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A B S T R A C T

This thesis addresses problems in the area of automated software verification. Verification
increases the reliability of software systems and our confidence in them. We address the prob-
lem using constrained Horn clauses, a fragment of first order logic, as a logical representation
of programs.

We present an approach based on abstraction refinement to verifying sets of constrained
Horn clauses; these usually represent safety properties of (imperative) programs. This thesis
draws together a range of techniques, extends and combines them in a novel way so that they
strengthen and reinforce each other. In particular, we combine (i) program transformation
(specialisation), (ii) abstract interpretation and (iii) trace abstraction refinement into a single
tool for Horn clause verification.

Finally we show, using a set of Horn clause benchmarks over the theory of linear arithmetic,
that our approach is practical and it can solve many challenging verification problems.
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A B S T R A K T

Denne afhandling omhandler problemer inden for automatiseret verifikation af program-
egenskaber. Verifikation øger pålideligheden af software-systemer og vores tillid til dem.
Vores tilgang til problemet er baseret på brugen af "constrained Horn clauses" (CHC), der
er en delmængde af første ordens logik, og som er en logisk repræsentation af programmer.

Vi præsenterer en teknik, som hedder "abstraktions-raffinering", for verifikation af et sæt
CHC, der typisk repræsenterer sikkerhedsegenskaber af et program. Denne afhandling sam-
ler en række teknikker, samt udvider og kombinerer dem på en ny måde, så de styrker
og komplementerer hinanden. Især kombinerer vi (i) programtransformationer (programspe-
cialisering), (ii) abstrakt fortolkning og (iii) raffinering af "abstract traces" til et samlet værktøj
til verifikation af CHC.

Endelig viser vi, ved hjælp af en række CHC eksempler fra linear aritmetik, at vores tilgang
er praktisk og kan løse mange udfordrende verifikationsproblemer.
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How can one check a routine in the sense of making sure that it is right?
In order that the man who checks may not have too difficult a task the programmer

should make a number of definite assertions which can be checked individually,
and from which the correctness of the whole programme easily follows.

Alan M. Turing, “Checking a large routine”, 1949.
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1
I N T R O D U C T I O N

This thesis addresses problems in the area of automated software verification. Software sys-
tems are used intensively in all sectors of our life and their correct functioning is essential in
many cases. Verification increases the reliability of software systems and our confidence in
them. Manual verification is an error-prone and tedious task, especially due to the increase in
size and complexity of software systems, and thus its automation is highly desirable.

An automated software verifier is an algorithm that checks whether a given program satis-
fies a given property. This general problem is undecidable; that is, it is not possible to devise
an algorithm that terminates and correctly decides whether a program satisfies a (non-trivial)
semantic property or not. Even for decidable cases of the general problem such as the verifi-
cation of programs having finite state spaces, the problem can be computationally intractable
[86]. A great deal of effort has therefore been spent in finding algorithms that verify as many
program properties as possible, even though there is no hope of solving the general problem.
The work described in this thesis is a contribution to this effort.

Software verification ensures whether a software has a given desirable property or not.
Some properties are related to avoiding runtime errors or crashes, for example, the absence
of division by zero, overflow, and array out of bounds access. Other properties relate to the
correctness of the program with respect to a specification. Broadly speaking, properties are
classified as safety properties ("bad things" never happen) and liveness properties ("good
things" eventually happen) [86]. Our focus in this thesis is on verifying safety properties of
programs.

1.1 verification using constrained horn clauses

In this thesis, we address the problem of automated software verification using constrained
Horn clauses (CHCs), a fragment of first order logic (FOL), as a logical representation of pro-
grams. FOL is often used to formalise the semantics of programs. The meaning of a program
P is represented by a formula in FOL and a model of the formula represents the runtime
state space of P. A program property to be verified is also represented in FOL. In this way
the verification problem can be viewed as checking satisfiability of FOL formulas. CHCs, al-
though forming a fragment of FOL, have been shown to be a powerful and flexible represen-
tation for specifying the syntax and the semantics (small- and big-step operational semantics,
denotational semantics etc.) of a variety of programming languages (imperative, functional,
concurrent, etc.).
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2 introduction

1.2 verification techniques

Program verification usually refers to verification of source programs, rather than some inter-
mediate semantic form. Recently, constrained Horn clauses have been advocated as a "lingua
franca" for program verification [38, 59, 65, 70, 17, 126] due to their expressiveness and well
understood logical and computational properties. Instead of devising verification procedures
for each source language (which is a difficult process) the aim is to devise a verification pro-
cedure for CHCs and then translate source languages into it, saving time and effort. This
approach offers a clean separation of concerns: the translators deal with the programming
language syntax and semantics whereas the verifiers deal with the verification procedures
based on pure logic formulas.

Modern software verification techniques in the literature exploit several complementary
techniques that are relevant for automatic software verification (sometimes called software
model checking) such as abstract interpretation, program transformation, counterexample
guided abstraction refinement, satisfiability checking modulo theories and automata-theoretic
techniques (for example trace abstraction refinement).

Given the undecidability of the general verification problem, abstraction is a key technique,
allowing "one-sided" program analysis. An abstraction provides sufficient conditions for de-
ciding that a program has a certain property. Thus (i) if the sufficient condition can be proved
then the program definitely has the property; however (ii) if the sufficient condition cannot
be proven, then the answer "don’t know" is returned even though the property may hold.

To deal with the "don’t know" problem, techniques have been proposed in the literature,
which refine abstractions. One such technique is counterexample guided abstraction refine-
ment [23], which has been successfully pursued in the software verification community. The
abstraction refinement process can be repeated until the required properties are verified, a
genuine counterexample to the property is found or resources are exhausted. The study of ab-
stract interpretation [32] focusses more on the design of suitable abstractions, tuning precision
and scalability of analysis, but the "don’t know" answer is unavoidable.

This thesis combines the practices in software verification and constraint logic program-
ming [81, 82] (logic programming [119] extended to handle constraints over some domain)
communities in new ways, taking advantage of the chosen logical form for program verifica-
tion – combining strengths of powerful techniques such as program specialisation, abstract
interpretation and trace abstraction refinement.

1.3 problem statement : research goal

An approach for proving properties (termination, correctness, equivalence, etc.) of a computer
program is to transform these problems into equivalent problems in FOL to be able to reason
about them in a formal and rigorous manner. We have chosen CHC, a fragment of FOL for
the purpose of verifying correctness of a program. The problem is to check whether, starting
from some initial configuration, the execution of the program Prog leads to some error configu-
ration or not. Let φinit and φerror be the formulas encoding the initial configuration and the
error configuration respectively. Then the verification problem corresponds to the Hoare notion
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of partial correctness specified by the Hoare triple {φinit} Prog {¬φerror}. The correctness
triple can be translated into CHCs [39, 126] and the resulting set of CHCs is also called the
verification conditions. Manna and Pnueli [122, Theorem 1] have shown that proving partial
correctness of Prog with respect to φinit and φerror corresponds to checking the satisfiability
of the verification conditions generated.

Therefore, given a set of CHCs P which are verification conditions for some safety proper-
ties, the CHC verification problem is to check whether there exists a model of P. This amount
to checking the satisfiability of P. In terms of safety, P is considered safe (satisfiable) or unsafe
(unsatisfiable) respectively if P has or does not have a model. In this thesis, we use constraint
logic programming (CLP) program and CHCs interchangeably and a set of CHCs is also
called a program. The literature in software verification, as well as in CLP, contains a wide
range of techniques for checking the satisfiability of Horn clauses. These include:

program transformation (program specialisation): Program transformation is
a method of manipulating a program’s text by applying semantics preserving rules. Program
specialisation (with respect to a goal), a source-to-source program transformation, is a seman-
tics preserving transformation of Horn clauses whose goal is to remove program parts that
are not relevant to the properties. It improves performance and precision of program analysis
and can also be used as a proof technique in itself. Often it can cause a blow-up of the size of
the specialised program, relative to the original.

abstract interpretation : This is a scalable program analysis technique which com-
putes invariants. This allows many safe programs to be verified, but suffers from false alarms;
unsafe programs and safe but not provably safe programs may be indistinguishable. Invari-
ants are properties that hold at some program points. For example, an invariant could be that
the value of some arithmetic expression over program variables is always positive at a given
point. The balance between precision and scalability in abstract interpretation can be obtained
by a suitable selection of an abstract domain.

trace abstraction refinement : This is an automata theoretic program analysis tech-
nique capable of dealing with program traces. A set of program traces (derivations) is ab-
stracted and represented by an automaton which accepts a superset of the set of all error
traces of the program. This is called trace abstraction. An accepting trace is picked from the
automaton. If this trace is infeasible (unsatisfiable) with respect to the semantics of the pro-
gramming language, it is eliminated from the program automaton using automata theoretic
operations. This is called a refinement of trace abstraction. Eliminating a single trace in each
abstraction refinement step may not be a good strategy if this technique is used alone as a
proof technique for verification, since there can be infinitely many traces. So we can get more
out of it, if we use this technique in combination with others or discover some heuristics for
trace generalisation.

goal of the thesis : We aim to bring together a range of techniques, extend and combine
them in such a way that they strengthen and reinforce each other – leading to a scalable and
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modular tool. In particular, this thesis extends and combines techniques such as (i) program
transformation, (ii) abstract interpretation and (iii) trace abstraction refinement into a single
tool for Horn clause verification and applies it to software verification problems.

1.4 contributions of the thesis

This thesis advances the state of the art by drawing together a range of techniques, extending
and combining them in a novel way so that they strengthen and reinforce each other. In
particular, we combine (i) program transformation, (ii) abstract interpretation and (iii) trace
abstraction refinement into a single tool for Horn clause verification. The combination brings
out the synergy between the components. More specifically:

• Program transformation helps program analyses such as abstract interpretation in sev-
eral ways: (i) by propagating constraints throughout the program; (ii) by removing some
program parts irrelevant to the properties in question; and (iii) by splitting program
predicates which allows simulating disjunctions using a solver handling only conjunc-
tions of atoms. This can also be used either as a proof technique in itself or as a pre-
processor for Horn clauses.

• Abstract interpretation infers program invariants, which can be used (i) to specialise
clauses during program transformation; (ii) to prove program properties; (iii) to con-
struct a trace abstraction of Horn clauses derivations.

• Trace abstraction refinement is used to refine abstract interpretation, more precisely,
the traces used during abstract interpretation, by eliminating spurious traces (traces
which are infeasible with respect to the semantics of CHCs) through automata theoretic
operations. Such refinement of traces induces refinement of CHCs on which abstract
interpretation is applied. We move from automata representation to Horn clauses to
take advantage of the latter representation for specialisation and abstract interpretation.

This leads to an abstraction refinement framework for Horn clause verification. A schematic
overview of this framework and the architecture of the Rahft tool based on this idea is
shown in Figure 1.1. It consists of two modules, namely, Abstraction (green box) and Refinement
(red box). The input is a set of CHCs P written in CLP form and the output is safe (unsafe) if
P is safe (unsafe). It consists of the following components.

• Pre-processor. A given set of CHCs P is specialised, first producing another set of CHCs
P ′ which is equisatisfiable to P. It is useful in propagating constraints in the program or
removing parts of the program not relevant to the property in question.

• Abstract interpreter. P ′ is analysed using the technique of abstract interpretation, producing
an over-approximation of the set of derivations (represented by an automaton) or the
minimal model (the set of ground facts derivable from P ′) of P ′. These derivations are
called a trace abstraction and the over-approximation is called a state abstraction.
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• Verifier. These derivations or over-approximation of the minimal model are analysed
using a light weight verifier (using the formulations described in Chapter 2) which
checks whether the derivations include an error derivation or the model includes false.
If the inclusion in either case is negative, then P is proven safe. But if there is an error
derivation and if it is feasible in P, then P is unsafe.

• Finite tree automata manipulator. If the error derivation is infeasible, we eliminate this
trace from the set of traces using automata theoretic operations – obtaining a refined set
of traces. This is called trace refinement.

• Clause generator. From these refined traces and P ′ we generate a new program using the
connection between Horn clause derivations and finite tree automata.

This new program is again fed to the pre-processor. This process is repeated until a set of
clauses is proven safe, unsafe or resources are exhausted.

FTAM – Finite tree automata manipulator
AI –Abstract interpreter PP – Pre-processor

CG – Clauses generator

Pi

i = 0

Abstraction Refinement

PP
P ′i

i = i+ 1

AI

approximation M

set of traces
M

safe
no

unsafe

yes and feasible

set of traces
error traces

Pi

P ′i

Verifier
false ∈M?

error traces?
FTAM

FTA operations

traces
CG

Figure 1.1: The overview of our verification framework and the architecture of Rahft.

The main contributions of the thesis are the following.

• We present a satisfiability preserving transformation (specialisation) of Horn clauses. It
specialises the constraints in Horn clauses with respect to a goal. The constraints in the
clauses are strengthened using the invariants computed by abstract interpretation for
their query-answer transformation (a program transformation which allows the query-
dependence to be “compiled” to the program clauses). The effect is to propagate the
constraints from the goal and from the constrained facts (clauses whose body only con-
tain constraints). The approach is independent of the abstract domain and the constraint
theory underlying the clauses and does not unfold the clauses at all; this provides bene-
fits over other transformational approaches based on partial evaluation and fold-unfold
transformation.
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• We present tree-automata techniques for the refinement of abstract interpretation in
Horn clause verification. We extend previous work on refining trace abstractions in sev-
eral directions. Firstly, the use of tree automata allows us to capture traces in any Horn
clause derivation not only in transition systems. Secondly, we show how abstract inter-
pretation can be used to abstract Horn clause derivations (traces) in the form of finite
tree automata. Thirdly, we exploit the connection between Horn clauses and finite tree
automata for Horn clause transformation. Fourthly, we integrate interpolant tree au-
tomata to generalise error traces during refinement of trace abstraction. An interpolant
between two unsatisfiable formulas A and B is a formula over the common variables of
A and B which concisely explains why they are unsatisfiable.

• We propose a proof decomposition technique for Horn clauses, based on a character-
isation of its derivation trees (the concept of tree dimension which is a measure of its
non-linearity). A proof of a set of CHCs can be decomposed into several proofs for dif-
ferent values of tree dimension, which can be computed in parallel. In this way, the proof
for the original set of CHCs can be composed from the proofs of its constituents.

• We present an abstraction-refinement approach for solving a set of non-linear Horn clauses
(clauses which contain more than one non-constraint atom in their bodies) using an
off-the-shelf linear Horn clause solver. The approach is based on a linearisation of a
dimension-bounded set of Horn clauses (Horn clauses whose derivation trees have
bounded tree dimension) using partial evaluation and the use of a linear Horn clause
solver. In this, we explore the relation between the solvability of a problem and its di-
mension.

• The ideas presented in the thesis are implemented in Rahft, an abstraction refinement
tool for verifying safety properties of programs expressed as Horn clauses. This tool
combines three powerful techniques for program verification in the same framework: (i)
program specialisation, (ii) abstract interpretation, and (iii) trace abstraction refinement.
Rahft compares favourably with the other state of the art Horn clause verification
tools in the literature. The tool has been evaluated by the artifact evaluation committee
(AEC) of the CAV’16 conference and has received the seal of AEC-CAV’16.

1.5 overview of the thesis

The thesis is organised as follows: Chapter 2 provides some background on constrained Horn
clauses and proof techniques for Horn clauses. Chapters 3 to 9 contain published research
papers as distinct chapters. For simplicity, the title of the chapter is chosen to be the same as
the title of the paper. Finally Chapter 10 concludes the thesis. A schematic overview of the
thesis is shown in Figure 1.2. It summarises how the chapters fit together in the thesis and
contribute to providing solutions to the problem statement (research goal). In more detail:

chapter 3 Since Horn clause verification is interesting to both the logic programming
and the verification communities [16], several techniques and tools have been developed for
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Figure 1.2: Graphical representation of the thesis structure. The arrows represent dependencies be-
tween the chapters.
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it. In Chapter 3, we study the role of off-the-shelf techniques from the literature in analysis
and transformation of CLPs and their combination to solve CHC verification problems. Our
findings (i) show that a suitable combination of tools based on well-known techniques such as
abstract interpretation, program specialisation and query-answer transformations can often
solve many problems; and (ii) provide insights into the design of automatic CHC verification
tools based on a library of components. This chapter provides a basis for the verification
framework presented in Section 1.4, which has been improved and strengthened throughout
the thesis. The chapters that follow contribute to each component of the framework. This
chapter is identical to the paper [59].

chapter 4 Our study in Chapter 3 suggested a prominent role for program transforma-
tion in Horn clause verification, and its role as a pre-processing component in our verification
framework could be an advantage. This is also motivated by the recent advances in Satis-
fiability Modulo Theories (SMT) solving and transformational approaches to Horn clause
verification. Therefore, we developed a method for program transformation which specialises
the constraints in Horn clauses with respect to a goal. The method uses abstract interpreta-
tion and query-answer transformation to program specialisation. The method is generic in
the sense that it is independent of the abstract domain and the constraints theory underlying
the clauses. This chapter is essentially the same as the paper [98] which in turn was based on
the papers [94, 93].

chapter 5 Abstract interpretation as a scalable program analysis technique allows many
true properties to be proven and can be used as an analysis component in our framework
as indicated in Chapter 3. However it suffers from false alarms: that is, false properties and
true but not provable properties are indistinguishable. To mitigate this problem we resorted
to a refinement technique using finite tree automata (FTAs), described in Chapter 5. The
motivations behind this are: (i) FTAs provide a clear method for manipulating Horn clause
derivations which allows us to refine a set of traces rather than a set of states; (ii) these trace
refinements induce refinement in the original program; (iii) the refinements are property
directed; and (iv) the refinement is independent of the abstract domain and constraint theory
underlying the Horn clauses. This chapter is essentially the same as the paper [96] which in
turn was based on the paper [95].

chapter 6 The refinement using FTAs presented in Chapter 5 eliminates one spurious
trace in each iteration of the abstraction refinement loop in our framework, though the FTA
operations offer removal of a set of traces without any additional implementation cost. There-
fore we use the concept of interpolant tree automata to discover more infeasible traces by trace
generalisation and remove them in a single abstraction refinement iteration. This was moti-
vated by the concept of interpolant automata [75, 147] and the success of interpolation based
techniques in Horn clause verification [126, 65]. This chapter is essentially the same as [97].

chapter 7 In the previous chapters, we looked for a single proof for a set of Horn clauses.
In this chapter, we propose a proof decomposition technique for a set of Horn clauses, based
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on a characterisation of its derivation trees (the concept of tree dimension which is a measure
of its non-linearity). A proof of a set of CHCs can be decomposed into the separate proofs of
a set of sets of CHCs using tree dimension. Then the proof for the original set of CHCs can be
obtained from the proof of its constituents, which could be done in parallel. This chapter is
essentially the same as the paper [99].

chapter 8 In the literature, there are Horn clause solvers whose underlying engine can
handle only linear clauses; in principle this restricts their applicability. Therefore the goal of
this chapter is to provide a method which allows a linear solver to solve non-linear problems.
The results suggest that it is feasible. As a consequence, more dedicated linear solvers can be
developed which can be more efficient and simpler than the non-linear ones. This chapter is
essentially the same as the paper [101].

chapter 9 Here we present Rahft (Refinement of Abstraction in Horn clauses using Fi-
nite Tree automata), an abstraction refinement tool for verifying safety properties of programs
expressed as Horn clauses. This tool encapsulates the ideas presented in previous chapters,
and combines three powerful techniques for program verification in the same framework: (i)
program specialisation, (ii) abstract interpretation, and (iii) trace abstraction refinement. Its
modular design and customizable components allows for experimentation with new verifica-
tion techniques and tools developed for Horn clauses. This chapter is essentially the same as
the paper [103].

chapter 10 Concludes the thesis by highlighting the contributions and indicating some
future directions of work.





2
P R E L I M I N A R I E S

This chapter aims to introduce readers to Horn clauses and different proof techniques for
checking satisfiability of a set of Horn clauses. Since the thesis draws on several techniques in
the literature and is based on a set of self-contained papers, we omit detailed background ma-
terials and refer to standard textbooks and articles. The thesis does presuppose background
knowledge in several areas such as first order logic, logic programming, abstract interpreta-
tion and so on. So, for interested readers who would like to know more, we suggest different
levels of reading materials: introductory material, advanced material and key research papers
in Appendix A.

2.1 syntax and semantics of constraint logic programs

We start by recalling some basic notions and terminology of CLP. We consider CLP programs
parametrized by a constraint theory D and represent it by CLP(D) [81]. A signature Σ of (first
order) predicate logic consists of a finite or countably infinite set R of predicate (relation)
symbols with arity n > 0, a finite or countably infinite set F of function symbols with arity
n > 0, a countably infinite set V of variables, the set {¬,∧,∨,→,↔} of connectives, and the
set {∀,∃} of quantifiers. We denote by L(R,F,V) (or simply L), the language generated by the
signature. We represent the set of function and predicate symbols defined in the constraint
domain by Fc and Rc respectively and the set of function and predicate symbols defined by
the user by Fu and Ru respectively.

A term is either a variable in V or an expression of the form f(t1, . . . , tn) where f/n ∈ F

and t1, . . . , tn are terms. A term is closed or ground (instantiated), if it does not contain any
variable.

An atomic formula (atom) of the language L(R,F,V) is an expression of the form p(t1, . . . , tn),
where p/n ∈ Ru and t1, . . . , tn are terms.

A predicate logic formula of the language L(R,F,V) is either an atomic formula or a for-
mula constructed from already constructed formulas using the connectives and quantifiers
[49]. A formula is closed if all variable occurrences in the formula are within the scope of a
quantifier over the variable.

An atomic constraint is an atomic formula p(t1, . . . , tn), where p/n ∈ Rc and t1, . . . , tn are
terms. A constraint is either false, or true or a first order formula built from atomic constraints.

A CLP program P is a finite set of clauses of the form H ← φ,B1, . . . ,Bk where H is an
atom and Bi’s are atoms or constraints. We implicitly assume that all the variables in the
clauses are universally quantified. Sometimes we represent the clause by H ← φ,B, where φ
is a conjunction of constraints and B is a (possibly empty) conjunction of atoms. H is called
the head and φ,B is called the body of the clause. A constrained fact is a clause of the form
H← φ. If φ is true then the constrained fact is called a fact and is usually written as H.

11
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The semantics of CLP is parametrized by the interpretation of constraints. A constraint
interpretation consists of a non-empty set D (domain of interpretation) and a mapping _I

(indicated by a super-script) which satisfies the following conditions.

• Every n-ary function symbol f/n ∈ Fc is mapped to an n-ary function fI : Dn → D.

• Every n-ary relation symbol p/n ∈ Rc is mapped to an n-ary relation pI ⊆ Dn.

Let H be the set of all possible ground terms built from the elements of D and f ∈ Fu
in the language of a program P. Given a constraint interpretation D, an interpretation of
the predicate symbols in Ru is called a D-interpretation and is defined as follows. A D-
interpretation is an interpretation with universe H such that: (i) it assigns to elements of Fc
and Rc the meanings given above, and (ii) it is the Herbrand interpretation [119] for function
and predicate symbols in Fu and Ru. A D-interpretation which makes true (satisfies) every
clause (formula) in P is called a D-model. An interpretation can be seen as a set of ground
facts of the form p(d1, . . . ,dk) where di ∈ H.

The semantics of a CLP program P is defined to be the least D-model of P, that is, the
least D-interpretation that satisfies each clause of P. This is also called the least model, de-
noted M[[P]] [81]. From now on we omit D from the interpretation and model and assume it
implicitly.

