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Abstract: The purpose of this paper is to introduce and highlight a few classes of traditional 

antimicrobial peptides with a focus on structure-activity relationship studies. After first 

dissecting the important physiochemical properties that influence the antimicrobial and toxic 

properties of antimicrobial peptides, the contributions of individual amino acids with respect 

to the peptides antibacterial properties are presented. A brief discussion of the mechanisms 

of action of different antimicrobials as well as the development of bacterial resistance 

towards antimicrobial peptides follows. Finally, current efforts on novel design strategies 

and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide 

research in the development of future antibiotics. 

Keywords: antimicrobial peptides; mechanism of action; peptidomimetics 

 

1. Introduction 

Even though humans have adapted to live in harmony with different microorganisms throughout 

evolution, this balanced symbiotic relationship can sometimes shift and allow pathogenic bacteria to 

blossom and cause infections. In the struggle for survival, a complex mechanism involving many key 

components assists in the elimination of these infectious agents. Antimicrobial peptides are conserved 

biomolecules among all living species, including bacteria that take part in the battle against the invading 

pathogens. They are relatively short (<100 amino acid residues), positively charged, amphipathic (have 

both hydrophobic and hydrophilic domains) and exhibit diversity based on their structural properties [1]. 

Despite the structural difference and myriad of sequences incorporating both natural and unnatural 
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amino acids, antimicrobial peptides exhibit broad spectrum antibacterial activities. The ability of 

antimicrobial peptides to kill or inhibit the growth of bacteria has attracted the attention of many research 

groups worldwide to study mechanism(s) of their antimicrobial action. Their amphipathic nature is 

believed to allow them to interact with the negatively charged structures and hydrophobic fatty acid 

chains found on the target microbial membranes, leading to membrane destabilization and apparently 

cell lysis [2]. Generally AMPs are classified in four large families based on their secondary conformations 

in α-helices, β-sheets, mixed structures and non- α- or β-structures (extended) [3] (Figure 1). 

 

Figure 1. Four structural classes of antimicrobial peptides. (A) α-helical structure of human 

cathelicidin LL-37 (PDB code 2K6O [4]); (B) β-sheeted polyphemusin (PDB code 1RKK [5]); 

(C) extended indolicidin (PDB code 1G89 [6]); (D) and mixed structures like human β-

defensin-2 (PDB code 1FQQ [7]). 

These structures are predominantly present upon interaction with lipid membranes. Most antimicrobial 

peptides from both multi- and unicellular organisms are derived from precursor sequences. Consequently, 

they display a number of post-translational modifications that largely modify their activity. These 

include: proteolytic processing, glycosylation, amidation, halogenation, phosphorylation, incorporation 

of unnatural D-amino acids and cyclization [8]. Some AMPs are also synthesized non-ribosomely e.g., 

gramicidin S and lipopeptides. Antimicrobial peptides have also been intensively modified through 

synthetic chemistry in order to meet the requirements of potential therapeutic drugs, thus further 

increasing the structural diversity. Most recently, combinations of different structures such as β-peptides, 

peptoids, β-peptoids, peptide-peptoid hybrids and other, have been synthesized and the antimicrobial 

activity of the resulting peptidomimetics has been compared to that of traditional antimicrobial peptides. 

This extensive research holds vast potential in dissecting the detailed mechanism by which both innate 

and novel antimicrobial compounds can be used to fight pathogenic infections. In addition, there is a 

remarkable interest for development of new antimicrobials to combat infectious diseases in parallel with 

the increasing evidence of their broad spectrum activity. Until now more than 2000 antimicrobial 

peptides (also referred to as host defense peptides) have been isolated from various cells and tissues of 

animals, insects, plants and bacteria (http://aps.unmc.edu/AP/main.php) [9]. Well known examples of 

antimicrobial peptides belong to the families of the cathelicidins and defensins (found in many insects 

and plants and animals, including humans), thionins (isolated from plants), cecropins (found in the 

hemolymph of the cecropia silk moth in the early 80s) and magainins (secreted from frog skin) [10,11]. 

This review will focus on these peptide groups, discuss their antibacterial mode of action in parallel  
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with their structural characteristics, and then further elute to the potential of peptidomimetic as  

novel antimicrobial agents and how they can be designed based on our current knowledge on 

antimicrobial peptides. 

2. Antimicrobial Peptides Isolated from Mammals 

In mammals, antimicrobial peptides have been isolated from different sources such as the granules  

of neutrophils, Peneth cells, mucosal secretions from epithelial cells and as protein degradation  

products [12]. Three classes of antimicrobial peptides, found in abundance in neutrophils defensins, 

cathelicidins and histatins [13–15] have been studied extensively by several groups. This section 

highlights some important research on defensins and cathelicidins. 

2.1. Defensins 

Defensins, first discovered in human neutrophils, are 18-45 amino acids long cationic molecules 

which are isolated from mast cells and tissues involved in host defense [16–18]. They have been 

classified as α-, β and θ-defensins based on structural differences (Figure 2). All three classes are rich in 

cysteine and arginine residues. The difference between the classes lies in the position of disulfide linked 

cysteine residues. Herein, the first class of defensins (α-defensins), have disulfide connections between 

cysteine residues 1-6, 2- and 3-5, whereas β-defensins disulfide bridges are located between cysteine 

residues 1-5, 2-4 and 3-6 (Table 1) [19]. Moreover, human α-defensins are less cationic, shorter and 

more hydrophobic than human β-defensins [20]. Human neutrophil peptides (HNP1-HNP4) and human 

defensins (HD-5 and HD-6) are six different human α-defensins found in monocytes, NK cells, B and T 

cells, neutrophils and Peneth cells, respectively [21,22]. Studies show that HNPs exhibit antimicrobial 

activity against both Gram-negative and Gram-positive bacteria [23]. Human defensin 5 exerts its 

antimicrobial activity against various bacteria such as Escherichia coli, Listeria monocytogenes, 

Salmonella typhimurium, Staphylococcus aureus and Vibrio cholerae [24]. Contrary to α-defensins, four 

human β-defensins (HBD 1-4) have been isolated from leukocytes and epithelial cells. The β-defensins 

also exhibit microbicidal activity against a panel of bacteria, with HBD-4 being the most potent against 

Pseudomonas aeruginosa [25]. It has been shown that epithelial human β-defensins are over-expressed 

in patients suffering from psoriasis, a chronic skin inflammation, with characteristic skin lesions cleared 

of infection. Conversely in atopic dermatitis where the expression of HBDs is suppressed, the lesions 

are infection-prone [26], clearly illustrating the importance of these antimicrobial peptides in host defense. 

2.2. Cathelicidins 

The cathelicidins are another class of antimicrobial peptides which have been identified in many 

vertebrates such as fish, bird, cow, pig, rabbit, sheep, mouse, monkey, horse and human [27–29]. They 

are primarily produced in epithelial cells, neutrophils and macrophages. Indolicidin and human 

cathelicidin LL-37 (Table 1) are two of the most studied members of this class of peptides. LL-37 is the 

only member of this group of peptides found in human. The importance of these peptides is elucidated 

in studies where increased susceptibility to infections is observed in patients deficient in neutrophil 

production of LL-37, the major source of human antimicrobial peptides [30]. 
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Figure 2. Three structural classes of defensines. The PDB codes are all indicated,  

in addition to the primary sequence with the disulfide bridges indicated with  

numbers in subscript (A) Human alpha-defensin-6 (PDB code 1ZMQ) 

AFTC1HC2RRSC3YSTEYSYGTC2TVMGINHRFC3C1L [31]; (B) Human beta-defensin-1 

(PDB code 1IJV) DHYNC1VSSGGQC2LYSAC3PIFTKIQGTC2YRGKAKC1C3K [32] and 

(C) rhesus theta defensin-1 (PDB code 1HVZ) GFC1RC2LC3RRGVC3RC2IC1TR [33]. 

Indolicidin is a small antimicrobial peptide with 13 amino acids isolated from bovine neutrophils 

(Figure 1 and Table 1). It is rich in tryptophan (39%) and arginine (23%) residues, and it is amidated at 

the C-terminal arginine [34,35]. The antimicrobial activity towards both Gram-negative and Gram-positive 

bacteria, fungi and protozoa is most likely not a result of any confined secondary structure, as nuclear 

magnetic resonance spectroscopy studies failed to report defined secondary or amphipathic structure 

which is characteristic for majority of antimicrobial peptides [6,36]. However the hydrophobic and 

positively charged domains of indolicidin are crucial for its interactions with bacterial pathogens. In 

terms of mechanistic studies, it has been shown that indolicidin failed to cause bacterial lysis even at 

concentrations up to 4 times the MIC concentration, thus excluding traditional membrane depolarization 

and pore models. In addition, indolicidin is capable of binding to DNA and inhibiting DNA synthesis 

which results in cell filamentation [36–38]. Recent studies have also demonstrated that the inhibition of 

DNA replication and transcription is due to the peptides central PWWP motif, which is able to wrap 

around and stabilize DNA structures [39]. In order to improve the potency of indolicidin, the effect of 

various structural modifications has been tested. These include tryptophan replacement with non-natural 

amino acids [40], expression of mutant structures such as CP10A (ILAWKWAWWAWRR-NH2) and 

CP11 (ILKKWPWWPWRRK-NH2) with increased potency against Gram-positive bacteria [41] and 

enhanced cationicity which improved the hemolytic profile and the activity against Gram-negative 

bacteria [42]. Additionally, studies have shown that cyclization of indolicidin improved the peptide 

proteolytic stability without significantly affecting the peptide antibacterial mode of action and  

activity [43]. 
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Table 1. Overview of some natural antimicrobial peptides. 

