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Abstract During the last decade there has been an increasing interest in
the coupling between the acute inflammatory response and the Hypothalamic-
Pituitary-Adrenal (HPA) axis. The inflammatory response is activated acutely
by pathogen or damage related molecular patterns, whereas the HPA axis
maintains a long-term level of cortisol which is also anti-inflammatory. A new
integrated model of the interaction between these two subsystems of the in-
flammatory system is proposed and coined the integrated inflammatory stress
(ITIS) model. The coupling mechanisms describing the interactions between
the subsystems in the ITIS model is formulated based on biological reasoning
and its ability to describe clinical data. The ITIS model is calibrated and val-
idated by simulating various scenarios related to endotoxin (LPS) exposure.
The model is capable of reproducing human data of tumor necrosis factor
alpha (TNF-α), adrenocorticotropic hormone (ACTH) and cortisol and sug-
gests that repeated LPS injections lead to a deficient response. The ITIS model
predicts that the most extensive response to an LPS injection in ACTH and
cortisol concentrations is observed in the early hours of the day. A constant
activation results in elevated levels of the variables in the model while a pro-
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longed change of the oscillations in ACTH and cortisol concentrations is the
most pronounced result of different LPS doses predicted by the model.

Keywords Mathematical modeling · Non-linear ODE model · HPA axis ·
Acute inflammatory system · Immune system · Response to endotoxin (LPS)

1 Introduction

Over the years it has become clear that the acute inflammatory response man-
ifests itself through the HPA axis, as illustrated in Fig. 1. Cortisol has anti-
inflammatory effects, and cytokines are believed to activate the HPA axis [8,
38,39,42,43]. Models of the interaction between these two subsystems will in-
crease the understanding of the inflammatory response and lead to refined
treatments of immune system disorders such as rheumatoid arthritis, Crohns
disease, atherosclerosis, diabetes, and Alzheimer’s disease.

Fig. 1 Schematic diagram of the interaction between the HPA axis and the acute inflamma-
tory response. The main contributers to the acute inflammatory response are the phagocytic
cells and cytokines, and the HPA axis consists of hypothalamus, pituitary and the adrenal
secreting hormones. The interaction between the systems is that cytokines activates the
HPA axis, while the hormone cortisol has an anti-inflammatory effect.

1.1 Physiological background

The human immune system consists of several subsystems e.g. the skin, the
acute (innate) immune system and the adaptive immune system. When a
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pathogenic threat or a tissue damage is detected in the body, the acute in-
flammatory response is initialized. The main purpose of this response is to
attract phagocytic cells to eliminate the challenge [38]. For instance such a
pathogenic threat could be endotoxins (e.g. lipopolysaccharides, LPS) which
is found in the outer membrane of gram-negative bacteria and known to ac-
tivate the immune response [2,40]. It is of importance that the inflammation
is tightly regulated, since a too extensive response can cause further tissue
damage and chronic inflammation, while an insufficient response can lead to
serious infections and sepsis [8,38]. Necessary components of the response reg-
ulation are cytokines, which can be classified into two principal groups: pro-
inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor
alpha (TNF-α), and anti-inflammatory cytokines, such as interleukin-10 (IL-
10) and transforming growth factor beta (TGF-β) [8,39]. Pro-inflammatory
cytokines promote inflammation, while anti-inflammatory cytokines inhibit
the response to an infection.

The HPA axis is a subsystem of the immune system regulating the syn-
thesis of the anti-inflammatory hormone cortisol [42]. The axis consists of
the hypothalamus, the pituitary and the adrenal cortex, which releases hor-
mones trough feedback interactions. The hypothalamus secretes corticotropin
releasing hormone (CRH) which activates the pituitary to release adrenocorti-
cotropic hormone (ACTH). The secreted ACTH is moved by the bloodstream
to the adrenal amongst others, where it affects the adrenal to release corti-
sol. Cortisol feeds back on hypothalamus and inhibits the release of CRH and
ACTH, leading to a down-regulation of the cortisol synthesis [8,41,42]. The
secretion of cortisol has been studied extensively revealing both circadian and
ultradian oscillations in the concentration [33]. The release of ACTH follows
a similar pattern.

The circadian rhythm of cortisol is observed in humans and shows low
concentrations of cortisol in the early hours of the day, which increases during
early morning hours to a maximum peak around noon, after which the overall
concentrations decrease to their lower level during the night. The circadian
clock is believed to be synchronized by the suprachiasmatic nuclei (SCN),
located in the hypothalamus [1].