We refer to [81] for the interpretation of CHCs as CLP programs. A set of CHCs can be
regarded as a CLP program. CHCs and CLP serve as specifications or semantic representa-
tions of programs or design models. In contrast to CHCs, a CLP program is an executable
program. However the semantic equivalence of CHC and CLP allows techniques developed
in one framework to be applied to the other.

2.2 constrained horn clauses : interpretations and models

A (constrained) Horn clause is a CLP clause. Using FOL notation, we write it as ∀(φ ∧

p1(X1)∧ . . .∧ pk(Xk) → p(X)) (k > 0), where φ is a constraint in some constraint theory,
X1, . . . ,Xk,X are (possibly empty) vectors of terms, p1, . . . ,pk,p are predicate symbols. In
this thesis, we assume that the arguments of a predicate are always regarded as a tuple of
distinct variables unless otherwise stated; when we write p(X) or p(a), then X and a stand for
(possibly empty) tuples of variables and ground terms respectively. Following the syntactic
conventions of CLP [81] we write a Horn clause as p(X)← φ,p1(X1), . . . ,pk(Xk). We consider
that φ is a conjunction of atomic constraints without loss of generality. This is because a con-
straint can be written using only the connectives {∧,∨,¬}; the constraint theory we consider
is the theory of linear arithmetic which is closed under negation; and any clause of the form
H← (φ1 ∨φ2)∧B can be replaced by the clauses H← φ1 ∧B and H← φ2 ∧B. An integrity
constraint is a special kind of CHC whose head is false where the predicate false is always
interpreted as the empty relation False. From now on we assume that Fu = ∅.

An interpretation of a set of CHCs is represented as a set of constrained facts of the form
A ← φ where A is an atomic formula p(Z) and Z is a tuple of distinct variables and φ is
a constraint over Z (quantifier free linear arithmetic formula). The constrained fact A ← φ
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stands for the set of ground facts Aθ (where θ is a grounding substitution) such that φθ holds
in the constraint theory. The interpretations of a program are related by a subset relation. We
write M1 ⊆ M2 if the set of denoted ground facts of M1 is contained in the set of denoted
ground facts of M2. An interpretation M satisfies a CHC p0(X0) ← φ,p1(X1), . . . ,pk(Xk), if
M contains constrained facts {pi(Xi) ← φi | 0 6 i 6 n}, and ∀(φ0 ← (φ∧

∧n
i=1φi)) is true.

Note that a set of clauses without integrity constraints is satisfiable.
A set of Horn clauses P enjoys an interesting property, called the model intersection property.

This states that given a set {Mj | j ∈ J} of models of P (expressed as a set of ground facts) their
intersection

⋂
j∈JMj is also a model of P [81].

minimal models . There exists a minimal model (the intersection of all models) with
respect to the subset ordering, denoted M[[P]] where P is the set of CHCs. The fixed point se-
mantics (model semantics) of P are based on the immediate consequence operator (function)
represented as SD

P , which is an extension of the standard TP operator from logic programming
[119], extended to handle the constraint domain D [81, Section 4]. It is defined on sets of facts,
which forms a complete lattice under the subset ordering. By the Knaster-Tarski theorem,
there exists a least and a greatest fixed points of SD

P since SD
P is a monotone function on a com-

plete lattice.M[[P]] can be computed as the least fixed point (lfp) of SD
P . Furthermore lfp(SD

P) can
be computed as the limit of the ascending sequence of interpretations ∅,SD

P(∅),SD
P(S

D
P(∅)), . . ..

We refer to [81] for further details.

2.3 proof techniques for constrained horn clauses

The CHC verification problem is to check whether there exists a model of P. If so we say that
P is safe. We write P |= F to mean that F is a logical consequence of P, that is, that every
interpretation satisfying P also satisfies F. Similarly P ` F means that F is derivable from P

using some proof procedure. For a theory with a sound and complete proof procedure, for
example FOL, we can replace |= by ` and vice-versa. We define several proof techniques for
Horn clauses verification; depending on the choice made, we exploit different formulations
for Horn clause verification. These are based on two equivalent formulations [81] for CHC
verification, namely, Formulations 2.1 and 2.2.

Formulation 2.1 (Model based). P has a model if and only if P 6|= false

Formulation 2.2 (Deductive or proof based). P has a model if and only if P 6` false (false is not
provable from P).

proof by specialisation. A specialisation of a set of CHCs P with respect to an atom
A is the transformation of P to another set of CHCs P ′ such that P |= A if and only if
P ′ |= A. Specialisation is usually viewed as a program optimisation method possibly removing
redundancy and pre-computing statically determined computations of a general purpose
program. Formulations 2.1 or 2.2 are equally relevant for this techniques. In particular, we
have the following formulation.
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Formulation 2.3 (Specialisation based). Let P be a set of CHCs, and Ps be a specialised set of CHCs
with respect to the atom false. P has a model if Ps contains no clause with false head. P has no model if
Ps contains a clause of the form false← true.

We exploit Formulation 2.3 in Chapter 4.

proof by over-approximation of the minimal model . Given a set of CHCs, its
minimal model M[[P]] is equivalent to the set of atomic consequences of P [119]. That is,
P |= p(a) if and only if p(a) ∈M[[P]]. It is sufficient to find a set of constrained facts M ′ such
that M[[P]] ⊆M ′, where false 6∈M ′. We have:

Formulation 2.4 (Over-approximation of the minimal model). Given P andM ′ such thatM[[P]] ⊆
M ′. P has a model if false 6∈M ′.

Formulation 2.4 forms the basis of tools based on abstract interpretation or predicate abstraction
[65, 70, 96]. We exploit Formulation 2.4 in Chapter 5. But nothing can be said if false ∈ M ′.
This could mean either P has no model, or M ′ was too large.

proof by over-approximation of the successful derivations of P . The CHC
verification problem for P is equivalent to checking that there are no successful derivations of
false using P. If we can find a superset of successful derivations of P which does not contain
any derivation of false, then we have shown that P has a model.

Formulation 2.5 (Over-approximation of successful derivations of P (trace based)). Let P be a
set of CHCs, = a set of successful derivations of P, = ′ a set of derivations such that = ⊆ = ′. P has a
model if ∀t .(t rooted at false ∧ successful t → t 6∈ = ′).

Formulation 2.5 forms the basis of the tools described in [74, 147], which we exploit in
Chapter 5. = ′ is also called a trace-abstraction for P. If t ∈ = ′ is a trace rooted at false and
is successful with respect to P, then we say that P has no model and the derivation t is a
counterexample which justifies why P has no model.

Given a Horn clause derivation (a labelled tree), its tree-dimension is a measure of its non-
linearity. For example a linear derivation has dimension 0 while a perfect binary tree has
dimension equal to its height. Based on this notion, we have the following formulation for
Horn clause verification.

Formulation 2.6 (Deductive–dimension based). P has a model if and only if there is no successful
derivation of false – of any dimension.

We exploit this formulation in Chapter 7 to decompose the verification problem.
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A N A LY S I S A N D T R A N S F O R M AT I O N T O O L S F O R C O N S T R A I N E D
H O R N C L A U S E V E R I F I C AT I O N

With John P. Gallagher

Abstract
Several techniques and tools have been developed for verification of properties expressed
as Horn clauses with constraints over a background theory (CHC). Current CHC verifica-
tion tools implement intricate algorithms and are often limited to certain subclasses of CHC
problems. Our aim in this work is to investigate the use of a combination of off-the-shelf tech-
niques from the literature in analysis and transformation of Constraint Logic Programs (CLPs)
to solve challenging CHC verification problems. We find that many problems can be solved
using a combination of tools based on well-known techniques from abstract interpretation,
semantics-preserving transformations, program specialisation and query-answer transforma-
tions. This gives insights into the design of automatic, more general CHC verification tools
based on a library of components.

Keywords: Constraint Logic Program, Constrained Horn Clause, Abstract Interpretation, Soft-
ware Verification.

3.1 introduction

CHCs provide a suitable intermediate form for expressing the semantics of a variety of
programming languages (imperative, functional, concurrent, etc.) and computational mod-
els (state machines, transition systems, big- and small-step operational semantics, Petri nets,
etc.). As a result it has been used as a target language for software verification. Recently there
is a growing interest in CHC verification from both the logic programming and software ver-
ification communities, and several verification techniques and tools have been developed for
CHC.

CLPs are syntactically and semantically the same as CHC. The main difference is that sets
of constrained Horn clauses are not necessarily intended for execution, but rather as specifi-
cations. From the point of view of verification, we do not distinguish between CHC and pure
CLP. Much research has been carried out on the analysis and transformation of CLP programs,
typically for synthesising efficient programs or for inferring run-time properties of programs
for the purpose of debugging, compile-time optimisations or program understanding. In this
chapter we investigate the application of this research to the CHC verification problem.

In Section 3.2 we define the CHC verification problem. In Section 3.3 we define basic trans-
formation and analysis components drawn from or inspired by the CLP literature. Section 3.4

15
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discusses the role of these components in verification, illustrating them on an example prob-
lem. In Section 3.5 we construct a tool-chain out of these components and test it on a range of
CHC verification benchmark problems. The results reported represent one of the main contri-
butions of this work. In Section 3.6 we propose possible extensions of the basic tool-chain and
compare them with related work on CHC verification tool architectures. Finally in Section 3.7
we summarise the conclusions from this work.

3.2 background : the chc verification problem

A CHC is a first order predicate logic formula of the form ∀(φ∧ p1(X1)∧ . . .∧ pk(Xk) →
p(X)) (k > 0), where φ is a conjunction of constraints with respect to some background theory,
Xi,X are (possibly empty) vectors of distinct variables, p1, . . . ,pk,p are predicate symbols,
p(X) is the head of the clause and φ ∧ p1(X1) ∧ . . . ∧ pk(Xk) is the body. Sometimes the
clause is written p(X)← φ∧ p1(X1), . . . ,pk(Xk) and in concrete examples it is written in the
form p(X) :- φ, p1(X1),. . .,pk(Xk). In examples, predicate symbols start with lowercase
letters while we use uppercase letters for variables.

We assume here that the constraint theory is linear arithmetic with relation symbols 6, >, >,
< and = and that there is a distinguished predicate symbol false which is interpreted as False.
We assume that the predicate false only occurs in the head of clauses; we call clauses whose
head is false, integrity constraints, following the terminology of deductive databases. Thus
the formula φ1 ← φ2 ∧ p1(X1), . . . ,pk(Xk) is equivalent to the formula false ← ¬φ1 ∧φ2 ∧

p1(X1), . . . ,pk(Xk). The latter might not be a CHC but can be converted to an equivalent set of
CHCs by transforming the formula ¬φ1 and distributing any disjunctions that arise over the
rest of the body. For example, the formula X=Y :- p(X,Y) is equivalent to the set consisting
of the CHCs false :- X>Y, p(X,Y) and false :- X<Y, p(X,Y). Integrity constraints can be
viewed as safety properties. If a set of CHCs encodes the behaviour of some system, the bodies
of integrity constraints represent unsafe states. Thus proving safety consists of showing that
the bodies of integrity constraints are false in all models of the CHCs.

the chc verification problem . To state this more formally, given a set of CHCs P,
the CHC verification problem is to check whether there exists a model of P. We restate this
property in terms of the derivability of the predicate false.

Lemma 3.1. P has a model if and only if P 6|= false.

Proof. Let us write I |= F to mean that interpretation I satisfies F (I is a model of F).

P 6|= false ≡ ∃I.(I |= P and I 6|= false)

≡ ∃I.I |= P (since I 6|= false is True by defn. of false)

≡ P has a model.

Obviously any model of P assigns False to the bodies of integrity constraints.
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The verification problem can be formulated deductively rather than model-theoretically.
Let the relation P ` A denote that A is derivable from P using some proof procedure. If the
proof procedure is sound and complete then P 6|= A if and only if P 6` A. So the verification
problem is to show (using CLP terminology) that the computation of the goal ← false in
program P does not succeed using a complete proof procedure. Although in this work we
follow the model-based formulation of the problem, we exploit the equivalence with the
deductive formulation, which underlies, for example, the query-answer transformation and
specialisation techniques to be presented.

3.2.1 Representation of Interpretations

An interpretation of a set of CHCs is represented as a set of constrained facts of the form A← C

where A is an atomic formula p(Z1, . . . ,Zn) where Z1, . . . ,Zn are distinct variables and C is
a constraint over Z1, . . . ,Zn. If C is true we write A ← or just A. The constrained fact A ← C

is shorthand for the set of variable-free facts Aθ such that Cθ holds in the constraint theory,
and an interpretation M denotes the set of all facts denoted by its elements; M assigns true
to exactly those facts. M1 ⊆ M2 if the set of denoted facts of M1 is contained in the set of
denoted facts of M2.

minimal models . A model of a set of CHCs is an interpretation that satisfies each clause.
There exists a minimal model with respect to the subset ordering, denoted M[[P]] where P
is the set of CHCs. M[[P]] can be computed as the least fixed point (lfp) of an immediate
consequences operator, TCP , which is an extension of the standard TP operator from logic
programming, extended to handle constraints [81]. Furthermore lfp(TCP ) can be computed as
the limit of the ascending sequence of interpretations ∅, TCP (∅), TCP (TCP (∅)), . . .. For more details,
see [81]. This sequence provides a basis for abstract interpretation of CHCs.

proof by over-approximation of the minimal model . It is a standard theorem of
CLP that the minimal model M[[P]] is equivalent to the set of atomic consequences of P. That
is, P |= p(a) if and only if p(a) ∈ M[[P]]. Therefore, the CHC verification problem for P is
equivalent to checking that false 6∈ M[[P]]. It is sufficient to find a set of constrained facts M ′

such that M[[P]] ⊆M ′, where false 6∈M ′. This technique is called proof by over-approximation
of the minimal model.

3.3 relevant tools for chc verification

In this section, we give a brief description of some relevant tools borrowed from the literature
in analysis and transformation of CLP.

unfolding . Let P be a set of CHCs and c0 ∈ P be H(X) ← B1,p(Y),B2 where B1,B2
are possibly empty conjunctions of atomic formulas and constraints. Let {c1, . . . , cm} be the
set of clauses of P that have predicate p in the head, that is, ci = p(Zi) ← Di, where the
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variables of these clauses are standardised apart [119] from the variables of c0 and from each
other. Then the result of unfolding c0 on p(Y) is the set of CHCs P ′ = P \ {c0} ∪ {c ′1, . . . , c ′m}

where c ′i = H(X) ← B1, Y = Zi,Di,B2. The equalities Y = Zi stands for the conjunction
of the equality of the respective elements of the vectors Y and Zi. It is a standard result that
unfolding a clause in P preserves P’s minimal model [131]. In particular, P |= false iff P ′ |= false.

specialisation. A set of CHCs P can be specialised with respect to a query. Assume A
is an atomic formula; then we can derive a set PA such that P |= A ≡ PA |= A. PA could
be simpler than P, for instance, parts of P that are irrelevant to A could be omitted in PA.
In particular, the CHC verification problem for Pfalse and P are equivalent. There are many
techniques in the CLP literature for deriving a specialised program PA. Partial evaluation is
a well-developed method [52, 111].

We make use a form of specialisation known as slicing (commonly used in the setting of im-
perative programs), more specifically redundant argument filtering [114], in which predicate
arguments can be removed if they do not affect a computation. Given a set of CHCs P and
a query A, denote by Praf

A the program obtained by applying the RAF algorithm from [114]
with respect to the goal A. We have the property that P |= A iff Praf

A |= A and in particular that
P |= false iff Praf

false |= false.

query-answer transformation. Given a set of CHCs P and an atomic query A, the
query-answer transformation of P with respect to A is a set of CHCs which simulates the
computation of the goal← A in P, using a left-to-right computation rule. Query-answer trans-
formation is a generalisation of the magic set transformations for Datalog. For each predicate
p, two new predicates pans and pquery are defined. For an atomic formula A, Aans and
Aquery denote the replacement of A’s predicate symbol p by pans and pquery respectively.
Given a program P and query A, the idea is to derive a program P

qa
A with the following prop-

erty P |= A iff Pqa
A |= Aans. The Aquery predicates represent calls in the computation tree

generated during the execution of the goal. For more details see [41, 54, 24]. In particular,
P

qa
false |= falseans iff P |= false, so we can transform a CHC verification problem to an equivalent

CHC verification problem on the query-answer program generated with respect to the goal
← false. Please refer to Chapter 4 for more details.

predicate splitting . Let P be a set of CHCs and let {c1, . . . , cm} be the set of clauses in
P having some given predicate p in the head, where ci = p(X)← Di. Let C1, . . . ,Ck be some
partition of {c1, . . . , cm}, where Cj = {cj1 , . . . , cjnj }. Define k new predicates p1 . . . pk, where
pj is defined by the bodies of clauses in partition Cj, namely Qj = {pj(X)← Dj1 , . . . ,pj(X)←
Djnj }. Finally, define k clauses Cp = {p(X) ← p1(X), . . . ,p(X) ← pk(X)}. Then we define a
splitting transformation as follows.

1. Let P ′ = (P \ {c1, . . . , cm})∪Cp ∪Q1 ∪ . . .∪Qk.

2. Let Psplit be the result of unfolding every clause in P ′ whose body contains p(Y) with
the clauses Cp.
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In our applications, we use splitting to create separate predicates for clauses for a given pred-
icate whose constraints are mutually exclusive. For example, given the clauses new3(A,B) :-

A=<99, new4(A,B) and new3(A,B) :- A>=100, new5(A,B), we produce two new predicates,
since the constraints A=<99 and A>=100 are disjoint. The new predicates are defined by clauses
new31(A,B) :- A=<99, new4(A,B) and new32(A,B) :- A>=100, new5(A,B), and all calls to
new3 throughout the program are unfolded using these new clauses. Splitting has been used
in the CLP literature to improve the precision of program analyses, for example in [139]. In
our case it improves the precision of the convex polyhedron analysis discussed below, since
separate polyhedra will be maintained for each of the disjoint cases. The correctness of split-
ting can be shown using standard transformations that preserve the minimal model of the
program (with respect to the predicates of the original program) [131]. Assuming that the
predicate false is not split, we have that P |= false iff Psplit |= false.

convex polyhedron approximation. Convex polyhedron analysis [31] is a program
analysis technique based on abstract interpretation [32]. When applied to a set of CHCs P it
constructs an over-approximation M ′ of the minimal model of P, where M ′ contains at most
one constrained fact p(X)← C for each predicate p. The constraint C is a conjunction of linear
inequalities, representing a convex polyhedron. The first application of convex polyhedron
analysis to CLP was by Benoy and King [10]. Since the domain of convex polyhedra contains
infinite increasing chains, the use of a widening operator is needed to ensure convergence
of the abstract interpretation. Furthermore much research has been done on improving the
precision of widening operators. One technique is known as widening-upto, or widening with
thresholds [72].

Recently, a technique for deriving more effective thresholds was developed [108], which we
have adapted and found to be effective in experimental studies. The thresholds are computed
by the following method. Let TCP be the standard immediate consequence operator for CHCs,
that is, TCP (I) is the set of constrained facts that can be derived in one step from a set of
constrained facts I. Given a constrained fact p(Z) ← C, define atomconstraints(p(Z) ← C) to
be the set of constrained facts {p(Z) ← Ci | C = C1 ∧ . . .∧ Ck, 1 6 i 6 k)}. The function
atomconstraints is extended to interpretations by

atomconstraints(I) =
⋃

p(Z)←C∈I

{atomconstraints(p(Z)← C)}.

Let I> be the interpretation consisting of the set of constrained facts p(Z) ← true for each
predicate p. We perform three iterations of TCP starting with I> (the first three elements of
a “top-down" Kleene sequence) and then extract the atomic constraints. That is, thresholds is
defined as follows.

thresholds(P) = atomconstraints(TC(3)P (I>))

A difference from the method in [108] is that we use the concrete semantic function TCP rather
than the abstract semantic function when computing thresholds. The set of threshold con-
straints represents an attempt to find useful predicate properties and when widening they
help to preserve invariants that might otherwise be lost during widening. Lakhdar et al. [108]
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new6(A,B) :- B=<99. new4(A,B) :- C=1+A,D=1+B,A>=50,new3(C,D).

new5(A,B) :- B>=101. new3(A,B) :- A=<99, new4(A,B).

new5(A,B) :- B=<100, new6(A,B). new3(A,B) :- A>=100, new5(A,B).

new4(A,B) :- C=1+A, A=<49, new3(C,B). false :- A=0, B=50, new3(A,B).

Figure 3.1: The example program MAP-disj.c.map.pl

claim that three iterations are enough to capture dependecies between complex loop struc-
tures. See [108] for further details. Threshold constraints that are not invariants are simply
discarded during widening. We discuss further about the threshold constraints with motiva-
tion and example in Chapter 4.

3.4 the role of clp tools in verification

The techniques discussed in the previous section play various roles. The convex polyhedron
analysis, together with the helper tool to derive threshold constraints, constructs an approxi-
mation of the minimal model of a CHC theory. If false (or falseans) is not in the approximate
model, then the verification problem is solved. Otherwise the problem is not solved; in effect
a “don’t know" answer is returned. We have found that polyhedron analysis alone is seldom
precise enough to solve non-trivial CHC verification problems; in combination with the other
tools, it is very effective.

Unfolding can improve the structure of a program, removing some cases of mutual recur-
sion, or propagating constraints upwards towards the integrity constraints, and can improve
the precision and performance of convex polyhedron analysis.

Specialisation can remove parts of theories not relevant to the verification problem, and
can also propagate constraint downwards from the integrity constraints. Both of these have a
beneficial effect on performance and precision of polyhedron analysis.

Analysis of a query-answer program (with respect to false) is in effect the search for a deriva-
tion tree for false. Its effectiveness in CHC verification problems is variable. It can sometimes
worsen performance since the query-answer transformed program is larger and contains more
recursive dependencies than the original. On the other hand, one seldom loses precision and
it is often more effective in allowing constraints to be propagated upwards (through the ans
predicates) and downwards (through the query predicates).

3.4.1 Application of the tools

We illustrate the tools on a running example (Figure 3.1), one of the benchmark suite of the
VeriMAP system [37]. The result of applying unfolding is shown in Figure 3.2 (omitting the
definitions of the unfolded predicates new4, new5 and new6, which are no longer reachable
from false). The unfolding strategy we adopt is the following: the predicate dependency graph
of a program consists of the set of edges (p,q) such that there is clause where p is the predicate
of the head and q is a predicate occurring in the body. We perform a depth-first search of the
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false :- A=0, B=50, new3(A,B).

new3(A,B) :- A=<99, C = 1+A, A=<49, new3(C,B).

new3(A,B) :- A=<99, C = 1+A, D = 1+B, A>=50, new3(C,D).

new3(A,B) :- A>=100, B>=101.

new3(A,B) :- A>=100, B=<100, B=<99.

Figure 3.2: Result of unfolding MAP-disj.c.map.pl

false_ans :- false_query, A=0, B=50, new3_ans(A,B).

new3_ans(A,B) :- new3_query(A,B), A=<99, C = 1+A, A=<49, new3_ans(C,B).

new3_ans(A,B) :- new3_query(A,B),A=<99,C is 1+A,D is 1+B, A>=50, new3_ans(C,D).

new3_ans(A,B) :- new3_query(A,B), A>=100, B>=101.

new3_ans(A,B) :- new3_query(A,B), A>=100, B=<100, B=<99.

new3_query(A,B) :- false_query, A=0, B=50.

new3_query(A,B) :- new3_query(C,B), C=<99, A = 1+C, C=<49.

new3_query(A,B) :- new3_query(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

false_query.

