of attraction (region (i)), while region (ii) marks the bassin of attraction for the hematopoietic
steady state.

The intuitive interpretation in most bio-medical literature attributes the main cause for cancer de-
velopment to the frequency of stem cell division. Another main cause is the regulatory feedback that
allows stem cells residing in niche to further divide into blood cell required in blood stream. Our in-
vestigation is in agreement with this perception and quantifies this intuitive concept. Furthermore, it
shows that stem cell population is important to target in treatment to prevent disease progression.

In [14] and [15] a model without immune interaction is presented. The authors discuss a fraction
similar to R and show that it is important for the dynamics of the system. It has been shown [15] that
the leukemic cell load can be temporarily reduced if the growth of HSC is larger than that of leukemic
cells for cytokine-dependent AML.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268–8289.



8283

0 20 40 60 80

Time [Years]

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Time [Years]

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

x
0

0

5000

10000

15000

y
0

0 5000 10000
x

0

0

200

400

600

800

y
0

(i)

(i)

(ii)

(ii)

Figure 3. The first three panels illustrate that when a unique, stable steady state exists,
it is globally attracting (based on a numerical argument). U(t) denotes the solution of the
six-dimensional model 2.1. In the top left panel, ||U(t)−EH ||

||U(0)−EH ||
is plotted against time for three

different initial conditions. It corresponds to the region where EH is stable with C = 0.8,
R = 0.97 and I = 6. ||U(t)−EH ||

||U(0)−EH ||
tending to zero for large time implies that U(t) is close to

EH for large time. The top right panel shows the stability of EL with C = 0.2, R = 1.5 and
I = 4. The bottom left panel shows the stability of EC with C = 0.1, R = 1.5 and I = 7.
The bottom right panel corresponds to bi-stability of EH and EL with C = 1.4, R = 0.97.
The solution to the 6D model is projected onto the x0 and y0 plane. Region (i) denotes the
set of initial conditions with trajectories converging to EL whereas region (ii) denotes that
trajectories converge to EH. Black circles show four steady states, E0, EH, EL and EC, where
filled circle shows stable steady states and empty circle shows unstable steady states.

It is generally assumed that cyy ≤ cxx since malignant cells might be less sensitive to environmental
crowding [22] and [24]. The ratio C of inhibition of the hematopoietic relative to malignant cells is
one of several important prognostic markers. For large values of I, bi-stable and mono-stable regions
depend upon C. It can be observed in Figure 2 that for small values of C, i.e., cyy ≥ cxx, either the
hematopoietic steady state is stable or the co-existing steady state is stable which can be interpreted
as a good prognosis. However, large values of C may lead to a worse situation, e.g. in one case, the
malignant steady state is stable or there exists bi-stability of the hematopoietic and the malignant steady
states (see Figure 2c). In addition to the ratio of inhibitive niche feedback, the ratio R is also important
to consider, since it determines how robust the hematopoietic condition may be and how disastrously a
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potential blood cancer disease will develop. Thus for R > 1 we have a more serious situation than for
R < 1 showing that if this reproduction ratio exceeds the threshold R0 = 1, it is more disastrous than if
it is below R0.

The JAK2V617F allele burden is expected to increase due to the expansion of malignant cells. The
JAK2V617F allele burden is interpreted as the ratio of malignant cells to the total number of mature
cells. The model predicted JAK2V617F allele burden is shown in Figure 4 for the region where EC

is stable. Perturbation of a parameter may improve or impair prognosis when the coexistence point is
the stable attractor. The top panel of Figure 4, shows that decreasing C and R improve prognosis by
lowering the allele burden. Contrarily, increasing I, causes a decay in allele burden. This suggests that
inflammatory inhibitors could counteract treatments in this case. In other cases, increasing I typically
leads to a worse prognosis, considering Figure 2.

