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HIGHLIGHTSHIGHLIGHTSHIGHLIGHTSHIGHLIGHTS    39 

Bacterial adhesion gene homologs were identified in A. sanguinicola (htpB, fbpA, lmb, and ilpA) and A. urinae 40 

(htpB, lap, lmb, fbp54, and ilpA) genomes. 41 

 42 

Capsular polysaccharide (CPS) gene homologs were identified in A. sanguinicola (15 genes) and A. urinae (11-43 

16 genes) strains, giving rise to one and five types of putative CPS loci, respectively. 44 

 45 

Marked differences were observed within A. urinae 1984-2004 and 2010-2015 strains in regards to genome 46 

sizes, core-genomes, proteome conservations, and phylogenetic analysis. 47 

  48 
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ABSTRACTABSTRACTABSTRACTABSTRACT     49 

Aerococcus sanguinicola and Aerococcus urinae are emerging pathogens in clinical settings mostly being 50 

causative agents of urinary tract infections (UTIs), urogenic sepsis and more seldomly complicated infective 51 

endocarditis (IE). Limited knowledge exists concerning the pathogenicity of these two species. Eight clinical 52 

A. sanguinicola (isolated from 2009-2015) and 40 clinical A. urinae (isolated from 1984-2015) strains from 53 

episodes of UTIs, bacteremia, and IE were whole-genome sequenced (WGS) to analyze genomic diversity and 54 

characterization of virulence genes involved in the bacterial pathogenicity.  55 

A. sanguinicola genome sizes were 2.06-2.12 Mb with a 47.4-47.6 % GC-contents, and 1,783-1,905 genes 56 

were predicted whereof 1,170 were core-genes. In case of A. urinae strains, the genome sizes were 1.93-57 

2.44 Mb with 41.6-42.6 % GC-contents, and 1,708-2,256 genes of which 907 were core-genes. 58 

Marked differences were observed within A. urinae strains with respect to the average genome sizes, 59 

number and sequence identity of core-genes, proteome conservations, phylogenetic analysis, and putative 60 

capsular polysaccharide (CPS) loci sequences. Strains of A. sanguinicola showed high degree of homology. 61 

Phylogenetic analyses showed the 40 A. urinae strains formed two clusters according to two time periods: 62 

1984-2004 strains and 2010-2015 strains. 63 

Genes that were homologs to virulence genes associated with bacterial adhesion and antiphagocytosis were 64 

identified by aligning A. sanguinicola and A. urinae pan- and core-genes against Virulence Factors of Bacterial 65 

Pathogens (VFDB). Bacterial adherence associated gene homologs were present in genomes of A. 66 

sanguinicola (htpB, fbpA, lmb, and ilpA) and A. urinae (htpB, lap, lmb, fbp54, and ilpA). Fifteen and 11-16 67 

CPS gene homologs were identified in genomes of A. sanguinicola and A. urinae strains, respectively. Analysis 68 

of these genes identified one type of putative CPS locus within all A. sanguinicola strains. In A. urinae 69 

genomes, five different CPS loci types were identified with variations in CPS locus sizes, genetic content, and 70 

structural organization. 71 

In conclusion, this is the first study dealing with WGS and comparative genomics of clinical A. sanguinicola 72 

and A. urinae strains from episodes of UTIs, bacteremia, and IE. Gene homologs associated with 73 

antiphagocytosis and bacterial adherence were identified and genetic variability was observed within A. 74 

urinae genomes. These findings contributes with important knowledge and basis for future molecular and 75 

experimental pathogenicity study of UTIs, bacteremia, and IE causing A. sanguinicola and A. urinae strains. 76 

 77 

KEYWORDSKEYWORDSKEYWORDSKEYWORDS    78 

Aerococcus sanguinicola; Aerococcus urinae; Infective endocarditis; Urinary tract infections; Capsular 79 

Polysaccharide; Bacterial adherence. 80 

81 
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1. 1. 1. 1. INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION 82 

The genus Aerococcus was first described in 1953 and consists nowadays of eight species of 83 

which Aerococcus viridans for a long time was the only species within the genus [1,2]. 84 

Aerococcus urinae was isolated in 1984 from a urine sample from a patient with verified urinary tract 85 

infection (UTI). This strain was characterized in 1989 as an Aerococcus-like organism and reclassified into its 86 

own species designation in 1992 [3,4]. Aerococcus sanguinicola was isolated in 1999 from an infective 87 

endocarditis (IE) suspected patient and in 2001 designated into its own species [5]. Both species are 88 

associated with UTIs worldwide, especially in elderly patients with predisposing conditions [6,7]. 89 

The prevalence of A. urinae in urine samples vary from 0.25 % to 4 % [7,8]. Both species were isolated from 90 

blood of patients suffering from urogenic sepsis, in few cases from patients with complicating IE and 91 

casuistically isolated from other foci [9].  Recognition of both species may be limited by their fastidious 92 

growth, often requiring supplementation with CO2 for optimal growth [6,10]. Aerococci share colony 93 

morphology with α-hemolytic streptococci and have a microscopic appearance similar to staphylococci, 94 

which adds to the risk of misinterpretation and misidentification [9]. At present, very limited knowledge 95 

exists regarding the bacterial pathogenicity and virulence mechanisms that lead to and maintain infections. 96 

In clinical microbiology laboratories, diagnosing A. urinae and A. sanguinicola infections have been 97 

challenging [9]. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF 98 

MS), however, identifies both species rapidly and accurately, allowing clinical laboratories to correctly 99 

identify strains with increasing frequency of detection [11,12]. The species identifications can also be 100 

achieved with analysis of the 16S rRNA gene sequence [13] or the 16S-23S rRNA Intergenic Spacer Region 101 

[14]. 102 

Bacterial adherence and invasion to host tissue and cells increases the bacterial pathogenicity in infectious 103 

diseases as UTI [15] and IE [16]. Several host cell surface molecules are involved in the adhesive process in 104 

other pathogenic species, including fibronectin-binding proteins of Streptococcus pyogenes (fbp54) [17] and 105 

Listeria monocytogenes (fbpA) [18], laminin-binding protein of Streptococcus agalactiae (lmb) [19], and the 106 

Listeria adhesion protein (lap) [20]. A study from Shannon et al. (2010) described for the first time biofilm 107 

formation and stimulated biofilm production of A. urinae during exposure to human plasma [21]. The same 108 

study showed activation and aggregation of human platelets by A. urinae. Similarly, Senneby et al. (2014) 109 

demonstrated biofilm production in A. sanguinicola strains [22]. 110 

 111 

Expression of capsular polysaccharide (CPS) facilitates bacterial protection against host immune phagocytosis 112 

[23]. Within genus Aerococcus, CPS expression were reported in a variant of A. viridans, A. viridans var. 113 

homari, which is a lobster pathogen causing gaffkemia [24]. The same study group showed upregulated 114 
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expression of molecular heat shock protein 60 (Hsp60) in virulent A. viridans strains compared to an 115 

avirulent strain [25]. 116 

A study from Christensen et al. showed genetic heterogeneity within a group of A. urinae strains. Fourteen 117 

Danish strains from 1984 to 1994 constituted a homogeneous group compared to seven heterogeneous 118 

non-Danish strains from 1985 to 1995 using DNA hybridization and phenotypic analysis [26]. 119 

Application of WGS has drastically expanded the understanding of the microbial world. The availability of 120 

bacterial genome data enables comprehensive bacterial comparisons and provides a better understanding of 121 

genome structures, evolutionary diversity, pathogenicity, and antimicrobial resistance [27]. In order to 122 

obtain further understanding of the genetic context of genes and to have a suitable high quality reference 123 

strain for the comparative genomics, complete and closed genomes of six Aerococcus type strains were 124 

recently achieved [28]. 125 

No whole-genome comparisons and genomic characterizations of A. urinae and A. sanguinicola have 126 

previously been performed. The aim of this study was to investigate the genomes of 40 A. urinae and eight A. 127 

sanguinicola strains in order to gain insight into their pan- and core-genome content and to identify putative 128 

virulence mechanisms that may be associated with human disease. Moreover, we compared WGS data and 129 

inferred phylogenetic relationships of the 40 clinical A. urinae strains from two different time periods of 130 

1984-2004 and 2010-2015, to analyze if the genomic diversity may be specific for the time period of strain 131 

isolations and type of infections. 132 

 133 

2. 2. 2. 2. MATERIALS AND METHODSMATERIALS AND METHODSMATERIALS AND METHODSMATERIALS AND METHODS    134 

2.12.12.12.1....    Bacterial sBacterial sBacterial sBacterial strain characteristicstrain characteristicstrain characteristicstrain characteristics, identifications, , identifications, , identifications, , identifications, DNA isolation, DNA isolation, DNA isolation, DNA isolation, genome sequencing,genome sequencing,genome sequencing,genome sequencing,    and and and and verification of verification of verification of verification of 135 

speciesspeciesspeciesspecies    identificationidentificationidentificationidentificationssss    136 