Figure 3.3: The query-answer transformed program for program of Figure 3.2

predicate dependency graph, starting from false, and identify the backward edges, namely
those edges (p,q) where q is an ancestor of p in the depth-first search. We then unfold every
body call whose predicate is not at the end of a backward edge (note that it may cause an
exponential blow-up of clauses). In Figure 3.1, we thus unfold calls to new4, new5 and new6.

The query-answer transformation is applied to the program in Figure 3.2, with respect to
the goal false resulting in the program shown in Figure 3.3. The model of the predicate
new3_query corresponds to those calls to new3 that are reachable from the call in the integrity
constraint. Explicit representation of the query predicates permits more effective propagation
of constraints from the integrity clauses during model approximation.

The splitting transformation is now applied to the program in Figure 3.3. We do not show
the complete program, which contains 30 clauses. Figure 3.4 shows the split definition of
new3_query, which is split since the last two clauses for new3_query in Figure 3.3 have mutu-
ally disjoint constraints, when projected onto the head variables.

new3_query___1(A,B) :- false_query___1, A=0, B=50.

new3_query___1(A,B) :- new3_query___1(C,B), C=<99, A = 1+C, C=<49.

new3_query___1(A,B) :- new3_query___2(C,B), C=<99, A = 1+C, C=<49.

new3_query___2(A,B) :- new3_query___1(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

new3_query___2(A,B) :- new3_query___2(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

Figure 3.4: Part of the split program for the program in Figure 3.3
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false_query___1 :- []

new3_query___1(A,B) :- [1*A>=0,-1*A>= -50,1*B=50]

new3_query___2(A,B) :- [1*A>=51,-1*A>= -100,1*A+ -1*B=0]

Figure 3.5: The convex polyhedral approximate model for the split program

A convex polyhedron approximation is then computed for the split program, after com-
puting threshold constraints for the predicates. The resulting approximate model is shown
in Figure 3.5 as a set of constrained facts. Since the model does not contain any constrained
fact for false_ans we conclude that false_ans is not a consequence of the split program.
Hence, applying the various correctness results for the unfolding, query-answer and splitting
transformations, false is not a consequence of the original program.

discussion of the example . Application of the convex polyhedron tool to the origi-
nal, or the intermediate programs, does not solve the problem; all the transformations are
needed in this case, apart from redundant argument filtering, which only affects efficiency.
The ordering of the tool-chain can be varied somewhat, for instance switching query-answer
transformation with splitting or unfolding. In our experiments we found the ordering in Fig-
ure 3.6 to be the most effective because of the following reason. Predicate splitting allows
deriving disjunctive invariants using abstract interpreter as an analyzer, whereas the thresh-
old constraints control the precision of the analyzer. Therefore these two components appear
just before the application of CHA. Usually the input program is automatically generated
as an output of some tools, the predicates in it may contain arguments which are not nec-
essary to prove the property in question. Therefore we can get the most out of RAF if we
apply it in the input program. The component that follows it, that is FU, collects constraints
and sometimes removes loop intricacies (for example mutual recursion). This precedes QA,
which “compiles” goal directness into the program so that the bottom-up analyzer can be
benefitted from it. However if we exchange FU with QA, we may not achieve the same level
of simplification from FU, as QA can further complicate the program structure.

The model of the query-answer program is finite for this example. However, the problem
is essentially the same if the constants are scaled; for instance we could replace 50 by 5000, 49

by 4999, 100 by 10000 and 101 by 10001, and the problem is essentially unchanged. We noted
that some CHC verification tools applied to this example solve the problem, but essentially
by enumeration of the finite set of values encountered in the search. Such a solution does not
scale well. On the other hand the polyhedral abstraction shown above is not an enumeration;
an essentially similar polyhedron abstraction is generated for the scaled version of the exam-
ple, in the same time. The VeriMAP tool [37] also handles the original and scaled versions of
the example in the same time.
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RAF – Redundant Argument Filtering
FU – Forward Unfolding

QA – Query Answer Transformation

PS – Predicate Splitting
TC – Threshold Constraint

CHA – Convex Hull Analyzer

CHC Program P

RAF FU QA PS TC
Safe

unknown

CHA

Figure 3.6: The basic tool chain for CHC verification.

3.5 combining off-the-shelf tools : experiments

The motivation for our tool-chain, summarised in Figure 3.6, comes from our example pro-
gram, which is a simple yet challenging program. We applied the tool-chain to a number of
benchmarks from the literature, taken mainly from the repository of Horn clause benchmarks
in SMT-LIB2 (https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/) and other
sources including [62] and some of the VeriMap benchmarks [37]. We selected these examples
because many of them are considered challenging since they cannot be solved by one or more
of the state-of-the-art-verification tools discussed below. Programs taken from the SMT-LIB2

repository are first translated to CHC form. We assume that the constraints are over the theory
of linear arithmetic and are quantifier free. The results are summarised in Table 3.1.

In Table 3.1, columns Program and Result respectively represent the benchmark program
and the results of verification using our tool combination. Problems marked with (*) could
not be handled by our tool-chain since they contain numbers which do not fit in 32 bits, the
limit of our Ciao Prolog implementation. whereas problems marked with (**) are solvable by
simple ad hoc modification of the tool-chain, which we are currently investigating (see Sec-
tion 3.7). Problems such as systemc-token-ring.01-safeil.c contain complicated loop structure
with large strongly connected components in the predicate dependency graph and our convex
polyhedron analysis tool is unable to derive the required invariant. However overall results
show that our simple tool-chain begins to compete with advanced tools like HSF [64], Ver-
iMAP [37], TRACER [85], etc. We do not report timings, though all these results are obtained
in a matter of seconds, since our tool-chain is not at all optimised, relying on file input-output
and the individual components are often prototypes.

3.6 discussion and related work

The most similar work to ours is by De Angelis et al. [38] which is also based on CLP pro-
gram transformation and specialisation. They construct a sequence of transformations of P,
say, P,P1,P2, . . . ,Pk; if Pk contains no clause with head false then the verification problem is
solved. A proof of unsafety is obtained if Pk contains a clause false ←. Both our approach
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Table 3.1: Experiments results on CHC benchmark program

SN Program Result SN Program Result

1 MAP-disj.c.map.pl verified 17 MAP-forward.c.map.pl verified

2 MAP-disj.c.map-scaled.pl verified 18 tridag.smt2 verified

3 t1.pl verified 19 qrdcmp.smt2 verified

4 t1-a.pl verified 20 choldc.smt2 verified

5 t2.pl verified 21 lop.smt2 verified

6 t3.pl verified 22 pzextr.smt2 verified

7 t4.pl verified 23 qrsolv.smt2 verified

8 t5.pl verified 24 INVGEN-apache-escape-absolute verified

9 pldi12.pl verified 25 TRACER-testabs15 verified

10 INVGEN-id-build verified 26** amebsa.smt2 verified

11 INVGEN-nested5 verified 27** DAGGER-barbr.map.c verified

12 INVGEN-nested6 verified 28* sshsimpl-s3-srvr-1a-safeil.c NOT

13 INVGEN-nested8 verified 29 sshsimpl-s3-srvr-1b-safeil.c NOT

14 INVGEN-svd-some-loop verified 30* bandec.smt2 NOT

15 INVGEN-svd1 verified 31 systemc-token-ring.01-safeil.c NOT

16 INVGEN-svd4 verified 32* crank.smt2 NOT

PA – Predicate AbstractionCHC Program P

RAF

FU QA PS TC CHA
Safe

CEx.

props

unknown

PA

Figure 3.7: Future extension of our tool-chain.

and theirs repeatedly apply specialisations preserving the property to be proved. However
the difference is that their specialisation techniques are based on unfold-fold transformations,
with a sophisticated control procedure controlling unfolding and generalisation. Our special-
isations are restricted to redundant argument filtering and the query-answer transformation,
which specialises predicate answers with respect to a goal. Their test for success or failure is a
simple syntactic check, whereas ours is based on an abstract interpretation to derive an over-
approximation. Informally one can say that the hard work in their approach is performed
by the specialisation procedure, whereas the hard work in our approach is done by the ab-
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stract interpretation. We believe that our tool-chain-based approach gives more insight into
the role of each transformation. The weakness of our approach at the moment is that we can-
not prove unsafety. This needs either generation of counterexamples or iterative application
our procedure and the use of similar idea as in [38] for the proof of unsafety.

Work by Gange et al. [62] is a top-town evaluation of CLP programs which records cer-
tain derivations and learns only from failed derivations. This helps to prune further deriva-
tions and helps to achieve termination in the presence of infinite executions. Duality1 and
HSF(C) [64] are examples of the CEGAR approach (Counter-Example-Guided Abstraction Re-
finement). This approach can be viewed as property-based abstract interpretation based on a
set of properties that is refined on each iteration. The refinement of the properties is the key
problem in CEGAR; an abstract proof of unsafety is used to generate properties (often using
interpolation) that prevent that proof from arising again. Thus, abstract counter-examples are
successively eliminated. The relatively good performance of our tool-chain, without any re-
finement step at all, suggests that finding the right invariants is aided by a tool such as the
convex polyhedron solver and the pre-processing steps we applied. In Figure 3.7 we sketch
possible extensions of our basic tool-chain, incorporating a refinement loop and property-
based abstraction.

It should be noted that the query-answer transformation, predicate splitting and unfolding
may all cause a blow-up in the program size. The convex polyhedron analysis becomes more
effective as a result, but for scalability we need more sophisticated heuristics controlling these
transformations, especially unfolding and splitting, as well as lazy or implicit generation
of transformed programs, using techniques such as a fixpoint engine that simulates query-
answer programs [25].

3.7 concluding remarks and future work

We have shown that a combination of off-the-shelf tools from CLP transformation and analy-
sis, combined in a sensible way, is surprisingly effective in CHC verification. The component-
based approach allowed us to experiment with the tool-chain until we found an effective com-
bination. This experimentation is continuing and we are confident of making improvements
by incorporating other standard techniques and by finding better heuristics for applying the
tools. Further we would like to investigate the choice of chain suitable for each example since
more complicated problems can be handled just by altering the chain. We also suspect from
initial experiments that an advanced partial evaluator such as ECCE [116] will play a useful
role. Our results give insights for further development of automatic CHC verification tools.
We would like to combine our program transformation techniques with abstraction refine-
ment techniques and experiment with the combination.

1 http://research.microsoft.com/en-us/projects/duality/
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C O N S T R A I N T S P E C I A L I S AT I O N I N H O R N C L A U S E V E R I F I C AT I O N

With John P. Gallagher

Abstract
We present a method for specialising the constraints in constrained Horn clauses with respect
to a goal. We use abstract interpretation to compute a model of a query-answer transformation
of a given set of clauses and a goal. The effect is to propagate the constraints from the goal top-
down and propagate answer constraints bottom-up. We use the constraints from the model
to compute a specialised version of each clause in the program. The specialisation procedure
can be repeated to yield further specialisation. The approach is independent of the abstract
domain and the constraint theory underlying the clauses. Experimental results on verification
problems show that this is an effective transformation, both in our own verification tools
(convex polyhedra analyser) and as a pre-processor to other Horn clause verification tools.

Keywords: constraint specialisation, query-answer transformation, Horn clauses, abstract in-
terpretation, convex polyhedral analysis.

4.1 introduction

In this chapter, we present a method for specialising the constraints in constrained Horn
clauses, CHCs in short (also called constraint logic programs) with respect to a goal. The ver-
ification problem that we address has the following setting: a set of constrained Horn clauses
formalises some system and the goal is an atomic formula representing a property of that sys-
tem. We wish to check whether the goal is a consequence of the Horn clauses. The constraint
specialisation procedure uses abstract interpretation to compute constraints propagated both
from the goal top-down and constraints in the clauses bottom-up. Then we construct a spe-
cialised version of each clause by inserting the relevant constraints, without unfolding the
clauses at all. As a result, each clause is further strengthened or removed altogether, while
preserving the derivability of the goal.

Verification of this specialised set of clauses becomes more effective since some implicit
invariants in the original clauses are discovered and made explicit in the specialised version.
A central problem in all automatic verification procedures is to find invariants, and this is the
underlying reason for the usefulness of our constraint specialisation procedure. The approach
is independent of the abstract domain and the constraint theory.

While specialisation has been applied to verification and analysis problems before, the nov-
elty of our procedure is to do specialisation without any unfolding. The only specialisation
is to strengthen constraints within each clause, possibly eliminating a clause if its constraints
become unsatisfiable. This seems to capture the essence of the role of constraint propagation,

27
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int a ,b;

while (*) { // loop invariant l(a,b)

a = a + b;

b = b + 1;

}

(a) Example program Loop_add

a = 1 ∧ b = 0→ l(a,b)

l(a ′,b ′) ∧ a = a ′ + b ′ ∧ b = b ′ + 1→ l(a,b)

l(a,b)→ a > b

(b) Verification conditions for Loop_add

Figure 4.1: Motivating example

c1. l(A,B):- A=1, B=0.

c2. l(A,B):- A=C+D, B=D+1, l(C,D).

c3. false :- B>A, l(A,B).

Figure 4.2: Verification conditions for Loop_add in CLP syntax

separated from other operations such as clause unfolding. Somewhat surprisingly, this appar-
ently limited form of specialisation is capable of handling a lot of verification benchmarks on
its own; on the other hand, due to its simple form, constraint specialisation is a useful pre-
processing step for verification tools incorporating a wider range of techniques. We postulate
that making invariants explicit contributes positively to the effect of other constraint manipu-
lation operations such as widening and interpolation. We therefore present the procedure as
a useful tool in a toolbox for verification of constrained Horn clauses.

motivating example We present an example program in Figure 4.1. The problem is
to show that if a = 1∧ b = 0 holds before executing the program Loop_add in Figure 4.1a
(taken from [38]) then a > b holds after executing it. Figure 4.1b shows the Horn clauses
whose satisfiability establishes this property (its equivalent representation in Constraint Logic
Programing (CLP) syntax is shown in Figure 4.2). The predicate l(a,b) corresponds to the loop
invariant as indicated in Figure 4.1a. The final clause in Figure 4.1b can be equivalently written
as l(a,b)∧ b > a → false. It is a simple but still challenging problem for many verification
tools for constrained Horn clauses. The loop invariant a > b∧ b > 0 proves this program
safe, and in the CHC version that invariant is sufficient to establish that false is not derivable.
Finding this invariant is a challenging task for many state of the art verification tools. For
example QARMC [65] or SeaHorn [70] (using only the PDR engine) do not terminate on this
program. However, SeaHorn (with PDR and the abstract interpreter IKOS) solves it in less
than a second. The tool based on specialisation of Horn clauses [38] needs at least forward
and backward iteration to solve this problem. We discuss how our constraint specialisation
solves this example without needing further processing.

4.1.1 Related Work

There is a good deal of related work, since our procedure draws on a number of different
techniques which have been applied in different contexts and languages. The basic special-
isation and analysis techniques that we apply are well known, though we are not aware of
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previous work combining them in the way we did or applying them effectively in verification
problems.

constraint strengthening Methods for strengthening the constraints in logic pro-
grams go back at least to the work of Marriott et al. on most specific logic programs [123].
In that work the constraints were just equalities between terms and the strengthening was
goal-independent. We say a clause H ← φ,B1, . . . ,Bn is a strengthened version of H ←
ψ,B1, . . . ,Bn if φ → ψ. This notion can be easily extended to a (logic) program. A program
P is a strengthened (more specific) version of another program P ′ if each clause in P is a
strengthened version of the corresponding clause in P ′. In [53] the idea was similar but it
was extended to strengthen constraints while preserving the answers with respect to a goal.
Constraint strengthening was also applied for extracting determinacy in logic program exe-
cutions [36], in a goal-dependent setting, and arithmetic constraints were also handled. The
purpose of constraint strengthening in these works was to improve execution efficiency, for
example by detecting failure earlier or to allow more efficient compilation.

Furthermore the idea of constraint propagation leading to strengthening is widespread in
constraint-based languages and problem-solving frameworks [124, 141] as well as in partial
evaluation and program specialisation [50, 52, 57, 89, 90, 106, 107, 111, 112, 144].

Our methods for strengthening constraints use established techniques and differ from the
works mentioned mainly in the intended application, which is verification in our case. The dis-
tinctive aspects of our procedure are (a) that constraints are derived from a global analysis of
Horn clause derivations starting from a given goal, using abstract interpretation, and (b) that
we strengthen using constraints derived from successful derivations of the goal. This means
that clause specialisation can eliminate failing or looping derivations, which is not allowed
in some of the related work mentioned above, whose aim is to preserve the computational
behaviour of a program including failure and looping.

query-answer transformations and related methods A central tool in our pro-
cedure is query-answer transformation, which is related to the so-called “magic set" trans-
formation. We prefer the terminology query-answer transformation to the name magic set
transformation in the literature, as it reflects the purpose of the transformation.

The relevance of the query-answer transformation to the verification problem is that the
search for a proof of A from a set of Horn clauses P can be attempted “top-down" starting
from the error state (or “query" encoding ¬A), or “bottom-up" using answers derived from
the clauses of P. A query-answer transformation specialises the clauses in P with respect to
the goal A and allows bottom-up and top-down search to be combined.

Combining top-down and bottom-up search is only purpose of query-answer transforma-
tion in our procedure, rather than (as in some other variants in the literature mentioned below)
to improve efficiency of specific analysis or query procedures. It enables stronger constraints
to be derived, namely those that hold in all derivations of a given goal but not necessarily in
all models of the clauses. The transformation we use was essentially described in [54].

The “magic set" transformation originated in the field of Datalog query processing in the
1980s [9, 135, 146]. In the Datalog context, the transformation was invented to combine the ef-
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ficiency of bottom-up evaluation with focussed top-down search starting from a given query.
The transformation with respect to the query returns a set of Datalog rules and facts that are
extensions of the original ones except that they contain extra conditions (the so-called “magic
predicates") expressing the dependence on the query, together with extra rules for these magic
predicates. The resulting rules and facts can be evaluated “bottom-up" allowing efficient algo-
rithms for bottom-up evaluation to be applied, without the potential inefficiency of an undi-
rected goal-independent search. While the “magic sets" and “magic templates" techniques for
Datalog also incorporate input-output modes, the query-answer transformation that we use
does not require these, including only what is necessary for expressing derivations of a goal
with a depth-first left-to-right computation rule.

As with other applications of query-answer transformations in logic program analysis
[26, 36, 42, 55], there is also the practical motivation that analysis tools for goal-independent
analysis can be reused for goal-dependent analysis. A goal-independent analysis derives an
approximation of the model of a program which implicitly expresses the behaviour of all
goals, whereas goal-dependent analysis derives an approximation of a top-down derivation
of a specific set of goals. Algorithms for goal-independent analysis are generally simpler to
implement, but precision is generally greater with a goal-dependent analysis. A query-answer
transformation allows the goal-dependence to be “compiled in" to the program clauses; anal-
ysis of the resulting transformed clauses using a goal-independent analysis framework yields
results that are at least as precise as with a goal-dependent analysis.

Although not formulated as a program transformation, the semantic concept of a minimal
function graph is related to query-answer transformations. Given a function f : A → B, its
function graph is the set of pairs {x 7→ f(x) | x ∈ A}. Given some “call" to the function, say
f(a), the minimal function graph is the smallest set of pairs x 7→ f(x) sufficient to evaluate f(a)
(ignoring calls to subsidiary functions). This is in general a subset of the function graph of f.
For applications in program analysis one is satisfied with some useful superset of the minimal
function graph, which might be easier to compute than the precise minimal function graph.
Minimal function graph semantics have been formulated for both functional [88, 92] and logic
programming [57, 148] languages and applied to program analysis problems. The “query" or
“magic" predicates of the transformations appear in minimal function graph constructions as
a set of function invocations computed top-down from the call. Informally, a query-answer
transformation for logic programs could be viewed as a “compilation" of the minimal graph
semantics with respect to a specific program and goal, though further study is needed to
formalise this view.

abstract interpretation Abstract interpretation [32] is a static program analysis tech-
nique which derives sound over-approximations of programs by computing abstract seman-
tics. Abstract interpretation over a domain of convex polyhedra was first achieved by Cousot
and Halbwachs [31] and applied to constraint logic programs by Benoy and King [10]. Ab-
stract interpretation over convex polyhedra was incorporated in a program specialisation
algorithm by Peralta and Gallagher [130]. The method of widening with thresholds for in-
creasing the precision of widening over the domain of convex polyhedra was first presented
by Halbwachs et al. [72]. We adapted and applied a technique for generating threshold con-
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straints presented by Lakhdar-Chaouch et al. [108]. We apply abstract interpretation over the
domain of convex polyhedra to derive an over-approximation of the model of the query-
answer transformed program.

verification by specialisation The use of program transformation to verify prop-
erties expressed as constraint logic programs was pioneered by Pettorossi and Proietti [132]
and Leuschel [113] and continues in recent work by De Angelis et al. [38, 37]. Transformations
that preserve the minimal model (or other suitable semantics) of logic programs are applied
systematically to make properties explicit. Our approach can be regarded as identifying the
essence of these tools, namely constraint propagation forwards and backwards within the
program. The program specialisation technique supercompilation [144], which also inherently
involves constraint propagation through “driving", was applied as a tool to verify statements
[104, 105, 118]. Supercompilation is a language-independent concept originally developed for
the functional language REFAL and later adapted for some other languages as well.

clp verification tools Verification of CLP programs has been studied for some time.
Our aim in this chapter is not to demonstrate a new verification tool but to identify a trans-
formation that can often verify programs on its own and also benefits CLP verification tools
generally as a pre-processor. The work closest to ours is by De Angelis et al. [38]; that method
also includes forward and backward propagation of constraints using fold-unfold transforma-
tion. The resulting program in their approach can blow up in size with respect to the original
program when specialisation with the “polyvariant” generalisation strategy is used, whereas
constraint specialisation cannot. Furthermore the forward propagation method in that work
uses a program reversal which can only be applied to linear Horn clauses (a transition sys-
tem) whereas we can handle also non-linear clauses. However there are various methods for
linearisation of certain classes of Horn clauses in the literature [40, 100].

Much other work on CLP verification exists, much of it based on property abstraction
and refinement using interpolation, for example [23, 64, 134, 8, 15, 69]. Our specialisation
technique is not directly comparable to these methods, but as we have shown in experiments
with QARMC and Eldarica, constraint specialisation can be used as a pre-processor to such
tools, increasing their effectiveness. The model checking algorithm implemented in Eldarica
for Horn clause verification is similar in spirit to the one described in [64] but uses disjunctive
interpolation for counterexamples generalisation, which is strictly more general than tree
interpolation [136]. We use the approach described in this chapter as a pre-processor of Horn
clauses in the tool Rahft [102].

4.1.2 Overview and contributions of the chapter

In Section 4.2 the relevant notation and theory concerning CHCs is presented. Following
this, Section 4.3 describes various methods and techniques employed in our procedure, in the
form required. These include an algorithm for computing an abstract interpretation of a set
of CHCs over the domain of convex polyhedra in Section 4.3.1 and the details of the query-
answer transformation in Section 4.3.2. Section 4.4 contains the main contribution, namely the
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procedure for constraint specialisation. Section 4.5 puts the procedure in the context of verifi-
cation, explaining the role of CHC integrity constraints. Section 4.6 contains the experimental
evaluation of the procedure. Finally Section 4.7 presents the conclusions.