Name Amino Acid Sequence a Origin Reference 

α-defensin (HNP-2) C1YC2RIPAC3IAGERRYGTC2IYQGRLWAFC3C1 Human [44]  

β-defensin (BD2) GIGDPVTC1LKSGAIC2HPVFC3PRRYKQIGTC2GLPGTKC1C3KKP Human [20] 

LL-37 LLGDFFRKSKEKIGKEFKIVQRIKDFLRNLVPRTES Human [45] 

Protegrin RGGRLC1YC2RRRFC2VC1VGR Pig [46,47] 

Indolicidin ILPWKWPWWPWRR-NH2 Cattle [34,35] 

Magainin 2 GIGKFLHSAKKFGKAFVGEIMNS African clawed frog [48] 

Cecropine A KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK-NH2 Hyalophora cecropia  [49] 

Mellitin GIGAVLKVLTTGLPALISWIKRKRQQ Honey bee [50] 

Magainin II GIGKFLHSAKKFGKAFVGEIMNS African clawed frog [10,11] 

Polyphemusin RRWC1FRVC2YRGFC2YRKC1R Horseshoe crab [5,51] 

Gramicidin S cyclo-(Val-Orn-Leu-D-Phe-Pro)2 Bacillus brevis [52]  

Nisin A b I-DHB-A1I-DHA-LA1-ABA2-PGA2K-ABA3-GALMGA3NMK-ABA4-A-ABA5-A4HA5SIHV-DHA-K Lactococcus lactis [53] 

a connected cysteines forming disulfide bridges are indicated with numbers in subscript; b nisin contains five lanthionine/β-methyllanthinonine rings between alanine and/or 

aminobutyric acid (ABA) residues, it also contains several dehydroalanine (DHA), dehyrdobutyrine (DHB) residues. The ring pattern is indicated with numbers in subscript. 
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Human cathelicidin LL-37 is an extensively studied member of the cathelicidin family of 

antimicrobial peptides, and is also the only cathelicidin found in humans. It is most abundant in the 

granules of neutrophils (cells of the immune system). Upon infection and inflammation, LL-37 is 

released in high concentrations at neutrophil accumulation sites. Human cathelicidin LL-37 is also 

produced by lymphocytes and macrophages as well as different epithelial cells, and hence detected in 

plasma, sweat and other body fluids [54]. The family of cathelicidins are classified based on their highly 

conserved cathelicidin domain, which is flanked by an N-terminal signal peptide and a C-terminal 

segment corresponding to the active antimicrobial peptide. Thus, LL-37 is the predominant fragment 

from proteolytic cleavage of the C-terminal of the human host defense precursor protein (hCAP-18) 

(Figure 1 and Table 1) [45]. The gene encoding hCAP-18 contains three vitamin D receptor elements in 

its promoter region and is under regulation by various signaling pathways where multiple receptors are 

involved [55,56]. Ligand binding to the vitamin D receptor, triggers complexation with vitamin D 

receptor elements in the promoter region, initiating transcription of mRNA that translates into hCAP-18 

precursor protein [57,58]. LL-37 is up-regulated under inflammatory conditions and is also specifically 

up-regulated in response to compounds like butyrate and vitamin D3 [59]. Bacterial components are 

another type of LL-37/hCAP-18 gene expression inducers. For example, it has been shown that expression 

of LL-37/hCAP-18 significantly increased in Helicobacter pylori-infected patients in contrast to 

individuals with non-Helicobacter pylori induced inflammation [60]. Once expressed, LL-37 exerts 

various biological activities; i.e., direct bactericidal activity against Gram-positive and Gram-negative 

bacteria observed in vitro [61] and modulation of inflammation and immune response in host cells 

against various infections [62,63]. LL-37 promotes apoptosis of infected epithelial cells, promoting 

clearance of respiratory pathogens [64]. Production of cytokines like interleukin-6 and interleukin-10 is 

also stimulated by LL-37 in a synergistic manner, thus enhancing the immune response through a 

complex mechanism involving multiple pathways [65]. Other studies have also shown that LL-37 

enhances production of interleukin-8 and induces the expression of α-defensins, another class of cationic 

host defense peptides [66]. Enhanced clearance of Pseudomonas aeruginosa, an opportunistic pathogen, 

of immuno-compromised individuals has been demonstrated by LL-37 expression in murine lungs [67]. 

Besides stimulating production of immune signalling molecules, LL-37 can also function as a  

chemo-attractant, recruiting mast cells involved in wound healing and defence against pathogens, thus 

promoting the release of pro-inflammatory mediators [68]. In parallel to up-regulating several cytokines 

LL-37 can also inhibit interferon-gamma expression, a crucial cytokine for the innate and adaptive 

immunity against viral and bacterial infections [69]. Even though the fundamental mechanisms of  

LL-37 contribution to pathogen elimination have been extensively reported, the specific mechanisms by 

which LL-37 modulates the innate immune response remain poorly characterized. 

3. Insect Antimicrobial Peptides 

Insects represent by far the most diverse group of animals on Earth. Lacking an adaptive immune 

system, they fight against various pathogens by quick cellular and humoral responses. Thus, antimicrobial 

peptides play an important role in the insect’s defense system as they are secreted in the hemolymph as 

a result of the humoral defense mechanism upon microbial infections. Antimicrobial peptides isolated 

from different insect species are categorized as i.e., cecropins, attacins, lysozymes, defensins and 
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dipteracins. Furthermore, in Drosophila two new groups, drosomycin and the metchikowins, have been 

identified and characterized [70]. 

3.1. Cecropins 

Cecropins are the most abundant class of linear antimicrobial peptides in insects. They are devoid of 

cysteine residues and adopt most often an α-helical conformation in membrane mimetic environments. 

To exemplify, cecropin A (KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK-NH2) is one of 

the first cecropins for which a solution confirmation for adaptation of a stable α-helix in hydrophobic 

environments has been demonstrated using circular dichroism spectroscopy (Table 1) [49]. In general, 

the structural fingerprint of cecropins is the presence of tryptophan residues at position 1 and 2 in addition 

to the amidated C-terminus [71]. However, a few exceptional structures including non-amidated  

C-terminus and peptides without N-terminal tryptophans have also been reported, with broad spectrum 

antibacterial activity comparable to that of cecropin A [72]. 

3.2. Melittin 

Melittin is the most characterized α-helical, cationic and hemolytic antimicrobial peptide in the 

literature, which constitutes 50% of the dry weight of bee venom [73]. It is a 26-amino acids amphiphilic 

peptide (GIGAVLKVLTTGLPALISWIKRKRQQ), characterized by a hydrophilic C-terminal and 

predominantly hydrophobic N-terminal region, and serves as a model peptide in many membrane-peptide 

interaction studies (Table 1) [50]. Moreover, structure-activity relationship studies where different 

segments of melittin have been exposed to substitution or deletion, have demonstrated the key elements 

required for the high hemolytic and antimicrobial activity of this peptide. For example, replacement of 

Pro14 with Ala yields a 2-fold higher hemolytic peptide [50], deletion of the 6 residues from the  

C-terminal end results in a non-hemolytic peptide fragment [74]. Also, deletion of specific residues such 

as Leu6, Leu9, Leu16, Iso17 and Trp19 causes decrease in the hemolytic activity and deletion of Ala4 and 

Lys7 reduces the antibacterial activity relative to the native melittin [75,76]. In regards to the mechanism 

of action, melittin is established as a pore forming antimicrobial peptide, though there is no universal 

agreement of the type of pore it forms (for a review see [73]). In an attempt to design small analogs of 

naturally occurring antimicrobial peptides, researchers have designed hybrid peptides consisting of 

elements from cecropin A and melittin, which have demonstrated very potent antibacterial activity and 

no hemolytic activities [77]. One of the hybrid peptides, cecropin A-melittin (CAM), has been further 

modified by replacement of four specific residues with Trp5,11,21,25 in order to improve the antibacterial 

activity and improve the proteolytic stability. Thus, the new hybrid, CAM-W exhibits 3–12 times  

higher antibacterial activity, and strong antifungal activity while retaining a moderate cytotoxicity  

(IC50 > 300 mg/L) [78]. In summary, native or modified insect antimicrobial peptides hold potential as 

alternatives to the conventional antibiotics against various bacterial and fungal pathogens. 

4. Plant Antimicrobial Peptides 

Plants have also evolved a plethora of defense molecules to fight pathogenic infections. Antimicrobial 

peptides isolated from plants are positively charged and display the typical structural motifs such as  
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rtα-helices, β-sheets and loops. They are divided into five classes namely; lipid transfer proteins [79], 

thionins, defensins [80], chitin-binding proteins [81] and cyclotides [82]. Thionins and defensins 

represent the first antimicrobial peptides isolated from plants, thus their activities will be discussed in 

the following section. 

Thionins and Defensins 

Thionins consist of up to 48 amino acids, predominantly arginine, lysine and cystein residues and 

contain a few conserved disulfide linkages (Figure 3). As a part of the plant defense system, thionins act 

on various pathogens and exert toxic effects on bacteria, fungi, yeast and mammalian cells [83].  

A subgroup of the thionins family is the β-purothionins, which interact strongly with lipid bilayer,  

then insert into the hydrophobic core, resulting in cell lysis [84]. Viscotoxins, another class of plant 

thionins, were isolated from the leaves and stems of the European mistletoe (Viscum album) in 1973 [85]. 

Studies have demonstrated their high conformational stability and their ability to disrupt bacterial 

membranes [86]. γ-Thionins, now known as plant defensins, are another superfamily of plant 

antimicrobial peptides. 

 

Figure 3. Three structural classes of thionins. (A) Members from all three classes have been 

superimposed to show their similarities. The same structures are illustrated separately in 

panels B-D. The PDB codes are all indicated, in addition to the primary sequence with the 

disulfide bridges indicated with subscript numbers; (B) β-purothionin (PDB code 1BHP) 

KSC1C2KSTLGRNC3YNLC4RARGAQKLC4ANVC3RC2KLTSGLSC1PKDFPK [87]; (C) γ 

1-H thinonin (PDB code 1GPT) RIC1RRRSAGFKGPC2VSNKNC3AQVC4MQEGWGGG 

NC2DGPLRRC3KC4MRRC1 [88]; and (D) hellethionins (PDB code 1NBL) 

KSC1C2RNTLARNC3YNAC4RFTGGSQPTC4GILC3DC2IHVTTTTC1PSSHPS [89]. 

5. Antimicrobial Peptides Produced by Bacteria 

Antimicrobial peptides produced by bacteria, originally named colicins, are referred to nowadays as 

bacteriocins. Bacteriocins produced by the host bacteria are able to selectively act against a broad 

spectrum of bacterial species without harming the producer. This family of antimicrobial peptides finds 

expansive application in the food industry to protect and prevent food contamination, particularly as 

many bacteriocins are produced by food-grade lactic acid bacteria. Additionally, bacteriocins attract 

special attention for their clinical implications for treatments of methicillin-resistant S. aureus, 

enterococci (including VRE), streptococci, Clostridium botulinum and Propionibacterium acnes. As a 
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result of extensive work over the past decades there have recently been calls for the classification of 

bacteriocins to be revised and the current grouping suggested by Cotter et al. includes Class I 

(lanthionine-containing), Class II (non-lanthionine containing) and bacteriolysins (non-bacteriocin lytic 

proteins) [90]. 