2.1.1. Bacterial strains and species level identifications.    137 

Eight clinical A. sanguinicola strains were collected between 2009 and 2015. Four isolates from two patients 138 

(one urine and one blood isolate for each patient), two isolates from two patients (one urine and one blood 139 

isolate), and two urine isolates from one patient (Supplementary material A). 140 

Forty clinical A. urinae strains were collected from 32 patients between 1984 and 2015, twenty of these 141 

strains from 1984-2004 and the remaining 20 strains from 2010-2015. Twenty-four strains were isolated 142 

from 24 individual patients: From urine samples of UTI verified patients (n = 9), from positive blood cultures 143 

of patients with bacteremia (n = 9) and with verified IE (n = 6). Fourteen strains were isolated from seven 144 

patients, both from urine (n = 7) and blood culture (n = 7) of each patient (paired strains). Two strains were 145 
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isolated as a pair from one patient, one blood isolate and one post mortem heart valve sample 146 

(Supplementary material A). 147 

All strains were received from departments of clinical microbiology in Denmark. Identification to the species 148 

level was accomplished using MALDI-TOF MS v4.0.0.1 (5627 reference entries) (Bruker Daltonics, Germany) 149 

with a score above 2.0 at the Department of Clinical Microbiology, Slagelse Hospital, Denmark. Clinical 150 

strains were stored at -80 °C in bovine broth with 10 % glycerol (SSI Diagnostica, Denmark) until use.  151 

Type strains of A. sanguinicola CCUG 43001
T
 and A. urinae CCUG 36881

T
 were obtained from the Culture 152 

Collection, University of Göteborg (www.ccug.se) and used as reference strains for the comparative genomic 153 

analyses. A. sanguinicola CCUG 43001
T
 (isolated in 2001) and A. urinae CCUG 36881

T
 (isolated in 1984, 154 

characterized in 1989, and reclassified in 1992) were isolated from a positive blood culture from a patient 155 

having bacteremia and from urine sample of a patient having UTIs, respectively [28]. 156 

The bacterial species identification and strain characteristics were denominated in a three-part identifier, 157 

such as “Au-01-U13”. The initial two letter refers to the species identification (As for A. sanguinicola and Au 158 

for A. urinae), followed by a strain specific number. The final three characters describe the source of 159 

isolation (blood (B), urine (U) or heart valve (H)), and the year of strain isolation. “Au-01-U13” is a strain of A. 160 

urinae from a positive urine sample which was isolated in 2013. 161 

Numbering of the paired A. sanguinicola strains, pair no. 1) As-24-U13 & As-25-U14, 2) As-41-B14 & As-46-162 

U14, and 3) As-55-B15 & As-56-U15. Numbering of the paired A. urinae strains, pair no. 1) Au-02-B96 & Au-163 

03-U96, 2) Au-44-B14 & Au-47-U14, 3) Au-49-B14 & Au-50-U14, 4) Au-51-B15 & Au-52-U15, 5) Au-53-B14 & 164 

Au-54-U14, 6) Au-57-B15 & Au-58-U15, 7) Au-59-B15 & Au-60-U15, and 8) Au-18-B93 & Au-19-H93.  165 

Genomes of A. urinae CCUG 36881
T 
(CP014161), A. urinae ACS-120-V-Col10a (CP002512), and A. urinae AU3 166 

(LUKP00000000.1) strains were obtained from NCBI GenBank for comparative analyses. A. urinae CCUG 167 

36881
T
 was isolated from a positive human urine of a UTI infected person in 1984. A. urinae ACS-120-V-168 

Col10a was isolated from a human vagina sample in Belgium in 2007. A. urinae AU3 was isolated from the 169 

human blood of a patient with bacteremia in Sweden in 2010. 170 

 171 

2.1.2. DNA isolation and extraction.    172 

Strains were maintained by no more than three-to-four serial overnight passages at 35-37 °C in ambient air 173 

with 5 % CO2 enrichment on 5 % blood agar plates (SSI Diagnostica, Denmark). Extraction of genomic DNA 174 

was carried out at Department of Microbiology and Infection Control, Statens Serum Institut, Denmark using 175 

the DNeasy Blood & Tissue kit, as described by the manufacturer (Qiagen, Denmark). Extraction of genomic 176 

DNA and WGS of A. sanguinicola CCUG 43001
T
 and A. urinae CCUG 36881

T
 were described in Carkaci et al. 177 

[28]. 178 
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 179 

2.1.3. Genome sequencing and pre-processing of sequence data. 180 

Fragment libraries were constructed using the Nextera XT DNA Sample Preparation Kit (Illumina, USA) 181 

followed by 251-bp or 150-bp paired-end sequencing on MiSeq or NextSeq sequencers (Illumina, USA), 182 

respectively, according to manufacturer’s instructions. The Illumina demultiplexing process removed adapter 183 

sequences. 184 

Quality of sequence reads were validated using FastQC v0.11.2 [29] and filtered using PRINSEQ v0.20.4 [30]. 185 

High-quality sequence reads were de novo assembled using SPAdes v3.6.0 [31] with default k-mer settings.  186 

Enabling of the “careful” option minimized errors during genome assembly followed by Quast v3.1 quality 187 

assessment of assemblies [32]. Sequence reads were preprocessed according to the following criteria; 1) 188 

minimum sequence quality Q20, 2) minimum read lengths of 35 bp, and 3) removal of low quality reads from 189 

the 5’-end (20 bp) and 3’-end (5 bp). Minimum scaffold length was set as 200 bp and scaffolds having mean 190 

assembly coverage lower than 5x were discarded. The sequence coverage was set to 50x. 191 

 192 

2.1.4. Verification of species identifications.    193 

The bacterial identities were post-sequencing verified using the 16S rRNA gene sequence. The 16S rRNA 194 

gene sequences of clinical strains were predicted using SpeciesFinder [33] and used for nucleotide BLAST 195 

[34] against NCBI GenBank. The identifications were evaluated using BLAST percent identities, differences 196 

between maximum score of best and second best taxon matches, and minimum E-values of 0.001.  197 

 198 

 199 

2.22.22.22.2....    PanPanPanPan----    and coreand coreand coreand core----genome characterizationsgenome characterizationsgenome characterizationsgenome characterizations 200 

2.2.1. Genome annotations and identification of pan- and core-genomes.    201 

Pan- and core-genomes were defined using PAN-genome analysis based on FUNctional PROfiles, PanFunPro 202 

[35]. Genes were predicted and translated into amino acid sequences using Prodigal v2.5 [36]. Each protein 203 

sequence was scanned against three protein databases with InterProScan [37] in the following order; PfamA 204 

[38], TIGRFAM [39], and SUPERFAMILY [40] to identify functional protein domains. Genes translated into 205 

protein sequences with identical functional protein domains were categorized as belonging to the same 206 

protein family. Proteins without identified functional domains were clustered using CD-hit [41] according to 207 

at least 60 % amino acid identities. For each genome, a collection of the annotated genes and the CD-hit 208 

clustered sequences constituted the genome profiles, and the complete collection of genome profiles from 209 

all strains represented the pan-genome. 210 
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The number of predicted genes for each strain was visualized in a genome plot along with the fraction of 211 

genes with protein domains of annotated function, protein domains with unknown function, and with no 212 

functional protein domains identified.  213 

Genes found to be present in all of the analyzed genomes were categorized as belonging to the core-214 

genome using PanFunPro2apply of PanFunPro [35] and visualized in a genome plot. Each collection of 215 

translated core-gene sequences were clustered using CD-hit [41] to ensure homology according to at least 216 

60 % amino acid identities and 60 % coverage. Core-genes passing the clustering criteria were globally 217 

aligned in MUSCLE v3.8.425 [42] and translated core-genes with less than 30 % conserved amino acid sites 218 

were not taken into considerations as core-genes.   219 

 220 

2.2.2. Pan-genomic proteome comparison. 221 

Genomic relationships of strains were analyzed using PanFunPro predicted pan-genes. These genes were 222 

used for construction of a presence-absence matrix of genes within all genomes using 223 

PanGenome2Abundance of PanFunPro [35]. Genomic clustering of strains were statistically analyzed using 224 

Pearson correlation of the matrix. The correlation was illustrated as a heatmap where the correlation 225 

coefficient was color assigned. 226 

 227 

2.2.3. Proteome conservations. 228 

The level of proteome conservations within each species were analyzed by pairwise all-against-all 229 

comparisons of protein domain annotations. For each comparison, the absolute number of shared protein 230 

families out of the total number of protein families were shown and converted into percentages. The 231 

genomic relatedness of two proteomes were demonstrated as a color assigned matrix plot, and the darker 232 

coloring, the higher percent identities and the higher degree of proteome conservations. 233 