The contributions of this work are as follows.

• We present a method for specialising the constraints in the clauses using query-answer
transformation and abstract interpretation (see Section 4.4).

• We demonstrate the effectiveness of the transformation by applying it to Horn clause
verification problems (see Section 4.6).

Experimental results on verification problems show that this is an effective transformation,
propagating information both backwards from the statement to be proved, and forwards
from the Horn clauses. We show its effectiveness both in our own verification tools and as a
pre-processor to other Horn clause verification tools. In particular, we run our specialisation
procedure as a pre-processor to our convex polyhedra analyser, to the state of the art verification
tools like QARMC [64, 134] and Eldarica [80].

4.2 preliminaries

A constrained Horn clause (CHC) is a first order predicate logic formula of the form ∀(φ∧

p1(X1)∧ . . .∧ pk(Xk) → p(X)) (k > 0), where φ is a conjunction of constraints with respect
to some constraint theory, Xi,X are (possibly empty) vectors of distinct variables, p1, . . . ,pk,p
are predicate symbols, p(X) is the head of the clause and φ∧ p1(X1)∧ . . .∧ pk(Xk) is the
body. The arguments of a predicate are always regarded as a tuple; when we write p(X) or
p(a), then X and a stand for (possibly empty) tuples of variables and constants respectively.

A set of CHCs can be regarded as a CLP program. Unlike CLP, CHCs are not always
regarded as executable programs, but rather as specifications or semantic representations of
other formalisms. However the semantic equivalence of CHC and CLP allows techniques
developed in one framework to be applied to the other. We follow the syntactic conventions
of CLP and write a Horn clause as p(X)← φ,p1(X1), . . . ,pk(Xk). In this chapter we take the
constraint theory to be linear arithmetic with the relation symbols 6,>, <,> and =, but the
contributions of the chapter are independent of the constraint theory.

4.2.1 Interpretations and models

An interpretation of a set of CHCs is a truth assignment to each atomic formula p(a), where
p is a predicate and a is a tuple of constants from the constraint theory. An interpretation
is represented as a set of constrained facts of the form A ← φ where A is an atomic formula
p(Z) where Z is a tuple of distinct variables and φ is a constraint over Z. The constrained
fact A ← φ stands for the set of ground facts Aθ (where θ is a grounding substitution)
such that φθ holds in the constraint theory. For example the constrained fact p(X) ← X > 0

represents the infinite set {p(0),p(1),p(2), . . .}. An interpretation M is the set of all ground
facts denoted by its elements. M1 ⊆M2 if the set of denoted ground facts of M1 is contained
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in the set of denoted ground facts of M2. An interpretation M satisfies a CHC p0(X0) ←
φ,p1(X1), . . . ,pk(Xk), if M contains constrained facts {pi(Xi)← φi | 0 6 i 6 n}, and ∀(φ0 ←
(φ∧

∧n
i=1φi)) is true. In other words, the set of ground facts dentoed by p0(X0) ← (φ∧∧n

i=1φi) is subset of the set of ground facts dentoed by pi(X0)← φ0.

minimal models A model of a set of CHCs is an interpretation that satisfies each clause.
A set of CHCs P has a minimal model with respect to the subset ordering, denoted M[[P]].
Let SD

P be the immediate consequences operator, an extension of the standard TP operator
from logic programming, extended to handle the constraint domain D [81, Section 4]. M[[P]],
which is equal to the least fixed point of SD

P , can be computed as the limit of the sequence of
interpretations ∅,SD

P(∅),SD
P(S

D
P(∅)), . . .. The abstract interpretation of CHC clauses presented

in Section 4.3.1, uses this sequence as the basis of the model computation. From now on,
whenever we talk about a model of Horn clauses, we refer to its minimal model.

Given two constraints φ and ψ over some constraint theory T , we say φ is stronger than ψ
if T |= ∀(φ→ ψ).

4.2.2 Integrity constraints and safety

A CHC of the form false ← φ,p1(X1), . . . ,pk(Xk) is called an integrity constraint. The predi-
cate false is false in all interpretations. We use integrity constraints to capture safety properties,
as discussed later in Section 4.5.2.

Definition 4.1 (Safety). A set of Horn clauses is safe (unsafe) if and only if it has a model (no model).

The body φ,p1(X1), . . . ,pk(Xk) of an integrity constraint represents an unsafe condition. It
follows from Definition 4.1 that a set of CHCs is safe if and only if φ,p1(X1), . . . ,pk(Xk) is
not satisfiable for each integrity constraint false← φ,p1(X1), . . . ,pk(Xk).

4.3 methods and techniques

This section describes the techniques used in the constraint specialisation procedure, in-
cluding abstract interpretation over convex polyhedra and the query-answer transformation.
These are methods drawn from the literature; the contribution of the section is to present them
in a form suitable for integration in the procedure, and present an efficient implementation
of the abstract interpretation of CHCs.

4.3.1 Abstract Interpretation over the domain of convex polyhedra

Convex polyhedral analysis (CPA) [31] is a program analysis technique based on abstract
interpretation [32]. When applied to a set of CHCs P it constructs an over-approximation
M ′ of the minimal model of P, where M ′ contains at most one constrained fact p(X) ← φ

for each predicate p. The constraint φ is a conjunction of linear inequalities, representing a
convex polyhedron. The first application of CPA to CHCs was by Benoy and King [10]. In
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this section we develop an algorithm for CPA of CHCs incorporating a number of features
enhancing precision and efficiency.

We summarise briefly the elements of convex polyhedral analysis for CHC; further details
can be found in [31, 10]. Let Ak be the set of convex polyhedra of dimension k. Let P be
a set of CHCs containing n predicates, say p1, . . . ,pn, where the arity of pi is ar(pi). The
abstract domain DP for P (or just D when P is clear from context) is the set of n-tuples of
convex polyhedra of the respective dimension, that is D = Aar(p1) × · · · × Aar(pn). Let the
empty polyhedron of dimension k be denoted ⊥k (or just ⊥ when the dimension is clear
from context). Inclusion of polyhedra is a partial order on Ak and the partial order v on
D is its point-wise extension. The convex hull of two polyhedra d1,d2 ∈ Ak is denoted
d1 t d2, and the least upper bound t of tuples in DP, say 〈d1, . . . ,dn〉 and 〈e1, . . . , en〉, is
〈d1 t e1, . . . ,dn t en〉. Given an element 〈d1, . . . ,dn〉 ∈ DP, define the concretisation function
γ such that γ(〈d1, . . . ,dn〉) = {〈p1(a1), . . . ,pn(an)〉 | ai is a point in di, 1 6 i 6 n}. Let an
abstract semantic function be FP : DP → DP satisfying the condition SDP ◦ γ ⊆ γ ◦ FP, where FP
is monotonic with respect to v and SDP is the immediate consequences operator mentioned
in Section 4.2. Let the increasing sequence Y0, Y1, . . . be defined as follows. Y0 = ⊥, Yn+1 =

FP(Yn). These conditions are sufficient to establish that the limit of the sequence, say Y, exists
and satisfies γ(Y) ⊇ lfp(SDP ) =M[[P]] [30].

Since DP contains infinite increasing chains, the sequence can be infinite. The use of a
widening operator for convex polyhedra is needed to ensure convergence of the abstract inter-
pretation. Define the sequence Z0 = Y0, Zn+1 = Zn∇FP(Zn) where ∇ is a widening operator
for convex polyhedra [31]. The conditions on ∇ ensure that the sequence stabilises; thus for
some finite j, Zi = Zj for all i > j and furthermore Zj is an upper bound for the sequence {Yi}.
The value Zj thus represents, via the concretisation function γ, an over-approximation of the
least model of P. Furthermore much research has been done on improving the precision of
widening operators, for example, widening-upto, or widening with thresholds [72, 73]. The
widening upto operator (5T ) for convex polyhedra with respect to a set T of constraints (the
threshold) is a widening operator Z15T Z2 such that for all φ ∈ T , Z1 → φ∧Z2 → φ implies
that Z1 5T Z2 → φ. In other words the widening-upto operator preserves as many of the
constraints in the threshold as possible.

4.3.1.1 Algorithm for convex polyhedral approximation of CHCs

Given the elements of convex polyhedral analysis summarised above, we present the algo-
rithm for computing a polyhedral approximation of a set of CHCs. A naive algorithm to
compute the limit of the sequence Z0,Z1,Z2, . . . is given in Algorithm 4.1. This naive algo-
rithm is just a stepping stone to present the main algorithm in Figure 4.2. Given a clause
p(X) ← Body, the function call solve(p(X),Body,Zi) returns a constrained fact p(X) ← φ,
where φ is the result of solving Body in the current approximation Zi (note that φ is a con-
straint in the theory of linear arithmetic). More precisely, if Body = ψ,p1(X1), . . . ,pr(Xr) then
φ = (ψ∧φ1 ∧ . . .∧φr)|X, where pi(Xi)← φi (for i = 1 . . . k) is a (renamed) constrained fact
in Zi. We assume that the constraint theory admits a projection operator, and we write φ|X



4.3 methods and techniques 35

Algorithm 4.1: Naive Algorithm for Convex Polyhedral Analysis
Input: A set of CHCs P
Output: over-approximation of the minimal model of P

1 i← 0 ;
2 Z0 ← ⊥ ;
3 New← ⊥ ;
4 Changed← {p | p is a predicate in P} ;
5 while Changed 6= ∅ do
6 foreach (p(X)← Body) ∈ P do
7 if Body has changed in Changed then
8 New← Newt solve(p(X),Body,Zi)

9 Zi+1 ← Zi∇(NewtZi) ; /* Upper bound and widen */

10 Changed← {p | p has changed in Zi+1} ;
11 i← i+ 1

12 return Zi

to mean the projection of φ onto the variables X. That is, if Y is the set of variables in φ and
Z = Y \X then the variables in Z do not occur in φ|X and φ|X ≡ ∃Z.φ.

Our algorithm, shown in Algorithm 4.2, incorporates generic optimisations for computing
fixed points using an ascending chain. We present it in some detail since we are not aware
of implementations that incorporate the same range of optimisations and precision enhance-
ments, although all are drawn from the literature. The first step is to compute the strongly
connected components (SCCs) of the predicate dependency graph of the set of CHCs. Each
component is a set of (non-constraint) predicates; a group is either non-recursive (in which
case it is a singleton) or a set of mutually recursive predicates. The algorithm for computing
SCCs returns the components in topologically sorted order C1, . . . ,Cm, such that for each Cj,
no predicate in Cj depends on any predicate in Ck where k > j [143].

The algorithm proceeds to solve the components in order. A fixed point is computed for
each SCC separately. A standard optimisation for recursive SCCs (the semi-naive optimisa-
tion) [145] is to keep track of which predicates have a new solution in each iteration. The set
Changed records the predicates whose solution is changed. This optimisation allows a clause
to be ignored on an iteration, if no predicate in its body has changed since the previous iter-
ation. Obviously such a clause can contribute nothing new to the approximation. A recursive
SCC is solved when the set Changed is empty after some iteration. For non-recursive SCCs,
no iteration is needed. The bodies of the clauses for the predicate in that SCC are solved with
respect to the current approximation and their solutions are added to the current approxima-
tion.

We apply a widening-upto operator ∇T where T contains a set of threshold constraints
computed at the start of the algorithm (Algorithm 4.2, line 2), which we define in the next
paragraph. T consists of facts that represent “guesses" for invariants for each predicate p.
Any set T does not alter the soundness result of the Algorithm 4.2 (that is, it produces an
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Algorithm 4.2: Algorithm for Convex Polyhedral Analysis (CPA)
Input: A set of CHCs P
Output: over-approximation of the minimal model of P

1 C1, . . . ,Cm ← SCCs for P ;
2 T ← thresholds(P) ;
3 i← 0 ;
4 Z0 ← ⊥ ;
5 for j = 1 to m do
6 if Cj is recursive then
7 Changed←

⋃
l=1..jCl

8 while Changed 6= ∅ do
9 New← ⊥ ;

10 foreach (p(X)← Body) ∈ P where p ∈ Cj do
11 if Body has changed in Changed then
12 New← Newt solve(p(X),Body,Zi)

13 Zi+1 ← Zi∇T (NewtZi) ; /* Widen upto */

14 Changed← {p | p has changed in Zi+1} ;
15 i← i+ 1

16 else
17 New← ⊥ ;
18 foreach (p(X)← Body) ∈ P where p ∈ Cj do
19 New← Newt solve(p(X),Body,Zi)

20 Zi+1 ← Zi tNew ; /* No widening */

21 i← i+ 1

22 return Zi
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over-approximation of the minimal model of P), but a good choice of thresholds can make a
significant difference to the precision of the final result. In our implementation we adapt a
method presented by Lakhdar-Chaouch et al. [108]. In brief, the method collects constraints
by iterating the abstract semantic function FP three times starting from the “top" (>) element
of D, that is, the interpretation which assigns the universal polyhedron (the polyhedron repre-
senting the whole space of a given dimension or true constraint) to each predicate. The choice
of three iterations is motivated by Lakhdar-Chaouch et al.; however, we believe that further
experimentation with choices of thresholds would be fruitful.

We define the operation thresholds(P) as follows. First define a function which splits a con-
strained fact into a set of constrained facts having a single constraint. atomconstraints(p(Z)←
φ) returns the set of constrained facts {p(Z) ← φi | φ = φ1 ∧ . . .∧φk, i = 1 . . . k} where φi
are atomic constraints. The function is extended to apply to sets of constrained facts.

atomconstraints(I) =
⋃

p(Z)←φ∈I

{atomconstraints(p(Z)← φ)}.

Then define the thresholds function as follows.

thresholds(P) = atomconstraints(F(3)P (>))

Following this definition, the threshold constraints generated for our example program in
Figure 4.2 is shown in Example 4.1.

Example 4.1 (Threshold Constraints).

l(A,B) :- A=1. l(A,B) :- B=0. l(A,B) :- B=1.

l(A,B) :- A=2. l(A,B) :- B=2.

false :- true.

4.3.2 The query-answer transformation

In Section 4.1.1 we discussed the origins and motivation of the query-answer transformation.
In the following, we define it formally. We assume that, for each atom A = p(t) (where t is
any arbitrary term), Aa and Aq represent the atoms pa(t) and pq(t) respectively.

Definition 4.2 (Query-answer program). Given a set of CHCs P and an atom A, the (left-) query-
answer clauses for P with respect to A, denoted Pqa

A or just Pqa, are as follows.

• (Answer clauses). For each clause H ← φ,B1, . . . ,Bn (n > 0) in P, Pqa contains the clause
Ha ← φ,Hq,Ba

1, . . . ,Ba
n.

• (Query clauses). For each clause H ← φ,B1, . . . ,Bi, . . . ,Bn (n > 0) in P, Pqa contains the
following clauses:
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B
q
1 ← φ,Hq.

· · ·
B

q
i ← φ,Hq,Ba

1, . . . ,Ba
i−1.

· · ·
B

q
n ← φ,Hq,Ba

1, . . . ,Ba
n−1.

• (Goal clause). Aq ← true.

The clauses in Pqa encode a left-to-right, depth-first computation of the query← A for CHC
clauses P (that is, the standard CLP computation rule, SLD extended with constraints). This
is a complete proof procedure (produces a proof for each provable atom), assuming that all
clauses matching a given call are explored in parallel. (Note: the incompleteness of standard
CLP proof procedures arises due to the fact that clauses are tried in a fixed order). We can also
define a query-answer transformation which encodes atoms in a right-to-left fashion. Since
Pqa above encodes atoms in a left-to-right fashion, we call such a transformation (left-) query
answer transformation for clarity.

The answer clauses arise since there is an answer for the head predicate H if it was queried
and all the body atoms have answers and φ holds. The query clauses arise since given a clause
H← φ,B1, . . . ,Bn (n > 0), the ith body atom Bi can only be queried if the head H is queried,
φ holds and all the body atoms up to i − 1 have answers (in the left-right computation).
Finally, the goal clause asserts that the goal A is queried.

The size of query-answer program is quadratic with respect to the size of the original
program. This is because we generate n query-answer clauses for each clause in the original
program with n non-constraint atoms. So if we havem clauses in the original program and the
maximum number of non-constraint atom in any clause is n, then the query-answer program
contains at most n ∗m+ 1 clauses.

Example 4.2 (Query-answer transformation). For a given predicate p, we represent pa and pq by
p_a and p_q respectively in textual form. Given the program in Figure 4.2, its query-answer trans-
formation following the Definition 4.2 is shown below. Note that the identifier preceding each clause
shows the identifier of the original clause from where it is derived.

%answer clauses

c1. l_a(A,B) :- l_q(A,B), A=1, B=0.

c2. l_a(A,B) :- l_q(A,B), A=C+D, B=D+1, l_a(C,D).

c3. false_a :- false_q, B>A, l_a(A,B).

%query clauses

c2. l_q(A,B) :- l_q(C,D), C=A+B, D=B+1.

c3. l_q(A,B) :- false_q, B>A.

%goal clause

false_q :- true.
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Query-answer clauses capture the mutual dependencies of top-down and bottom-up evalu-
ation, since the queries and answers are defined in a single set of clauses. For example, given
a clause p ← q,p, the call to p in the body depends on the answers for q (in a top-down
left-right evaluation). However the answers for q depend on the calls to p in the head, since
q is called from p. Top-down or bottom-up evaluation in isolation would not capture such
mutual dependencies between calls and answers.

The relationship of the model of the clauses Pqa to the computation of the goal← A in P is
expressed by the following property1. An SLD-derivation in CLP is a sequence G0,G1, . . . ,Gk
where each Gi is a goal ← φ,B1, . . . ,Bm, where φ is a constraint and B1, . . . ,Bm are atoms.
In a left-to-right computation, Gi+1 is obtained by resolving B1 with a program clause. The
model of Pqa captures (approximates) the set of atoms that are “called" or “queried" during
the derivation, together with the answers (if any) for those calls. This is expressed precisely
by Property 4.1.

Property 4.1 (Correctness of query-answer transformation). Let P be a set of CHCs and A be an
atom. Let Pqa be the query-answer program for P with respect to A. Then

(i) if there is an SLD-derivation G0, . . . ,Gi where G0 = ← A and Gi = ← φ,B1, . . . ,Bm, then
Pqa |= ∀(Bq

1 ← φ|vars(B1));

(ii) if there is an SLD-derivationG0, . . . ,Gi whereG0 =← A, containing a sub-derivationGj1 , . . . ,Gjk ,
where Gji ← φ ′,B,B ′ and Gjk = ← φ,B ′, then Pqa |= ∀(Ba ← φ|vars(B)). (This means that
the atom B in Gji was successfully answered, with answer constraint φ|vars(B), where B ′ is a
conjunction of atoms).

(iii) As a special case of (ii), if there is a successful derivation of the goal← A with answer constraint
φ then Pqa |= ∀(Aa ← φ).

The correctness of query-answer transformation has already been established by several
authors in the logic programming literature, for example, Nilsson [128] and Debray et al.
[42]. Note that Property 4.1 allows for the fact that Pqa might include some “extra" answers
compared with the original program. However, since our proof method using abstract inter-
pretation also makes safe approximations this is not an significant issue. A proofs of unsafety
using abstract interpretation (such as those indicated in the table of experimental results in
Section 4.6) depend in any case on checking that the “possibly unsafe" result derived from an
approximation is actually a concrete counterexample in the original program.

4.4 constraint specialisation

We next present a procedure for specialising CHCs. In contrast to classical specialisation
techniques based on partial evaluation with respect to a goal, the specialisation does not

1 Note that the model of Pqa might not correspond exactly to the calls and answers in the SLD-computation, since
the CLP computation treats constraints as syntactic entities through decision procedures and the actual constraints
could differ. Though the form of constraints may differ, the model of a predicate contains exactly the same ground
atoms. Therefore this lack of correspondence is not important.
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unfold the clauses at all; rather, it computes a specialised version of each clause, in which the
constraints from the goal are propagated top-down and answers are propagated bottom-up.

We first make precise what is meant by “specialisation" for CHCs. Let P be a set of CHCs
and let A be an atomic formula. The specialisation of P with respect to A is a set of clauses
PA such that for every constraint φ over the variables of A, P |= ∀(A ← φ) if and only if
PA |= ∀(A ← φ). This is a very general definition that allows for many transformations. In
practice we are interested in specialisations that eliminate logical consequences of P that have
no relevance to A. In this chapter, the word “specialisation" refers just to transformations that
strengthen the constraint of each clause, while preserving the general property of specialisa-
tion given above.

For each clause H ← B in P, PA contains a new clause H ← φ,B where φ is a constraint.
If the addition of φ makes the clause body unsatisfiable, it is the same as removing the
clause, though removal is not essential to the procedure. Clearly PA may have fewer logical
consequences than P but our procedure guarantees that it preserves the logical consequences
of P with respect to the (ground instances of) A.

Algorithm 4.3: Algorithm for Constraint Specialisation (CS)
Input: A set of CHCs P and an Atom A

Output: A set of CHCs Ps
1 Pqa ← Query-answer-transformation( P, A ) ; /* Definition 4.2 */

2 M← CPA( Pqa ) ; /* Algorithm 4.2 */

3 Ps ← Strengthen-constraints(P,M) ; /* Definition 4.3 */

4 return Ps

The algorithm for constraint specialisation is shown in Algorithm 4.3. The inputs are a set
of CHCs P and an atomic formula A and the output is a set of specialised clauses. Firstly,
it computes a query-answer transformation of P with respect to A, denoted Pqa, containing
predicates pq and pa for each predicate p in P (line 1, Algorithm 4.3). Secondly, it computes
an over-approximation M of the model of Pqa (line 2, Algorithm 4.3). Finally, it strengthens
the constraints in the clauses in P by adding constraints from the answer predicates in M
producing Ps (line 3, Algorithm 4.3). Next we will explain each step in detail.

4.4.1 The query-answer transformation

This was presented in Section 4.3.2. We perform a query-answer transformation of P with
respect to the goal false. We call the result Pqa. It follows from Property 4.1(iii) that if false is
derivable from P then falsea is derivable from Pqa.

4.4.2 Over-approximation of the model of Pqa

Abstract interpretation of Pqa yields an over-approximation of M[[Pqa]], say M, containing
constrained facts for the query and answer predicates. These represent the calls and answers
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generated during all derivations starting from the goal A. In our experiments we use a convex
polyhedral approximation (CPA) of M[[Pqa]], as described in Section 4.3.1. Using CPA, we
derive the following constrained facts for the program in Example 4.2.

Example 4.3 (Over-approximation of the model of the program in Example 4.2).

false_q :- true.

l_(A,B) :- true.

l_a(A,B) :- A>=1, A-B>=0, B>=0.

For all predicates in a program for which the model contains no constrained fact, we as-
sume that there is a constrained fact for that predicate whose right hand side contains an
unsatisfiable constraint.

4.4.3 Strengthening the constraints in P

We use the information in the model of Pqa, say M, to specialise the original clauses in P.
Suppose M contains constrained facts pq(X)← φq and pa(X)← φa. (If there is no constrained
fact p∗(X)← φ for some p∗ then we considerM to contain p∗(X)← false, as mentioned above).

Given such a set M, define γM to be the mapping from atoms to constraints such that
γM(p∗(X)) = φ for each constrained fact p∗(X)← φ, where ∗ is a or q.