The model presented here may inform clinical practice to make group specific treatment protocols
with particular focus on the inflammatory components which may accelerate or dampen the disease
progression. Interventions should address decreasing C and R and potentially I but the latter depends
on the remaining parameter values as adverse effects may be observed.
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Figure 4. Allele burden (the ratio of ȳ1c to the total number of x̄1c and ȳ1c) at the steady state
for the region where the co-existing steady state is stable. On the top, left and right panels
show that by increasing C and R, allele burden also increases. On the contrary, increasing I
reduces the allele burden. In the top panel R = 1.5 and I = 7, in the top right, C = 0.1 and
I = 7 and in the bottom panel, R = 1.5 and C = 0.1.
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Supplementary

Stability analysis of Steady states:

At EH± the Jacobian of the purely hematopoietic steady state becomes,

JEH =



a11 0 a13 0 0 a16

a21 a22 0 0 0 0
0 0 a33 0 0 0
0 0 a43 a44 0 0

a51 a52 a53 a54 a55 a56

0 0 0 0 a65 a66


(S.1)

where
a11 = rx

(
s̄H

(1+cxx x̄0H)2 − αx

)
,

a13 = −
rxcxy s̄H x̄0H

(1+cxx x̄0H)2 ,
a16 = rx x̄0H

(1+cxx x̄0H) ,
a21 = axAx,
a22 = −dx1,
a33 = ry

(
s̄H

1+cyx x̄0H
− αy

)
,

a43 = ayAy,
a44 = −dy1,
a51 = dx0,
a52 = dx1,
a53 = dy0,
a54 = dy1,
a55 = −ea s̄H,
a56 = −eaāH,
a65 = rs,
a66 = −es,
and rest of the elements of JEH are zero.

At EL± the Jacobian of the purely malignant steady state.

JEL =



a11 0 0 0 0 0
a21 a22 0 0 0 0
a31 0 a33 0 0 a36

0 0 a43 a44 0 0
a51 a52 a53 a54 a55 a56

0 0 0 0 a65 a66


(S.2)
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where
a11 = rx

(
s̄L

1+cxyȳ0L
− αx

)
,

a21 = axAx,
a22 = −dx1,
a31 = −

rycyx s̄Lȳ0L

(1+cyyȳ0L)2 ,

a33 = ry

(
s̄L

(1+cyyȳ0L)2 − αy

)
,

a36 =
ryȳ0L

1+cyyȳ0L
.

a43 = ayAy.
a44 = −dy1.
a51 = dx0.
a52 = dx1.
a53 = dy0.
a54 = dy1.
a55 = −ea s̄L.
a56 = −eaāL.
a65 = rs.
a66 = −es

and rest of the elements of array are zero.

At EC± the Jacobian of the co-existing steady state becomes,

JEC =



a11 0 a13 0 0 a16

a21 a22 0 0 0 0
a31 0 a33 0 0 a36

0 0 a43 a44 0 0
a51 a52 a53 a54 a55 a56

0 0 0 0 a65 a66


(S.3)

where
a11 = rx

(
s̄C

(1+cxx x̄0C+cxyȳ0C)2 − αx

)
,

a13 = −
rxcxy s̄C x̄0C

(1+cxx x̄0C+cxyȳ0C)2 ,
a16 = rx x̄0C

(1+cxx x̄0C+cxyȳ0C) ,
a21 = axAx,
a22 = −dx1,
a31 = −

rycyx s̄C ȳ0C

(1+cyx x̄0C+cyyȳ0C)2 ,

a33 = ry

(
s̄C

(1+cyx x̄0C+cyyȳ0C)2 − αy

)
,

a36 =
ryȳ0C

(1+cyx x̄0C+cyyȳ0C) ,
a43 = ayAy,
a44 = −dy1,
a51 = dx0,
a52 = dx1,
a53 = dy0,
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a54 = dy1,
a55 = −ea s̄C,
a56 = −eaāC,
a65 = rs,
a66 = −es

and rest of the elements of the JEC are zero.
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