 234 

 235 

2.3. Phylogenetic 2.3. Phylogenetic 2.3. Phylogenetic 2.3. Phylogenetic relationshipsrelationshipsrelationshipsrelationships    236 

2.3.1. Core-gene phylogeny. 237 

The phylogenetic relationships of the clinical A. urinae strains were analyzed using common core-genes 238 

within all 40 clinical A. urinae genomes. The PanFunPro predicted and subsequent homology verified protein 239 

sequences, encoded by the core-genes, were concatenated and multiple sequence aligned using MUSCLE 240 

v.3.8.425 [42]. jModelTest v2.1.10 [43] predicted the Le & Gascuel amino acid substitution model as the 241 

best-fit substitution model for the core-tree construction. PhyML v3.1 [44] generated the maximum 242 
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likelihood phylogenetic tree and the tree robustness was evaluated using 100 bootstrap replicates. The tree 243 

was visualized in CLC bio’s Genomics Workbench v9.0 (www.qiagenbioinformatics.com). 244 

 245 

2.3.2. SNPs phylogeny. 246 

The phylogenetic relationships of the 40 A. urinae strains were verified using single-nucleotide 247 

polymorphisms (SNPs). SNPs were determined using the CSI Phylogeny 248 

(www.cge.cbs.dtu.dk/services/CSIPhylogeny) [45] by mapping of raw sequence reads against a reference 249 

genome. Three phylogenetic trees were generated, either by using the A. urinae CCUG 36881
T
 type strain 250 

(complete genome), the clinical A. urinae ACS-120V-Col10a (complete genome), or the clinical A. urinae AU3 251 

(draft genome) as reference genomes. Calling of SNPs and validations were performed according to default 252 

settings of CSI Phylogeny. 253 

SNPs passing the quality thresholds were concatenated to SNP sequences. Phylogenetic trees were created 254 

using the jModelTest [43] which predicted generalized time reversible nucleotide substitution model, as the 255 

most suitable substitution model for the dataset. The maximum likelihood trees in was generated using 256 

PhyML v3.1 [44]. Robustness of tree topologies were evaluated using bootstrap replicates of 100 and 257 

visualized in CLC bio’s Genomics Workbench v9.0. 258 

 259 

 260 

2.42.42.42.4....    Comparison of panComparison of panComparison of panComparison of pan----    and coreand coreand coreand core----genesgenesgenesgenes    with Virulence Factorwith Virulence Factorwith Virulence Factorwith Virulence Factors of Bacterial Pathogenss of Bacterial Pathogenss of Bacterial Pathogenss of Bacterial Pathogens    261 

PanFunPro predicted pan- and core-genes were translated into protein sequence and aligned against the 262 

protein dataset of Virulence Factors of Bacterial Pathogens (VFDB) [46] using BLASTP v2.2.31 [34]. The 263 

protein dataset, only composed of experimentally verified virulence factors, was downloaded May 27
th

 2016. 264 

Translated pan- and core-genes with VFDB hit bitscore values higher than 90, E-values lower than 0.001 and 265 

BLASTP amino acid sequence identities higher than 30 % were included in the analysis. Pan-genes with 266 

multiple VFDB hits were manually curated using at least 30 % BLASTP amino acid identities between the 267 

query and subject sequence. The query sequences were the PfamA, TIGRFAM, and SUPERFAMILY annotated 268 

and CD-hit clustered translated genes. Subject sequences were VFDB virulence protein sequences. Only 269 

translated pan-gene homologs with the highest bitscore values against a translated VFDB virulence gene 270 

were taken into account. Core-genes with multiple VFDB hits were sorted using an in-house Perl script, in 271 

which only gene with the highest bitscore values were taken into account. 272 

Grouping of A. sanguinicola and A. urinae putative virulence gene homologs were accomplished according to 273 

VFDB assigned functional keywords for an overall genomic characterization of putative virulence genes. 274 

    275 
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    276 

2.5. 2.5. 2.5. 2.5. Bacterial CBacterial CBacterial CBacterial Capsular Polysaccharideapsular Polysaccharideapsular Polysaccharideapsular Polysaccharide    277 

2.5.1 Search for CPS gene homologs within genomes of A. urinae ACS-120-V-Col10a and A. urinae AU3.  278 

CPS associated gene homologs were searched within the public available A. urinae ACS-120-V-Col10a and A. 279 

urinae AU3 genomes. These genomes were subjected to BLASTX analysis against CPS associated genes of 280 

VFDB [46]. The BLASTX analysis was performed in CLC bio’s Genomics Workbench v9.0 using E-values of 281 

0.001, bitscore values higher than 90, and minimum amino acid sequence identities of 30 %. Genes with 282 

multiple VFDB CPS gene mappings were sorted by only taking the BLAST hit with the highest bitscore value. 283 

 284 

2.5.2. Mapping of CPS gene homologs within assembled genomes for prediction of putative CPS loci.  285 

All the identified CPS gene homologs were plotted against the assembled A. sanguinicola and A. urinae 286 

genomes according to gene positions. Genomic regions with high abundance of CPS associated gene 287 

homologs were extracted and identified as putative CPS loci. 288 

 289 

2.5.3. CPS structural organization analysis. 290 

Mapping of gene homologs to the same VFDB CPS gene homologs were color assigned with the same color 291 

and side-by-side visualized in Geneious v9.1.6 [47]. 292 

Protein sequences of the initial four A. urinae gene homologs of cps4A, cap8A, cap8B, and cap8C, which 293 

constituted the common CPS loci region were subjected to four global protein sequence alignments to 294 

determine sequence identities using the MUSCLE v.9.1.6 [42]. 295 

The common CPS regions were followed by regions of variable sizes and genetic contents, hence defined as 296 

the variable CPS region. Genes positioned within the variable CPS loci regions and without VFDB assigned 297 

CPS annotations were subjected to BLASTX analysis for functional characterizations against the non-298 

redundant protein sequence database of NCBI [34]. Only BLAST hits with E-values lower than 0.001 were 299 

taken into considerations.  300 

 301 

 302 

2.62.62.62.6....    Heat shock protein 60Heat shock protein 60Heat shock protein 60Heat shock protein 60    303 

The PanFunPro predicted A. sanguinicola and A. urinae Hsp60 homolog protein sequences (541-542 amino 304 

acids), encoded by the htpB gene, were compared against the Hsp60 protein sequence of the virulent A. 305 

viridans var. homari (184 amino acid partial sequence, AAM88526.1) to calculate sequence identities. The 306 

comparisons were made using the protein BLAST implementation in CLC bio’s Genomics Workbench v9.0. 307 

 308 
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 309 

2.72.72.72.7....    Adhesion associated gene homologs and cAdhesion associated gene homologs and cAdhesion associated gene homologs and cAdhesion associated gene homologs and cell ell ell ell walwalwalwalllll    signaling and anchoring signaling and anchoring signaling and anchoring signaling and anchoring     310 

The presence of signal peptides were predicted using SignalP v4.1 (www.cbs.dtu.dk/services/SignalP/) [48] 311 

and PSORTb v3 (www.psort.org/) [49]. The presence of cell wall anchoring protein domains were predicted 312 

using the TMHMM Server v2.0 (www.cbs.dtu.dk/services/TMHMM/) [50].  313 

 314 

This study was approved by the Danish Data Protection Agency (J.nr. 2012-41-0240). 315 

 316 

3. 3. 3. 3. RESULTSRESULTSRESULTSRESULTS 317 

3.13.13.13.1....    SSSSpecies verification by 1pecies verification by 1pecies verification by 1pecies verification by 16S rRNA gene sequence analysis 6S rRNA gene sequence analysis 6S rRNA gene sequence analysis 6S rRNA gene sequence analysis and features of and features of and features of and features of genomic genomic genomic genomic sequence datasequence datasequence datasequence data    318 

3.1.1. Confirmation of species identifications. 319 

Forty-eight Danish clinical strains of A. sanguinicola (n = 8) and A. urinae (n = 40) (Supplementary A)    were 320 

subjected to whole-genome analysis and genomic characterizations, including the corresponding type 321 

strains.     322 

Identification to the species level using MALDI-TOF MS (score above 2.0) were post-sequencing verified using 323 

BLASTN sequence analysis of the 16S rRNA gene sequence against NCBI GenBank. 324 

More than 99 % sequence identities were observed between the clinical A. sanguinicola 16S rRNA gene 325 

sequence and the public available type strain A. sanguinicola CCUG 43001
T
 (BLAST maximum alignment 326 

score 2,835-2,841), and between the clinical A. urinae strains and the public available type strain A. urinae 327 