Definition 4.3 (Strengthened clauses PA from a model.). Let P be a set of CHCs, A be a goal and
Pqa be the query-answer transformation of P with respect to A. Let M be a model of Pqa defined by a
set of constrained facts. Then PA contains the following clauses:

PA = {p(X)← φ,φ0,φ1, . . . ,φn,p1(X1), . . . ,pk(Xk) | p(X)← φ,p1(X1), . . . ,pk(Xk) ∈ P,

φ0 = γM(pa(X)),φi = γM(pa
i(Xi)),

SAT(φ∧φ0 ∧
∧n
i=1φi) }

The clauses whose body constraints are unsatisfiable are removed from PA, since they can-
not contribute to feasible derivations (a Horn clause derivation tree whose constraints are un-
satisfiable) and do not contribute to the minimal model of PA. Here we assume that there is ex-
actly one constrained fact in M for each predicate pa,pa1 , . . . ,pan. Due to the choice of domain
for abstract interpretation, we get one constrained fact (a convex polyhedron) for each pred-
icate in the program. Using a richer domain such as the power set of convex polyhedra, we
could obtain disjunctive constraints, which could be eliminated from the specialised clauses
by program transformation. For example, the clause p(X)← (X > Y∨ Y < X), q(Y) can be trans-
formed into p(X)← X > Y, q(Y) and p(X)← Y < X, q(Y). However, that could cause blow-up in
the number of clauses generated.

Note that wherever M contains constrained facts pa(X) ← φa and pq(X) ← φq, we have
φa → φq since the answers for p are always stronger than the calls to p. Thus it suffices
to add only the answer constraints to the clauses in P and we can ignore the model of the
query predicates. A special case of this is where M contains a constrained fact pq(X) ← φq

but there is no constrained fact for pa(X), or in other words M contains the constrained fact



42 constraint specialisation in horn clause verification

pa(X) ← false (meaning that no ground atom exists for the predicate pa in M). This means
that all derivations for p(X) fail or loop in P and so adding the answer constraint false for p
eliminates looping derivations for p.

Example 4.4 (Constraint specialisation). Using the model of the query-answer transformed program
presented in Example 4.3, the program in Figure 4.2 can be strengthened as follows:
c1.l(A,B):- A=1, B=0, A>=1, A-B>=0, B>=0.

c2.l(A,B):- A=C+D, B=D+1, A>=1, A-B>=0, B>=0, C>=1, C-D>=0, D>=0, l(C,D).

c3.false:- B>A, A>=1, A-B>=0, B>=0, l(A,B).

The constraints in the clauses are strengthened by the addition of extra constraints from the model,
which are underlined. It can be seen that the constraints in the body of integrity constraint (c3) are
unsatisfiable, and thus c3 can be eliminated.

Specialisation by strengthening the constraints preserves the answers of the goal with re-
spect to which the query-answer transformation was performed. In particular, we have the
following property.

Property 4.2 (Soundness of constraint specialisation). If P is a set of CHCs and PA is the set of
clauses obtained by strengthening the clause constraints as just described, then P |= (A ← φ) if and
only if PA |= (A← φ).

Proof. The proof follows from the standard Theorems (Theorem 6.0.1, Part 4 and Theorem
6.0.1, Part 2 of [82]) and Lemmas (Lemma 3.1 of [123]) from the literature in constraint logic
programming.

The specialisation and analysis are separate in our approach. More complex algorithms
intertwining them can be envisaged, though the benefits are not clear. Our constraint special-
sation algorithm can be iterated as depicted in Algorithm 4.4 to obtain further specialsation.
Unlike [38] our specialisation is itself a fixpoint computation and combines forward and back-
ward propagation.

Iteration can give further specialisation (as our experiments confirm) since the query-answer
transformation encodes a left-to-right top-down query evaluation and thus does not directly
propagate constraints from right to left in clause bodies. Hence it can take more than one
iteration for answers to propagate from right to left in a clause body. We explain this with the
following example.

false :- q(X).

q(X) :- p1(X), p2(X).

p1(X) :- X=1.

p1(X) :- X=3.

p2(X) :- X=2.

This requires two iterations to show safety. The convex polyhedron approximating p1 loses
information and includes X=2. But once the answer for p2, that is, X=2 is propagated after the
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first iteration, p1 fails. However reversing the body atoms clause defining q(X) gives safety in
one iteration, since the answer X=2 is propagated to the query for p1 left-to-right.

Algorithm 4.4: Algorithm for Iterated Constraint Specialisation (Iterated CS)
Input: A set of CHCs P and an Atom A

Output: A set of CHCs Ps
1 repeat
2 Ps ← CS(P) ; /* Algorithm 4.3 */

3 swap(P,Ps)
4 until (P = Ps);
5 return Ps

complexity There are various components in Algorithm 4.3 whose complexity affects its
worst-case performance. The number of iterations of the fixpoint computation of an abstract
interpretation (the while loop in Algorithm 4.2) is bounded by the height of the abstract
domain but this is infinite in the case of the domain of convex polyhedra. The widening op-
eration does give a bound but we are not aware of any analysis of the complexity of typical
widening operators such as those built in to the Parma Polyhedra Library. Computing the
convex hull of polyhedra using Fourier-Motzkin variable elimination has double exponen-
tial (in the number of dimensions) worst case time. So it is clear that the worst case using
the domain of convex polyhedra can give scalability problems; the practical question is then
how it performs in average cases and what to do to trade off precision with complexity. As
with all abstract interpretations, both the domain and the widening can be tuned to trade off
precision with complexity. A simpler class of polyhedra (for example intervals or octagons)
could be used, and widening could be coarsened to ensure faster convergence. Furthermore,
we have successfully specialised constraints in clauses with hundreds of variables, and exper-
imental results seem to show that the use of convex polyhedra is feasible when the derived
polyhedra are characterised by linear constraints having a low number of variables, avoiding
a serious blow-up in the Fourier-Motzkin algorithm. Finally, as mentioned in Section 4.3.2 the
query-answer transformation causes a quadratic increase compared to the size of the original
clauses.

4.5 application to the chc verification problem

In this section we will briefly discuss the origin of Horn clauses in verification problems and
then discuss the application of our constraint specialisation in Horn clause verification.

4.5.1 Origin of Horn clauses in program verification problems

CHCs provide a logical formalism suitable for expressing the semantics of a variety of pro-
gramming languages (imperative, functional, concurrent, etc.) and computational models
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(state machines, transition systems, big- and small-step operational semantics, Petri nets, etc.).
Program verification usually refers to verification of source programs rather than some inter-
mediate semantic form. Instead of devising verification procedure for each source language
(which is a difficult process) we devise a verification procedure for CHCs and then translate
source languages to it, saving time and effort. The literature on program analysis and verifi-
cation contains several methods for generating CHCs from an imperative program, including
assertions to be verified, which fall into two broad categories.

1. Specialising an interpreter: The translation is usually obtained through specialisation of an
interpreter (equivalently partial evaluation). Let Pimp be an imperative program written
in language L and I be an interpreter of L written in some language (as Horn clauses
in our case). Partial evaluation or specialisation of I with respect to Pimp produces a
specialised interpreter Is for Pimp. Is can be regarded as the translation of Pimp to the
language in which the interpreter is written which preserves the semantics of Pimp. This
approach is taken by Peralta et al. [129] and De Angelis, Fioravanti, Pettorossi and Proi-
etti [39].

2. Hoare style proof rules: The translation is obtained by applying the proof rules to obtain
logical proof subgoals whose satisfiability implies correctness of the original program.
This approach is taken by Gurfinkel et al. [70], Grebenshchikov, Lopes, Popeea and
Rybalchenko [65] and McMillan and Rybalchenko [126].

In both of these, the program semantics can be small-step, big-step or mixed. In the first cate-
gory this is specified by an interpreter whereas in the second case it is specified by proof rules.
The outcome of the translation in both cases is a set of Horn clauses often called verification
conditions in the literature [39, 126]. There are also other ad-hoc techniques for translation, for
example, [43, 83].

The assertions to be verified are manifested in the CHCs as integrity constraints (Section
4.2.2). An assertion φ at a given program point in an imperative program is intended as a
safety condition, namely that whenever control reaches that point, φ holds. If ¬φ can hold at
that point, the program is considered unsafe. This is encoded as an integrity constraint of the
form false ← ¬φ,B, where B is some formula representing the state at the program point at
which φ should hold.

We illustrate this via the example program already introduced in Section 4.1 in Figure
4.1, which is taken from [38]. Suppose we would like to prove the Hoare triple {a = 1,b =

0} Loop_add {a > b}. This means starting from a state satisfying {a = 1,b = 0}, if we execute
Loop_add and if it terminates then the resulting state satisfies {a > b}. Let l(a,b) be an
unknown loop invariant for the while loop in the program Loop_add, the above triple holds if
the verification conditions in Figure 4.1b are satisfiable, that is, there exists an interpretation
that satisfies each clause.

Using CLP syntax the verification conditions can be written as shown in Figure 4.2. Each
clause in this example is assigned an identifier (for example c1 to c3) in order to refer them
later. The clause c3 is an integrity constraint expressing the fact that b > a does not hold at
the program exit point.
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4.5.2 CHC verification

In this section, we discuss the application of our constraint specialisation in Horn clause veri-
fication. As discussed in Section 4.5.1, assertions representing safety properties are translated
into integrity constraints, clauses whose head is false. The predicate false only occurs in the
head of clauses. The formula φ1 ← φ2 ∧ p1(X1), . . . ,pk(Xk) is equivalent to the formula
false← ¬φ1 ∧φ2 ∧ p1(X1), . . . ,pk(Xk). The latter might not be a CHC (e.g. if φ1 contains =)
but can be converted to an equivalent set of CHCs by transforming the formula ¬φ1 and dis-
tributing any disjunctions that arise over the rest of the body. For example, the formula X =

Y ← p(X, Y) is equivalent to the set of CHCs {false← X > Y,p(X, Y), false← X < Y,p(X, Y)}.
If a set of CHCs encodes the behaviour of a system and the bodies of integrity constraints

represent unsafe states, then proving safety consists of showing that the bodies of integrity
constraints are unsatisfiable, in which case the integrity constraints are satisfied. In Figure 4.2
the verification problem focuses on proving that the integrity constraint is satisfied. This can
only happen if the body of c3 is unsatisfiable. A program is considered safe if its verification
conditions have a model.

4.5.3 The CHC verification problem.

To state this more formally, given a set of CHCs P, the CHC verification problem is to check
whether there exists a model of P. If so we say that P is safe. Obviously any model of P assigns
False to the bodies of integrity constraints. We restate this property in terms of the logical
consequence relation. Let P |= F mean that F is a logical consequence of P, that is, that every
interpretation satisfying P also satisfies F.

Lemma 4.1. P has a model if and only if P 6|= false.

This lemma holds for arbitrary interpretations (only assuming that the predicate false is
interpreted as false, uses only the textbook definitions of “interpretation" and “model" and
does not depend on the constraint theory. The verification problem can be formulated deduc-
tively rather than model-theoretically. We can exploit proof procedures for constraint logic
programming [81] to reason about the satisfiability of a set of CHCs.

4.5.3.1 Proof Techniques for Horn clauses

The techniques that we use in this chapter are:

• Proof by over-approximation of the minimal model: Given a set of CHCs, its minimal model
M[[P]] is equivalent to the set of atomic consequences of P [120]. That is, P |= p(a) if
and only if p(a) ∈M[[P]]. Therefore, the CHC verification problem for P is equivalent to
checking that false 6∈M[[P]]. It is sufficient to find a set of constrained facts M ′ such that
M[[P]] ⊆M ′, where false 6∈M ′. This technique is called proof by over-approximation of the
minimal model.

• Proof by specialisation: In our context we use specialisation to focus the verification prob-
lem on the formula to be proved. More specifically, we specialise a set of CHCs with
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respect to a “query" to the atom false; thus the specialised CHCs entail false if and only
if the original clauses entailed false. The constraint specialisation procedure described in
Section 4.4 is our method of specialisation. So whenever we refer to specialisation we
refer to this method unless otherwise stated.

4.5.3.2 Analysis of the specialised clauses

Having specialised the clauses with respect to false, it may be that the clauses PFalse do not
contain a clause with head false. In this case PFalse is safe, since clearly this is a sufficient
condition for PFalse 6|= false. This is the case for our example program since the body of
the clause c3 is unsatisfiable after constraint strengthening, it is removed from the set of
specialised clauses.

If this check fails we still do not know whether P has a model. In this case we can perform
the convex polyhedral analysis on the clauses PFalse. As the experiments later show, safety is
often provable by checking the resulting model; if no constrained fact for false is present, then
PFalse 6|= false. If safety is not proven, there are two possibilities: the approximate model is not
precise enough, but P has a model, or there is a proof of false. Refinement techniques could
be used to distinguish these, but this is not the topic of this chapter.

In summary, our experimental procedure for evaluating the effectiveness of constraint spe-
cialisation contains two steps. Given a set of CHCs P with integrity constraints: (1) Com-
pute a specialisation of P with respect to false yielding PFalse. If PFalse contains no integrity
constraints, then P is safe. (2) If PFalse does contain integrity constraints, perform a convex
polyhedra analysis of PFalse. If the resulting approximation of the minimal model contains no
constrained fact for the predicate false, then PFalse is safe and hence P is safe. If we find a con-
crete feasible derivation for false then we conclude that P is unsafe. Otherwise, P is possibly
unsafe. Please refer to [97] for deriving traces using convex polyhedral approximation.

4.6 experimental evaluation

Table 4.1 presents experimental results of applying our constraint specialisation to a number
of Horn clause verification benchmarks taken from the repository of Horn clauses [11] and
other sources including [62, 84, 68, 12, 37]. The columns CPA, QARMC [64] and Eldarica [80]
present the results of verification using convex polyhedra, QARMC and Eldarica respectively,
whereas columns CS + CPA, CS + QARMC and CS + Eldarica show the result of running con-
straint specialisation followed by CPA, QARMC and Eldarica respectively. The symbol “-" is
used in the table to indicate that the result is not significant in the given case. The experiments
were carried out on an Intel(R) X5355 quad-core (@ 2.66GHz) computer with 6 GB memory
running Debian 5. We set 5 minutes of timeout for each experiment. The specialisation pro-
cedure is implemented in the tool called Rahft which is publicly available from https:

//github.com/bishoksan/RAHFT/. The tool offers a simple command line interface and ac-
cepts options for constraint specialisation. For this purpose it can be run using the command:
./rahft input -sp output where the input is a set of CHCs and output is a file name to store

https://github.com/bishoksan/RAHFT/
https://github.com/bishoksan/RAHFT/
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the specialised CHCs and -sp is an option for clause specialisation. The benchmark programs
are available from https://github.com/bishoksan/RAHFT/tree/master/benchmarks_scp.

The results show that constraint specialisation is effective in practice. We report that 109 out
of 218, that is 50%, of the problems are solved by constraint specialisation alone. When used
as a pre-processor for other verification tools, the results show improvements on both the
number of instances solved and the solution time. Using our tool, we report approximately
47% increase in the number of instances solved and twice as fast on average. Using QARMC,
we report 13% increase in the number of instances solved and 5 times faster on average.
Similarly using Eldarica, we report approximately 12% increase in the number of instances
solved and almost 4 times faster on average. It is important to note that there is no refinement
iteration in CPA as there is in QARMC and Eldarica.

CPA CS + CPA QARMC CS + QARMC Eldarica CS + Eldarica

solved (safe/unsafe) 61 (48/13) 162 (144/18) 178 (141/37) 205 (171/34) 159(135/24) 206 (175/31)

unknown / timeout 144/13 49/7 -/40 -/13 -/59 -/12

total time (secs) 2317 1303 13367 2613 10805 3235

average time (secs) 10.62 5.97 61.31 11.98 50.02 14.97

%solved 27.98 74.31 81.65 94.04 73 95.3

Table 4.1: Experiments on a set of 218 (181 safe and 37 unsafe) CHC verification problems with a
timeout of five minutes

The (perhaps surprising) effectiveness of this relatively simple combination of constraint
specialisation and convex polyhedral analysis is underlined by noting that it can solve prob-
lems for which more complex methods have been proposed. For example, apart from the
many examples from the Horn clause verification benchmarks that require refinement us-
ing CEGAR-based approaches, the technique solves the “rate-limiter" and “Boustrophedon"
examples presented by Monniaux and Gonnord [127] (Section 5) (directly encoded as Horn
clauses); their approach, also based on convex polyhedra, uses bounded model checking to
achieve a partitioning of the approximation, while other approaches to such problems use
trace-partitioning and look-ahead widening.

It is possible to strengthen constraints in the clauses using the model of the original pro-
gram (denote it by CPA’) rather than its query-answer transformed one. The effect of such
a specialisation (CS + CPA’) on these set of benchmarks is same as applying CPA directly
on the original programs, but such a specialisation may be a useful pre-processing for other
tools. For example, the following program (a variant of our example program) is not solved
by such a combination (CS + CPA’) but our current approach does (CS + CPA).

false :- A=1, B=0, l(A,B).

l(A,B) :- C=A+B, D=B+1, l(C,D).

l(A,B) :- B>A.

We were able to solve almost 100 more problems with our proposed approach. Therefore
the role of query-answer transformation is crucial for propagating constraints in verification
problems. As mentioned earlier, our specialisation procedure can be iterated which yields

https://github.com/bishoksan/RAHFT/tree/master/benchmarks_scp
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CPA CS + CPA

solved (safe/unsafe) 37 (14/23) 61 (26/35)

unknown 95 71

average time (secs.) 0.51 0.50

solved (%) 28 46

Table 4.2: Experimental results on 132 CHC verification problems with a timeout of five minutes

further specialisation of the clauses. By iterating the procedure, we were able to solve 12 more
problems. After second iteration, we observed that the same program was produced in most
of the cases indicating that the successive iterations do not produce any further specialisation.

4.6.1 Additional experiments on SV-COMP-15 benchmarks

We chose a subset of 132 problems, written in C, from SV-COMP 2015
2 [13]. This set contains

benchmarks from the categories which were not reported in our experiments before such as re-
cursive benchmarks which needs recursive analysis. Additionally it contains some benchmarks
from Loop category such as loop-acceleration, loop-lit and loop-new. We used SeaHorn [71, 70], a
verification framework based on LLVM, for generating Horn clauses from C programs. Sea-
Horn first compiles C to LLVM intermediate representation (LLVM IR), also known as bitcode
using clang, a C-family front-end for LLVM3. The bitcode is further simplified and optimized
reusing the vast amount of work done on LLVM (e.g. function inlining, dead code elimination,
CFG simplifications etc.) whose purpose is to make the verification task easier. Gurfinkel et al.
[70] have shown that some of the problems are solved by these transformations only. The re-
sulting bitcode is translated to Horn clauses using different semantics for example small step,
large block encoding etc. More details can be found in [71, 70]. The benchmark programs are
available from https://github.com/bishoksan/RAHFT/tree/master/benchmarks_scp. The re-
sults are summarised in the Table 4.2. They again show that our method, the constraint spe-
cialisation, is in fact effective in practice since we can solve 18% more problems using it as a
pre-processor to our convex polyhedra tool.

4.7 conclusion and future work

We introduced a method for specialising the constraints in constrained Horn clauses with
respect to a goal. The method is based a combination of techniques that have already shown
their usefulness, especially abstract interpretation and query-answer transformation. The par-
ticular combination of techniques we chose was arrived at by experimentation and analysis of

2 http://sv-comp.sosy-lab.org/2015/benchmarks.php

3 http://clang.llvm.org/

https://github.com/bishoksan/RAHFT/tree/master/benchmarks_scp
http://sv-comp.sosy-lab.org/2015/benchmarks.php
http://clang.llvm.org/
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the needs of the problem. The approach propagates constraints globally, both forwards and
backwards, and produces explicit invariants from the original clauses.

We applied the method to program verification problems encoded as constrained Horn
clauses. Experiments showed firstly that constraint specialisation alone is an effective verifica-
tion tool. Secondly, it can be applied as a pre-processor, improving the effectiveness of other
verification tools. It remains to be checked if the solver like VeriMap would benefit from our
specialisation.

The effectiveness of the procedure is at first sight somewhat surprising. Its effectiveness
comes from the fact that it focuses on full exploitation of the available information, propagat-
ing information simultaneously top-down and bottom-up, and the use of powerful analysis
techniques based on abstract interpretation capable of discovering useful invariants. More-
over the addition of the widening-upto method with threshold generation plays an important
role in the procedure. Care was taken to implement the procedures efficiently.

The technique is independent of the constraint theory underlying the clauses and the ab-
stract domain for analysis, although we only experimented so far with the domain of linear
arithmetic constraints, and the domain of convex polyhedra.

future work There is potential for applying this technique in future work whenever
explicit constraints need to be extracted from clauses. One such instance is in program de-
bugging since more specific information may make errors in the original program apparent.
Another is as a pre-processor in program specialisation where knowledge of the call context
of each program point could enable specialisations which are not otherwise obviously avail-
able. Finally, termination and resource analysis could benefit from constraint specialisation,
since these might enable better ranking functions to be discovered, proving decrease of some
expression in each loop.

The query-answer transformation has several variations, which can give differing precision
when combined with abstract interpretation. For instance, more refined query predicates of
the form p

q
i,j could be generated representing calls to the ith atom in the body of clause j

[54]. Secondly, the left-to-right computation could be replaced by right-to-left or any other
order. The success or failure of a goal is independent of the computation rule; hence we
could generate answers using other computation rules, or combining computation rules [55].
While different computation rules do not affect the model of the answer predicates, more
effective propagation of constraints during program analysis, and thus greater precision, can
sometimes be achieved by varying the computation rule.
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H O R N C L A U S E V E R I F I C AT I O N W I T H C O N V E X P O LY H E D R A L
A B S T R A C T I O N A N D T R E E A U T O M ATA - B A S E D R E F I N E M E N T

With John P. Gallagher

Abstract
In this chapter we apply tree-automata techniques to refinement of abstract interpretation in
Horn clause verification. We go beyond previous work on refining trace abstractions; firstly we
handle tree automata rather than string automata and thereby can capture traces in any Horn
clause derivations rather than just transition systems; secondly, we show how algorithms
manipulating tree automata interact with abstract interpretations, establishing progress in re-
finement and generating refined clauses that eliminate causes of imprecision. We show how
to derive a refined set of Horn clauses in which given infeasible traces have been eliminated,
using a recent optimised algorithm for tree automata determinisation. We also show how
we can introduce disjunctive abstractions selectively by splitting states in the tree automaton.
The approach is independent of the abstract domain and constraint theory underlying the
Horn clauses. Experiments using linear constraint problems and the abstract domain of con-
vex polyhedra show that the refinement technique is practical and that iteration of abstract
interpretation with tree automata-based refinement solves many challenging Horn clause ver-
ification problems. We compare the results with other state of the art Horn clause verification
tools.

Keywords: Horn clauses, Abstract interpretation, Finite tree automata, Tree automata deter-
minisation.

5.1 introduction

The formalism of Constrained Horn clauses (CHCs), as an intermediate language for veri-
fication of programs in various languages, has become popular due to its well understood
properties and expressiveness; this has led to a range of tools for analysis and verification
of CHCs. Given a program and a property φ to be verified, a set of CHCs V , such that V is
satisfiable if and only if φ holds, is called a set of verification conditions for φ. CHC verifica-
tion conditions can be obtained from imperative, functional or concurrent languages, among
others, by a variety of semantics-based techniques including big- and small-step semantics,
Hoare triples, or other intermediate forms such as control-flow graphs [129, 65, 43, 83, 70, 39].