5.1. Nisin 

Nisin is a classical example of a Class I bacteriocin that has been successfully approved as an 

antimicrobial with commercial relevance in over 50 countries worldwide since its discovery back in 

1927 [91]. Isolated from Lactoccocus lactis it was not until 1971 that its complex structure, consisting 

of 34 amino acids including some unusual lanthionine residues, four β-methyllanthionines, 

didehydroalanine and didehydroaminobutyric acid was fully described (Figure 4 and Table 1) [53].  

Its activity against Gram-positive pathogenic bacteria is attributed to its interaction with the bacterial 

membrane resulting in disruption of the membrane integrity. This occurs via pore formation and so far 

two mechanisms are proposed. The first one explains the low-affinity pore formation of nisin alone, 

whereas the second one accounts of nisin and lipid II interaction thus ascribing to the pore formation by 

this complex (Lipid II-dependent pathway) [92–95]. Several structure-activity relationship (SAR) 

studies have been reported where the importance of different segments, especially those containing 

lanthionine rings, have been highlighted to be essential for the observed antimicrobial activity [96]. 

 

Figure 4. Covalent structures of two highly related bacteriosins. (A) Nisin A from 

Lactoccocus lactis and (B) Mutacin 1140 from Streptococcus mutans. 

5.2. Mutacin 1140 

Mutacin 1140 [97] is another member of the lanthionine-containing bacteriocins which has been 

extensively studied. It is a 22 amino acid long peptide produced by Streptococcus mutans [98] with  

a mode of action similar to that of nisin, which relates to the ability to inhibit peptidoglycan synthesis 

by binding to lipid II (Figure 4) [95]. Mutacin 1440 has a broad spectrum of activity against clinically 

important bacteria with time of kill profiles consistent with that of vancomycin, an antibiotic approved 

for treatment of severe infections caused by Gram-positive bacteria. This peptide is currently under 

investigation for its pharmacological relevance and has entered preclinical studies [99]. 
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Lysostaphin is a bacteriolysin that acts by hydrolyzing the cell wall of the pathogenic bacteria,  

thus it is currently being investigated for its potential in food and nutritional microbiology. Even though 

bacteriolysins are structurally much larger than the traditional bacteriocins and antimicrobial peptides, 

their application as a peptide antibiotics hold vast potential. Lysostaphin (27 kDa) for example, is  

able to cleave the pentaglycine cross-links in the cell wall of Staphylococci and thus lyse the pathogenic 

bacteria in all metabolic states. The therapeutic efficacy of this bacteriolysin against clinical  

methicillin-resistant S. aureus MRSA isolate has been reported in animal models and compared to that 

of vancomycin. The recombinant lysostaphin, displayed better in vitro and in vivo antibacterial activity 

against methicillin-resistant S. aureus compared to vancomycin, in addition to having a low toxicity 

profile, therefore it is a potential lead candidate for further structural optimization studies [100]. 

6. Structural Properties of Antimicrobial Peptides 

The structural properties of any given biomolecule play a major role in the interpretation of  

its biological activity. Many studies have been conducted to dissect the important elements that define 

peptides as antimicrobial “weapons”. Broad diversity of antimicrobial peptide sequences exists in nature, 

which contributes to the overall structural diversity, yet there are evolutionarily traits that have been 

conserved to ensure their activity on various types of bacteria with different membrane composition and 

different targets. The secondary structure, cationicity, hydrophobicity and amphipathicity are the most 

important key elements that allow characterization of antimicrobial peptides and therefore are briefly 

discussed in the following section. 

6.1. Secondary Structure 

Based on their secondary structures, antimicrobial peptides are classified in four groups; α-helices  

β-sheets, mixed structures and non- α- or β- structures (extended) (Figure 1). Circular dichroism 

spectroscopy, X-ray crystallography and nuclear magnetic resonance spectroscopy have been used 

intensively for the structure determination of antimicrobial peptides. For example, the first X-ray 

crystallographic structure of native human α-defensin, the human neutrophil peptide 3, appeared in 1991, 

followed by a nuclear magnetic resonance structure of human neutrophil peptide 1 [101–103]. Such 

structural information is found to be useful when investigating the importance of the secondary structure 

in deciphering the antimicrobial activity of antimicrobial peptides. To exemplify this, studies have 

demonstrated that bacterial killing by human neutrophil peptide 1 is structure-independent [104]. The 

most common motif found in many proteins and peptides with biological activities is the amphipathic 

α-helix, however, many antimicrobial peptides exist as extended or unstructured conformers and only 

adapt α-helical conformations upon interaction with phospholipid membranes [105,106]. Circular 

dichroism analysis has shown that in the presence of unilamellar phospholipid vesicles with varied 

content of zwitterionic and negatively charged phospholipids, several antimicrobial peptides adopt well 

defined α-helical and/or β-sheet like structures in contrast to the buffer environment [107]. 

The presence of α-helical structures in antimicrobial peptides is generally believed to promote 

interaction with membranes and assist membrane lysis [108] and therefore specific amino acids such as 

alanine, leucine, arginine, lysine, etc., that have high helical propensity (they occur more frequently in 

α-helices) have been actively included in the design of potential novel antimicrobial peptides [109,110]. 
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In this context, Deslouches et al. showed that in general, the peptides from their de novo library, with 

more than 80% helical content, exhibited maximal antimicrobial potency against the tested bacterial 

strains [111]. On the other hand, Javadpour et al. also designed a library of highly α-helical peptides 

containing lysine and/or leucine/alanine/glycine residues in sequences that extended up to 21 residues. 

In this library the propensities of α-helical conformation was found to be proportional to the toxicity of 

the peptides against mammalian model cells. However, no definite conclusion could be obtained for a 

correlation of these peptides’ conformations and their observed antibacterial activity [112]. 

6.2. Conserved Salt Bridges 

Salt bridges can be found in both α-helical and β-sheet peptides, and contribute greatly to the overall 

stability of the secondary structure of antimicrobial peptides. However, studies on α-defensin has 

demonstrated that salt bridges in human defensin 5 do not contribute to the antimicrobial activity, but 

rather affect the correct disulfide pairing of the pro-α-defensins, which are inactive defensins subjected 

to further processing. Furthermore, the salt bridges can also indirectly increase proteolytic stability, as 

seen for human defensin 5 (Figure 5), where modifications that disrupted the salt bridges also accelerated 

degradation by trypsin [113]. Similar salt bridges has also been observed in other antimicrobial peptide 

structures, e.g., in human lactoferricin 1-49 (Figure 5) [114]. 

 

Figure 5. Salt bridges in antimicrobial peptides. The overall secondary structure is depicted, 

in addition to side-chains and back-bone elements that are involved in stabilizing the 

structure; hydroben bonding (green dotted lines) or salt bridges (grey dotted lines). The PDB 

codes are all indicated, in addition to the primary sequence with the disulfide bridges 

indicated with numbers in subscript. (A) On human defensin 5 (PDB code 2LXZ) 

ATC1YC2RTGRC3ATRESLSGVC2EISGRLYRLC3C1R [115], it is apparent how Arg6 and 

Arg28 from β-strand 1 and 3, clam around and stabilize the random coil backbone through 

formation of one hydrogen bond and one salt bridge; (B) Human lactoferricin 1-49 (PDB 

code 1Z6V) GRRRRSVQWC1AVSQPEATKC2FQWQRNMRKVRGPPVSC2IKRDSP 

IQC1IQA [114], contains a very loose structure with a disrupted or segmented helical 

elements. The composition of the helical element is pending on how the structure is captured, 

and as depicted in this structure, it is apparent how a salt bridge between Lys19 and Gln24 are 

involved in stabilizing the random coil bridging the two largest helical segments. 
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6.3. Cationicity 

One common property of the majority of the antimicrobial peptides is the cationic nature represented 

by the number of positively charged residues (lysine, arginine and histidine) within their structure, which 

ranges between +1 and +7 charges [3]. A number of studies have correlated this property with the 

antimicrobial activity observed in antimicrobial peptides. The attributed importance lies mainly in  

the interaction between the positive charge in the peptides and the negatively charged bacterial 

membrane surfaces via electrostatic interactions. For instance, the antimicrobial activity of most of  

the members of the defensin family appears to be related to their cationicity. To exemplify,  

human defensin 5 interacts with the bacterial surface via its arginine residues and thus exerts its 

antimicrobial activity. Replacement of arginine residues at position 9 and 28 with alanine or lysine 

residues reduces the antibacterial killing as well as the host cell interaction, the latter which is found to 

be receptor mediated [116]. The overall positive charge may not be the main determinant in the  

observed antibacterial activity as in case of human α-defensins that generally show to be more effective 

against Gram-positive bacteria than human β-defensins, even though human β-defensins are more 

cationic [117,118]. Herein, human neutrophil peptide-1 (ACYCRIPACIAGERRYGTCIYQGRL 

WAFCC, net charge +3) appeared to be more effective against S. aureus than human β-defensin-3 

(GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK net charge +11) [23,119,120]. 

In addition, cationicity meets a limit, beyond which increasing the charge no longer results in increased 

antibacterial activity. That being said, Dathe et al. has demonstrated that increasing the charge from +3 

to +5 in magainin-2 analogues, also increased the peptides antibacterial activity against both  

Gram-positive and Gram-negative bacteria, but further increase to +6 or +7 led to a loss of the 

antibacterial activity and increased hemolytic propensity [121]. In addition to the net charge of antimicrobial 

peptides, it has further been illustrated that the position of the charged residues is also an important factor 

that determines the peptides overall antibacterial activity, e.g., changing the position of a few amino acid 

residues within the native structure of the linear bactenecin, Bac2A (RLARIVVIRVAR-NH2), resulted in 

a scrambled sequence that showed increased antibacterial activity [122]. Besides the importance of 

cationicity in mediating initial interaction with target membranes, in Gram-negative bacteria, the net 

positive charge is important for the so-called self-promoted uptake of antimicrobial peptides. Herein 

cationic antimicrobial peptides interact with the outer membrane surface where there are divalent cations 

such as Mg2+ or Ca2+ cross bridging LPS molecules. Displacement of these cations causes destabilization 

of the outer membrane and therefore allowing uptake of molecules [123,124]. Moreover, bacteria carry 

more negative transmembrane potential when compared with that of a normal mammalian cell 

membrane and this will facilitate insertion of charged antimicrobial peptides into the membranes [125]. 