CCUG 36881
T
 (BLAST maximum alignment score 2,804-2,837). BLAST maximum alignment score value 328 

differences between the best and second best taxon matches were 316-366. 329 

 330 

3.1.2. Features of genomic sequence data. 331 

The number of de novo assembled scaffolds ranged from 17-44 and 12-58 for the clinical A. sanguinicola and 332 

A. urinae strains, respectively (Table 1). Genome sizes of A. sanguinicola strains were between 2.06 Mb to 333 

2.12 Mb with GC-contents of 47.4-47.6 %. A. urinae genome sizes ranged from 1.93 Mb to 2.44 Mb with GC-334 

contents of 41.6-42.6 %. The 1984-2004 and 2010-2015 strains had average genome sizes of 1,947,525 bp 335 

(range 1.93-2.01 Mb) and 2,032,841 bp (1.93-2.44 Mb), respectively, which corresponded to an average 336 

increase of 86,000 bp genetic material in the 2010-2015 strains. 337 

The type strains of A. sanguinicola CCUG 43001
T
 and A. urinae CCUG 36881

T
 had genome sizes of 2.03 Mb 338 

(GC-content 47.6 %) and 1.97 Mb (GC-content 42.6 %), respectively (Table 1).  339 
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Genomes of all A. sanguinicola strains and the corresponding type strain consisted of 1,783-1,905 genes and 340 

1,708-2,256 genes were identified within the genomes of A. urinae. The genome annotations revealed a high 341 

proportion of genes which encoded proteins with known annotated functional protein domains (78-84 %), 342 

with protein domains of unknown function (7-8 %), and proteins without annotated protein domains (8-14 343 

%). 344 

        345 
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TableTableTableTable 1111. Clinical and genomic characteristics of all clinical and type strains belonging to the A. sanguinicola and A. 346 

urinae species. 347 

CharacteristicsCharacteristicsCharacteristicsCharacteristics    
A. sanguinicola A. sanguinicola A. sanguinicola A. sanguinicola 

CCUG 43001CCUG 43001CCUG 43001CCUG 43001
TTTT
    

A. sanguinicolaA. sanguinicolaA. sanguinicolaA. sanguinicola    

(all strains)    

A. urinaeA. urinaeA. urinaeA. urinae    

CCUG 36881CCUG 36881CCUG 36881CCUG 36881
TTTT
    

A. urinaeA. urinaeA. urinaeA. urinae    

(all strains) 

A. urinaeA. urinaeA. urinaeA. urinae    

1984198419841984----2004200420042004    

A. urinaeA. urinaeA. urinaeA. urinae    

2010201020102010----2015201520152015    

Clinical featureClinical featureClinical featureClinical feature    

Strain category Type strain Clinical strains Type strain Clinical strains Clinical strains 

Country of isolation Denmark Denmark Denmark Denmark Denmark 

Year of isolation 1999 
1
 2009 to 2015 1984 

2
 1984 to 2015 1984 to 2004 2010 to 2015 

Strains (patients) 1 8 (5) 1 40 (32) 20 (18) 20 (14) 

Patient mean age yrs. 

(range) 
- 75 (62-87) - 73 (10-94) 74.8 (56-85) 70.7 (10-94) 

Gender ratio 

Male:Female:Unknown 
- 2:3:0 - 18:8:6 8:4:6 10:4:0 

Source of isolation Blood Urine and blood Human urine 
Urine, blood and 

heart valve 

Urine, blood and 

heart valve 

Urine and 

blood 

Type of infection Sepsis UTI and bacteremia UTI 
UTI, bacteremia, 

and IE 

UTI, bacteremia, 

and IE 

UTI and 

bacteremia 

Genomic featureGenomic featureGenomic featureGenomic feature 

Genome size (Mb) 2.03 2.06-2.12 1.97 1.93-2.44 1.93-2.01 1.93-2.44 

Average genome size 

(bp) 
- - - - 1,947,525 2,032,841 

Scaffolds 1 17-44 1 12-58 26-40 12-58 

GC-content (%) 47.6 47.4-47.6 42.6 41.6-42.6 42.4-42.6 41.6-42.5 

Genes 1,783 
3
 / 1,838 

4
 1,783-1,905 

3
 1,739 

3
 / 1,801 

4
 1,708-2,256 

3
 1,725-1,800 

3
 1,708-2,256 

3
 

Core-genes (amino 

acid percent identity) 
- 1,170 - 907 

1,191 

(99.4-100 %) 

1,011 

(96.6-100 %) 

Unique intra-period 

core-genes 
- - - - 204 24 

Common core-genes 

(amino acid length) 
- - - - 987 (312,235 amino acids) 

UTI, Urinary tract infection. 348 

IE, Infective endocarditis. 349 

1
 Isolated in 1999 and characterized in 2001. 350 

2
 Isolated in 1984, characterized in 1989, and reclassified in 1992. 351 

3 
Number of genes according to genome annotation using the PanFunPro pipeline [35]. 352 

4
 Number of genes according to genome annotation using the NCBI Prokaryotic Genome Annotation Pipeline [51]. 353 

    354 

    355 

3.23.23.23.2....    PanPanPanPan----    and coreand coreand coreand core----genome genome genome genome characterizationscharacterizationscharacterizationscharacterizations, proteome conservations, and phylogeny, proteome conservations, and phylogeny, proteome conservations, and phylogeny, proteome conservations, and phylogeny 356 

3.2.1. Pan-genome analysis. 357 

The total number of genes for all strains of A. sanguinicola were 16,678 genes and for strains of A. urinae 358 

72,930 genes, including the type strains in both cases. The total number of genes for both species was 359 

89,608 genes, of which 2,360 unique pan-genes. These genes were used to analyze the genomic relatedness 360 

of all strains with a presence-absence analysis of the pan-genes across all strains (Figure 1). 361 
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Overall, high intra-species clustering was observed within both species and low clustering was observed 362 

between both species (correlation coefficient below 0.4). The intra-species clustering was highest within 363 

strains of A. sanguinicola (green, correlation coefficient 0.9-1) and within 1984-2004 isolated A. urinae 364 

strains (pink, correlation coefficient 0.9-1). The 2010-2015 isolated A. urinae strains (blue) showed internal 365 

heterogeneity (correlation coefficient 0.6-1). All the paired strains showed very high genomic clustering 366 

(correlation coefficient 0.9-1). 367 

 368 

 369 
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Figure Figure Figure Figure 1111.... Clustering of A. sanguinicola and A. urinae strains using Pearson correlation of the presence-absence 370 

matrix of the 2,360 unique pan-genes within both species. The highest correlation and genomic clustering was 371 

observed at correlation coefficient 1 (darkest coloring) and lowest at 0 (brightest coloring). Strains of A. 372 

sanguinicola showed high genomic clustering (green, correlation coefficient 0.9-1) and internal heterogeneity 373 

within A. urinae strains (blue and pink, correlation coefficient 0.6-1). The A. urinae 1984-2004 showed high 374 

genomic clustering (pink, correlation coefficient 0.9-1) and heterogeneity within the A. urinae 2010-2015 strains 375 

(blue, correlation coefficient 0.6-1). Low clustering was observed between the two species (correlation coefficient 376 

below 0.4). All the paired strains showed very high genomic clustering (correlation coefficient 0.9-1). 377 

 378 

3.2.2 Core-genome analysis. 379 

Highly conserved core-genomes were observed within both species as the number of core-genes decreased 380 

slightly as more genomes were added. The core-genomes reached a plateau stage through both species.  381 

The number of PanFunPro predicted core-genes for clinical and the type strain of A. sanguinicola started 382 

from 1,359 core-genes and dropped to 1,260 core-genes when genomes of all A. sanguinicola strains were 383 

included. Core-gene homology was further verified using 60 % protein sequence identity across 60 % 384 

sequence coverage and more than 30 % sequence identities, which reduced the core-gene number to 1,170 385 

genes for A. sanguinicola strains (Table 1). In case of the clinical and the A. urinae type strain, the number of 386 

core-genes started from 1,314 genes and dropped to 1,023 genes when genomes of all A. urinae strains 387 

were included. Using the same homology verification criteria as in case of A. sanguinicola core-genes, the 388 

number was reduced to 907 core-genes (Table 1). Without the A. urinae type strain, the remaining 40 clinical 389 

A. urinae strains shared 987 core-genes (312,235 amino acids with overall 95.7-100 % amino acid identities). 390 

In case of the 1984-2004 and 2010-2015 A. urinae strains, the number of core-genes were determined as 391 