There are several approaches to checking the satisfiability of CHC verification conditions,
including abstract interpretation and counterexample-guided abstraction refinement (see Sec-
tion 5.7). In this chapter we apply tree-automata techniques to refinement of abstract interpre-
tation in Horn clause verification. We go beyond previous work on refining trace abstractions
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[74]; firstly, we handle tree automata rather than word automata and thereby can capture
traces in any Horn clause derivations rather than just transition systems; secondly, we show
how algorithms manipulating tree automata interact with abstract interpretations, establish-
ing progress in refinement and generating refined clauses that eliminate causes of impreci-
sion.

Our approach is similar in spirit to counterexample-guided abstraction refinement (CE-
GAR) or iterative specialisation approaches, in which a refined set of clauses is generated
by eliminating one or more of the infeasible paths from the original set of clauses until the
safety or unsafety of the clauses is proven. More specifically, we show how to construct tree
automata capturing both the traces (derivations) of a given set of Horn clauses and also one
or more infeasible traces discovered after abstract interpretation of the clauses. From these
we construct a refined automaton in which the infeasible trace(s) have been eliminated and
a new set of clauses is constructed from the refined automaton. This guarantees progress in
that the same infeasible trace cannot be generated (in any abstract interpretation). In addition,
the clauses are restructured during the elimination of the trace, which can lead to more pre-
cise abstractions in subsequent iterations. The refinement is manifested in the refined clauses,
rather than in an accumulated set of properties as in the CEGAR [23] approach. We rely on
the abstract interpretation of the clauses to generate useful properties, rather than hoping to
find them during the refinement itself.

We also show how we can introduce disjunctive abstractions selectively by splitting states
in the tree automaton. This splitting induces splitting in the predicates of the original set
of clauses and its analysis using convex polyhedra leads to disjunctive abstractions. The ap-
proach is independent of the abstract domain and constraint theory underlying the Horn
clauses. Experiments using linear constraint problems and the abstract domain of convex
polyhedra show that the refinement technique is practical and that iteration of abstract inter-
pretation with tree automata-based refinement solves many challenging Horn clause verifi-
cation problems. We compare the results with other state of the art Horn clause verification
tools.

The main contributions are the following; (1) We construct a correspondence between com-
putations using Horn clauses and finite tree automata (FTA) (Section 5.4). (2) We construct
a refined set of clauses directly from a tree automaton representation of the clauses and an
infeasible trace; the trace is eliminated from the refined clauses (Section 5.4.4). (3) We propose
a “splitting" operator on FTAs (Section 5.3) and describe its role in Horn clause verification
(Section 5.5.1). (4) We demonstrate the feasibility of our approach in practice applying it to
Horn clause verification problems (Section 5.6).

5.2 summary of our approach

To motivate readers, we present an example set of CHCs P in Figure 5.1 which will be used
throughout this chapter. This is an interesting example in which the computations are trees
rather than linear sequences.
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c1. mc91(A,B) :- A > 100, B = A-10.

c2. mc91(A,B) :- A =< 100, C = A+11, mc91(C,D), mc91(D,B).

c3. false :- A =< 100, B > 91, mc91(A,B).

c4. false :- A =< 100, B =< 90, mc91(A,B).

Figure 5.1: Example CHCs. The McCarthy 91-function

After applying abstract interpretation to this set of clauses, we obtain the following set of
constained facts (also called approximation). We usually represent a constrained fact derived
from abstract interpretation as p(X) : −[C(X)], where C(X) is a conjunction of constraints.
mc91(A,B) :- [B>90, B>=A-10].

false :- [].

Since false is in our approximation, our tool generates an abstract derivation for false which
in our case is the clause c3 followed by the clause c1 and is represented by a trace term c3(c1).
Since this abstract counterexample is infeasible, our refinement procedure removes this from
the set of clauses in Figure 5.1 to produce a new set of clauses as shown in Figure 5.2. Our
refinement can be viewed as a program transformation guided by a counterexample. From the
set of refined clauses, it can be seen that the counterexample c3(c1) is impossible to construct.
This refinement split the predicate mc91 of the original clauses and as a result of this we gain
some precision. We again analyse the refined clauses using abstract interpretation until its
safety or unsafety is proven. In the sections to follow we describe our abstraction-refinement
procedure which led to this result in details.

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91_1(D,B).

c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91_1(A,B).

Figure 5.2: Refined set of CHCs

The architecture of our abstraction-refinement scheme is shown in Figure 5.3. It is accom-
panied by our main algorithm 5.1 to give the early picture of our approach.

5.3 finite tree automata

Finite tree automata (FTAs) are mathematical machines that define so-called recognisable tree
languages, which are possibly infinite sets of terms that have desirable properties such as
closure under Boolean set operations and decidability of membership and emptiness.
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FTAM – Finite tree automata manipulation
AI –Abstract interpretation

CG – Clauses generation

Abstraction Refinement

CHC P AI
traces
Aprx.

safe
no

unsafe

yes and feasible

traces

error traces

CHC P1

CHC P

error traces?
false ∈ Aprx.? FTAM

traces
CG

Figure 5.3: Abstraction-refinement scheme in Horn clause verification. Aprx. is an approximation produced as
a result of abstract interpretation.

Algorithm 5.1: Algorithm for abstraction-refinement of Horn clauses
Input: A set of Horn clauses P
Output: safe or unsafe

1 analyse P using abstract interpretation producing constrained facts M ( Algorithm 5.4);
2 if false /∈M then return safe ;
3 if false ∈M then produce derivation t of false using P ;
4 if t is feasible return unsafe ;
5 P ′ ← refinedCls(P, t) ( Algorithm 5.5) ;
6 P ← P ′ and goto step 1 ;

Definition 5.1 (Finite tree automaton). An FTA A is a tuple (Q,Qf,Σ,∆), where Q is a finite set
of states, Qf ⊆ Q is a set of final states, Σ is a set of function symbols, and ∆ is a set of transitions.
We assume that Q and Σ are disjoint.

Each function symbol f ∈ Σ has an arity n > 0, written as ar(f) = n. The function symbols
with arity 0 are called constants. Term(Σ) is the set of ground terms or trees constructed
from Σ where t ∈ Term(Σ) iff t ∈ Σ is a constant or t = f(t1, t2, ..., tn) where ar(f) = n and
t1, t2, ..., tn ∈ Term(Σ). Similarly Term(Σ∪Q) is the set of terms/trees constructed from Σ and
Q, treating the elements of Q as constants.

Each transition in ∆ is of the form f(q1,q2, ...,qn) → q where ar(f) = n. Given δ ∈ ∆ we
refer to its left- and right-hand-sides as lhs(δ) and rhs(δ) respectively. Let ⇒ be a one-step
rewrite in which t1 ⇒ t2 iff t2 is the result of replacing one subterm of t1 equal to lhs(δ) by
rhs(δ), from some δ ∈ ∆. The reflexive, transitive closure of ⇒ is ⇒∗. We say there is a run
(resp. successful run) for t ∈ Term(Σ) if t⇒∗ q where q ∈ Q (resp. q ∈ Qf), and we say that t
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is accepted if t has a successful run. An FTA A defines a set of terms, that is, a tree language,
denoted by L(A), as the set of all terms accepted by A.

Definition 5.2 (Deterministic FTA (DFTA)). An FTA (Q,Qf,Σ,∆) is called bottom-up determinis-
tic iff ∆ has no two transitions with the same left hand side.

We omit the adjective “bottom-up" in this thesis and just refer to deterministic FTAs. Runs
of a DFTA are deterministic in the sense that for every t ∈ Term(Σ) there is at most one q ∈ Q
such that t⇒∗ q.

5.3.1 Operations on FTAs

FTAs are closed under Boolean set operations, but for our purposes we mention only union
and difference of language of automata, where in addition we assume that the signature Σ is
fixed and that the states of FTAs are disjoint from each other when applying operations (the
states can be renamed apart).

Definition 5.3 (Union of FTAs). Let A1,A2 be FTAs (Q1,Q1f ,Σ,∆1) and (Q2,Q2f ,Σ,∆2) respec-
tively. Then A1 ∪ A2 = (Q1 ∪Q2,Q1f ∪Q2f ,Σ,∆1 ∪ ∆2), and we have L(A1 ∪ A2) = L(A1) ∪
L(A2).

Determinisation plays a key role in the theory of FTAs. As far as expressiveness is concerned,
we can limit our attention to DFTAs since for every FTA A there exists a DFTA Ad such that
L(A) = L(Ad) [28]. The standard construction builds a DFTA Ad whose states are elements
of the powerset of the states of A. The textbook procedure for constructing Ad from A [28]
is not viewed as a practical procedure for manipulating tree automata, even fairly small ones.
In a recent work Gallagher et al. [60] developed an optimised algorithm for determinisation,
whose worst-case complexity remains unchanged, but which performs dramatically better
than existing algorithms in practice. A critical aspect of the algorithm is that the transitions of
the determinised automaton are generated in a potentially very compact form called product
form, which can often be used directly when manipulating the determinised automaton.

Definition 5.4 (Product Transition). A product transition is of the form f(Q1, . . . ,Qn) → q

where Qi are sets of states and q is a state. The product transition represents a set of transitions
{f(q1, . . . ,qn) → q | qi ∈ Qi, i = 1..n}. Thus Πni=1|Qi| transitions are represented by a single
product transition.

Alternatively, we can regard a product transition as introducing ε-transitions. An ε-transition
has the form q1 → q2 where q1,q2 are states. ε-transitions can be eliminated, if desired.
Given a product transition f(Q1, . . . ,Qn) → q, introduce n new non-final states s1, . . . , sn
corresponding to Q1, . . . ,Qn respectively and replace the product transition by the set of
transitions {f(s1, . . . , sn) → q} ∪ {q ′ → si | q ′ ∈ Qi, 1 = 1..n}. It can be shown that this
transformation preserves the language of the FTA.

Given FTAs A1 and A2 there exists an FTA A1 \ A2 such that L(A1 \ A2) = L(A1) \ L(A
2).

To construct the difference FTA we use union and determinisation and exploit the following
property of determinised states [60].
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Property 5.1. Let Ad be the DFTA constructed from A. Let Q be the states of A. Then there is a run
t ⇒∗ q in A if and only if there exists Q ′ and a run t ⇒∗ Q ′ in Ad where Q ′ ∈ 2Q, such that
q ∈ Q ′.

Furthermore recall that a term is accepted by at most one state in a DFTA. This gives rise
to the following construction of the difference FTA A1 \ A2. We first form the DFTA for the
union of the two FTAs and then remove those of its final states containing the final states of
A2. In this way we remove the terms, and only the terms (by Property 5.1), accepted by A2.
The availability of a practical algorithm for determinisation is what makes this construction
of the difference FTA feasible.

Definition 5.5 (Construction of difference of FTAs). Let A1,A2 be FTAs (Q1,Q1f ,Σ,∆1) and
(Q2,Q2f ,Σ,∆2) respectively. Let (Q ′,Q ′f,Σ,∆ ′) be the determinisation of A1 ∪A2. Let Q2 = {Q ′ ∈
Q ′ | Q ′ ∩Q2f 6= ∅}. Then A1 \ A2 = (Q ′,Q ′f \ Q

2,Σ,∆ ′).

Next we introduce a new operation over FTA called state splitting, which consists of splitting
a state q into a number of states, based on a partition of the set of transitions whose rhs is q.
We define this splitting as follows:

Definition 5.6 (Splitting a state in an FTA). Let A = (Q,Qf,Σ,∆) be an FTA. Let q ∈ Q and
∆q = {t ∈ ∆ | rhs(t) = q}. Let Φ = {∆1q, . . . ,∆kq} (k > 1) be some partition of ∆q. Introduce k new
states q1, . . . ,qk. Then the FTA splitΦ(A) is (Qs,Qsf ,Σ,∆s) where:

• Qs = (Q \ {q})∪ {q1, . . . ,qk};

• Qsf = (Qf \ {q})∪ {q1, . . . ,qk} if q ∈ Qf, otherwise Qsf = Qf;

• ∆s = unfoldq(∆ \ ∆q ∪ {lhs(t) → qi | t ∈ ∆iq, i = 1..k}), where unfoldq(∆ ′) is the re-
sult of repeatedly replacing a transition f(. . . ,q, . . .) → s ∈ ∆ ′ by the set of k transitions
{f(. . . ,q1, . . .)→ s, . . . , f(. . . ,qk, . . .)→ s} until no more such replacements can be made.

Proposition 5.1. L(A) = L(splitΦ(A)).

Proof. Let A = 〈Q,Qf,Σ,∆〉 and splitΦ(A) = 〈Qs,Qsf ,Σ,∆s〉. Let split(q) mean that the state
q is split and let q1, . . . ,qk be the new states introduced during splitting. We write ⇒∗ for
derivations in A and⇒∗s for derivations in splitΦ(A). We first prove by induction on the depth
of terms that for all terms t and states q ∈ Q,

(split(q)→ (t⇒∗ q ≡ ∃i.(t⇒∗s qi)))∧ (¬split(q)→ (t⇒∗ q ≡ t⇒∗s q)). (1)

Base case. Let a be a term of depth 1.

split(q)→
a⇒∗ q ≡ a→ q ∈ ∆ ∧ ∃ i.(q ∈ ∆iq ∧ a→ qi ∈ ∆s)

following Definition 5.6

≡ ∃i.(a⇒∗s qi)
¬split(q)→
a⇒∗ q ≡ a→ q ∈ ∆ ∧ a→ q ∈ ∆s

≡ a⇒∗s q)
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Inductive case. Let f(t1, . . . , tn) ⇒ q where f(t1, . . . , tn) is a term of depth k+ 1 and assume
that the property holds for all terms with depth at most k.

split(q)→
f(t1, . . . , tn)⇒∗ q ≡ ∃ r1, . . . , rn .(f(r1, . . . , rn)→ q ∈ ∆ ∧

t1 ⇒∗ r1 ∧ · · · ∧ tn ⇒∗ rn)∧
(split(r1)∨¬split(r1))∧ · · ·∧ (split(rn)∨¬split(rn))

≡ ∃ r1, . . . , rn .[f(r1, . . . , rn)→ q ∈ ∆ ∧

(split(r1)∧ ∃i1(t1 ⇒∗s r1,i1))∨ (¬split(r1)∧ t1 ⇒∗s r1) ∧
· · ·
(split(rn)∧ ∃in(tn ⇒∗s rn,in))∨ (¬split(rn)∧ tn ⇒∗s rn))]
by inductive hypothesis after rearranging formula, since t1, . . . , tn
have depth at most k

≡ ∃ r1, . . . , rn ∃i1, . . . , in.[f(r1, . . . , rn)→ q ∈ ∆ ∧

((t1 ⇒∗s r1,i1 ∨ t1 ⇒∗s r1) ∧ · · ·∧ (tn ⇒∗s rn,in ∨ tn ⇒∗s rn))]
after rearranging formula, moving quantifiers outwards

and eliminating split(ri)∨¬split(ri), 1 6 i 6 n

≡ ∃ i, r1, . . . , rn ∃i1, . . . , in.[f(r1,i1 , . . . , rn,in)→ qi ∈ ∆s ∧
((t1 ⇒∗s r1,i1 ∨ (r1,i1 = r1 ∧ t1 ⇒∗s r1)) ∧ · · ·∧ (tn ⇒∗s rn,in∨

(rn,in = rn ∧ tn ⇒∗s rn)))]
applying Definition 5.6 to introduce f(r1,i1 , . . . , rn,in)→ qi

since f(r1,i1 , . . . , rn,in)→ qi is included after applying unfold to

f(r1, . . . , rn)→ qi

≡ ∃ i.f(t1, . . . , tn)⇒∗s qi
¬split(q)→
f(t1, . . . , tn)⇒∗ q ≡ [Similar to previous case but where f(r1,i1 , . . . , rn,in)→ q

is in the unfolding of f(r1, . . . , rn)→ q in Definition 5.6]

≡ f(t1, . . . , tn)⇒∗s q

Finally, if q ∈ Qf and split(q) then qi ∈ Qsf where qi is a new state introduced during the
splitting. It follows from this and property (1) that for all t, ∃q ∈ Qf . t ⇒∗ q ≡ ∃q ′ ∈
Qsf . t⇒∗s q ′. Thus for all t, t ∈ L(A) iff t ∈ L(splitΦ(A)).

5.4 horn clauses and their trace automata

A constrained Horn clause (CHC) is a first order predicate logic formula of the form ∀(φ∧

p1(X1)∧ . . .∧ pk(Xk) → p(X)) (k > 0), where φ is a conjunction of constraints with respect
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to some constraint theory, Xi,X are (possibly empty) vectors of distinct variables, p1, . . . ,pk,p
are predicate symbols, p(X) is the head of the clause and φ∧ p1(X1)∧ . . .∧ pk(Xk) is the
body.

There is a distinguished predicate symbol false which is interpreted as False. In practice
the predicate false only occurs in the head of clauses; we call clauses whose head is false
integrity constraints, following the terminology of deductive databases. They are also some-
times referred to as negative clauses. We follow the syntactic conventions of constraint logic
programs and write a clause as p(X)← φ,p1(X1), . . . ,pk(Xk).

5.4.1 Interpretations and models

An interpretation of a set of CHCs is represented as a set of constrained facts of the form
A ← φ where A is an atomic formula p(Z1, . . . ,Zn) where Z1, . . . ,Zn are distinct variables
and φ is a constraint over Z1, . . . ,Zn. This set may be infinite. The constrained fact A ← φ

is shorthand for the set of variable-free facts Aθ such that φθ holds in the constraint theory,
and an interpretation M denotes the set of all facts denoted by its elements; M assigns true
to exactly those facts. M1 ⊆ M2 if the set of denoted facts of M1 is contained in the set of
denoted facts of M2.

minimal models A model of a set of CHCs is an interpretation that satisfies (whenever
the body of a clause holds under the given interpretation then so does the head) each clause.
There exists a minimal model with respect to the subset ordering, denoted M[[P]] where P
is a satisfiable set of CHCs. M[[P]] can be computed as the least fixed point (lfp) of an im-
mediate consequences operator (called SD

P in [81, Section 4]), which is an extension of the
standard TP operator from logic programming, extended to handle the constraint theory D.
Furthermore lfp(SD

P) can be computed as the limit of the ascending sequence of interpre-
tations ∅,SD

P(∅),SD
P(S

D
P(∅)), . . .. This sequence provides a basis for abstract interpretation of

CHC clauses. The minimal model of P is equivalent to the set of atomic logic consequences
of P.

5.4.2 The constrained Horn clause verification problem.

Given a set of CHCs P, the CHC verification problem is to check whether there exists a model
of P. Obviously any model of P assigns false to the bodies of integrity constraints. We restate
this property in terms of the derivability (`) of the predicate false. Let P |= F mean that F is a
logical consequence of P, that is, that every interpretation satisfying P also satisfies F.

Lemma 5.1. P has a model if and only if P 6|= false.

This lemma holds for arbitrary interpretations (only assuming that the predicate false is inter-
preted as False), uses only the textbook definitions of “interpretation" and “model" and does
not depend on the constraint theory. We have yet another equivalent formulation of the CHC
verification problem.
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Lemma 5.2. P has a model if and only if P 6` false.

Proof. Follows from the equivalence of the minimal model of P with the set of atomic logical
consequences of P [81]. See also Proposition 5.2 later.

An assertion φ is an invariant (over-approximation) for a predicate q in P, if P |= ∀(q→ φ).
If a set of Horn clauses P have a model then we say that P is safe, otherwise we say that P is
unsafe.

5.4.3 Trace automata for CHCs

Before constructing the trace automaton we introduce identifiers for each clause. An identifier
is a function symbol whose arity is the same as the number of atoms in the clause body. For
instance a clause p(X) ← φ,p1(X1), . . . ,pk(Xk) is assigned a function symbol with arity k.
More than one clause can be assigned the same function symbol, but all the clauses with the
same identifier have the same structure, including their constraints; that is, they differ only in
one or more predicate names. Given a set of CHCs and a set Σ of ranked function symbols,
let idP : P → Σ be the assignment of function symbols to clauses.

Definition 5.7 (Trace FTA for a set of CHCs). Let P be a set of CHCs. Define the trace FTA for P
as AP = (Q,Qf,Σ,∆) where

• Q is the set of predicate symbols of P;

• Qf = Q;

• Σ is a set of function symbols;

• ∆ = {c(p1, . . . ,pk)→ p | where c ∈ Σ, c = idP(cl), where
cl = p(X)← φ,p1(X1), . . . ,pk(Xk)}.

The elements of L(AP) are called trace terms for P. In Section 5.5 we will see that several clauses
differing only in their predicate names are assigned the same function symbol.

Example 5.1. Let P be the set of CHCs in Figure 5.1. Let idP map the clauses to c1, . . . , c4 respectively.
Then AP = (Q,Qf,Σ,∆) where:

Q = {mc91, false} ∆ = {c1 → mc91,

Qf = {mc91, false} c2(mc91, mc91)→ mc91,

Σ = {c1, c2, c3, c4} c3(mc91)→ false, c4(mc91)→ false}

For each trace term there exists a corresponding derivation tree called an AND-tree, which
is unique up to variable renaming. The concept of an AND-tree is derived from [142] and
[56].

Definition 5.8 (AND-tree for a trace term). Let P be a set of CHCs and let t ∈ L(AP). Denote by
AND(t) the following labelled tree, where each node of AND(t) is labelled by a clause and an atomic
formula.
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1. For each subterm cj(t1, . . . , tk) of t there is a corresponding node in AND(t) labelled by an
atom p(X) and an identifier cj of the clause p(X)← φ,p1(X1), . . . ,pk(Xk) which is a renamed
version of some clause c in P, such that cj = idP(c); the node’s children (if k > 0) are the nodes
corresponding to t1, . . . , tk and are labelled by p1(X1), . . . ,pk(Xk).

2. The variables in the labels are chosen such that if a node n is labelled by a clause, the local
variables in the clause body do not occur outside the subtree rooted at n.

Definition 5.9 (Trace constraints). Let P be a set of CHCs. The set of constraints of a trace t ∈
L(AP), represented as constr(t) is the set of all constraints in the clause labels of AND(t).

Definition 5.10 (Feasible trace). We say that a trace term t is feasible if constr(t) is satisfiable.

Definition 5.11 (FTA for a trace term). Let P be a set of CHCs and t ∈ L(AP). The FTA At (whose
construction is trivial) such that L(At) = {t} is called the FTA for t. The states of At are chosen to
be disjoint from those of AP.

Example 5.2 (Trace FTA). Consider the FTA in Example 5.1. Let t = c3(c2(c1, c1)). Each ei
represents a label in the trace. Then At = (Q,Qf,Σ,∆) is defined as:

Q = {e1, e2, e3, e4}

Qf = {e1}

Σ = {c1, c2, c3, c4}

∆ = {c1 → e3, c1 → e4, c2(e3, e4)→ e2,

c3(e2)→ e1}

and Σ is the same as in AP. The trace t is not feasible since

constr(t) = {A 6 100, B > 91, A 6 100, C = A+ 11, C > 100, D = C− 10, D > 100, B = D− 10}

and this is not satisfiable.

Example 5.3 (Trace FTA of a linear trace). Consider the FTA in Example 5.1 and a linear trace
t = c3(c1). Let e1 and e represents the labels in the trace. Then At = (Q,Qf,Σ,∆) is defined as:

Q = {e, e1}

Qf = {e}

Σ = {c1, c2, c3, c4}

∆ = {c1 → e, c3(e1)→ e}

and Σ is the same as in AP. The trace t is not feasible.