6.4. Hydrophobicity 

Hydrophobicity is certainly an inevitable structural feature that decides the overall activity of a given 

antimicrobial peptide and therefore it is continuously characterized in the literature as a key functional 

property. It affects the potential of interaction between antimicrobial peptides and different membrane 

compositions and furthermore directs the degree of peptide partitioning into the lipid bilayer. Increased 

hydrophobicity is well correlated with loss of antibacterial specificity, resulting in high toxicity towards 
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mammalian cells. To elaborate, Yin et al. showed that substituting four alanine residues with four 

hydrophobic leucine residues induced higher hemolytic activity of their membrane active model  

peptide [126]. Magainin-2 analogues with varying hydrophobicity have also been used to demonstrate 

that minor changes in the hydrophobicity may drastically influence and increase its membrane binding 

and permeabilization activity [127]. The effect of hydrophobicity on the antibacterial and hemolytic 

activities has been further demonstrated via peptide series constructed of repeats of lysine and tryptophan 

(LysTrp)n residues. Addition of a number of repeats of these two residues resulted in parallel increase 

of both hydrophobicity, as estimated by the retention times on HPLC, and antimicrobial activity. 

However, when five repeated units were present in the structure (LysTrp)5, the increase caused 

unfavorable change in the hemolytic profile (increased toxicity) and decrease in the antimicrobial 

activity due to self-aggregation [128]. In conclusion, the hydrophobicity of a specific sequence in the 

development of a novel antimicrobial peptide should be challenged but not exaggerated. 

6.5. Amphipathicity 

Amphipathicity in antimicrobial peptide structures reflect the abundance and polarization of the 

hydrophobic and hydrophilic domains. Most of the cationic antimicrobial peptides display a net positive 

charge (+1 to +7) [3] and consist of about 50% hydrophobic residues which contribute to the recognition 

and interference with the cytoplasmic membrane barrier or self-promoting uptake across the cellular 

membranes. The cationic charges and the hydrophobic groups segregate into amphiphilic structures.  

One quantitative measure of amphipathicity is the hydrophobic moment, that applies for peptides in  

α-helical confirmation and is used as a descriptor in dissecting the role of amphipathicity for peptide 

antimicrobial activity [129]. The importance of the amphiphilicity in determination of the antimicrobial 

activities of these peptides is controversial because different research groups report on favorable and 

unfavorable contributions such as increase in antimicrobial and increase in hemolytic activities, 

respectively [127,130–135]. For example, amphipathicity has been reported as a major structural 

determinant for the biological activity of a small library of arginine and tryptophan rich linear and cyclic 

hexapeptides [133]. Here, the structural and conformational constrains of the peptides together with the 

ideal positioning of the hydrophobic clusters appeared to determine the antimicrobial activity and 

selectivity of the peptides [133]. In another study of magainin-2 and its analogues it was demonstrated 

that the antimicrobial activity was governed explicitly by the peptide amphipathicity and not by 

hydrophobicity or α-helical content [134]. Similarly, a design of cecropin A and melittin hybrid 

structures has demonstrated increased amphiphilicity and helicity correlating with high antibacterial 

activity and low toxicity against mammalian cells [135]. Contradicting these results are numerous other 

peptide studies, demonstrating that high amphipathicity if measured as hydrophobic moment, increases 

membrane disruption resulting in increase in both the antibacterial and hemolytic activity [127,130,131]. 

Amphipathicity in antimicrobial peptides that exist in β-sheet conformations is characterized by the 

number of β-strands organized by two distinct polar and non-polar domains. β-strands in antimicrobial 

peptides are usually stabilized via disulfide bridges or head-to-tail cyclization which provides high 

conformational rigidity in aqueous solution. The polar and non-polar domains in β-strands allow 

antimicrobial peptides to successfully interact with target membranes and once associated with the 

membrane, the amphipathic nature enables membrane disruption via formation of transmembrane 
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channels [105]. Alteration in the non-polar domain of gramicidin S derivatives, decreased hydrophobicity 

and the overall amphipathicity, thus not surprisingly decreased the peptides hemolytic activity [136]. 

6.6. Cyclic Antimicrobial Peptides 

Besides adopting linear structures, antimicrobial peptides can be naturally found in cyclic conformations. 

Antimicrobial peptides are constrained in this conformation either by disulfide cross linkages 

(tachyplesins (KWC1FRVC2YRGIC2YRRC1R-NH2) [137], protegrins (RGGRLC1YC2RRRFC2VC1VGR-

NH2) [138], and polyphemeusins (Figure 1)) or backbone cyclization (gramicidin S, tyrocidines  

(Figure 6) and θ-defensins (Figure 2)). Cyclic antimicrobial peptides have demonstrated strong 

antimicrobial activities against different pathogenic bacteria, however with poor selectivity. Therefore, 

numerous structure-activity relationship studies have been done for dissecting the important elements 

that contribute to the observed activities with the intention to improve their therapeutic profiles [136]. 

Scheinpflug et al. demonstrated improved antimicrobial activity against Gram-negative and Gram-positive 

bacteria and low hemolytic activity of a small cyclic hexapeptides (c-RRRWFW), when compared to 

that of the linear analog sequence. Regarding the mechanism of action, this cyclic peptide did not act on 

the bacterial membrane, rather it has been suggested that it travers the cell wall with the help of direct 

interaction to lipopolysaccharide [139] and then further translocates to the cytoplasm [140]. Other 

studies have used the native structure of the gramicidin S, as a model peptide for synthesis of novel 

cyclic antimicrobial peptides [141]. In this context, the effect of the ring size (4-14 residues) in 

gramicidin S on the antimicrobial and hemolytic activity had been analyzed, in addition to the size effect 

on the secondary structure and the peptides lipid binding potential. The ring structures containing 6, 10 

and 14 residues folded in β-sheet structures, whereas disordered structures had been observed for rings 

formed by 8 or 12 residues. The membrane disruption had been observed only in the peptide analogues 

with 10 or more residues in the ring structure, whereas those with less appeared to be completely inactive 

without any hemolytic activities. Out of this study only one cyclic analog showed improved antibacterial 

specificity, indicating that varying native cyclic peptide structures can contribute to the development of 

clinically useful cyclic peptide antibiotics [142]. The 14-mer analogue, GS14 forms a highly 

amphipathic β-sheet structure and has served as a model peptide for further modifications and structure 

activity studies. GS14 exhibits very high hemolytic and limited antimicrobial activity so any change in 

the structure that will disturb the amphiphilic β-sheet structure gives a direct relation of the 

amphipathicity and the biological properties of the cyclic peptide. By systematic synthesis of GS14 

variants, Kondejewski et al. demonstrated that the hemolytic activity exhibited by GS14 could be easily 

reduced by decreasing the amphipathicity (reduction of directed hydrophobicity) or by reduction of the 

overall peptide hydrophobicity [136]. Other attempts to identify structural features and improved 

antimicrobial activity of cyclic peptides have been communicated in two consecutive studies [133,143]. 

Here, the cyclic peptides with the highest antimicrobial activity were those with three aromatic residues 

positioned adjacent to each other. In summary, since amphipathicity is of a great importance when tuning 

the antimicrobial activities of peptides, cyclic peptides permit induced amphipathicity and greater 

enzymatic stability [43,144] and should therefore be considered a valuable path forward. 
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Figure 6. Cyclic peptides and lipopeptides. Covalent structures of some conventional and 

lead drug molecules. (A) Gramicidin S; (B) Tyrocidines; (C) Polymyxin B; (D) Daptomycin 

and (E) cyclo-[D-Ala-(12-guanidinododecanoyl)Thr-D-Val-Val-DaThr-D-Asn] [145].  

6.7. Length 

The length of the polypeptide chain in antimicrobial peptides varies greatly and there are continuous 

reports on many active sequences that are not necessarily similar in size. This raises the question whether 

or not there is an optimal chain length that is beneficial for the observed activity of antimicrobial 

peptides. To answer this question, a few research studies are presented. For example, in design of a de 

novo peptide library it was demonstrated that by increasing the chain length of a 12-mer peptide 

composed of only arginine and valine, one could achieve an increase in antimicrobial activity against P. 

aeruginosa and S. aureus [111]. Notably, others have reported that an increase in length could give a 

proportional increase in the toxicity towards mammalian cells [112]. Similarly, Lui et al. showed that 

by increasing the chain length of a peptide from a 2-mer (RW) to a 10-mer (RW)5 both the antibacterial 

activity and host cell toxicity increased, however the latter being less affected [146]. Correspondingly, 

in a study with α-helical model peptides (lysine, leucine, alanine), it appears that 21-mers in general are 

about two-fold more potent than their 14-mer analogues. Contradictory observations have been made in 

a different α-helical model peptide library (LARL)3-(LRAL)n (n = 0–3). In this study the peptides 

exhibited decreased antimicrobial activity and yet increased hemolytic activity with increasing chain 

length [147]. The above observations are further supported by a study by Gopal et al. where an increase 

in chain length up to eight residues enhanced antimicrobial activity of peptides composed of repeated 

lysine and tryptophan (KW)n and the effect on hemolysis increased gradually with the increase of the 

chain length. However, the increase of chain length from (KW)4 to (KW)5 did not further improve the 

antimicrobial activity [128]. A similar trend demonstrating increase in antibacterial activity up to a 

certain chain length before it decreases again, has also been reported for a set of arginine and valine rich 

β-hairpin like peptides (Ac-C(VR)n
DPG(RV)nC-NH2 (n = 1–5) [148]. Additional insight into peptide 

length can also be learned from peptide sequence truncation. Some examples include truncation of 
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peptide LL-37 [149]. Thus, in conclusion there is no definite length of a peptide sequence that is to be 

taken into account when one designs novel antimicrobial peptides. However, the studies conducted 

provide a better understanding of this issue and suggest optimal strand length to improve antibacterial 

peptide activity for the respective peptide species studied. 

7. Structural Properties of Specific Amino Acid Residues in Antimicrobial Peptide Sequences 

Identified antimicrobial peptides from plants, insects, fish, frogs and mammals vary greatly with 

respect to their amino acid composition. Each of the amino acids alone or in synergy with the 

neighboring amino acid residues contributes to the observed antimicrobial properties conserved in the 

peptides. The following section highlights the importance of few amino acids commonly found in the 

structure of many cationic antimicrobial peptides and discusses their contribution to the peptides 

therapeutic profiles. 