1,191 core-genes (99.4-100 % amino acid identity) and 1,011 core-genes (96.6-100 % amino acid identity), 392 

respectively. A total number of 204 core-genes were unique for only the 1984-2004 strains and 24 core-393 

genes for the 2010-2015 strains. 394 

The number of common core-genes, which fulfilled the homology verification criteria using 60 % sequence 395 

identities, were 81 genes for all A. sanguinicola and A. urinae strains. 396 

 397 

3.2.3. A. urinae proteome conservations of 1984-2004 and 2010-2015 A. urinae strains. 398 

Between 1,725-1,800 and 1,708-2,256 genes were predicted within the 1984-2004 and the 2010-2015 399 

strains, respectively (Table 1). These genes were evaluated and classified into 1,208 and 1,347 protein 400 

families for both species, respectively. Intra-period comparison of protein families showed high degree of 401 

proteome conservations as 96.4 to 99.7 % protein families were shared within the 1984-2004 strains 402 

(Supplementary material B). Higher proteome variations were observed within the 2010-2015 strains as 403 
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74.3-99.8 % of the protein families were shared. Inter-period comparison of the 1984-2004 and 2010-2015 404 

strains showed 74.7-87.8 % identities of shared protein families. Each of the paired strains exhibited 99.2-405 

99.8 % identities.  406 

 407 

3.2.4. A. urinae phylogeny based on common core-genes and SNPs. 408 

The 987 common core-genes within all 40 clinical A. urinae strains were used to demonstrate the 409 

phylogenetic relatedness (Figure 2). These 987 core-genes corresponded to 312,234 amino acids and with 410 

95.7-100 % sequence identities. Strains were color assigned according to type of infection: UTIs (yellow), 411 

bacteremia (red), and IE (blue). For the 1984-2004 and 2010-2015 strains, these 987 core-genes showed 412 

99.4-100 % and 96.6-100 % amino acid sequence identities, respectively.  413 

The phylogenetic analysis showed no clustering related to the disease entity (UTIs, bacteremia, and IE). Two 414 

major clustering were observed, one consisting of the 1984-2004 strains and the second cluster consisted of 415 

the 2010-2015 strains, of which the main branch separating these two groups of strains was supported by 416 

bootstrap values of 100. Sub-clusterings were shown within the 2010-2015 cluster and also supported by 417 

bootstrap values of 100. Each of the eight paired A. urinae strains (marked with colored dots), from blood 418 

and urine samples from seven patients and from one blood and heart valve sample from one patient, 419 

clustered very close to each other and supported by bootstrap values of 100. 420 

Identical clustering patterns of the 1984-2004 and 2010-2015 A. urinae strains were observed when SNPs 421 

were used to generate the phylogenetic relationships, showing two major clusters (Supplementary material 422 

C, Figure A, B, and C). Each of the paired A. urinae isolates were likewise clustered very close to each other. 423 

When using the A. urinae CCUG 36881
T
 genome (isolated in 1984) as a reference genome for SNP callings, 424 

20,694 SNPs were predicted and this reference strain clustered within the 1984-2004 cluster with strains 425 

from the same time period of isolation (Supplementary materials C, Figure A). A. urinae ACS-120-V-Col10a 426 

(isolated in 2007) and A. urinae AU3 (isolated in 2010) showed 22,608 SNPs and 21,302 SNPs, respectively, 427 

and clustered within the 2010-2015 cluster (Supplementary materials C, Figure B and C). 428 

 429 
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    430 

FigureFigureFigureFigure 2222. Core-genome phylogeny of the 40 clinical A. urinae strains based on the 987 translated common core-431 

genes (corresponding to 312,235 amino acids). The tree showed two major clustering of strains, one with the 432 

1984-2004 strains and the other with strains from 2010-2015. Sub-clustering was observed within the 2010-2015 433 

cluster. Strains were color assigned according to type of infections of UTIs (yellow), bacteremia (red), and IE 434 

(blue). The last three characters of each strain identifier represented the source of strain isolation, blood (B), 435 

urine (U) or heart valve (H) followed by the year of strain isolations. Branching of the maximum likelihood tree 436 

was supported by bootstrap replicates of 100 and only bootstrap values higher than 90 were shown. Branch 437 

lengths were given as substitutions per site. Clustering of the eight paired strains (marked with colored dots and 438 

isolated from blood and urine samples of seven patients and blood and heart valve sample of one patient) were 439 

very close to each other and supported by bootstrap values of 100. 440 

 441 

 442 

3.33.33.33.3....    Comparison ofComparison ofComparison ofComparison of    panpanpanpan----    and coreand coreand coreand core----genes with Virulence Factorgenes with Virulence Factorgenes with Virulence Factorgenes with Virulence Factors of Bacterial Pathogenss of Bacterial Pathogenss of Bacterial Pathogenss of Bacterial Pathogens    443 

3.3.1. Virulence gene homologs from the pan- and core-genomes. 444 

The 16,678 pan-genes of A. sanguinicola and 72,930 pan-genes of A. urinae contained 12 and 20 VFDB 445 

homolog virulence genes, respectively. Thirty-four out of 1,170 A. sanguinicola core-genes were identified as 446 

VFDB homologs and similarly 24 genes out of 907 A. urinae core-genes. Only one common core-gene, which 447 
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encodes a HtpB protein (around 53-56 % protein sequence identities, Table 2), was predicted as a putative 448 

virulence gene of the 81 common core-genes of A. urinae and A. sanguinicola using at least 60 % protein 449 

sequence identities. 450 

VFDB assigned keywords for functional characterization were used for an overall distribution of A. 451 

sanguinicola and A. urinae specific pan- and core-genes (Supplementary material D). The highest number of 452 

genes within one category was observed for genes associated with antiphagocytosis (15 genes in A. 453 

sanguinicola and between 11-16 genes in A. urinae strains). This was followed by genes associated with 454 

adherence (four genes in A. sanguinicola and five genes in A. urinae) and endotoxins (six genes in A. 455 

sanguinicola and five genes in A. urinae). Genes were also associated with intracellular growth/survival 456 

(three genes in A. sanguinicola and two genes in A. urinae) and stress proteins (four genes in A. sanguinicola 457 

and three genes in A. urinae). According to VFDB keywords, only strains of A. sanguinicola encoded gene 458 

homologs associated with biofilm formation (one gene) and beta-hemolysin/cytolysin (three genes). The 459 

miscellaneous group included genes related to iron and magnesium uptake/acquisition, surface protein 460 

anchoring, secretion system, regulation, and genes with uncharacterized function according to VFDB 461 

keyword designations (10 genes in A. sanguinicola and eight genes in A. urinae). 462 

Antiphagocytosis, adherence, and biofilm formation associated proteins are known important virulence 463 

factors during bacterial infections. Translated pan- and core-gene homologs associated with these three 464 

virulence properties were selected for further characterizations. Each VFDB homolog pan- and core-gene is 465 

represented with protein sequence identities against the respective VFDB hit along with VFDB annotations 466 

and keyword designations (Table 2). 467 

 468 
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Table 2Table 2Table 2Table 2. A. sanguinicola and A. urinae virulence gene homologs of pan- and core-genes (protein level), involved in 469 

antiphagocytosis, adherence, and biofilm formation. 470 

Reference strainReference strainReference strainReference strain VFDB annotationVFDB annotationVFDB annotationVFDB annotation 
VFDB VFDB VFDB VFDB 

genegenegenegene 

A. sanguinicolaA. sanguinicolaA. sanguinicolaA. sanguinicola    
1
    A. urinaA. urinaA. urinaA. urinae e e e 

2
    

Sequence identity in % (n) Sequence identity in % (n) 

VFDB category: AntiphagocytosisVFDB category: AntiphagocytosisVFDB category: AntiphagocytosisVFDB category: Antiphagocytosis 

S. aureus ssp. 

aureus MW2 

CPS protein Cap8A cap8A 34.3 (9) 30.4-32.0 (41) 

CPS protein Cap8B cap8B 36.0-36.2 (9) 37.9-39.2 (41) 

CPS protein Cap8C  cap8C - 43.6-45.6 (41) 
3a

 

CPS protein Cap8D  cap8D 48.0-48.3 (9) 46.9-47.4 (24) & 63.7 (3)
 4a

 

CPS protein Cap8F cap8F 54.7 (9) 53.7-53.9 (22) 

CPS protein Cap8G  cap8G 50.8 (9) 50.8-51.9 (22) 

CPS protein Cap8N  cap8N 38.4 (9) 38.9-40.7 (27) 

S. pneumoniae 

TIGR4 

CPS protein Cps4A cps4A - 35.3-36.1 (40) & 33.3-42.9 (1)
 4b

 

CPS protein Cps4E cps4E 60.4 (9) 57.8-59.4 (23) & 57.3 (4)
 3b

 

CPS protein Cps4F  cps4F 33.9-34.2 (9) 33.2-33.4 (22) 

CPS protein Cps4H cps4H - 30.6-31.4 (5) 

CPS protein Cps4I cps4I - 63.0 (2) 

CPS protein Cps4J  cps4J 70.6-70.9 (9) 70.6 (21) & 74.4 (1)
 4c

 