Definition 5.12 (Constrained trace atom). Let P be a set of CHCs and t ∈ L(AP). Let p(X) be the
atom labeling the root of AND(t). Then the constrained trace atom of t is ∀X.(∃Z̄.constr(t) → p(X)),
where Z̄ = vars(constr(t)) \X.
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We now restate standard soundness and completeness results from constraint logic pro-
gramming [81] in terms of the concepts defined above. We assume that the underlying con-
straint theory T has a complete satisfiability procedure. Note that the domain of linear arith-
metic constraints, which is used in our experiments, satisfies these conditions.

Proposition 5.2. Let P be a set of CHCs, whose underlying constraint theory T has a complete
satisfiability procedure. Let AP be the trace FTA for P. Then

1. for all t ∈ L(AP), P ∪ T |= A, where A is the constrained trace atom of t;

2. p(c) is a variable-free atomic formula such that P ∪ T |= p(c)

a) iff there exists a feasible trace t ∈ L(AP) whose constrained trace atom is of the form
∀X.φ→ p(X) where the constraint φ[X/c] is true.

b) iff p(c) is in M[[P]], the minimal model of P.

Proof. The proof depends on a close correspondence between AND-trees (Definition 5.8) and
derivations defined as sequences in [81]; we do not elaborate the correspondence in detail but
just note that for each AND-tree with constrained trace atom ∀X.(∃Z̄.constr(t) → p(X)) there
exists one or more derivations for p(X) with answer constraint ∃Z̄.constr(t). Conversely for
each derivation for p(X) with answer constraint φ there exists a unique AND-tree whose root
is labelled with p(X) and whose constrained trace atom is ∀X.φ→ p(X).

(1). Let AND(t) be the AND-tree for t (Definition 5.8), let p(X) be the atom labeling the root
and let ∀X.φ→ p(X) be the constrained trace atom for t.

⇒ exists a derivation (as defined in [81]) for p(X) having answer constraint φ→ p(X);

⇒ P ∪ T |= φ→ p(X) by [81] (Theorem 6.1, Part 2).

2(a). P ∪ T |= p(c) is equivalent to P ∪ T |= X = c→ p(X).

≡ there is a derivation for p(X) with answer constraint φ,

where T |= X = c→ φ (by [81] (Theorem 6.1, Part 4));

≡ there is a trace term t and AND-tree AND(t)

with root labelled by p(X) and constrained trace atom ∀X.φ→ p(X), where T |= φ[X/c].

2(b). Follows directly from [81] (Theorem 6.1, Part 1,2)

For part 2(a) of the proof, note that the constrained trace atom in the AND-tree can be more
general than the atom p(c). For example, say that p(1) is a consequence of the set of CHCs;
then the constrained trace atom could be ∀X.X > 0→ p(X).

Proposition 5.2 establishes the correspondence between the semantics of CHCs and the
feasible traces of the trace FTA for the CHCs. Essentially, the set of feasible traces of the FTA
is a representation of the minimal model of the clauses.
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If we transform AP to another FTA while preserving the set of traces, we also preserve the
feasible traces. More generally, we can transform AP to another FTA A ′ so long as L(A ′) ⊆
L(AP) and the elements of L(AP) \ L(A

′) are all infeasible. In this case the feasible traces
of L(A ′) are still a representation of the minimal model of P. We will exploit this in our
refinement procedure (see Section 5.5).

5.4.4 Generation of CHCs from a trace FTA

Now we describe a procedure (Algorithm 5.2) for generating a set of clauses P ′ from an FTA
A = (Q,Qf,Σ,∆) and a set of clauses P. We assume that Σ is the same as that of AP; so Σ
is the range of the function idP mapping clauses of P to function symbols. The transitions
∆ are not in product form; a modification of the algorithm and its correctness proposition
is possible for product form (which is in fact an enabling factor which makes possible the
determinisation of FTAs in practice) but we omit that here for the simplicity of presentation.
We first introduce an injective function for renaming the states of A since we need predicate
names for the generated clauses.

ρ1 : Q→ Predicates

The function ρ1 maps each FTA state to a distinct predicate name. The algorithm simply gen-
erates a clause for each transition, applying the renaming function from states to predicates,
and introducing variables arguments according to the pattern obtained from any clause with
the corresponding identifier (all clauses with the same identifier having the same variable
pattern).

Algorithm 5.2: Generating a set of clauses represented by an FTA
Input: An FTA A = (Q,Qf,Σ,∆), set of Horn clauses P, injective functions

ρ1 : Q→ Predicates, idP : P → Σ

Output: A set of Horn clauses P ′ represented by A and function idP ′ : P ′ → Σ

1 P ′ ← ∅;
2 for each ci(q1, . . . ,qn)→ q (where n > 0) ∈ ∆ do
3 let c = p(X)← φ,p1(X1), . . . ,pn(Xn) be the clause in P where idP(c) = ci;
4 cnew = ρ1(q)(X)← φ, ρ1(q1)(X1), . . . , ρ1(qn)(Xn) ;
5 idP ′(cnew) = ci;
6 P ′ ← P ′ ∪ {cnew};
7 return P ′;

Apart from generating a set of clauses P ′, Algorithm 5.2 also generates the clause identifica-
tion mapping idP ′ , preserving the function symbols from the FTA. In this way the set of traces
is preserved from P to P ′. The correctness of Algorithm 5.2 is expressed by the following
proposition.

Proposition 5.3. Let P be a set of CHCs and let A be an FTA whose signature is the same as that
of AP. Let P ′ be the set of clauses generated from A and P by Algorithm 5.2. Then L(A) = L(AP ′).
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Furthermore if L(A) ⊆ L(AP) and L(A) includes all the feasible traces of L(AP) then the minimal
model of P ′ is the same as the minimal model of P, modulo predicate renaming.

Proof. We first prove that L(A) = L(AP ′), that is, ∀t . t ∈ L(A) ≡ t ∈ L(AP ′). The proof is by
induction on the depth of t. Let A = 〈Q,Qf,Σ,∆〉 and AP ′ = 〈Q ′,Q ′f,Σ,∆ ′〉 and we assume
that Q = Qf and Q ′ = Q ′f.

• Base case.

t has depth 0 and t ∈ L(A) ≡ ∃ t→ q ∈ ∆
≡ ∃ c = p(X)← φ ∈ P where idP(c) = t

≡ ∃ cnew = ρ1(q)(X)← φ ∈ P ′ and idP ′(cnew) = t

≡ ∃ t→ ρ1(q) ∈ ∆ ′

≡ t ∈ L(AP ′)

• Inductive case. Assume that for all terms t of depth at most k, t⇒∗ q in A iff t⇒∗ ρ1(q)
in AP ′ . Let t = ct(t1, . . . , tn) have depth k+ 1.

ct(t1, . . . , tn) ∈ L(A) ≡ ∃ ct(q1, . . . ,qn)→ q ∈ ∆ ∧ ti ⇒∗ qi, 1 6 i 6 n
≡ ∃ ct(q1, . . . ,qn)→ q ∈ ∆ ∧ ti ⇒∗ ρ1(qi), 1 6 i 6 n

by ind. hyp. since depth of t1, . . . tn is at most k

≡ ∃ c = p(X)← φ,p1(X1), . . . ,pn(Xn) ∈ P where idP(c) = ct
∧ ti ⇒∗ ρ1(qi), 1 6 i 6 n

≡ ∃ cnew = ρ1(q)(X)← φ, ρ1(q1)(X1), . . . , ρ1(qn)(Xn) ∈ P ′

and idP ′(cnew) = ct
∧ ti ⇒∗ ρ1(qi), 1 6 i 6 n

≡ ∃ ct(ρ1(q1), . . . , ρ1(qn))→ ρ(q) ∈ ∆ ′

∧ ti ⇒∗ ρ1(qi), 1 6 i 6 n
≡ ct(t1, . . . , tn) ∈ L(AP ′)

This completes the proof that L(AP ′) = L(A). Now assume that L(A) ⊆ L(AP) and includes
all the feasible traces of L(AP); that is, for all feasible traces t, t ∈ L(AP) iff t ∈ L(A). Then
by Proposition 5.2 M[[P]] =M[[P ′]] since A is the trace FTA for P ′.

Example 5.4 (Generation of clauses from an FTA). Consider the following transitions, relating
to the signature for the program in Figure 5.1 (this FTA can be the result of applying automata
based transformations to the FTA corresponding to the program in Figure 5.1). The set of states is
{[false],[mc91],[e,false],[mc91,e1]}. (These are elements of the powerset of the set of states
{false,mc91,e,e1} obtained from the union of FTA in Example 5.1 and FTA in Example 5.3, which
were generated by the determinisation algorithm).
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c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

c2([mc91],[mc91]) -> [mc91].

c2([mc91, e1],[mc91]) -> [mc91].

c2([mc91],[mc91, e1]) -> [mc91].

c3([mc91]) -> [false].

c4([mc91, e1]) -> [false].

c4([mc91]) -> [false].

c3([mc91, e1]) -> [e, false].

The clauses generated by Algorithm 5.2 are the following, with the renaming function ρ1 = {[false] 7→
false, [mc91] 7→ mc91, [e, false] 7→ false_1, [mc91, e1] 7→ mc91_1}. Below we also show the clause
identifiers (the id function for the generated clauses) showing that several clauses can have the same
identifier, thus preserving traces.

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91_1(D,B).

c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91_1(A,B).

c3: false_1 :- A =< 100, B > 91, mc91_1(A,B).

5.4.5 Abstract Interpretation of Constrained Horn Clauses

Abstract interpretation [32] is a technique which derives sound over-approximations by com-
puting abstract fixed points. Convex polyhedron analysis (CPA) [31] is a program analysis
technique based on abstract interpretation [32]. When applied to a set of CHCs P it con-
structs an over-approximation M ′ of the minimal model of P, where M ′ contains at most one
constrained fact p(X) ← φ for each predicate p. The constraint φ is a conjunction of linear
inequalities, representing a convex polyhedron. The first application of convex polyhedron
analysis to CHCs was by Benoy and King [10].

We summarise briefly the elements of convex polyhedron analysis for CHC; further details
(with application to CHC) can be found in [31, 10]. The abstract interpretation consists of
the computation of an increasing sequence of elements of the abstract domain of tuples of
convex polyhedra (one for each predicate) Dn. We construct a monotonic abstract semantic
function FP : Dn → Dn for the set of Horn clauses P, approximating the concrete semantic
“immediate consequences" operator.

Since Dn contains infinite increasing chains, a widening operator for convex polyhedra [31]
is needed to ensure convergence of the sequence. The sequence computed is Z0 = ⊥n, Zn+1 =
Zn∇FP(Zn) where∇ is a widening operator for convex polyhedra and the empty polyhedron
is denoted ⊥. The conditions on ∇ ensure that the sequence stabilises; thus for some finite
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j, Zi = Zj for all i > j and furthermore the value Zj represents an over-approximation of
the least model of P. Algorithm 5.4 presents convex polyhedral analysis for Horn clauses.
For each constrained fact derived from the set of clauses P using this algorithm, there is a
derivation tree (trace term) associated with it. These are syntactically possible trace terms
using the clauses in P but may not be feasible due to abstraction. Thus all such trace terms
are in L(AP).

Algorithm 5.4: Algorithm for convex polyhedral abstraction
Input: A set of CHCs P
Output: over-approximation of the minimal model of P

1 i← 0 ;
2 Z0 ← ⊥ ;
3 New← ⊥ ;
4 repeat
5 foreach (p(X)← Body) ∈ P do
6 New← Newt solve(p(X),Body,Zi)

7 Zi+1 ← Zi∇(NewtZi) ; /* Upper bound and widen */

8 i← i+ 1

9 until Zi v Zi−1;
10 return Zi;

Much research has been done on improving the precision of widening operators. One tech-
nique is known as widening-upto, or widening with thresholds [72]. A threshold is an asser-
tion that is combined with a widening operator to improve its precision.

Our tool for convex polyhedral abstract interpretation, called CPA in the rest of this chapter,
uses the Parma Polyhedra Library [5] to implement the operations on convex polyhedra,
and incorporates a threshold generation phase based on the method described by Lakhdar-
Chaouch et al. [108], as well as a constraint strengthening pre-processing which propagates
constraints both forwards and backwards in the clauses of P.

5.4.5.1 Computing thresholds for widening

Recently, a technique for deriving more effective thresholds was developed [108], which we
have adapted and found to be effective in experimental studies. In brief, the method collects
constraints by iterating the concrete immediate consequence function SDP three times starting
from the “top" interpretation, that is, the interpretation in which all atomic facts are true.
The thresholds are computed by the following method. Let SDP be the standard immediate
consequence operator for CHCs mentioned in Section 5.4.1. That is, if I is a set of constrained
facts, SDP (I) is the set of constrained facts that can be derived in one step from I. Given a
constrained fact p(Z̄)← C, define atomconstraints(p(Z̄)← C) to be the set of constrained facts
{p(Z̄) ← Ci | C = C1 ∧ . . .∧ Ck, (1 6 i 6 k)}. The function atomconstraints is extended to
interpretations by atomconstraints(I) =

⋃
p(Z̄)←C∈I{atomconstraints(p(Z̄)← C)}.
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Let I> be the interpretation consisting of the set of constrained facts p(Z̄) ← true for each
predicate p. We perform three iterations of SDP (represented as SD(3)

P ) starting with I> (the
first three elements of a “top-down" Kleene sequence) and then extract the atomic constraints.
That is, thresholds is defined as follows.

thresholds(P) = atomconstraints(SD(3)
P (I>))

A difference from the method in [108] is that we use the concrete semantic function SDP
rather than the abstract semantic function when computing thresholds. The set of threshold
constraints represents an attempt to find useful predicate properties and when widening they
help to preserve invariants that might otherwise be lost during widening. See [108] for further
details. Threshold constraints that are not invariants are simply discarded during widening.
Thresholds constraints are not necessarily over-approximations (invariants).

The operation thresholds(P) can become expensive and generate a very large number of
constraints. Alternatively we can generate more general threshold constraints (called abstract
threshold), possibly losing precision while gaining efficiency, by following more closely the
approach defined in [108], using the abstract semantic function FP. Then the threshold opera-
tion P becomes

thresholds(P) = atomconstraints(F(3)P (I>))

5.4.5.2 Pre-processing of Horn clauses by specialisation

The effectiveness of abstract interpretation can be improved by combining it with specialisa-
tion with respect to some property. Therefore we specialise (pre-process) the set of clauses
with respect to the property to be verified using the method described in [94]. The method is
summarised as follows: the inputs are a set of CHCs P and an atomic formula A (a property)
and the output is PA, a set of specialised clauses.

1. Compute a query-answer transformation [94] of P with respect to A, denoted Pqa, contain-
ing predicates pq and pa representing query and answer predicates for each predicate p
in P.

2. Compute an over-approximation M of the model of Pqa using abstract interpretation.

3. Strengthen the constraints in the clauses in P, by adding constraints from the answer
predicates in M. That is, for each clause

p(X)← φ,p1(X1), . . . ,pk(Xk)

in P, we construct a clause

p(X)← φ,φ0,φ1, . . . ,φn,p1(X1), . . . ,pk(Xk)

in PA, where pa(X)← φ0, pa
1(X)← φ1, . . . ,pa

n(X)← φn are in M ′.
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The method propagates constraints globally, both forwards and backwards, and makes
explicit constraints from the original clauses. This allows better analysis of the transformed
clauses. Furthermore, the method is independent of the abstract domain and the constraints
theory underlying the clauses.

5.5 refinement of horn clauses using trace automata

If an over-approximation of the clauses derived by polyhedral abstraction does not contain
false, the clauses are safe. However if false is contained in the approximation, we do not know
whether the clauses are unsafe or whether the approximation was too imprecise. In such
cases we can produce a trace term t ∈ AP using the clauses in P which justifies the abstract
derivation of false. The feasibility of this trace can be checked by a constraint satisfiability
check. If the trace is feasible, then it corresponds to a proof of unsafety. Otherwise, refinement
is considered based on this trace. In some other approaches, a more precise abstract domain
is derived from the trace. In our refinement approach, which is described next, we aim to
generate a modified set of clauses that could yield a better approximation. This is achieved
through the steps shown in Algorithm 5.5.

Algorithm 5.5: Algorithm for clause refinement using FTA operations
Input: A set of Horn clauses P and an infeasible trace t ∈ AP
Output: A set of refined Horn clauses P ′

1 1. construct the trace FTA AP (Definition 5.7);
2 2. construct an FTA At such that L(At) = {t} (Definition 5.11);
3 3. compute the difference FTA AP \ At (Definition 5.5);
4 4. generate P ′ from AP \ At and P (Algorithm 5.2) ;
5 return P ′;

Both AP and At in Algorithm 5.5 are deterministic FTAs by construction, however their
union is not. Determinisation is used to generate the difference FTA (step 3) and its result
is in product form. The program P ′ has the same model (modulo predicate renaming) as P,
since the steps result in the removal of an infeasible trace but all other traces are preserved.

Removal of one trace from the clauses might not seem much of a refinement. However,
modifying the clauses to remove a single trace can result in significant restructuring, which
arises as a side-effect of determinisation which isolates the infeasible trace. This in turn can
induce a more precise abstract interpretation, with less precision loss due to convex hull
operations and widening.

The correctness of this refinement follows from Proposition 5.3. In particular false ∈ M[[P]]

if and only if false ∈ M[[P ′]] (assuming that the predicate renaming at least preserves the
predicate name false).

Example 5.5. Consider again the FTA shown in Example 5.4. This is in fact the determinisation of
AP ∪At where P is the set of clauses in Figure 5.1 and At where t is the infeasible trace c3(c1).
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The only accepting state of At is e; thus to construct the difference AP \ At we need only to remove
from the automaton the states containing e, namely [false,e]. We can also remove any transitions
containing this state in the right hand side. This leaves the following FTA and refined program in
Figure 5.2, using the same renaming function as in Example 5.4. In this program, the infeasible trace
corresponding to c3(c1) cannot be constructed.

c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

c2([mc91],[mc91]) -> [mc91].

c2([mc91, e1],[mc91]) -> [mc91].

c2([mc91],[mc91, e1]) -> [mc91].

c3([mc91]) -> [false].

c4([mc91]) -> [false].

c4([mc91, e1]) -> [false].

It can be seen that although the infeasible trace was very simple, its removal led to a considerably
restructured set of clauses. We have not shown the product form here, which is in fact somewhat more
compact.

The refinement process guarantees progress; that is, the infeasible computation once elim-
inated never arises again. Due to the construction of the id mapping for P ′ the traces in the
languages of the FTAs of P and P ′ are preserved, apart from the eliminated trace.

Proposition 5.4 (Progress). Let P be a set of CHCs, and t be a trace in P. Let P ′ be a refined set of
CHCs obtained from P after the removal of t. Then t cannot be generated from P ′ again.

Proof. The proof of this proposition follows from the following points:
1. AP recognizes all syntactically possible traces of P, which is an over-approximation of

the traces of P since the constraints in P are not taken in account while constructing AP.
2. After the removal of the trace t from all possible traces of P (step 3 of Algorithm 5.5) the

language of AP \ At does not contain t (difference automata).
3. Then using Algorithm 5.2 to generate P ′ from AP \ At and P, t will be syntactically

impossible trace in P ′ (follows from Proposition 5.3).
4. Since t is a syntactically impossible trace in P ′, there is no constrained fact associated

with it in this abstract domain using P ′ (see Section 5.4.5).

Progress is an interesting and relevant refinement property but it gives no guarantees that
a proof will eventually be found if such exists. However there exists a measure in the liter-
ature called "relative completeness", which says that the abstraction refinement procedure is
complete relative to a powerful and unrealistic oracle-based method which guides the widen-
ing [7]. In the worst case the algorithm will just eliminate longer and longer infeasible traces.
Even if there exists some convex polyhedral approximation that establishes P’s satisfiability,
the abstract interpretation algorithm involving the widening heuristic cannot guarantee to
find it.
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5.5.1 Further refinement: splitting a state in the trace FTA

We also apply a tree-automata-based transformation to split states representing predicates
where convex hull operations have lost precision. A typical case is where a number of clauses
with the same head predicate contain disjoint constraints, such as a predicate representing
an if-then-else statement in an imperative program. The clauses defining the statement will
have a clause for the then branch and a clause for the else branch. The respective constraints
in these clauses are disjoint since one is the negation of the other. The convex hull will thus
contain the whole space for the variables involved in these constraints.

As defined in Definition 5.6, the FTA state corresponding to such a predicate can be split.
We partition the transitions corresponding to the clauses according to the disjoint groups of
constraints and apply the procedure in Definition 5.6, preserving the set of traces. Thus the
feasible traces and the model of the resulting clauses is preserved. This enhances precision of
polyhedral analysis [59].

Splitting has to be carried out in a controlled manner to prevent blow up in the size of FTA
and hence on the size of the clauses generated. With this in mind we split only those states
appearing in a counterexample trace, but this is not necessary in our approach to avoid a
counterexample.

It would have been possible to formulate the splitting operation directly on CHCs, without
any reference to FTAs. However, since the whole procedure is based on transformations that
preserve the set of feasible traces, we preferred to present splitting as a language-preserving
operation on FTAs.

5.6 experiments on chc benchmark problems

5.6.1 Experimental settings

Our tool consists of an implementation of a convex polyhedra analyser for CLP written in Ciao
Prolog1 interfaced to the Parma Polyhedra Library [5] as well as an implementation of an
FTA determiniser written in Java. It takes as input a CLP program and returns “safe”, “un-
safe” or “unknown” (after resources are exhausted). The input is first pre-processed using the
method described in 5.4.5.2. The benchmark set contains 216 CHCs verification problems (179

safe and 37 unsafe problems), taken mainly from the repositories of several state-of-the-art
software verification tools such as DAGGER [67] (21 problems), TRACER [85] (66 problems),
InvGen [68] (68 problems), and also from the TACAS 2013 Software Verification Competition
[12] (52 problems). These problems are also available in C (http://akira.ruc.dk/~kafle/
comlan-vmcai15-benchmarks.zip) and they were first translated to CLP form2. The chosen
problems are representatives of different categories of the Software Verification Competition
(loops, control flow and integer, SystemC etc.) as well as specific problems used to demon-
strate the strength of different verification tools. The benchmarks in CLP form are available

1 http://ciao-lang.org/
2 Thanks to Emanuele De Angelis for the translation

http://akira.ruc.dk/~ kafle/comlan-vmcai15-benchmarks.zip
http://akira.ruc.dk/~ kafle/comlan-vmcai15-benchmarks.zip
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Result CPA CPA+R CPA+R+Split QARMC VeriMAP (GenPH) TRACER-SPost TRACER-WPre ELDARICA

solved (safe/unsafe) 160 (142/18) 182 (160/22) 195 (164/31) 178 (141/37) 185 (154/31) 91 (74/17) 103 (85/18) 159(135/24)

timeout or errors 56 34 22 38 38 125 113 57

average time (secs.) 5.98 51.66 50.08 59.1 57.93 305.03 225.82 50.02

Figure 5.4: Experimental results on 216 (179 safe / 37 unsafe) CHC verification problems with a time-
out of five minutes

from http://akira.ruc.dk/~kafle/VMCAI15-Benchmarks.zip. The experiments were carried
out on an Intel(R) computer with a 2.66GHz processor running Debian 5 in 6 GB memory.