Cortisol is linked to the maintenance of body homeostasis as a response
to both mental and physical stress [38,42]. Furthermore, previous studies [22,
23] have demonstrated a general, albeit transient, defect in autonomic nervous
regulation of the cardiovascular system in the postoperative period of simple
elective surgical procedures, and that this may be related to the inflammatory
response induced by surgery. Tissue damage is expressed by damage-associated
molecular patterns through pattern recognition by the Toll-like receptors pro-
truding from the surface of macrophages [9]. This sensing activates transcrip-
tion inducing the expression of genes initiating the inflammatory response.
The inflammatory response is transmitted by pro-inflammatory cytokines in
positive feed-forward loops and counteracted by anti-inflammatory cytokines,
by cortisol, and by the autonomic nervous system [39]. The interplay with the
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autonomic nervous system is most likely the cause of the transient dysfunction
in postoperative autonomic control.

1.2 Modeling background

To our knowledge, there exists no commonly used model, which describes
the interplay between the HPA axis and the acute inflammatory response,
although there exists a number of models describing the systems individually.

Two illustrative examples of simple models describing the acute inflamma-
tory response developed for studying and understanding the systemic behavior
are presented by Baker et al. (2013) [5] and Reynolds et al. (2006) [34]. The
model proposed by Baker et al. (2013) is a two dimensional model classifying
all cytikines into pro- and anti-inflammatory, respectively. The simplicity of
the model permits an analytical investigation and illustrates possible dynam-
ics in general, although it was not compared to data. This model is analyzed
by bifurcation theory in order to investigate the the involvement of the pro-
and anti-inflammatory cytokines in the disease rheumatoid arthiritis. [5] The
aim of the work by Reynolds et al. (2006) was to investigate the importance of
the anti-inflammatory mediators for restoring homeostasis after an infection.
This model was developed as a four dimensional model distinguishing between
phatogens, phagocytic cells, a tissue damage marker and anti-inflammatory
mediators, representing cortisol and IL-10.

In contrast to these simple models, Chow et al. (2005) [11] and Frank (2010)
[18] describe the response by fairly complex models in order to study and un-
derstand the detailed mechanisms of the system. The model proposed by Chow
et al. (2005), which has become a standard reference, describes the acute
inflammatory response to endotoxin injections in mice. The model is relative
complicated and consists of 15 variables and 98 parameters. Rescaled model
predictions of the concentrations of TNF-α, IL-10, IL-6 and a NO marker are
compared to experimental data for mice receiving different doses of endotoxin
and induced surgery inflammation. The model mimics data qualitatively but
quantitatively data is not fitted to a high level of precision. The model is
extended in [12] to include living bacteria. A conundrum in the pa-
per was the need of a very slow anti-inflammatory mediator which
the authors suggest to be cortisol. [11] A model which is perhaps in be-
tween these simple and complicated models when considering complexity, is
the seven dimensional model presented by Frank (2010). The model tends to
describe the acute inflammatory response in rats receiving different doses of
endotoxin. The model predictions mimic the dynamics observed in data of the
cytokines IL-6, TNF-α and IL-10. However, there is no biological reasoning in
the modeling choices.

Turning to models describing the HPA axis, the greatest difference is re-
lated to the origin of the circadian and ultradian rhythms observed in data
for ACTH and cortisol. Conrad et al. (2009) induces an inclusion of a posi-
tive feedback from cortisol together with the conventional negative feedback
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creates the circadian rhythm, yet the model does not produces ultradian oscil-
lations [14]. The model presented by Jelić et al. (2005) produces circadian as
well as ultradian rhythms in cortisol by including an external periodic function
and a positive feedback from cortisol, while the circadian rhythm of ACTH
does not reflect observations [24]. Gupta et al. (2007) states that the model
in presented in [19] reveals bistability of the HPA axis. This model includes
the glucocorticoid receptor, but it fails to produce ultradian rhythms. Another
model presented by Andersen et al. (2013) also includes the glucocorticoid re-
ceptor revealing bistability, however it is proven, that the model is not capable
of producing ultradian rhythms within a physiological range of parameter val-
ues [3]. The proposed model described by Bangsgaard and Ottesen (2016) is
physiologically based and produces accurately both ultradian and circadian
rhythms mainly created by non-linearity and an external periodic function,
respectively [7].