E. faecalis V583 

Undecaprenyl diphosphate synthase  cpsA 49.8 (9) 51.4 (41) 

Phosphatidate cytidylyltransferase cpsB 41.7 (9) 42.2-42.9 (41) 

UDP-galactopyranose mutase cpsI - 60.5 (14) 

S. agalactiae 

2603V/R 

Glycosyl transferase CpsE cpsE - 33.9 (12) & 58.5-71.4 (2)
 4d

 

Glycosyl transferase CpsJ cpsJ 34.9-35.3 (9) - 

CPS protein CpsL cpsL - 32.7 (14) 

Glycosyl transferase CpsO cpsO 45.7 (9) - 

N-acetyl neuramic acid synthetase NeuB neuB - 39.8-40.4 (41) 

S. pyogenes M1 
UDP-glucose 6-dehydrogenase HasB hasB - 52.3 (24) 

UDP-glucose pyrophosphorylase HasC hasC 66.2-66.6 (9) 50.7-51.9 (41) 

C. jejuni ssp. jejuni 

NCTC 11168 
UDP-glucose 6-dehydrogenase KfiD kfiD 49.6-49.8 (9) - 

VFDB category: AdherenceVFDB category: AdherenceVFDB category: AdherenceVFDB category: Adherence 

L. pneumophila 

ssp. pneumophila 

str. Philadelphia 1 

Hsp60, 60K heat shock protein HtpB htpB 56.1-56.3 (9) 53.6-54.0 (41) 

L. monocytogenes 

EGD-e 

Fibronectin-binding protein FbpA fbpA 41.5-41.8 (9) - 

Listeria adhesion protein LAP  lap - 54.4-54.7 (41) 

S. agalactiae 

2603V/R 
Laminin-binding surface protein Lmb lmb 32.4 (9) 56.2-56.9 (41) 

S. pyogenes M1 Fibronectin-binding protein Fbp54 fbp54 - 42.2-43.1 (41) 

V. vulnificus YJ016 Immunogenic lipoprotein A IlpA ilpA 38.0 (9) 38.1-39.2 (41) 

VFDB category: Biofilm formationVFDB category: Biofilm formationVFDB category: Biofilm formationVFDB category: Biofilm formation 

E. faecalis V583 Sugar-binding transcriptional regulator bopD 31.8-32.2(9) - 

CPS, Capsular polysaccharide. 471 

1
 A. sanguinicola strains: Eight clinical and one type strain. 472 

2
 A. urinae strains: Forty clinical and one type strain. 473 

3a/b
 Gene homologs of a) cap8C (Au-18-B93 and Au-19-H93) and b) cps4E (Au-02-B96, Au-03-U96, Au-12-B98, and 474 

Au-15-B94) were predicted as shorter genes compared to the remaining cap8C and cps4E homolog genes of A. 475 

urinae strains, respectively. 476 
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4a/b/c/d
 Gene homologs of a) cap8D (Au-06-U13, Au-49-B14, and Au-50-U14), b) cps4A (Au-06-U13), c) cps4J (Au-477 

45-U14), and d) cpsE (Au-43-B13 and Au-10-B10) were predicted as two partial and shorter genes instead of one 478 

full length gene compared to the remaining A. urinae genes of the particular gene homolog.  479 

 480 

3.3.2. Bacterial capsular polysaccharide gene homologs involved in evasion of immune phagocytosis. 481 

The CPS gene homologs as identified in A. sanguinicola and A. urinae strains were described in six bacterial 482 

species; Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, S. agalactiae, S. pyogenes, 483 

and Campylobacter jejuni (Table 2). A. sanguinicola strains consisted of 15 CPS gene homologs and between 484 

11-16 CPS gene homologs were identified in A. urinae strains. The public available A. urinae ACS-120-V-485 

Col10a and A. urinae AU3 consisted of 13 and 16 CPS gene homologs, respectively. The majority of the CPS 486 

gene homologs were described in S. aureus ssp. aureus MW2 (cap8 genes) and S. pneumoniae TIGR4 (cps4 487 

genes). The highest percent identity was observed for the S. pneumoniae TIGR4 cps4J gene homolog with 488 

70.6-70.9 % for A. sanguinicola and 70.6-74.4 % for A. urinae strains. 489 

Mapping of CPS gene homologs within the assembled genomes demonstrated regions with high abundance 490 

of CPS gene homologs in all the strains, whereof identified as putative CPS loci (Figure 3). These genes were 491 

positioned in the same orientation of translation and ordered behind each other with short distances to 492 

neighboring genes. Four CPS gene homologs of A. sanguinicola strains (cpsA, cpsB, hasC, and kfiD) and four 493 

of A. urinae strains (cpsA, cpsB, neuB, and hasC) were located outside of the putatively predicted CPS loci 494 

regions and presumable not involving in CPS. 495 

 496 

The CPS loci sizes were estimated between 12,800 to 19,500 bp, from positioning of CPS gene homologs 497 

until flanking by non-CPS associated genes. The number of genes within the CPS loci varied from 13 to 19 498 

genes, of which 7-12 genes were identified as CPS gene homologs. The genetic CPS loci arrangements 499 

showed one type of CPS loci for A. sanguinicola and five different types for A. urinae strains, the latter 500 

allocated into two major and three minor groups (Figure 3). Major group I was composed of all A. urinae 501 

strains from 1984-2004 and the A. urinae CCUG 36881
T
 and major group II of 14 of the 20 strains from 2010-502 

2015. The three minor groups were composed of one 2014 isolate (minor group I), two 2014 isolates (minor 503 

group II), and one 2013 and two 2014 isolates (minor group III). The A. urinae ACS-120-V-Col10a constituted 504 

a different CPS locus type and due to contig truncation the CPS locus of A. urinae AU3 was only partially 505 

identified. 506 

Analysis of the CPS loci throughout all A. sanguinicola strains showed the initial two CPS gene homologs, 507 

cap8A (100 % protein sequence identity) and cap8B (99.9-100 %) to hold annotation of transcriptionally 508 

regulatory function. The remaining CPS gene homologs within the putative CPS loci showed higher than 97.9 509 

% protein sequence identities within all A. sanguinicola strains. In case of A. urinae strains, the initial four CPS 510 
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gene homolog were identified as transcriptionally regulator proteins in all strains and identified as the 511 

common CPS region, cps4A (88.8-100 % protein sequence identity), cap8A (92.9-100 %), cap8B (94.9-100 %), 512 

and cap8C (86.3-100 %). Higher protein identities were observed when the four common region CPS gene 513 

were compared within strains of major group I and within major group II (Table 3). 514 

 515 

TableTableTableTable 3. Sequence identities of the four translated CPS gene homologs constituting the common CPS region of all 516 

A. urinae strains.  517 

CPS lociCPS lociCPS lociCPS loci    
CPS loci common regionCPS loci common regionCPS loci common regionCPS loci common region    

cps4A cap8A cap8B cap8C 

All All All All A. urinaeA. urinaeA. urinaeA. urinae    strains strains strains strains     88.8-100 % 92.9-100 % 94.9-100 % 86.3-100% 

Major group I Major group I Major group I Major group I ----    A. urinae strains from 1984-2004 (n = 20) 99.7-100 % 100 % 99.1-100 % 100 % 

Major group II Major group II Major group II Major group II ----    A. urinae strains from 2010-2015 (n = 14) 100 % 100 % 99.6-100 % 99.6-100 % 

 518 

The common CPS loci region of A. urinae strains were followed by a variable region with variations in size, 519 

number of genes and genetic arrangements. This region was consisting of CPS gene homologs and genes not 520 

matching any of the CPS genes of the VFDB database. The latter genes were classified into three categories 521 

by evaluation of the genome annotations and further characterizations using BLASTX against the NCBI 522 

protein database. The three categories were consisting of I) CPS associated glycosyl transferases and 523 

hypothetical glycosyl transferases; II) cell surface polysaccharide biosynthesis and CPS synthesis related 524 

proteins; and III) hypothetical proteins and proteins with unknown function. The cell surface polysaccharide 525 

biosynthesis and CPS synthesis related proteins were among others epimerases and dehydrogenases. 526 

Similarly, the A. sanguinicola CPS loci gene homologs were annotated as cell surface polysaccharide 527 

biosynthesis and CPS synthesis related proteins, glycosyl transferases, epimerases, and dehydrogenases. 528 

The hasB gene homolog (UDP-glucose dehydrogenase) was positioned as the terminal CPS locus gene for all 529 

1984-2004 strains (major group I), three 2014 strains (minor group I-II), the A. urinae CCUG 36881
T
, and the 530 

A. urinae ACS-120-V-Col10a strains. Search for the hasB gene homolog within genomes of major group II and 531 

minor group III strains showed no hasB gene homologs. A hasB gene homolog was also identified in the A. 532 

urinae AU3 genome, although not positioned within the same CPS locus encoding contig. 533 