7.1. Lysine (Lys, K) and Arginine (Arg, R) 

The basic amino acids Lys and Arg are highly conserved residues in antimicrobial peptide structures 

as they enable electrostatic interactions between the peptide and the negatively charged bacterial 

membranes [150]. These two amino acids differ in their side chain chemistry. Arginine has a 

guanidinium group that allows more dispersed positive charge and offers greater directionality and 

possibility of hydrogen bonding with for example the surrounding water molecules. The unique 

characteristics of the arginine side chain allow formation of multiple interactions contrasting the mono 

charge present in lysine. In addition, arginine can also engage in cation–π interaction with tryptophan, 

where the negative charge clouds in the tryptophan aromatic systems interact with the positively charged 

side chain [151]. The roles of amino acid substitution and cationicity on antimicrobial and hemolytic 

activities have been thoroughly investigated over the past 20 years. For this reason, many peptide 

analogues have been synthesized where known sequences have been modified to include different 

cationicity using lysine and arginine. Many studies have demonstrated that substitution of arginine with 

lysine leads to reduced antimicrobial activity [152,153]. Gopal et al. [154] reported on an analogue 

sequence, (FKKLKKLFKKILKLK-NH2) of HPA3NT3 peptide, where they substituted Trp12 and Trp14 

with leucine as well as Arg3 and Asn13 with lysine. They observed an increase in the cationicity due to 

the substitution of arginine and asparagine with lysine and C-terminal amidation, which resulted in small 

changes in the antibacterial activity but significant decrease in hemolytic activity [154]. Similarly, 

substitution of arginine with lysine in cyclic c-RRWWRY resulted in decreased minimum inhibitory 

concentration and erythrocyte lysis [143]. In addition to the contribution of arginine residues to the initial 

electrostatic recognition of the membrane surfaces, poly-arginine sequences are able to pass cell 

membranes more efficiently than poly-lysine or other poly-cationic homopolymers, suggesting that the 

guanidine group of the arginine side chain is a critical component for the observed biological activity. 

Furthermore, once the peptides have entered the cell, arginine containing peptide sequences have 

demonstrated higher affinity for DNA than poly-lysine peptides [155]. Similarly, the arginine-rich 

peptide (RRWWRRWRR) has been actively used in the intracellular delivery of peptide nucleic acids. 

Substituting arginine residues in this sequence with lysine decreased the cellular uptake of the conjugate 

by six-fold [156]. Arginine- and lysine-rich peptide sequences are well described in histones, proteins 
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found in eukaryotic nuclei that contribute to package and organization of DNA into nucleosomes. Lysine 

and arginine rich histones and histone fragments exhibit broad-spectrum antimicrobial activity [157] as 

a result of intracellular inhibition of cell functions trough binding of these fragments to bacterial nucleic 

acids [158,159]. Consequently, Morita et al. demonstrate that the contribution from these fragments to 

the observed antibacterial activity relies on the arginine-rich histone ability to disrupt the morphology 

and lysine-rich histone to disrupt the integrity of S. aureus and E. coli [157,159]. One of the limitations 

of the extracellular applications of antimicrobial peptides as antimicrobial coating agents is the inhibition 

of the electrostatic interactions with increasing concentrations of sodium chloride. To counteract this 

limitation, incorporation of arginine residues at the C-terminal end of antimicrobial peptides allows  

salt-resistance due to the increased cationicity which overall will improve the electrostatic interaction 

between the peptide and the anionic bacterial membranes [160,161]. To exemplify, human β-defensin 

has been exposed to such structural changes that led to improved antibacterial potency in ionic 

environments and further boost the development of many antimicrobial peptides that deal with such 

obstacles [160]. While tuning the membrane selectivity of antimicrobial peptides, Liu et al. [162] 

reported on another arginine-rich peptide sequence, (RW)4D, with enhanced antibacterial activity against 

E. coli and S. aureus and lowered hemolytic profile when compared with the natural antimicrobial 

peptide indolicidin [162]. Another example of improved membrane permeability of arginine containing 

peptide sequences is the simple substitution of D-lysine with D-arginine in the short antimicrobial peptide 

RLA [163]. 

7.2. Tryptophan (Trp, W) 

Another very important residue found in the structure of antimicrobial peptides is tryptophan.  

The unique side chain containing an indole ring holds hydrogen-bonding potential in addition to other 

physiochemical properties, e.g., dipole and quadrupole moments [164]. Tryptophan residues show 

strong membrane-disruptive activities by their ability to interact with the interface of a membrane 

anchoring the peptide to the surface of the bilayer [165]. Scanning electron microscopy analysis has 

suggested that two tryptophan-substituted antimicrobial peptides, I1WL5W and I4WL5W, work through 

disruption of the bacterial cell membranes. In addition, fluorescence and quenching data from liposome 

studies has indicated possible insertion of these peptides into the lipid bilayers and induction of blue 

shifts in the tryptophan emission spectra [166]. The hydrogen bonding of tryptophan with the 

surrounding water molecules diminish upon insertion of the tryptophan residues into the hydrocarbon 

core of the membrane [167]. However, indole hydrogen bonding and the dipole-dipole interactions are 

shown not to be primary determinants of the tryptophan interfacial localization [167]. Various 

experimental and molecular-dynamic simulation studies have demonstrated accommodation of 

tryptophan residues in the interface layer of membranes [167,168] which could associate with the 

positively charged choline head groups of the lipid bilayer [151]. Overall, it is suggested that aromaticity 

and the molecular shape play an important role in explaining the nature of membrane interaction of 

tryptophan-rich antimicrobial peptides. To exemplify, the flat and rigid structure of tryptophan may 

influence the positioning in the hydrocarbon core for entropic reasons and the electrical properties of the 

aromatic system may favor accommodation of tryptophan in the interface regions. In accordance with a 

plethora of literature studies pointing out the importance of the overall structure and position of certain 
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amino acids in antimicrobial peptide design, the position of tryptophan residues in the tryptophan 

substituted peptide, L-K6, a peptide derived from temporin-1CEb from skin secretions of the Chinese 

brown frog, demonstrated to be an important factor for the observed antibacterial activities against 

Gram-negative and Gram-positive bacteria [169]. The influence of tryptophan residues on antimicrobial 

potency against P. aeruginosa and S. aureus has been further documented where single substitution  

with tryptophan significantly increased the anti-pseudomonal potency when compared to the parent 

peptide [111]. In summary, tryptophan residues have strong preference for the interfacial regions of  

the lipid bilayer and aid attachment and insertion of the tryptophan containing peptide across the 

membrane barriers. 

7.3. Cysteine (Cys, C) and Disulfide Bonds 

Cysteine belongs to the sulfur-containing amino acids which are strongly reactive. The thiol group 

can be easily oxidized to form a dimer, thus creating a disulfide bridge between two cysteines. Disulfide 

bridges formed by cysteine residues are strongly hydrophobic (nonpolar) and play an important role in 

the structures of many antimicrobial peptides. In addition to being important for the overall structural 

fold of the peptide, these bridges also increase the peptides stability towards proteolytic degradation, 

e.g., defensins [170]. The tertiary structure stabilization via disulfide bonding of human neutrophile 

peptide 1 (HNP1) contributes to effective binding to the cell wall precursor lipid II [104] and inhibits 

TNF-α secretion by human monocyte derived macrophages [171]. In studies where disulfide bonds in 

HNP1 or human defensin 5 (HD5) were reduced (e.g., by dithiothreitol) or substituted, it has been 

demonstrated reduced antibacterial activity [170,172]. In contrast, in the highly cationic (+11) human  

β-defensin 3 (HBD3), the presence, absence or altered pairing of the three disulfide bridges, did not 

appear to be relevant for the observed antibacterial activity [173]. Some of the most potent natural cysteine 

containing antimicrobial peptides, are a β-hairpin polyphemusin 1 (RRWC1FRVC2YRGFC2YRKC1R) 

from horseshoe crab (Figure 1) [5,51] and pig protegrin (RGGRLC1YC2RRRFC2VC1VGR) [46,47]. 

Polyphemusin I exhibit high antimicrobial activity with MIC ranging from 0.125 to 1 µg/mL against 

multiple clinical strains of both Gram-negative and Gram-positive bacteria [174]. Similarly, protegrins, 

especially protegrin-1 is also stabilized by two internal disulfide bridges (Cys6-Cys15 and Cys8-Cys13) 

and as such is able to permeabilize bacterial membranes including the outer membrane of Gram-negative 

bacteria [175–177]. Loss of bactericidal activity is observed upon removal of cystein residues, especially 

those in position Cys6 and Cys15 [178,179]. Structural studies have demonstrated that protegrin-1 has 

the ability to form oligomeric β-sheet like structures in model membranes, inducing pore formation in 

bacterial membranes [180–182]. Structure-activity relationship studies on protegrin-1 have been 

conducted to evaluate the importance of the cysteins, and the results demonstrated that two truncated 

linear versions of protegrin-1 retained a broad spectrum activity by disrupting LPS-outer membrane 

barrier. Furthermore it is assumed that the peptide adopts an amphipathic β-hairpin-like conformation, 

even in absence of the disulfide bonds in complex with the LPS micelles. Currently, protegrin-1 

analogues are the main cysteine containing peptides that hold promise for development of a non-toxic 

antimicrobial [183]. One example is the protegrin-1 derivative IB-367 (iseganan) that has been the most 

studied for an effective treatment of oral mucositis due to its broad spectrum antibacterial activity, rapid 
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killing and relative lack of resistance development. However this analogue failed in Phase II clinical 

trials of oral mucositis [174,184,185]. 

7.4. Proline (Pro, P) 

Proline-rich antimicrobial peptides are a distinctive class of cationic peptides isolated from both 

insects and mammals, with confirmed antimicrobial activities specifically against Gram-negative 

bacteria [186–188]. Structurally, proline is an unusual amino acid that forms a ring structure with rigid 

confirmation and a secondary amine compared to the other twenty natural amino acids. This significantly 

reduces the structural flexibility of the polypeptide chain, and the nitrogen in the idole ring cannot 

participate in hydrogen-bonding with other residues. Prolines are often considered helix breakers, 

however, proline-rich sequences tend to adopt distinct PP-II helix (e.g., PR-39 

(RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFP), apidaecins, drosocin), helix structure with 

three residues per turn [189]. Retaining highly potent antimicrobial activities, proline-rich antimicrobial 

peptides subsequently act in a divergent way including stereospecific interaction with membrane 

translocation system followed by intracellular targeting, compared with the more general membrane 

disruption mode of action of traditional antimicrobial peptides. Most of the knowledge about the 

structure-activity relationship for these peptides comes from peptides isolated from insects; e.g., apidaecin, 

a small 18 amino acid residues peptide (GNNRPVYIPQPRPPHPRL) [190] isolated from honeybees, 

with proline content of 33% [191], drosocin, a 19-mer glycopeptide (GKPRPYSPRPTSHPRPIRV) [190] 

isolated from Drosophila [192] and pyrrhocorycin, a glycopeptide (VDKGSYLPRPTPPRPIYNRN) [193] 

isolated from the firebug Pyrrhocoris apterus [194,195]. In addition, Bac7, Bac5 and PR-39 are 

representatives of well-studied mammalian proline-rich antimicrobial peptides. Regarding the mechanism 

of action of these distinct peptides, studies have demonstrated that the members of the proline-rich 

peptide group and their derivatives act in a completely divergent mechanism than the lytic amphiphilic 

antimicrobial peptides [192,196–199]. To exemplify, one of the early observations of the non-lytic 

mechanism were found in E. coli challenged with apidaecin or bovine PR-39, where the bacteria 

membranes remained intact during the entire incubation time [188,191]. Similarly, arasin-1, a 37 amino 

acid long proline-rich peptide (SRWPSPGRPRPFPGRPKPIFRPRPC1NC2YAPPC2PC1DRW) [200] 

isolated from the spider crab, Hyas araneus, exhibits bactericidal antimicrobial activity not related to 

membrane disruption, with the proline-rich region (1–23) as the confirmed region responsible for the 

observed activity [201]. It has been further suggested that proline-rich antimicrobial peptides stereo 

specifically bind to intracellular targets such is the bacterial heat shock DnaK protein and this binding 

can be correlated with the observed antimicrobial activity [193,202]. Such observations were made for 

pyrrhocoricin, and the N-terminal half (Asp2-Pro10) were demonstrated to be responsible for the antimicrobial 

activity, while the C-terminal part aids internalization into bacterial or mammalian cells [193,195].  