Mathematical modeling of the interaction between the inflammatory re-
sponse and the HPA axis is limited. To our knowledge the first succesful at-
tempt to develop a mathematical model describing the neuroendocrine immune-
system was presented by Meyer-Hermann et al. (2009) [30]. This model is a
six dimensional system of ordinary differential equations. The variables repre-
sent TNF-α, stored cholestorol, plasma cortisol and stored, local and plasma
noradrenaline, respectively. The aim of the work was to describe the observed
circadian rhythms in cortisol, noradrenaline and TNF-α representing the lead-
ing operators of the endocrine, nervous and immune system, respectively. The
model was fitted to data on healthy subjects as well as data on subjects suffer-
ing from rheumatoid arthritis. The model fitted the circadian rhythms in cor-
tisol, noradrenaline and TNF-α well, however, the observed ultradian rhythms
were omitted. [30] Recently another important work was published by Malek
et al. (2015), describing the dynamics of the HPA axis and the inflamma-
tory cytokines IL-6 and TNF-α [29]. Malek et al. (2015) presents a model of
five differential equations with two delays, containing 32 parameters and an
external periodic function describing the circadian rhythm of the HPA axis.
They adopt the HPA axis model from [24] discussed above. The model appears
simple but is infinite-dimensional due to the delays, which in addition are rel-
atively large (both chosen to be 10 minutes). However, this is necessary to
obtain sufficient amplitudes of the ultradian rhythms in the simulations. The
aim of the work by Malek et al. (2015) is to develop a mathematical model
describing the interactions between the two subsystems in order to study the
bi-directional communication. The model qualitatively captures the data in
[13], but the actual fit could be improved. The injection of LPS is simulated
as an infusion of 2 IU/kg over 10 minutes, in contrast to the study in [13].

The aim of this paper is to develop a mathematical model which can reli-
ably predict the acute inflammatory response to endotoxin and the interplay
with the hormones of the HPA axis to restore homeostasis. This paper is struc-
tured as follows. The integrated inflammatory stress (ITIS) model is presented
in section 2. In section 3 parameter estimation of the ITIS model is carried
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out and in section 4 results of numerical simulations of different scenarios are
presented. Finally, discussion and conclusions are provided in section 5.

2 Integrated inflammatory stress model

Inspired by the fundamental idea in the work by Malek et al. (2015) [29], we
propose a novel integrated model of the acute inflammatory response and the
HPA axis. However, we are using a more accurate biological based HPA axis
model [7] and an adjusted model of the inflammatory response, inspired by
[5], [11], [18], and [34] as point of departure. This model is developed such
that each of the submodels can replicate existing data associated with the
respective systems. The ITIS model contains eight time-dependent variables:
Endotoxin (P), phagocytic cells (N), pro-inflammatory cytokine: TNF-α (T),
anti-inflammatory cytokine: IL-10 (I), Anti-inflammatory cytokine: TGF-β
(G), CRH (C), ACTH (A) and cortisol (F). Describing the system by non-
linear ordinary differential equations rather than infinite-dimensional delayed
differential equations, is a novelty compared to the model proposed by Malek
et al. (2015) [29]. Another novelty is the underlying model of the HPA axis,
which in this case is able to predict 24 hour observations of ACTH and cortisol
to a higher degree of precision than the model in [24] on which the model in
[29] is based. Comparing the model to the one in [30], this model is capable
of reproducing the observed ultradian oscillations in cortisol. A schematic di-
agram of the main interactions in the model can be seen in Fig. 2. Note that
removing the stimulation of CRH and ACTH by TNF-α and the interaction
between cortisol and TGF-β (indicated by the gray lines in Fig. 2), results
in two decoupled models describing the acute inflammatory response and the
hormone secretion of the HPA axis, respectively. For further details see [6].

The dynamics of the HPA axis is controlled by feedback mechanisms. The
secretion of CRH results in a secretion of ACTH leading to a secretion of
cortisol which in turn inhibits further up-regulation of CRH and ACTH [8,
38]. When an endotoxin challenge is introduced to the system, the phagocytic
cells are activated to eliminate the threat [2,39]. Endotoxin stimulates Toll-
like receptors primarily on the surface of the macrophages or T-lymphocytes.
This leads to activation of transcription factors and eventually to the produc-
tion and release of cytokines. Some cytokines act as chemokines attracting
T-lymphocytes responsible for inactivation of the bacteria producing the en-
dotoxin while others (interleukines) activate the production of cytokines from
neighboring leucocytes initiating a spreading of the inflammatory process [17,
32,36]. Macrophages, which are phagocytic cells specifically release TNF-α as
a response to endotoxin exposure [2]. Furthermore, activated TNF-α stimulate
the HPA axis by up-regulating the production of CRH and ACTH [8,37]. This
results in an anti-inflammatory response modulated by TGF-β caused by the
increased secretion of cortisol [25,38,39]. Cortisol inhibits several inflamma-
tory processes such as cytokine production [2]. When the endotoxin challenge
is eliminated, the system returns to a steady state.
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Fig. 2 Diagram of the ITIS model. The solid arrows indicates stimulating interactions,
while the dashed arrows indicates inhibiting interactions. Endotoxin (LPS) activates the
phagocytic cells which activate the cytokines. The cytokine TNF-α stimulates the activity of
the HPA axis by activating the production and release of CRH and ACTH which stimulate
the release of cortisol. The anti-inflammatory effects of cortisol is modulated through a
stimulation of the cytokine TGF-β. The endotoxin challenge is eliminated by the phagocytic
cells provided that the magnitude of the response is adequate.