 534 
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Figure 3.Figure 3.Figure 3.Figure 3. Genomic organization of CPS loci of clinical and type strains of A. sanguinicola and A. urinae, including 536 

the public available A. urinae CCUG 36881
T
, A. urinae ACS-120-V-Col10a, and A. urinae AU3 strains. All A. 537 

sanguinicola strains were constituted of the same genomic organization of the putative predicted CPS loci. The 40 538 

A. urinae strains and A. urinae CCUG 36881
T
 constituted five different CPS loci, grouped into two major and three 539 

minor groups. * The Au-06-U13 cps4A gene homolog was predicted as two partial and shorter genes compared to 540 

the remaining cps4A gene homolog. ** The Au-10-B10 and Au-43-B13 cpsE gene homologs were predicted as two 541 

partial and shorter genes compared to the remaining cpsE gene homologs.  542 

 543 

3.3.3. Bacterial gene homologs involved in adhesion to host cells and biofilm formation. 544 

Six gene homologs related to bacterial adherence were identified in A. sanguinicola and A. urinae genomes 545 

(Table 2). Among these, four gene homologs were present in A. sanguinicola genomes and encoded the 546 

immunogenic lipoprotein A (IlpA), laminin-binding surface protein (Lmb), fibronectin-binding protein (FbpA), 547 

and the 60K heat shock protein (HtpB). The A. urinae strains were containing five gene homologs which 548 

encoded the fibronectin-binding protein (Fbp54), Listeria adhesion protein (LAP), and IlpA, Lmb, and HtpB as 549 

with A. sanguinicola strains. VFDB categorized htpB of Legionella pneumophila as a bacterial adhesion 550 

protein. 551 

A signal peptide was only identified in IlpA and Lmb proteins of A. sanguinicola and A. urinae strains, and no 552 

LPXTG motif containing anchoring domains were predicted in any of the identified adhesion protein 553 

homologs. 554 

Comparison of Hsp60 from the virulent A. viridans var. homari strain and the HtpB protein of A. sanguinicola 555 

and A. urinae strains showed between 79.4-82.0 % protein sequence identities. 556 

According to VFDB, only A. sanguinicola strains contained a biofilm-associated transcriptional regulator bopD 557 

gene homolog.  558 

        559 
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4. 4. 4. 4. DISCUSSIONDISCUSSIONDISCUSSIONDISCUSSION    560 

In the present study, WGS of eight A. sanguinicola and 40 A. urinae strains were analyzed to characterize 561 

these genomes and to identify the potential virulence genes that cause bacterial pathogenicity.    562 

 563 

4.1. Genomic analysis. 564 

The varying number of pan- and core-genes are highly affected by the number of strains included, the 565 

degree of bacterial heterogeneity and the predefined cut-off thresholds for defining core-genes [52] as also 566 

illustrated for the strains from the two Aerococcus species examined in this study. The genetic pool of genes 567 

were lower for A. sanguinicola strains (16,678 genes) than for the A. urinae strains (72,930 genes), whereas 568 

the number of core-genes were higher for the A. sanguinicola strains (1,170 core-genes) than for strains of 569 

A. urinae strains (907 core-genes). All A. sanguinicola strains showed very close relationships taken into 570 

account of only being represented by one type strain and eight clinical strains from five patients. Marked 571 

differences were observed within all A. urinae strains, with respect to the average genome sizes, genomic 572 

clustering, number and sequence identity of core-genes, proteome conservations, phylogenetic analysis, and 573 

CPS loci sequences. The 20 A. urinae 1984-2004 strains, from 18 patients, were highly homogeneous 574 

compared to the 20 A. urinae 2010-2015 strains from 14 patients.  575 

Evolution of bacteria is highly affected through genetic alternations during evolutionary processes which 576 

shapes the bacterial genomes. Homologous recombination, lateral gene transfer, as well as indel and SNP 577 

mutations are genetic events responsible for genomic diversity and shaping of bacterial populations [53,54].  578 

These events can give rise to selective advantages in a bacterial species such as increased bacterial 579 

pathogenicity and adaptation for a host environment under selection pressure. In our study, analysis of 580 

unique core-genes and the subsequent core-genome phylogeny showed high genomic conservations within 581 

the 1984-2004 A. urinae strains compared to 2010-2015 strains with internal diversity. These findings were 582 

interesting in the way that these strains were belonging to the same bacterial species and only being 583 

separated by a period of six years in the strain collections. In A. urinae, a selective pressure, that might have 584 

taken place after 2004, could potentially explain the presence of multiple sub-clusters within the short-time 585 

span isolated 2010-2015 strains (5 years) compared to the 1984-2004 strains (20 years). Both the host-586 

pathogen interaction, selective pressure through the use of antibiotics, and competition between microbial 587 

pathogens are factors that adds to the selectivity of beneficial genetic variations within a population [55]. 588 

Acquisition of genetic material could support an average gain of 86,000 bp in genomes of the 2010-2015 589 

strains compared to the 1984-2004 strains, potentially increasing the genetic and proteomic variation as 590 

shown in the study. 591 

In comparison, high level of recombination and positive selection was observed within streptococcal core-592 

genomes. Low degree of recombination was observed in S. agalactiae core-genomes compared to S. 593 
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pyogenes with high degree of core-genome recombination [56]. In S. aureus, low level of recombination was 594 

observed in the core-genomes even though being a highly pathogenic species [57]. Variations within the 595 

genomes could be dispersed across the entire genome or concentrated within specific core-genes with a 596 

selective advantages. In case of S. aureus genomes, recombination was often taking part in genes related to 597 

bacterial pathogenicity [57]. This kind of findings could suggest a bacterial fitness for survival and host 598 

adaptation, as suggested for Clostridium perfringens strains in an evolutionary lineage study [58]. 599 

Another aspect was if the genetic variability only were seen in Danish A. urinae isolates (local environmental 600 

pressure) of which we performed the SNPs based phylogenetic analysis. These showed the two foreign A. 601 

urinae isolates, one from Belgium in 2007 and one from Sweden in 2010, clustering with the Danish 2010-602 

2015 isolated A. urinae strains. These findings may suggest that the genetic changes observed, within the 603 

recently isolated Danish A. urinae genomes, might be a result of a general evolutionary event. Similarly, a 604 

study from de Been et al. showed phylogenetic clustering of modern Enterococcus faecium with modern 605 

clinical isolates, by analyzing adaptive recombination events in terms of SNPs within core-genomes [59]. 606 

Marvig et al. demonstrated within-host bacterial adaptation to changing host environments and 607 

accumulation of SNPs in favor for bacterial survival and fitness of Pseudomonas aeruginosa in patients with 608 

cystic fibrosis [60]. In the latter study, SNPs were localized within the regulatory part of the bacterial 609 

genomes and in pathoadaptive genes among others CPS genes, demonstrating how positive selection for 610 

mutations might have aimed in bacterial adaptation to its host [60]. 611 

A large number of UTI causing bacteria is often associated with urosepsis, in which the pathogenic strains 612 

gets access into the bloodstream. A mortality rate of 33 % was observed in hospitalized patients with cases 613 

of uncomplicated UTIs causing pathogenic Escherichia coli, leading to bacteremia [61]. The transition of a 614 

superficial site of infection to a deep site of infection is important in regards to which bacterial virulence 615 

mechanisms the UTI pathogens are taking advantages of. McNally et al. analyzed the genomic diversity of 616 

blood and urine isolates of E. coli from five patients with urosepsis, like we did in the current study with the 617 

eight paired A. urinae isolates. In four of the paired set of E. coli strains, the urine and blood isolates had the 618 

same sequence type, no variations were observed between each set of isolates, and only a minimal set of 619 

virulence genes were needed to establish bacteremia [62]. In the fifth E. coli urosepsis patient, two different 620 

E. coli sequence types were identified in the same urine sample and a third serotype was causing 621 

bacteremia. Based on results from McNally et al., we were not expecting to observe genomic differences 622 

within each set of the paired A. urinae strains and results from the current study showed highly similar set of 623 

A. urinae isolates. This indicates that superficial site of infection causing A. urinae isolates (from urine) were 624 

the same isolate causing a deep site of infection within the bloodstream.  625 

  626 
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4.2. VFDB predicted putative virulence genes. 627 

The current study attempted to characterize the clinical strains for the presence of virulence associated 628 

genes by comparison against a database collection of virulence factors, VFDB [46]. In this way, we only 629 

expected to identify already known virulence genes and factors as the VFDB database was consisting of. Until 630 

now, no UTI or IE associated virulence genes were characterized within genomes of A. sanguinicola and A. 631 

urinae strains.  632 

 633 

4.2.1. Bacterial capsular polysaccharide genes. 634 

Within genus Aerococcus expression of CPS has only been described in A. viridans var. homari, the causative 635 

agent of the lobster disease gaffkemia. The study were studying the relationship between bacterial virulence 636 

and CPS thickness in a virulent and avirulent A. viridans var. homari strain [24]. In our study, the majority of 637 