This proline-rich antimicrobial peptide protects mice from bacterial infections and is nontoxic to the 

host. Further studies on artificial proline-rich peptides has verified that a number of proline sequences 

can travers bacterial membranes, e.g., poly-proline (P14) peptide [203] as well as a polyprolines family 

of peptides (VXLPPP)n (n = 1, 2, and 3; X correspond to histidine, arginine or lysine) [198]. Contrary 

to these findings there are also reports of proline-rich peptides and their ability to damage cell 

membranes, however these effects are highly concentration dependent [201,204,205]. 
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Despite the well-established knowledge about the DnaK being an intracellular target for proline-rich 

peptides, very few studies suggest other vital intracellular targets in Gram-negative bacteria (for a review 

see [186,187]). Regardless, in the past five years, researchers have conducted new experiments to 

introduce proline-rich peptides to the market as promising antibiotics. Analogues of the native peptides, 

novel structures and synergistic studies between peptides and classical antimicrobials have been 

conducted [196,199]. In the efforts to design novel pyrrhocoricin derivatives peptides, large libraries 

have been synthesized and tested. One of the candidate peptides from this study, onconin 

(VDKPPYLPRPRPPRRIYNR-NH2), shares 70% structural similarity with pyrrhocoricin. It exhibited 

low toxicity towards mammalian cells and could penetrate lipid membranes without disrupting  

them [206]. Similarly Fritsche et al. [207] demonstrated that the antibacterial effect exerted by novel 

onconin and apidaecin derivatives, were not a result of immunomodulatory properties but rather a direct 

antimicrobial effect. An observation which potentially simplifies the development of novel proline-rich 

antimicrobial peptides into new pharmacological molecules [207]. Consequently and most recently, 

Krizsan et al. [208] speculate that onconins and apidaecins act on other targets than the chaperone DnaK 

alone [208]. In summary, proline-rich peptides are characterized by good water solubility, high potency 

against bacteria killing and low cytotoxic effects at high concentrations, making them attractive lead 

candidates for development of novel antimicrobial therapeutic agents. 

8. Mechanism of Action of Antimicrobial Peptides 

In drug development, a good antimicrobial candidate should exhibit highly specific biological activity 

followed by good pharmacokinetic profile and low immunogenicity. In order for peptides to be 

considered as antimicrobial agents of therapeutic relevance, it is essential to dissect their biological 

activities, specifically their mode of action. This task is not easy as there are over 2000 natural peptides 

with broad spectrum antimicrobial activities have been isolated. Despite this fact, a surplus of scientific 

study groups have provided us with structure-activity relationship information that helps the overall 

understanding of how antimicrobial peptide combat infectious agents. In order to do so, researchers have 

developed various model membranes that antimicrobial peptides act on. These include, micelles, 

artificial liposomes with varying lipid compositions (POPE, POPC, POPG, cholesterol etc.) and natural 

E. coli polar lipid extracts [209–212]. 

8.1. Direct Killing 

It is generally assumed that cationic antimicrobial peptides interact with membranes where they 

disturb the amphipathic lipid bilayer, which further leads to disruption of vital bacterial physiological 

processes and ultimately bacterial death. Bacterial membranes possess large fraction of negatively 

charged lipids and maintain high electrical potential gradients (transmembrane potential), thus attracting 

positively charged compounds such as cationic antimicrobial peptides. A result of the electrostatic 

interaction of positively charged peptides on the negatively charged bacterial surfaces, is destabilization 

and release of native divalent cations from the membrane. This displacement leads to disruption of the 

outer membrane barrier in Gram-negative bacteria (Figure 7). 
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Figure 7. Direct killing mechanisms of antimicrobial peptides. The peptides are typically 

classified as membrane disrupting (A) or as molecules that act through more specific extra- 

or intracellular targets (B). 

In comparison to bacterial membranes, plant and animal cell membranes are enriched in cholesterol 

and lipids, have no net charge, and maintain weak transmembrane potential [213]. Studies that refer to 

the electrostatic interactions between the positively charged amino acids and the negatively charged 

phospholipid head groups in the membranes have shown that by increasing the buffer salt concentrations 

the peptide activity on the negatively charged membranes is diminished [214]. 

8.2. Membrane Interaction 

Antimicrobial peptides share common physiochemical features such as cationicity and amphipathicity 

that allows them to interact with membranes. When peptides come in a close proximity to a model 

membrane (bacterial or mammalian), the very first interaction is the binding. Information about  

the strength of this interaction helps in understanding the consecutive processes that eventually lead to 

cell death. 

Isothermal titration calorimetry is one of the techniques applied to extract information about the 

antimicrobial peptide binding affinity to model membranes. Andrushchenko et al. [212] investigated the 

thermodynamics of the interaction of tryptophan-rich antimicrobial peptides with large unilamellar 

vesicles (LUVs). They obtained binding isotherms that could characterize the strength of binding of the 

peptides to the model membranes. Specifically, all peptides demonstrated to selectively bind stronger to 

anionic (PE/PG) and E. coli membranes than to zwitterionic (POPC) membranes, due to strong 

electrostatic interactions. An increase in charge did not improve on binding and replacement of arginine 

with lysine residues did not change the binding to the anionic membranes but decreased the binding to 

the zwitterionic LUVs. Other substitutions like proline by alanine in one of the tryptophan-rich peptides 

allowed α-helix formation of the peptide that resulted in reduced binding selectivity. Furthermore, 
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tryptophan substitution with other aromatic residues significantly reduced the peptides’ ability to interact 

with both the anionic and the zwitterionic LUVs [212]. 

Fluorescence spectroscopy is another technique implemented for studies of peptide interaction with 

model membranes, which provides useful but limited information about the affinity of the peptide for 

lipid bilayers. It may also shed light on peptide aggregation, location in the membrane and the effects 

on membrane integrity. When using fluorescence spectroscopy on tryptophan-rich peptides, variations 

of blue shifts in tryptophan fluorescence is measured, correspond to binding to model membranes. Series 

of tryptophan-containing β-hairpin peptides have been assessed for their binding to PE/PG and 

PC/cholesterol-containing vesicles and their binding properties particularly to PE/PG correlates well 

with their antimicrobial activity [148]. Furthermore, peptides like VRW3 (Ac-C(VR)3
DPG(RV)3CW-NH2) 

peptide exhibited stronger binding to PE/PG compared to PC/cholesterol-containing vesicles, while in 

parallel demonstrating high antibacterial properties and low hemolytic activity [148]. 

Lipopolysaccharide (LPS) is the endotoxin found on the outer face of the outer membrane of Gram-

negative bacteria that helps cell wall stabilization and increases the overall negative charge on the 

bacterial surface. It is responsible for systemic inflammatory response in mammalians, sometimes 

leading to septic shock. As a result of simple charge distribution, many cationic antimicrobial peptides 

are found to exhibit high affinity to LPS. Peptide interaction with LPS is facilitated by displacement of 

Mg2+ which naturally stabilize and cross-bridge adjacent LPS molecules in the outer membrane [123,124]. 

This interaction further aids the peptides self-promoted uptake granting them access to the inner 

membrane where they can exert bacterial killing. A contradictory theory suggests that when 

antimicrobial peptides bind to LPS they tend to form aggregates that are unable to cross the outer 

membrane and therefore are incapable of killing bacteria [215]. Regardless, when LPS are released as 

endotoxins, the binding of many cationic antimicrobial peptides will have the potential of neutralizing 

the toxin, thus they hold promise as new leads for development of improved strategies for clinical 

treatment of sepsis [216]. 

8.3. Membrane Disruption by Antimicrobial Peptides 

Upon membrane binding, antimicrobial peptides contribute to possible alternations of the membrane 

structure such as thinning, pore formation, altered curvatures, etc. This results in overall membrane 

disruption by lowering the proton gradient (loss of membrane potential) that ultimately stops ATP 

production and cellular metabolism, leading to cell death [217–220]. As is the case with many other 

antimicrobial peptides, membrane permeabilization is a crucial step in the microbicidal activity observed 

for defensins [18]. The permeability effect has been demonstrated on both mammalian (cell line K562) 

and bacterial (E. coli ML-35) membranes [221,222]. In addition, experiments where defensins were 

exposed to artificial membranes has shown that channels were formed when negative potential had been 

applied on the opposite site to a defensin containing solvent [214]. A plethora of evidence supporting 

various proposed models of specific membrane disruption mechanism exist in the literature. The following 

section should give a brief overview of some of the acknowledged models. 