The proposed mathematical model equations are:
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where the time-dependent external function R(t) is

R(t) = Nc

(
tkm

tkm + αk
· (Tt − tm)l

(Tt − tm)l + βl
+ ε

)
. (2)

The parameters {di}i∈{1,...,8} represent the elimination rates, {kj}j∈{1,...,16}
represent the strength of stimulation, inhibition or saturation level while
{hl}l∈{1,...,11} represent the half-saturation constants and {bm}m∈{1,2} are ba-
sic levels. Parameter values, their units and biological interpretation appear in
Appendix 6. The ITIS model is developed partly by biological reasoning and
the parsimonious principle for the mathematical expressions related to data.
For further details see [6]. The interpretations of the equations in the model
are explained in the following.

Equation for endotoxin (P)
The elimination of endotoxin is proportional to the product of the number
of activated phagocytic cells and the amount of endotoxin [4,15,20,21,
27,34,40,44]. Thus there will be no elimination of endotoxin if there
is none activated phagocytic cells by this modeling choice. A simple
exponential decay is a common modeling choice of the elimination
of endotoxin [31]. However, this choice means that elimination of
endotoxin is independent of the inflammatory response.

Equation for phagocytic cells (N)
The number of activated phagocytic cells is strongly dependent on the pres-
ence of endotoxin. When phagocytic cells recognize bacterial components (such
as endotoxin), the acute inflammatory response is initiated [2,10]. As long as
endotoxin is present in the model, the activated phagocytic cells are further
up-regulated by the pro-inflammatory TNF-α [39] and down-regulated by the
anti-inflammatory mediators TGF-β and IL-10 [32,39].

Equation for TGF-β (G)
TGF-β is released by activated phagocytic cells [10,32] and modulates the
anti-inflammatory effects of cortisol by a stimulation [25].

Equation for TNF-α (T)
The activated phagocytic cells release the pro-inflammatory cytokines TNF-α
[2,8,39]. TNF-α is auto-up-regulating [10] and inhibited by TGF-β [32,39].
The quadratic elimination rate refines the model fit of human data.

Equation for IL-10 (I)
IL-10 is produced by activated phagocytic cells [10,32] and up-regulated by
TGF-β [35]. In addition, a basic level of IL-10 is present in the model, as-
suming that the human body is slightly anti-inflammatory when no challenges
are detected. The elimination is proportional to the concentration of IL-10 for
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small concentrations but saturates for larger concentrations.

Equation for CRH (C)
CRH released from the hypothalamus is influenced of the circadian rhythm
mainly synchronized by SCN [1]. The auto-up-regulation of CRH is inhibited
by cortisol [8,41,42]. A basic level of secretion of CRH is included in the model,
to ensure a positive production rate. The detection of endotoxin in the model
activates the HPA axis partly through a stimulation of CRH by TNF-α [8,10,
25,37].

Equation for ACTH (A)
The stimulation of ACTH by CRH is inhibited by cortisol [8,41,42]. The HPA
activation caused by endotoxin is modulated partly by a stimulation of ACTH
by TNF-α [8,25].

Equation for cortisol (F)
The secretion of cortisol is stimulated by ACTH [8,41,42]. The ACTH stimu-
lation is inhibited by TGF-β [26].

Equation for circadian rhythm (R(t))
R(t) is an external function simulating one period of the circadian rhythm.
The function models the observed circadian rhythm of the system caused by
the circadian clock synchronized by the suprachiasmatic nucleus (SCN) [1].
The rhythm is described by a product of two Hill-functions.

3 Paramter Estimation

Before presenting the method for parameter estimation, the data is briefly
described.

3.1 Data description

The data originates from a study conducted by Clodi et al. (2008), designed for
investigating the impact of oxytocin on the innate immune system in humans.
Data describes the response of TNF-α, ATCH and cortisol to a endotoxin
(LPS) injection of 20 IU/kg (corresponding to 2 ng/kg) in contrast to the re-
sponse affected by an additional injection of oxytocin. Only the data describ-
ing the response in the concentrations in the absence of oxytocin is considered
here. Each data point is mean and standard deviation of measurements from
10 healthy men. [13]
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3.2 Parameter selection