A. sanguinicola and A. urinae CPS gene homologs were described in genomes of S. aureus ssp. aureus MW2 638 

(cap8 genes) and S. pneumoniae TIGR4 (cps4 genes), which are two well-known CPS expressing bacterial 639 

species [63–65]. 640 

Skov Sørensen et al. investigated expression of CPS of S. pneumoniae and mitis group streptococci [66]. 641 

Previously, it was assumed that CPS expression does not take place in commensal organisms as mitis group 642 

streptococci. Surprisingly, in a high number of the commensal mitis group streptococci, both the presence of 643 

CPS loci and subsequent CPS expression were observed [66]. Based on these results and identification of 644 

VFDB gene homologs associated with CPS, we were analyzing how these genes were dispersed within each 645 

of the A. urinae and A. sanguinicola genomes. Very surprisingly, we were identifying putative CPS loci in all 646 

the WGS genomes with high certainties of being a real CPS loci due to a number of findings. First, all A. 647 

sanguinicola and A. urinae CPS loci were divided into a highly common (regulatory part) and variable region 648 

(CPS biosynthesis) [67,68], as seen with CPS loci of S. agalactiae [69] and S. pneumoniae strains [66]. In S. 649 

agalactiae strains, the regulatory function of the common region was, among others, demonstrated with a 650 

functional knock-out mutation analysis in which the common region regulated CPS expression and its fine-651 

tuning [70].  652 

Secondly, CPS gene homologs of the variable region of A. sanguinicola and A. urinae CPS loci were encoding 653 

cell surface polysaccharide biosynthesis proteins as glycosyl transferases, epimerases, and dehydrogenases, 654 

which was in line with CPS genes of the variable region of streptococcal and staphylococcal CPS loci. Skov 655 

Sørensen et al. [66] and O’Riordan & Lee  [71] described the structural organization of streptococcal and S. 656 

aureus CPS locus organization, which consisted of polymerases, epimerases, flippases, dehydrogenases, and 657 

sugar transferases such as glycosyl transferase. 658 
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Thirdly, A. urinae CPS loci showed structural variations with different CPS locus sizes, genetic content, and 659 

organization genetic. The observed genetic CPS loci diversity as five different CPS loci types, mainly 660 

separated the 1984-2004 A. urinae CPS loci from the highly diverse 2010-2015 A. urinae CPS loci. This type of 661 

structural complexity and organization of CPS genes were also shown within S. pneumoniae [68], S. aureus 662 

[71], and Klebsiella ssp. [72] CPS loci.  663 

 664 

4.2.2. Bacterial adherence. 665 

In this study, the presence of core-genes that were homologs to genes linked to bacterial adherence of A. 666 

sanguinicola (htpB, fbpA, lmb, and ilpA) and A. urinae (htpB, lap, lmb, fbp54, and ilpA) indicates adhesion as 667 

an important virulence factor within strains causing UTIs, bacteremia, and IE.  668 

These genes were homologs to FbpA of L. monocytogenes [73] and Fbp54 of S. pyogenes [17], Lmb of S. 669 

agalactiae [19], and IlpA of Vibrio vulnificus [74]. The importance of these genes have been demonstrated 670 

with reduced adhesion using mutants due to no expression of fibronectin-binding proteins (L. 671 

monocytogenes FbpA [73] and S. pyogenes Fbp54 [17]), poor adhesion to immobilized placental laminin and 672 

subsequent reduced invasiveness (S. agalactiae Lmb) [19,75], and decreased adhesion to intestinal cells and 673 

reduced mortality in mice models (V. vulnificus IlpA) [74,76]. 674 

The Listeria adhesion protein LAP is an essential adhesion factor [20,77], which has been demonstrated as a 675 

cell surface protein [78,79], and binds Hsp60 [80]. A lap-deficient L. monocytogenes showed reduced 676 

adherence and unable to translocate into intestinal cells [77,80]. Hsp60 associated cell adherence was also 677 

described for Clostridium difficile [81]. In genus Aerococcus, upregulated Hsp60 expression was previously 678 

described in A. viridans var. homari [25]. In the current study, both Aerococcus species were having a Hsp60 679 

encoding htpB gene homolog, whereas only a lap gene homolog in A. urinae strains. The presence of lap 680 

gene and htpB gene homologs within A. urinae genomes enhances the need for further enlightening of a 681 

putative bacterial adherence interaction between these two gene products.  682 

In Gram-positive bacteria, a cell surface exposure of bacterial adhesion proteins can be achieved through a 683 

signal peptide sequence and a LPXTG containing cell wall anchoring protein domain [82]. A new class of 684 

anchorless and surface exposed Gram-positive proteins lacks the signal peptide and/or the LPXTG motif [82]. 685 

In the current study, no adhesion associated gene homologs contained a LPXTG anchoring motif and only A. 686 

sanguinicola and A. urinae Lmb and IlpA homolog protein coding genes consisted of a signal peptide 687 

sequence, which was in line with the laminin-binding protein Lmb of S. agalactiae [19] and Lbp of S. 688 

pyogenes [83], and with the IlpA protein of V. vulnificus [74,76]. 689 

Neither the A. sanguinicola nor A. urinae gene homologs of fibronectin-binding proteins, the LAP protein, or 690 

the Hsp60 (HtpB) proteins contained a signal sequence nor the LPXTG motif. This was indeed in line with 691 
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other atypical and surface exposed adhesion proteins that binds fibronectin (FbpA of L. monocytogenes [73], 692 

FbpA of Streptococcus gordonii [84], and PavA of S. pneumoniae [85]), the Listeria adhesion protein LAP of L. 693 

monocytogenes [79], and heat shock proteins (Hsp60 of Legionella pneumophila [86] and C. difficile [81]). 694 

4.2.3. Biofilm formation. 695 

Only A. sanguinicola strains contained a biofilm associated transcriptional regulator gene homolog (bopD) 696 

with low sequence identities. The bopD gene of E. faecalis is one out of four bopABCD genes associated with 697 

biofilm formation [87,88]. We find it questionable whether the A. sanguinicola bopD gene homolog is a 698 

biofilm associated gene or simply a transcriptional regulator gene, since the bopABCD locus also contains 699 

three other genes. As in vitro biofilm production previously was observed in A. sanguinicola [22] and A. 700 

urinae strains [21], the search for gene homologs associated with biofilm production may be a key step to 701 

increase the bacterial pathogenicity understanding. 702 

 703 

 704 

5. Future perspectives. 705 

With the development of sequencing technologies and the presence of genomes from pathogenic bacteria, a 706 

broad range of analyses for a better understanding of bacterial pathogenicity are facilitated. More attention 707 

can be subjected to A. sanguinicola and A. urinae pathogenicity in order to further step into how these 708 

clinical strains may cause infections as UTIs, bacteremia, and IE. 709 

Experimental animal models could be one way to analyze the current pathogenic status of recent 2010-2015 710 

A. urinae strains compared to 1984-2004 strains and how the bacterial pathogenicity and host adaptation 711 

may have evolved after the first time period of strain collections. Inclusion of more clinical strains, from even 712 

broader time periods, and from geographical different locations are needed to extend these analysis. This 713 

also in regards to demonstrate if CPS expression takes place, even though both species only were considered 714 

as low pathogenic. The functional meaning of gene homologs which were associated with bacterial adhesion 715 

needs to be verified and to reveal if the expressed gene products were bacterial cell surface exposed to 716 

maintain the adherence function. 717 

Introduction of WGS in clinical laboratories will illuminate the fully genomic repertoire of these strains and 718 

enhance the clinical importance of these strains, including identification of the natural habitat of these 719 

bacterial species. 720 

        721 
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6. CONCLUSIONS6. CONCLUSIONS6. CONCLUSIONS6. CONCLUSIONS    722 

This is the first study dealing with comparative WGS analysis of clinical and type strain genomes of A. 723 

sanguinicola and A. urinae. High degree of genomic clustering was observed for strains of A. sanguinicola 724 

and marked differences within genomes of A. urinae strains with regards to the average genome sizes, 725 

number and sequence identity of core-genes, proteome conservations, genomic clustering, and phylogenetic 726 

analysis.  727 

Gene homologs associated with antiphagocytosis and bacterial adherence were identified and putative CPS 728 

loci were identified within both species.  729 

These findings contributes with novel genetic information of A. sanguinicola and A. urinae strains which 730 

provides an important basis for future understanding of UTIs, bacteremia, and IE pathogenicity caused by 731 

these two Aerococcus species.  732 

        733 
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