One of the first models for pore formation mechanism proposed for antimicrobial peptides is the 

barrel-stave model [223]. This model has been extensively studied and describes a scenario where after 

initial binding of the peptides to the membrane, they align perpendicularly to the membrane and 
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aggregate on the surface leading to formation of channels or pores (Figure 8). It has been demonstrated 

that antimicrobial peptides with defined secondary structures use this mechanism as their hydrophobic 

parts interact with the lipids of the membrane and the hydrophilic part line the lumen of the  

pore [105,224]. Alamethicin (Ac-Aib-Pro-Aib-Ala-Aib-Ala-Gln-Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-

Aib-Aib-Glu-Gln-Phl) [225] is an antimicrobial peptide that has been extensively studied for its ability 

to disrupt membranes using this model [226]. Recently, Bobone et al. demonstrated and proposed that 

trichogin GA IV (n-Oct-Aib-Gly-Leu-Aib-Gly-Gly-Leu-Aib-Gly-Ile-Lol) [227] and similarly short 

peptaibols make use of barrel-stave model to exert their membrane disruption abilities [217]. The  

two-state model is another perspective on how peptides interact with membranes [211]. Here, the first 

physical state of interaction is the peptide binding to the membranes (as explained in the earlier section) 

followed by multi-pore formation at a threshold concentration (or ratio) of peptide to lipid. Furthermore, 

it has been shown that the lipid composition of the cell membrane is the main determinant for the 

susceptibility of the cell to an antimicrobial peptide and not the peptides binding affinity [211]. The third 

interpretation of membrane disruption by antimicrobial peptides supports the toroidal pore model where 

the peptides cause the membrane to bend inwards so that the pores formed consist of peptides and 

hydrophilic lipid head groups (Figure 8) [228]. Disordered toroidal pore models have been observed by 

Sengupta et al. using molecular dynamics simulations for melittin and DPPC membranes where peptides 

were observed to locate near the pore center, while other molecules were positioned close to the pore 

edge (Figure 8) [229]. The forth model which involves more dynamic disruption of the membrane is the 

carpet model (Figure 8). Here the peptides bind parallel to the membrane and upon reaching a certain 

threshold concentration they break the membrane into micelles, resembling a detergent–like mechanism 

of membrane permeabilization [230,231]. Recently, this model has been proposed for an analogue of 

PMAP-23 peptide (cathelicidin; RIIDLLWRVRRPQKPKFVTVWV) on its action towards E. coli [210]. 

Killing of the bacteria had only taken place when a complete saturation of the membrane with PMAP-

23 molecules occurred, indicating compatible mechanism of membrane destabilization with the carpet 

model as it has been described using artificial membrane systems [210]. 

Five other models are suggested by different research groups and those include; interfacial  

activity [2,232], sinking raft [233], leaky slit [234], lipid clustering [235] and sand in a gearbox [236] 

models. Reflecting on these conflicting proposed models, one should keep in mind that the challenge to 

provide universally accepted knowledge regarding precise mechanism of action lies in the different 

techniques that are applied to this complexity. 

8.4. Other Mechanisms and Intracellular Antibacterial Targets 

Despite the ability to successfully lyse bacterial membranes, there are antimicrobial peptides that can 

effectively cross the membrane barrier without disrupting it and exhibit their antimicrobial modes of 

action through intracellular targeting. There is increasing evidence reported in the literature for such 

antimicrobial peptides and some are described in this section. Human neutrophil peptide 1 (HNP1) and 

human-β defensin 3 (HBD3) have been reported to bind lipid II, a bacterial cell wall precursor [104,237]. 

Human β-defensin 3 also affects the electron transport in S. aureus [238]. Many antimicrobial peptides 

have immunomodualtory functions. One example are the human neutrophil peptides 1-3 that when 

released by tissue of invading granulocytes, trigger secretion of tumor necrosis factor (TNF-α) and 
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interferon-gamma (IFN-γ) from macrophages. This enhances the clearance of bacteria as observed in a 

murine in vivo model [239]. Human β-defensin 3 also activates specialized antigen presenting cells 

(monocytes, dendritic cells) thus stimulating the adaptive immune system [240]. Buforin II, a 21-amino 

acid peptide (TRSSRAGLQFPVGRVHRLLRK) [241] with potent broad spectrum antimicrobial 

activity, is also able to traverse the cell membrane and inhibit cellular function by binding to DNA and 

RNA of the cells, resulting in rapid cell death [242]. Most recently, it has been documented that 

indolicidin binds double stranded DNA, thereby inhibiting DNA replication and transcription [39]. 

Another non-lytic antimicrobial peptides is the small proline-rich apidaecin peptide that kills bacteria by 

binding to a cytoplasmic target, most likely DnaK [243]. 

 

Figure 8. Proposed pathways for peptide interaction and disruption of lipid bilayers. The 

schematic overview illustrates some of the most well acknowledged pathways. After initial 

peptide lipid interaction (A) different models have been proposed, depending on e.g. peptide 

type and peptide-lipid ratios. (B) The barrel stave model, (C) the toroidal pore model, (D) 

disordered toroidal pores and (E) the carpet or detergent model. For other suggested models 

the reader are refereed to [2,232]. 

9. Mechanism of Bacterial Resistance towards Antimicrobial Peptides 

Antibiotic treatments to fight various infections have greatly contributed to increased human life 

expectancy throughout the years. However, only a year after the discovery and the commercial use of 

penicillin, resistant strains were already isolated due to high selection pressure and rapid resistance 

development. The same applies to other antibiotics to which many bacteria have developed resistance, 
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thus there are many infections today that lack treatment options. Antimicrobial peptides hold potential 

for being part of the novel anti-infective strategies. The majority of the peptides act on the microbial 

membrane and not on specific intracellular targets, with a mechanism less prone to development of 

resistance. However, to resist the action of antimicrobial peptides, bacteria have evolved various 

strategies. These include, proteolytic degradation, shielding bacterial cell surface, surface modification 

of membrane structure, active efflux and down-regulation of antimicrobial peptide expression [244]. 

Proteolytic degradation has been reported for LL-37 and β-defensin 2, by proteases from P. mirabilis 

[245] in addition to many proteases secreted by bacteria that cleave peptides after specific amino acid 

residues. In Gram-negative bacteria, specifically, many of the proteases that inactivate antimicrobial 

peptides are found at the outer membrane [246]. Extracellular structures such as capsule polysaccharides, 

fimbriae, exopolysaccharides and O-polysaccharide of LPS aid bacteria by binding antimicrobial 

peptides and thereby reducing the amount of peptide reaching the bacterial membrane [247–251]. 

Addition of positively charged groups or removal of phosphate group of lipid A, thereby neutralizing 

and decreasing the negative charge that attracts cationic antimicrobial peptides, respectively, has been 

reported as a strategy to resist the action of polymyxin B (Figure 6) [252,253]. Decreased overall 

negative charge has further been reported as a resistance mechanism for cationic peptides and related 

mimetics [254–257]. Gram-positive bacteria also resist the action of antimicrobial peptides also by 

enzymatic degradation by extracellular proteases [258] and cell wall and membrane modifications. The 

latter is prevalent by deacetylation of N-acetylglucosamine or O-acetylation of N-acetylmuramyl residues 

in the cell wall and alternation of charge by D-analynation of the lipoteichoic acids [259]. One example 

is D-alanylation of anionic lipoteichoic acids in group B Streptococcus via increasing the cell wall 

density and thereby reducing the penetration of cationic antimicrobial peptides [260]. Another way to 

resist antimicrobial peptide activity is to pump these antimicrobials out of the bacterial cytoplasm. 

Bacteria use import and export pumps for the movement of different molecules across their membrane. 

By using bacterial strains with deleted or inactive pumps, it has been demonstrated that these mutant 

strains are significantly more susceptibility of antimicrobial peptide killing [261,262]. In parallel to 

regulation of its own defense strategies, several bacteria also produce toxins that affect host recognition 

of bacteria. e.g., The exotoxins of Vibrio cholerae and enterotoxigenic E. coli have both been reported 

to be involved in down-regulation of antimicrobial peptides, i.e., LL-37 and hBD1, expression by host 

cells, although the precise mechanism behind this still is unknown [263]. In summary, bacteria as any 

living organisms, will always adjust to a selective pressure through various modes of resistance. The 

chemical evolution of antimicrobial peptides has proven to counteract some of the resistance 

mechanisms through various structural modifications and thus keeps antimicrobial peptides in the game 

as potential antimicrobial alternatives to the conventional antibiotics. 

10. Peptidomimetics for Antimicrobial Research 

In the continuous research for novel antimicrobial drugs, antimicrobial peptides serve as a 

pharmacophore for structural optimization. In order to retain the activity and selectivity of antimicrobial 

peptides, while improving bioavailability, metabolic stability and immunogenicity, researchers has 

challenged the peptide structures with various diverse modifications. Any compound that is able to 

imitate the structural properties and/or biological activities of a peptide is referred to as a peptidomimetic. 
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Modifications of peptide structures in antimicrobial research involve backbone and/or side chain 

modifications. Some examples include incorporation of unnatural amino acids (e.g., D-amino acids),  

β-peptides, peptoids (N-substituted glycines), hybrid peptide-peptidomimetic structures, lipidation etc. 

(Figure 9). This section highlights some of the most common peptidomimetic strategies in antimicrobial 

drug research and development. 

 

Figure 9. Current peptidomimetic structures with potent antimicrobial activity. The schematic 

illustrates the different backbone compositions of a variety of peptide and peptidomimetic 

structures that has been proven to possess antibacterial properties. 

10.1. Unnatural Amino Acid Sequences 

Some of the different strategies to modify and improve the antimicrobial properties of antimicrobial 

peptides include substitution of the natural L-amino acids with unnatural analogs. However, one should 

keep in mind that the unnatural amino acids are not always synthetic and thus several different types are 

found in nature. One example is the natural derivatives of L-proline that are found in leucinostatine,  

a peptide antibiotic produced by an endophytic fungus of European yew (Taxus baccata), which has 

demonstrated broad spectrum antimicrobial activities [264]. Structural modification of the side  

chains of arginine and lysine has also been investigated in a synthetic library of tritpticin 

(VRRFPWWWPFLRR)-derived peptides. By methylation of the side chain and also alternation of the 

length, it was demonstrated that the antimicrobial activity of the peptides could be slightly improved 

while the hemolytic activity was decreased when compared to the parent tritpticin peptide [265]. 
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Another very common modification strategy used to improve on traditional antimicrobial peptides 

has been to change from L- to D-amino acids. D-Amino acids are very rare in Nature and incorporation 

of the D-amino acids changes the side chain and the backbone properties of the peptide. In addition, 

retro-inverso peptides have also been introduced, representing a reversed peptide sequences from N- to 

C-terminus exchanging L-amino acids to D-amino acids [266]. One of the first examples of a 

peptidomimetic is the all-D-magainin peptide, however this peptide failed to show any significant 

improvement of the antimicrobial activity when compared to the all-L-enantiomer. However,  

all-D-magainin demonstrated high resistance to proteolysis and exhibited no hemolytic activity, two 

properties which are considered valuable for therapeutic applications [267]. 

10.2. Addition of Lipid Moieties 

Natural lipopeptides are well characterized in the literature as promising antimicrobial compounds, 

often produced by different bacterial strains to give an advantage over other closely related strains.  