The submodel describing the acute inflammatory response is fitted to data of
rats receiving different doses of LPS while the submodel describing the HPA
axis is fitted to data of humans in order to verify each of the submodels [6].
Using these results, the parameters introduced in the ITIS model (1)-(2) were
calibrated by hand by comparing output to data. The calibrated parameters
result in an adequate correspondence between the simulation of the model
and data. By using parameter estimation on four selected parameters, the fit
of the ITIS model is improved. The selected parameters are chosen as sensitive
parameters, which vary considerably between individuals, for further discus-
sion see [6]. The selected parameters δ, d4, d8 and k15 are among the
sensitive ones without being the most sensitive. However, the quan-
titatively defined sensitivities alone do not describe the importance
of the parameters completely. The qualitative issue of how the model
output is influenced by the parameters is of paramount importance.
Of cause a parameter needs to be sensitive in order to have quali-
tative impact on the model output. A parameter may turn out to
be qualitatively important although being less sensitive than most
other parameters if that parameter affects the output considerably
in a unique characteristic way. Thus, our choice of selected is not
only based on the quantitative sensitivity criteria but also on a qual-
itative criteria as well. Based on this the parameter δ describing the
circadian phase is chosen as one of the selected parameters, since
it is very important for the timing of the circadian peaks for the
various curves, despite a rather small quantitative sensitivity com-
pared to most other parameters [6]. See Appendix for the complete
sensitivity analysis. The selected parameters are the elimination rate of
TNF-α (d4), the strength of the stimulation of cortisol by ACTH (k15), the
time-shifting of the phase in the circadian function (δ) and the elimination
rate of cortisol (d8). The response of TNF-α varies for individuals [43], and
d4 is a possible parameter which might change between individuals causing
this difference. Investigations of the variation of k15 and δ show that these
parameters vary significantly between individuals. The significance of d8 on
the simulations has a distinct effect on the ultradian oscillations for all three
hormones of the HPA axis, indicating that the system is sensitive to this pa-
rameter. The same is true for the elimination rate of CRH (d6), however,
estimating d8 provides a better fit to data, while keeping the concentration
level of cortisol within the ranges observed from the data [6]. In contrast to
cortisol, CRH is not easily observed in humans, thus individual bounds for
CRH are missing, suggesting that d6 should not be selected for parameter es-
timation. Thus, these parameters might vary considerable between individuals
compared to the other parameters and therefore these are chosen as selected
parameters.

The selected parameters are estimated and the result is compared to data
of TNF-α, ACTH and cortisol together with a 95%-confidence band and a
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95%-prediction band as can be seen in Fig. 3. The confidence band gives an
estimate of the uncertainty of the mean of the fitted curve, while the predic-
tion band gives the prediction interval for new observations. The confidence
and prediction band is calculated pointwise rather than simultaneously. The
parameters are estimated using nlinfit, an iterative least squares method in
Matlab (R2015b).
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(a)

(b)

(c)

Fig. 3 Model prediction and data. Simulations of the ITIS model (1)-(2) presented in
section 2 with estimated parameters. The solid lines represent the simulation of TNF-α
(T ), ACTH (A) and cortisol (F ), respectively, the dashed lines represent a 95%-confidence
band, and the dash-dotted line represents a 95%-prediction band. The data are adopted
from [13] (circles) and represented as a mean and standard deviation of measurements from
ten subjects at each point. Time is indicated as hours after LPS injection.
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4 Results

In this section, simulation results and comparison to the data presented in
section 3.1 are revealed. The ITIS model is simulated and analyzed for various
scenarios related to endotoxin (LPS) exposure.

4.1 Simulation of 24 hours

Fig. 4 shows a simulation of the ITIS model (1)-(2) for a 24 hour interval
compared to data for TNF-α (T ), ACTH (A) and cortisol (F ). The system
is exposed to a 2 ng/kg dose of LPS (P ) at time t = 13.5 hours. As can be
observed, the pathogenic threat is eliminated after approximately six hours.
The system is still activated by elevated levels of phagocytic cells (N), TGF-
β (G), IL-10 (I) and TNF-α (T ). The elevated levels of N , G, I and T are
decreasing over time (for a longer time interval than 24 hours, see Fig. 5). In
addition, it is seen that the oscillatory patterns for CRH, ACTH and cortisol
(C, A and F ) are affected.

4.2 Repeated LPS exposure

To study the effect on the system of repeated exposure to LPS, the ITIS model
is simulated with no LPS injection, one LPS injection and two LPS injections.
In Fig. 5 the three scenarios are compared for each of the eight model variables.

The injection time for the first LPS injection in the repeated simulation is
the same as for the scenario with only one injection (t = 13.5). The second
LPS injection is introduced at time t = 37.5 i.e. 24 hours later. The interval
between the injections is chosen due to the cyclicity of the model and since
it is of human nature to live in a 24 hour life cycle. The dose and time of
the first injection is chosen according to the dose and time of injection for the
calibration data. It is seen, that the endotoxin (P ) is eliminated slower after
the second LPS bolus. The injection is given before the system is returned to
homeostasis, which causes a different response of the system. The response to
the second injection of phagocytic cells (N) is approximately less than half the
magnitude of the first injection. The response of TNF-α (T ) is also very small,
compared to the first response. The response of ACTH (A) and cortisol (F ) is
not detectable for the second injection.The results are similar to results
found by Day et al. (2006) [16] and illustrates the significance of
the system being in homeostasis, when exposed to LPS, such that
tolerance is avoided.

4.3 LPS injections at different times

To study the effect of the injection time, the ITIS model is simulated for a
consistent LPS dose at different times. Fig. 6 shows simulations of the ITIS
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Fig. 4 Simulation of the ITIS model (1)-(2) presented in section 2 over 24 hours. The solid
line represents the simulation of the model and the circles represent data. Data are adopted
from [13] and are represented as a mean and standard deviation of measurements from ten
subjects at each point. The LPS dose of 2 ng/kg is introduced to the system at t = 13.5
hours as indicated at the figure.

model (1)-(2) for three different injection times. The LPS dose is chosen to be 2
ng/kg according to the dose for the calibration data. The time of the injections
is chosen in relation to the circadian rhythm and the ultradian oscillations in
CRH, ACTH and cortisol revealing that the circadian rhythm has the highest
impact on the response in the model system.

In the first scenario, the LPS injection is introduced to the system at t = 6
at the circadian peak of cortisol. The second simulation shows the response
when LPS is introduced in the afternoon at t = 16, where the circadian rhythm
is declining. In addition, the response of the system is simulated for a LPS
injection at the nadir of the cortisol level (t = 24.8). The largest responses
in ACTH and cortisol are observed in the early hours of the day, while the
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Fig. 5 Simulation of the ITIS model (1)-(2) presented in section 2 over 60 hours. The solid
gray line represents the scenario where no LPS is introduced to the system. The dash-dotted
gray line represents the scenario where LPS is introduced to the system at time t = 13.5
while the dotted black line represents the scenario where LPS is introduced to the system
at time t = 13.5 and repeated at time t = 37.5. The injected LPS doses are 2 ng/kg for each
injection.

lowest responses are observed in the afternoon, where there is a decreasing
trend in the circadian rhythms of the concentrations. At the nadir of the
circadian rhythm, the response of both ACTH and cortisol are remarkably
high compared to the baseline at this time which is consistent with studies
found in literature [42].

4.4 The effect of different doses of LPS

The system is simulated for three different doses of LPS (0.4, 2 and 10 ng/kg)
at different time points, where the middle value is chosen according to the
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Fig. 6 Simulation of the ITIS model (1)-(2) presented in section 2 over 48 hours. The solid
line represents the scenario where no LPS is introduced to the system. The dash-dotted line
represents the scenario where LPS is introduced to the system at time t = 6, the dotted
line where LPS is introduced to the system at time t = 16 and the dashed line where LPS
is introduced at t = 24.8. The injected LPS doses are 2 ng/kg.

study in [13]. Fig. 7 shows simulations of the model for these three doses are
shown for an injection time on the top of the circadian rhythm (t = 7.5)
to illustrate some results of the study. The simulations clarify the importance
within ultradian rhythms for small doses of LPS. The peak in cortisol is largest
for the smallest LPS dose, when injecting on the top of the ultradian peak. The
increase in cortisol for small doses of LPS has a delayed peak, compared to the
response for the other doses for both injection times. The magnitude of the
response in N is mainly controlled by the concentration of LPS (P ). A large
dose of LPS results in a large response of phagocytic cells, which stimulates
TGF-β. The large stimulation of TGF-β inhibits cortisol, which might be a
reason, for the limited response in cortisol for large doses of LPS.

4.5 The effect of baseline level LPS

The effect of constant infusion of LPS on the systems response to a bolus of
LPS injection is studied by introducing a baseline level of LPS of 0.1 ng/kg.
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Fig. 7 Simulation of the ITIS model (1)-(2) presented in section 2 over 48 hours. The
solid gray line represents the scenario where no LPS is introduced to the system. The dash-
dotted gray line represents the scenario where a single injection of LPS (dose 0.4 ng/kg) is
introduced in the model at t = 7.5. The dotted gray line represents the scenario where a
single injection of LPS (dose 2 ng/kg) is introduced at time t = 7.5 and the dashed gray
line represents the scenario where a LPS injection of dose 10 ng/kg is introduced at time
t = 7.5.

The response is observed for two scenarios, one where the model is exposed
to an LPS injection and one where the model is not (the dose and time of
injection is an LPS dose of 2 ng/kg injected at time t = 13.5). This might
be interpreted as a daily load from the environment, which subjects
are exposed to depending on the environment, e.g. in traffic, at the
work, or in the gym [28]. This is in contrast to the previous sim-
ulations of subjects under controlled clinical circumstances (sterile
conditions). An illustration of the studies can be seen in Fig. 8. The con-
stant infusion of LPS results in elevated levels of phagocytic cells, TGF-β,
TNF-α and IL-10 compared to the simulation of the concentrations for no
LPS infusion. In addition, the baseline level of LPS lowers the amplitude of
the ultradian oscillations in CRH, ACTH and cortisol. The response to an
injection of LPS, on the top of a baseline level of LPS, results in an absent
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response of TNF-α, which is also observed for ACTH and cortisol, compared
with the response to the LPS injection without a baseline level of LPS.