This family of bacterial compounds generally includes cationic, cyclic compounds, such as polymyxins 

(B and E), daptomycin, lipopeptaibol and others (Figure 6) [268]. Consequently, addition of an aliphatic 

chain to the N-terminus of an active antimicrobial peptide can be a strategy to improve the peptides 

overall antimicrobial properties [269,270]. Cudic et al. have actively investigated novel lipopeptides by 

incorporating synthetic analogues to structures of known antimicrobials [145]. To exemplify, they 

recently designed a novel cyclic lipopeptides (cyclo-[D-Ala-(12-guanidino-dodecanoyl)Thr-D-Val-Val-

DaThr-D-Asn]) (Figure 6) derived from fusaricidin, which proved to inhibit both growth of S. aureus 

biofilms in vitro and proliferation of S. aureus in vivo [271]. By using combinations of hydrocarbon tails 

and other hydrophobic moieties in conjugation with polylysine and lysine analogues, Ahn et al. [272] 

have demonstrated successful design of very simple antimicrobial peptides, with no detectable hemolytic 

activity [272]. Though their precise mode of action still needs to be characterized, they present 

convincing data demonstrating that the peptides work through different mechanisms than the classical 

membrane targeting peptides like melittin [272]. 

10.3. β-Peptidomimetics 

The modification achieved in β-peptidomimetics involves a change in the backbone of the natural 

peptide structures without changing the side chain chemistry, i.e., addition of one, two or three carbons 

along the peptide chain (Figure 9). A small library of highly potent, short β-peptidomimetics has been 

synthesized by Hansen et al. [273]. The library was designed to mimic the minimal pharmacophores 

model for ultra-short peptides with activity against S. aureus. The β-peptidomimetics consisted of 

different lipophilic β2,2-amino acid coupled to a C-terminal amidated L-Arg residue. The most potent 

peptidomimetic from this library displayed MIC values of 2.7–7.2 µM against S. aureus, methicillin-

resistant S. aureus and S. epidermidis, as well as and E. coli, thus presenting one promising class of 

antimicrobial agents with improved enzymatic stability and a low cost production [273]. Another 

interesting novel class of active peptidomimetics has been introduced by Mosca et al. [274]. This class 

presents amphiphilic cationic β3R3-peptides. These peptides demonstrate high selectivity with low 

cytotoxicity profile and thus illustrate a class of antimicrobial candidates with high therapeutic index 

with potential for further development. 
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10.4. Peptoids 

Peptoids are oligomers of N-substituted glycines. They comprise a new class of unnatural compounds 

that mimic peptide structures by relocating the side chain from the α-carbon to the nitrogen (Figure 9). 

Structurally, the change in the amide bond corresponds to a loss of backbone chirality which can be 

compensated for by introducing chiral side chains that allow peptoids to fold into stable secondary 

structures [275–277]. Two of the most appreciated advantages with the backbone modification in 

peptoids are that side chains appended at the nitrogens render them less prone to enzymatic and proteolytic 

degradation and they are often more membrane permeable than peptides [278]. In this manner, Bang et al. 

used the peptoid conversion strategy of the novel tryptophan-rich model peptide to increase its protease 

stability while retaining its biological activity [279]. For more than 15 years, the research in peptoid 

synthesis and application increased dramatically due to their potential as compounds with broad 

antimicrobial activity profiles [280]. Their synthesis comprises a two steps process in which various side 

chains of commercial availability are incorporated and this versatility enables peptoids to hold status as 

promising structures for antimicrobial drug development. The careful work by the Barron group provides 

important information on several helical, cationic, facially amphipathic peptoid mimics of magainin-2 

amide. Certain analogues exhibited potent antimicrobial activities against both Gram-negative and 

Gram-positive bacteria with low toxicity against human red blood cells [281]. In addition, application 

of peptoids as effective antimicrobials against Mycobacterium tuberculosis and inhibitors of biofilm 

formation by P. aeruginosa has been reported [282,283]. High synergistic interactions between nine 

antimicrobial peptides and peptoids have been further demonstrated suggesting that these two classes of 

antimicrobials are functionally and mechanistically analogous [284]. Recently another study 

demonstrated synthesis of peptoids that mimic the structure of antimicrobial peptides while retaining 

good potency against broad spectrum bacterial and low toxicity against human cells [285]. Overall, the 

important and conserved properties of antimicrobial peptides are also seen in peptoids and as such 

provide adequate information for future design of potent antimicrobials. 

10.5. Cyclic Peptoids 

Another structural challenge that has been overcome by Kirshenbaum et al. is cyclization of peptoids 

via a head to tail macrocyclization reaction [286]. Soon after an efficient synthetic approach was 

established, a comparison of linear and cyclic peptoids (6-10 residues) with potent antimicrobial activity 

demonstrated that the cyclic counterparts exhibited higher antimicrobial activities with no significant 

lysis of human erythrocytes [287]. New studies have shown that cyclic peptoids can damage methicillin-

resistant S. aureus membranes trough pore formation mechanism with low MIC and low hemolytic 

activity [288]. Furthermore, these study challenge many researches in the peptoid field to embrace the 

cyclization awareness in developing peptoids as candidates for antimicrobial drugs. 

10.6. Hybrids 

Another attractive approach in peptidomimetics synthesis is merging structures of native peptides and 

their mimics which results in hybrid structures. For example, substituting arginine/leucine residues in 

apidaecin Ib with peptoid residues has shown to circumvent the resistance problem without any 
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significant cytotoxic effects, however this has led to reduced antimicrobial activity at specific positional 

substitutions due to the inability of the novel peptide-peptoid hybrid to translocate into bacterial  

cells [289]. Research on piscidin 1, a novel cytotoxic peptide with cationic α-helical structure, provided 

support of an increased antimicrobial activity and lower cytotoxicity in mammalian cells by substitution 

of Pro8 with lysine mimicking peptoid residues (Nlys). This modification provided structural flexibility 

of the novel compound that exhibited better membrane permeability in bacteria conferring better overall 

selectivity [290]. The study of antimicrobial profiles of peptoid hybrids draws on research conducted by 

Franzyk et al. which described the first generation of oligomers consisting of alternating repeats of  

α-amino acids and β-peptoid residues. Such structures showed stability toward proteolysis, and exhibited 

high antimicrobial and no hemolytic activities. Additionally, more in depth evaluation of the synthesized 

library of hybrids challenged the importance of the length, choice of cationic side chain, presence of 

chiral side chains as well as lipophilicity on both the antimicrobial and hemolytic activities observed by 

this library of compounds [291–294]. Hansen et al. demonstrated synthesis of 20 novel lysine-peptoid 

hybrids designed on the basis of an active parent structure [N-(1-naphahalenemethyl)glycyl] - [N-(4-

methylbenzyl)glycyl] - [N-(1-naphthalenemethyl)glycyl]-N-(butyl) -glycine amide 1, with antimicrobial 

properties against both Gram-negative and Gram-positive bacteria [295]. Recently, more profound 

information on HDM-4 peptidomimetic, composed of repeating units of lysine and NPhe (benzylamine), 

was demonstrated. This peptidomimetic exhibits low toxicity against mammalian cells and kills Gram-

negative bacteria by membrane disruption. DNA binding, induction of chemokine production in immune 

cells and inhibition of LPS induced pro-inflammatory response has also been reported for this 

peptidomimetic [296]. In parallel to these observations, similar behaviour for DNA binding of peptide-

peptoid hybrid has been established for lysine-peptoid hybrid, LP5. LP5 inhibited the growth of S. aureus 

in vitro by binding to DNA and inhibiting macromolecular synthesis. In addition it inhibited DNA gyrase 

and topoisomerase IV causing SOS response [297]. In summary, synthetic analogues and mimetics of 

antimicrobial peptides are being actively developed and studied to improve the antimicrobial and 

pharmacokinetic properties and lower the cost of production. 

10.7. AApeptides 

Another class of peptidomimetics with broad spectrum antimicrobial activity are AApeptides.  

This class of antimicrobials have been developed by Cai et al. [298] based on the chiral peptide nucleic 

acid backbone (Figure 9). Various structural modifications such as lipidation and cyclization have been 

illustrated for AApeptides and these new structures have been shown to be active against a range of 

community-acquired multidrug resistant pathogens [299–301]. 

11. Towards the Design of Novel Antimicrobial Peptides 

The main goal of all researchers in the field of antimicrobial peptides is to contribute to the 

antimicrobial peptide range with novel strategies for the development of pharmacologically relevant 

antimicrobial peptide structures. The design of de novo structures is not always evident and it demands 

extensive experimental work. To meet this challenge and aid the discovery of de novo peptides, various 

computer-based strategies have been employed. Most involve building quantitative structure-activity 

relationship parameters for computer aided design of antimicrobial peptides. The general idea is to 
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combine chemical sequence and structure of antimicrobial peptides, described with physiochemical 

parameters (descriptors) and correlate them with their respective biological activities using mathematical 

models [304,305]. One of the mathematical models used for prediction of novel polypeptide sequences 

with potentially improved biological activities is the Designer algorithm [306,307]. Using the Designer 

algorithm the most recent work of Ilic et al. reports on a series of peptide sequences with high 

antibacterial activity against Gram-negative bacteria (0.5–4 µM) and low hemolytic properties (HC50 > 

400 µM) [308]. Fjell et al. have also created a software system that could identify peptides with 

antibacterial activity with up to 94% accuracy [309,310]. As a new method that further improved the 

identification of novel antimicrobials, they describe the programming method of genetic algorithms, 

improving on the number of active peptides within a semi-random library [311]. In summary, this kind 

of models can be useful for prediction of antimicrobial peptides with potentially higher biological 

activities; however the challenge to develop a robust model still prevails. 

12. Concluding Remarks 

There is increased evidence of emergence of bacteria resistant to conventional antibiotics illustrating 

the importance of research on antimicrobial drug development. Antimicrobial peptides and their 

synthetic derivatives hold vast potential in the development of novel antimicrobial drugs due to their (1) 

high biological activities; (2) low cost of production when compared with that of proteins and antibodies; (3) 

ease of structural modifications and stability improvements; (4) promising pharmacokinetic profiles; (5) 

degradation that leads to amino acids which are less toxic for the organism resulting in low 

immunogenicity and (6) good organ penetration. 

The variety of structure-activity relationship studies for antimicrobial peptides demonstrate that  

the observed antibacterial activity is usually the outcome of multiple factors such as; secondary 

structures, amphipathicity, charge, length and hydrophobicity. The sequence composition together with 

the importance of specific residues and their contribution to the optimal therapeutic profiles of  

the peptides reveal important scaffolds for design of novel compounds to successfully combat and 

eliminate infectious diseases in the future. 
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