Fig. 8 Simulation of the ITIS model (1)-(2) presented in section 2 over 48 hours. The solid
gray line represents the scenario where no LPS is introduced to the system. The dotted gray
line represents the scenario where a single injection of LPS is introduced in the model at
t = 13.5. Whereas the dash-dotted gray line represents the scenario where a basis level of
LPS is infused in the model and a single LPS injection is introduced at time t = 13.5 on
top of the basis level. The injected LPS doses are 2 ng/kg for the single LPS injections and
the basis level of LPS is 0.1 ng/kg.

5 Discussion and conclusions

A new model of the coupling between the acute inflammatory response and
the HPA axis has been proposed and denoted the Integrated Inflammatory
Stress model abbreviated the ITIS model. The ITIS model is formulated by
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combining two models describing the acute inflammatory response and the
dynamics of the HPA axis, respectively. The models of the two subsystems
were first validated separately with data and then coupled to form the novel
model.

The coupling mechanisms describing the interactions between the subsys-
tems in the models has been formulated partly by biological reasoning using
the parsimonious principle and partly by fitting the ITIS model to a mean of
human data measured on ten individuals exposed to endotoxin. The measured
data contains information for the concentrations of TNF-α, ACTH and cortisol
after exposure of LPS dose 2 ng/kg i.e. only three of the eight variables in the
ITIS model. Four of the parameters in the ITIS model were estimated using
a least squares method. The parameters d4 (the elimination of TNF-α), k15
(the strength of the ACTH stimulation of cortisol), δ (the time-shifting of the
phase in the circadian function) and d8 (the elimination rate of cortisol) are
chosen as the parameters to estimate, because these vary noticeably between
individuals. Comparing the residual sum of squares to the model proposed
by Malek et al. (2015) [29], the value is decreased from 13515 to 3646 which
corresponds to a 73% decrease. Additional data might help to validate the
ITIS model and the simulated response to LPS. The ITIS model is described
by non-linear ordinary differential equations, which is a novelty compared to
the infinite-dimensional delayed differential model presented by Malek et al.
(2015).

The ITIS model has been numerically simulated for various scenarios: re-
peated LPS injections, different times of LPS injection, injections of different
LPS doses and the effect of an LPS injection under the influence of constant
LPS infusion. The simulations reveal the importance of maintaining homeosta-
sis to obtain the most effective responses to invading pathogens and also the
impact of the oscillations in cortisol. The study of the ITIS model for repeated
LPS injections shows the significance of the system being in homeostasis when
exposed to LPS. Thus the ITIS model suggests that repeated LPS injections
lead to development of tolerance which might cause a deficient immune re-
sponse. Furthermore, the ITIS model suggests that the most extensive response
in ACTH and cortisol concentrations are observed in the early hours of the
day, which is consistent with literature [42]. The most pronounced variation
in the responses of the ITIS model to different doses of LPS is the prolonged
changes in the oscillations of CRH, ACTH, and cortisol. The concentrations
of phagocytic cells, TGF-β and IL-10 are increased significantly in accordance
with the increment in LPS doses. The study of the ITIS model where the effect
of a baseline level LPS is investigated suggests that a constant activation of
the immune system results in elevated levels of the model variables which lead
to an insufficient response to an LPS injection.

The ITIS model describes the response of the acute inflamma-
tory system to an LPS injection. Even though LPS activates the
inflammatory system, it is not able to grow and it will not be ac-
tive, therefore it only serves as an approximation of the real world.
Future development of this model could include these features by



20 Bangsgaard et al.

introducing possible growth in the equation for endotoxin and pos-
sibly tissue damage. However, this will increase the complexity of
the model.

Eventually, the ITIS model may help in understanding the coupling be-
tween the acute inflammatory response and the HPA axis and possibly be
used as a tool in the treatment of diseases involving the immune system.
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6 Appendix

6.1 Parameter values

The parameter values used for the simulations of the ITIS model (1)-(2) pre-
sented in section 2 and the biological interpretation are shown in table 1.

Table 1: Table of biological interpretation and values of parameters
in the ITIS model presented in section 2.

Par. Value Unit Biological interpretation

Equation for endotoxin (P )

d1 1.35 · 10−7 (hr · N-unit)−1 The elimination rate of P in the
presences of N

Equation for phagocytic cells (N)

k1 4.9956 · 107 N-unit·kg
hr·pg

The strength of the stimulation
of N in the presences of P and
the absence of T , G and I

k2 12.94907 −
Accounts for part of the activa-
tion rate of N by T (together
with k1) in the presence of P
and the absence of G and I

h1 1693.9509 pg
mL

The half-saturation constant of
T in the up-regulating function
in the equation for N

h2 0.07212 pg
mL

The half-saturation constant of
G in the down-regulating func-
tion in the equation for N

h3 147.68 pg
mL

The half-saturation constant of
I in the down-regulating func-
tion in the equation for N

d2 0.1439 hr−1 The elimination rate of N

Equation for TGF-β (G)

k3 0.1546 · 10−8 mL
pg·N-unit·hr

The strength of the stimulation
of G by N

k4 0.5 mL
pg·hr

The saturation level for the
stimulation of G by F

Continued on next page
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Table 1 – Continued from previous page

Par. Value Unit Biological Interpretation

h4 500 µg
dL

The half-saturation constant of
F in the up-regulating function
in the equation for G

d3 0.031777 hr−1 The elimination rate of G

Equation for TNF-α (T )

h5 550 · 104 N-unit
The half-saturation constant of
N in the up-regulating function
in the equation for T

h6 0.1589 pg
mL

The half-saturation constant of
G in the down-regulating func-
tion in the equation for T

k5 25.5194 pg
mL·hr

The minimum saturation level
(for T = 0) for the stimulation
of T in the presence of N and
the absence of G

k6 3.5514 · 104 pg
mL·hr

Additional saturation level (for
large T ) for the stimulation of
T in the presence of N and the
absence of G

h7 1.5495 · 103 pg
mL

The half-saturation constant of
T in the auto-up-regulating
function in the equation for T

d4 0.0307 mL
pg·hr

The elimination rate of T per
T

Equation for IL-10 (I)

b1 1187.2 pg
mL·hr

The basis level of I in the ab-
sence of N and G

k7 267480 pg
mL·hr

Saturation level for N -
dependent I stimulation

h8 8.0506 · 107 N-unit
The half-saturation constant of
N in the up-regulating function
in the equation for I

Continued on next page
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Table 1 – Continued from previous page

Par. Value Unit Biological Interpretation

k8 43875 pg
mL·hr

The strength of the stimulation
of I by G

h9 0.38 pg
mL

The half-saturation constant of
G in the up-regulating function
in the equation for I

d5 98.932 hr−1 The elimination rate of I for
small concentrations

h10 791.27 pg
mL

The half-saturation constant of
I in the auto-down-regulating
function

Equation for CRH (C)

b2 0.001 pg/mL
min The basis level of C stimulation

k9 6.8400 · 109 pg/mL
min

The strength of the auto-up-
regulation of C in the absence
of F under influence of the ’cir-
cadian clock’

k10 1.7558 · 109
(

dL
µg

)2 The strength of the inhibition
of C by F

k11 0.0667 min−1 The strength of the stimulation
of C by T

d6 0.032 min−1 The elimination rate of C

Equation for ACTH (A)

k12 2.3688 · 104 min−1 The strength of the stimulation
of A by C in the absence of F

k13 1.7778 · 105 dL
µg

The strength of the inhibition
of A by F

k14 112 pg
mL·min

The saturation level for T -
dependent stimulation of A

h11 80 pg
mL

The half-saturation constant of
T in the up-regulating function
in the equation for A

d7 0.016 min−1 The elimination rate of A

Continued on next page
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Table 1 – Continued from previous page

Par. Value Unit Biological Interpretation

Equation for cortisol (F )

k15 5.0746 · 10−4 µg/dL

min·(pg/mL)2

The strength of the stimulation
of F by A per A in the absence
of G

k16 12 pg
mL

The strength of the inhibition
of F by G

d8 0.0266 min−1 The elimination rate of F

R(t)-equation describing the circadian rhythm

α 300 min
The half-saturation constant of
the increasing Hill function in
R(t)

k 5 −
The steepness of the increasing
Hill function inR(t) at time t =
α

β 950 min
The half-saturation constant of
the decreasing Hill function in
R(t)

l 6 −
The steepness of the decreasing
Hill function inR(t) at time t =
β

ε 0.01 − The basis contribution of the
circadian clock function R(t)

δ 76.37 min The time shifting of the circa-
dian clock
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6.2 Sensitivity analysis

The relative sensitivities of the parameters in the ITIS model are
calculated to investigate the quantitative sensitivity and the robust-
ness of the results of the model output. The relative sensitivity of
a model output yi to the model parameters θj where j = 1, ..., q can
be calculated from the sensitivity matrix

Srelativei =


θ1
yi

dyi
dθ1

(ti1) · · · θq
yi

dyi
dθq

(ti1)

...
. . .

...

θ1
yi

dyi
dθ1

(tiki) · · ·
θq
yi

dyi
dθq

(tiki)

 (3)

for each of the variables i in the model, where tij is the ki instance
of the jth measurement and yi 6= 0. To compare the sensitivities, the
two-norm of each column can be calculated and used as a time inde-
pendent measure for each of the parameters. A histogram stacking
the relative sensitivities for the variables in the ITIS model is shown
in Fig. 9.

Fig. 9 Histogram of the relative sensitivities of the parameters in the ITIS model.