5.6.2 Summary of results

The results of our experiments are summarised in Table 5.4. Column CPA summarises the
results using our own convex polyhedra analyser (Section 5.4.5) with no refinement step. Col-
umn CPA+R shows the results obtained by iterating the CPA algorithm with the refine-
ment step described in Section 5.5, Algorithm 5.5. Column CPA+R+Split incorporates the
FTA-based state splitting into the refinement step (Section 5.5.1). In all the above cases,
we used a concrete threshold generation as described in 5.4.5.1. Column QARMC shows
the results obtained on the same problems using the QARMC tool [134, 64]. The columns
VeriMAP(GenPH), TRACER-SPost, TRACER-WPre respectively report results using the Ver-
iMAP system implementing Iterated Specialization method with the generalization operator
GenPH [38], TRACER [85] using the strongest postcondition (SPost) and the weakest pre-
condition (WPre) options. The results in these three columns are taken from [38] since we
couldn’t run these tools. We used the same set of benchmarks as in [38]. The last column
ELDARICA reports results using Eldarica tool [80] which uses disjunctive interpolants for
the Horn clause verification purpose [137].

5.6.3 Discussion of results

The results show that CPA is reasonably effective on its own, solving 74% (160/216) of the
problems. When combined with a refinement phase we can solve further 22 problems. Al-
though only one infeasible trace is eliminated in each refinement step, the refined program
splits some of the predicates appearing in the trace, which we noted to be a crucial point of
precision for polyhedral analysis [59]. When adding the state splitting refinement we solve an
additional 13 problems. Further splitting would solve more problems but we are unwilling
to introduce uncontrolled splitting due to the blow up in program size that could result. The
maximum number of iterations required to solve a problem was 8. Although the timeout limit
was five minutes, only 5% of the solved problems required more than one minute.

Our implementation uses the product form for DFTAs produced by the determinisation
algorithm, although the formalisation of refinement in Section 5.5 uses only standard FTA
transitions. Although the traces for clauses with predicates produced from product states
differ from the original clauses, they can be regarded as representing the original traces, by

http://akira.ruc.dk/~ kafle/VMCAI15-Benchmarks.zip
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unfolding the clauses resulting from ε-transitions. Product form adds to the scalability of the
approach, especially for Horn clauses with more than one body atom. Empirically we have not
shown this here but this is due to the scalability of the product form during determinisation
of FTAs (see [60]).

5.6.4 Comparison with other tools

On the set of verification problems considered, our results (CPA+R+Split) improve on other
tools both in average time and the number of instances solved. The results of VeriMAP and
QARMC are close to ours while results of TRACER is bit far. This is due to the fact that
TRACER uses symbolic execution and does not scale well. Out of 216 problems QARMC
solves 178 problems with an average time of 59 seconds whereas we can solve 195 problems
with an average time of 50 seconds. However, all unsafe programs in the benchmark set are
solved by QARMC in contrast to ours. Surprisingly enough, the number of unsafe problems
solved by VeriMAP and our tool is the same. The model checking algorithm implemented in
Eldarica for Horn solving is similar in spirit as the one described in [64] but uses disjunctive
interpolation for counterexamples generalization instead of tree interpolation which is strictly
more general than tree interpolation [137]. We suspect that it is due to this, the average time
taken by Eldarica is slightly less than that of QARMC though it solves a lesser number of
instance than QARMC. Our results show that for these set of examples, tools using polyhedral
abstraction seems more powerful than the others.

Convex polyhedral analysis is good at finding the required invariants to prove the safety of
a program and due to this our tool and VeriMAP solved more safe problems than QARMC.
On the other hand, QARMC seems to be more effective at finding bugs. Most of the problems
challenging to us come from some particular categories e.g. SystemC (modeled over fixed
size integers) and Control Flow and Integer Variables of [12] which requires some specific
techniques to solve. Safe problems challenging to us are also challenging to QARMC though
this is not the case for unsafe problems.

5.6.5 Additional experiments on SV-COMP-15

We chose a subset of 132 problems from SV-COMP 2015
3 [13]. This set contains benchmarks

from the categories which were not reported in our experiments before such as recursive bench-
marks which needs recursive analysis. Additionally it contains some benchmarks from Loop
category such as loop-acceleration, loop-lit, loop-new. We used SeaHorn [71, 70], a verification
framework based on LLVM, for Horn clause generation. SeaHorn first compiles C to LLVM
intermediate representation (LLVM IR), also known as bitcode using clang, a C-family front-
end for LLVM4. The bitcode is further simplified and optimized reusing the vast amount of
work done on LLVM (e.g. function inlining, dead code elimination, CFG simplifications etc.)
whose purpose is to make the verification task easier. The resulting bitcode is translated to

3 http://sv-comp.sosy-lab.org/2015/benchmarks.php
4 http://clang.llvm.org/
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Result CPA+R+Split CPA+R+Split+AT QARMC

solved (safe/unsafe) 114 (54/60) 114 (54/60) 110 (42/68)

timeout or errors 18 18 22

average time (secs.) 72.92 66.28 52.4

Table 5.1: Experimental results on 132 CHC verification problems with a timeout of five minutes

Horn clauses using different semantics for example small step, large block encoding etc. More
details can be found in [71, 70]. These benchmarks are available in C as well as in Horn clause
form from http://akira.ruc.dk/~kafle/comlan-vmcai15-benchmarks.zip. The results are
summarised in the Table 5.1. The column CPA+R+Split+AT reports results using our tool
described above which now uses abstract threshold as described in 5.4.5.1 rather than the
concrete one. The results show that our tool with the option abstract threshold (column 2)
scales more than the concrete one (column 1) though the number of instances solved are the
same. In these benchmarks, though we solve a few more problems than QARMC, it is much
faster than our tool.

5.7 related work

The work by Heizmann et al. [74, 76] uses nested word automata to construct a framework for
abstraction refinement. Our work could certainly be regarded as extending that framework to
tree-structured computations, using tree automata instead of (nested) word automata. How-
ever our aim is somewhat different. We use automata techniques to perform the refinement
whereas in [74] automata notation is only used to re-express the verification problem, shifting
the verification problem to the construction of “interpolant automata", without providing any
automata-based algorithms to do this. On the other hand we discuss the practicality of the
automata-based approach on a set of challenging problems.

While we eliminate only one trace at a time in the described procedure, the FTA difference
algorithm extends naturally to eliminating (infinite) sets of traces. This is a goal that is well
worth pursuing – although to find an interpolant automaton describing an infinite set of
infeasible traces is sometimes as difficult as solving the original problem.

Verification of CLP programs using abstract interpretation and specialisation has been stud-
ied for some time. The use of an over-approximation of the semantics of a program can
be used to establish safety properties – if a state or property does not appear in an over-
approximation, it certainly does not appear in the actual program behaviour. A general frame-
work for logic program verification through abstraction was described by Levi [117]. Peralta
et al. [129] introduced the idea of using a Horn clause representation of imperative languages
and a convex polyhedral analyser to discover invariants of a program. Another approach is
taken in the work of De Angelis et al. [38, 37] on applying program specialisation to achieve
verification. Unfolding and folding operations play a vital role in that approach, and hence
the program structure is changed much more fundamentally than in our approach.

http://akira.ruc.dk/~ kafle/comlan-vmcai15-benchmarks.zip


5.8 conclusion and future work 73

CEGAR [23] has been successfully used in verification to automatically refine (predicate)
abstractions [21, 109] to reduce false alarms but not much has been explored in refining
abstractions in the convex polyhedral domain. Some work on this (with progress guarantee)
has been done in [4] and [67]. [4] uses the powerset domain, while [67] uses a Hint DAG
to gain precision lost during the convex hull operation. Both make use of interpolation. The
use of interpolation in refinement in verification of Horn clauses is explored in [15, 69]. In
our approach we guarantee elimination of only one trace and elimination of others depends
on properties of the abstract interpretation techniques. One drawback of our approach is
that we cannot characterize what other infeasible traces are removed by the refinement if
there is any. By contrast in interpolation-based techniques the refinement introduces new
properties which guarantee progress and the elimination of all counterexamples covered by
those properties. However the effectiveness of interpolation-based refinement depends on the
generation of “good" interpolants, which is a matter of continuing research, for example by
Rümmer et al. [137]. There is no generalisation of counterexamples currently since we remove
a single counterexample in each iteration. In this sense our refinement approach is weak. The
ideas developed in [137] are certainly useful to extend our refinement approach. A number of
tools implementing predicate abstraction and refinement are available, such as HSF [64] and
BLAST [8]. TRACER [62] is a verification tool based on CLP that uses symbolic execution.

A point of contrast is that in our approach, the refinements are embedded in the clauses
whereas in CEGAR they are accumulated in the set of properties used for property-based
abstraction. Also we rely on the abstraction using convex polyhedral analysis to discover in-
variants whereas CEGAR-based approaches rely on interpolation in the refinement stage to
perform generalisation, thus discovering useful properties. A weakness of invariant genera-
tion using interpolation is that the interpolants must share variables with the unsatisfiable
part of the constraints, typically those in the integrity constraints, which can be insufficient
for finding invariants of inner recursive predicates. Polyhedral analysis is more expensive, yet
seems (along with the threshold assertions, see Section 5.4.5) to be very effective at finding
invariants even on the first iteration.

Informally one can say that approaches differ in where the “hard work" is performed. In the
CEGAR approaches and in [74] the refinement step is crucial, and interpolation plays a central
role. In our approach, by contrast, most of the hard work is done by the abstract interpretation,
which finds useful invariants. Finding the most effective balance between abstraction and
refinement techniques is a matter of ongoing research.

5.8 conclusion and future work

We presented a procedure for abstraction refinement in Horn clause verification based on
tree automata. This was achieved through a combination of abstraction (using abstraction
interpretation) followed by a trace refinement (using finite tree automata). The refinement is
independent of the abstract domain used. The practicality of our approach was demonstrated
on a set of Horn clause verification problems.

In the future, we will investigate the elimination of a larger set of infeasible traces in each
refinement step, possibly by generalising a trace using interpolation or by discovering a set
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of infeasible traces. At the moment, a new program is generated after refinement and the
analysis is restarted from the scratch. In the future, we would like to reuse the result of
analysis from the previous iterations and build on this instead of starting the analysis from
the scratch. The optimisation of our tool chain is also an important topic for future work as it
is clear that our prototype, built by chaining together tools using shell scripts, contains much
redundancy.
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I N T E R P O L A N T T R E E A U T O M ATA A N D T H E I R A P P L I C AT I O N I N
H O R N C L A U S E V E R I F I C AT I O N

With John P. Gallagher

Abstract
This chapter investigates the combination of abstract interpretation over the domain of con-
vex polyhedra with interpolant tree automata, in an abstraction-refinement scheme for Horn
clause verification. These techniques have been previously applied separately, but are com-
bined in a new way in this chapter. The role of an interpolant tree automaton is to provide a
generalisation of a spurious counterexample during refinement, capturing a possibly infinite
set of spurious counterexample traces. In our approach these traces are then eliminated using
a transformation of the Horn clauses. We compare this approach with two other methods; one
of them uses interpolant tree automata in an algorithm for trace abstraction and refinement,
while the other uses abstract interpretation over the domain of convex polyhedra without
the generalisation step. Evaluation of the results of experiments on a number of Horn clause
verification problems indicates that the combination of interpolant tree automaton with ab-
stract interpretation gives some increase in the power of the verification tool, while sometimes
incurring a performance overhead.

Keywords: Interpolant tree automata, Horn clauses, Abstraction-refinement, Horn clause ver-
ification.

6.1 introduction

In this chapter we combine two existing techniques, namely abstract interpretation over the
domain of convex polyhedra and interpolant tree automata in a new way for Horn clause
verification. Abstract interpretation is a scalable program analysis technique which computes
invariants allowing many program properties to be proven, but suffers from false alarms; safe
but not provably safe programs may be indistinguishable from unsafe programs. Refinement
is considered in this case. In previous work [96] we described an abstraction-refinement scheme
for Horn clause verification using abstract interpretation and refinement with finite tree au-
tomata. In that approach refinement eliminates a single spurious counterexample in each
iteration of the abstraction-refinement loop, using a clause transformation based on a tree au-
tomata difference operation. In contrast to that work, we apply the method of Wang and Jiao
[147] for constructing an interpolant tree automaton from an infeasible trace. This generalises
the trace of a spurious counterexample, recognising a possibly infinite number of spurious
counterexamples, which can then be eliminated in one iteration of the abstraction-refinement
loop. We combine this construction in the framework of [96]. The experimental results on a
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c1. fib(A, B):- A>=0, A=<1, B=1.

c2. fib(A, B) :- A>1, A2=A-2,

A1=A-1, B=B1+B2, fib(A1,B1), fib(A2,B2).

c3. false:- A>5, B<A, fib(A,B).

Figure 6.1: Example CHCs (Fib) defining a Fibonacci function.

set of Horn clause verification problems are reported, and compared with both [96] and the
results of Wang and Jiao [147] using trace abstraction and refinement.

In Section 6.2 we introduce the key concepts of constrained Horn clauses and finite tree
automata. Section 6.3 contains the definitions of interpolants and the construction of an in-
terpolant tree automaton following the techniques of Wang and Jiao [147]. In Section 6.4 we
describe our algorithm combining abstract interpretation with interpolant tree automata, in-
cluding in Section 6.4.1 an experimental evaluation and comparison with other approaches.
Finally in Section 6.5 we discuss related work.

6.2 preliminaries

A constrained Horn clause (CHC) is a first order predicate logic formula of the form ∀(φ∧

p1(X1)∧ . . .∧ pk(Xk) → p(X)) (k > 0), where φ is a first order logic formula (constraint)
with respect to some background theory and p1, . . . ,pk,p are predicate symbols. We as-
sume (wlog) that Xi,X are (possibly empty) tuples of distinct variables and φ is expressed
in terms of Xi, X, which can be achieved by adding equalities to φ. p(X) is the head of
the clause and φ ∧ p1(X1) ∧ . . . ∧ pk(Xk) is the body. There is a distinguished predicate
symbol false which is interpreted as False. Clauses whose head is false are called integrity
constraints. Following the notation used in constraint logic programming a clause is usu-
ally written as H ← φ,B1, . . . ,Bk where H,B1, ...,Bk stand for atomic formulas (atoms)
p(X),p1(X1), ...,pk(Xk). A set of CHCs is sometimes called a (constraint logic) program.

An interpretation of a set of CHCs is represented as a set of constrained facts of the form
A ← φ where A is an atom and φ is a formula with respect to some background theory.
A ← φ represents a set of ground facts Aθ such that φθ holds in the background theory (θ
is called a grounding substitution). An interpretation that satisfies each clause in P is called
a model of P. In some works [15, 126], a model is also called a solution and we use them
interchangeably in this chapter.

horn clause verification problem . Given a set of CHCs P, the CHC verification
problem is to check whether there exists a model of P. It can easily be shown that P has a
model if and only if the fact false is not a consequence of P.

An example set of CHCs, encoding the Fibonacci function is shown in Figure 6.1. Since its
derivations are trees, it serves as an interesting example from the point of view of interpolant
tree automata.

Definition 6.1 (Finite tree automaton [28]). An FTA A is a tuple (Q,Qf,Σ,∆), where Q is a finite
set of states, Qf ⊆ Q is a set of final states, Σ is a set of function symbols, and ∆ is a set of transitions
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of the form f(q1, . . . ,qn) → q with q,q1, . . . ,qn ∈ Q and f ∈ Σ. We assume that Q and Σ are
disjoint.

We assume that each CHC in a program P is associated with an identifier by a mapping
idP : P → Σ. An identifier (an element of Σ) is a function symbol whose arity is the same as
the number of atoms in the clause body. For instance a clause p(X) ← φ,p1(X1), . . . ,pk(Xk)
is assigned a function symbol with arity k. As will be seen later, these identifiers are used to
build trees that represent derivations using the clauses. A set of derivation trees (traces) of a
set of atoms of a program P can be abstracted and represented by an FTA. We provide such a
construction in Definition 6.2.

Definition 6.2 (Trace FTA for a set of CHCs). Let P be a set of CHCs. Define the trace FTA for P
as AP = (Q,Qf,Σ,∆) where

• Q = {p | p is a predicate symbol of P}∪ {false};

• Qf = {false};

• Σ is a set of function symbols;

• ∆ = {cj(p1, . . . ,pk) → p | where cj ∈ Σ, p(X) ← φ,p1(X1), . . . ,pk(Xk) ∈ P, cj =

idP(p(X)← φ,p1(X1), . . . ,pk(Xk))}.

The elements of L(AP) are called trace-terms or trace-trees or simply traces of P rooted at
false.

Example 6.1. Let Fib be the set of CHCs in Figure 6.1. Let idFib map the clauses to identifiers
c1, c2, c3 respectively. Then AFib = (Q,Qf,Σ,∆) where:

Q = {fib, false}

Qf = {false}

Σ = {c1, c2, c3}

∆ = {c1 → fib, c2(fib, fib)→ fib,

c3(fib)→ false}

Similarly, we can also construct an FTA representing a single trace. It should be noted that
the whole idea of representing program traces by FTAs is to use automata theoretic operations
for dealing with program traces, for example, removal of an undesirable trace from a set of
program traces. Let P be a set of CHCs and let t ∈ L(AP). There exists an FTA At such that
L(At) = {t}. We illustrate the construction with an example.

Example 6.2 (Trace FTA). Consider the FTA in Example 6.1. Let t = c3(c2(c1, c1)) ∈ L(AP). Then
At = (Q,Qf,Σ,∆) is defined as:
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Q = {e1, e2, e3, e4}

Qf = {e1}

Σ = {c1, c2, c3, c4}

∆ = {c1 → e3, c1 → e4, c2(e3, e4)→ e2,

c3(e2)→ e1}

where Σ is the same as in AP and the states ei (i = 1 . . . 4) represent the nodes in the trace-tree, with
root node e1 as the final state.

A trace-term is a representation of a derivation trees, also called an AND-tree [142, 56] giving
a proof of an atomic formula from a set of CHCs.

Definition 6.3 (AND-tree for a trace term T(t) (adapted from [96])). Let P be a set of CHCs and
let t ∈ L(AP). An AND-tree corresponding to t, denote by T(t), is the following labelled tree, where
each node of T(t) is labelled by an atom, a clause identifier and a constraint.

1. For each sub-term cj(t1, . . . , tk) of t there is a corresponding node in T(t) labelled by an atom
p(X), an identifier cj such that cj = idP(p(X) ← φ,p1(X1), . . . ,pk(Xk)), and a constraint
φ; the node’s children (if k > 0) are the nodes corresponding to t1, . . . , tk and are labelled by
p1(X1), . . . ,pk(Xk).

2. The variables in the labels are chosen such that if a node n is labelled by a clause, the local
variables in the clause body do not occur outside the subtree rooted at n.

We assume that each node in T(t) is uniquely identified by a natural number. We omit t from T(t)

when it is clear from the context.

c3

c2

c1 c1

1   c3  false  φ1  

2  c2  fib(A,B) φ2 

3  c1  fib(A2,B2)  φ3 4  c1  fib(A1,B1) φ4 

Figure 6.2: A trace-term c3(c2(c1, c1)) of Fib (left) and its AND-tree (right), where φ1 ≡ A > 5 ∧

B < A; φ2 ≡ A > 1 ∧ A2 = A− 2 ∧ A1 = A− 1 ∧ B = B1+ B2; φ3 ≡ A2 > 0 ∧ A2 6 1 ∧

B2 = 1; φ4 ≡ A1 > 0∧ A1 6 1∧ B1 = 1.

The formula represented by an AND-tree T , denoted by F(T) is
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1. φ, if T is a single leaf node labelled by a constraint φ; or

2. φ∧
∧
i=1..n(F(Ti)) if the root node of T is labelled by the constraint φ and has subtrees

T1, . . . , Tn.

The formula F(T) where T is the AND-tree in Figure 6.2 is

A > 5∧ B < A∧ A > 1∧ A2 = A− 2∧ A1 = A− 1∧ B = B1+ B2

A2 > 0∧ A2 6 1∧ B2 = 1∧ A1 > 0∧ A1 6 1∧ B1 = 1

We say that an AND-tree T is satisfiable or feasible if F(T) is satisfiable, otherwise unsat-
isfiable or infeasible. Similarly, we say a trace-term is satisfiable (unsatisfiable) iff its corre-
sponding AND-tree is satisfiable (unsatisfiable). The trace-term c3(c2(c1, c1)) in Figure 6.2 is
unsatisfiable since F(c3(c2(c1, c1))) is unsatisfiable.

6.3 interpolant tree automata

Refinement of trace abstraction is an approach to program verification [74]. In this approach, if
a property is not provable in an abstraction of program traces then an abstract trace showing
the violation of the property is emitted. If such a trace is not feasible with respect to the
original program, it is eliminated from the trace abstraction which is viewed as a refinement
of the trace abstraction. The notion of interpolant automata [74] allows one to generalise
an infeasible trace to capture possibly infinitely many infeasible traces which can then be
eliminated in one refinement step. In this section, we revisit the construction of an interpolant
tree automaton [147] from an infeasible trace-tree. The automaton serves as a generalisation of
the trace-tree; and we apply this construction in Horn clause verification.

Definition 6.4 ((Craig) Interpolant [35]). Given two formulas φ1,φ2 such that φ1 ∧φ2 is unsat-
isfiable, a (Craig) interpolant is a formula I with (1) φ1 → I; (2) I∧φ2 → False; and (3) vars(I) ⊆
vars(φ1) ∩ vars(φ2). An interpolant of φ1 and φ2 is represented by I(φ1,φ2).

The existence of an interpolant implies that φ1 ∧ φ2 is unsatisfiable [136]. Similarly, if
the background theory underlying the CHCs P admits (Craig) interpolation [35], then every
infeasible derivation using the clauses in P has an interpolant [126].

Example 6.3 (Interpolant example). Letφ1 ≡ A2 6 1∧A > 1∧A2 = A− 2∧A1 = A− 1∧B = B1+ B2

and φ2 ≡ A > 5∧ B < A such that φ1 ∧φ2 is unsatisfiable. Since the formula I ≡ A 6 3 fulfills all
the conditions of Definition 6.4, it is an interpolant of φ1 and φ2.

Given a node i in an AND-tree T , we call Ti the sub-tree rooted at i, φi the formula label of
node i, F(Ti) the formula of the sub-tree rooted at node i, and G(Ti) the formula F(T) except
the formula F(Ti), which is defined as follows:

1. true, if T is a single leaf node labelled by constraint φ and the node is i; or

2. φ, if T is a single leaf node labelled by constraint φ and the node is different from i; or
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3. true, if the root node of T is labelled by the constraint φ and the node is i; or

4. φ∧
∧
l=1..nG(Tl) if the root node of T is labelled by the constraint φ, and the node is

different from i and has subtrees T1, . . . , Tn.

For example in the example program of Figure 6.2, G(T1) = true and G(T2) = φ1.

Definition 6.5 (Tree Interpolant of an AND-tree [18]). Let T be an infeasible AND-tree. A tree
interpolant TI(T) for T is a tree constructed as follows:

1. The root node i of TI(T) is labelled by i, the atom of the node i of T and the formula false;

2. Each leaf node i of TI(T) is labelled by i, the atom of the node i of T and by I(F(Ti),G(Ti));

3. Let i be any other node of T . We define F1 as (φi ∧
∧n
k=1 Ik) where

∧n
k=1 Ik (n > 1) is the

conjunction of formulas representing the interpolants of the children of the node i in TI(T). Then
the node i of TI(T) is labelled by i, the atom of the node i of T and the formula I(F1,G(Ti)).

Note that the formula F1 and G(Ti) in Definition 6.5 (point 3) is unsatisfiable becuase of the
property of interpolant and the fact that F(T) is unsatisfiable. The tree interpolant correspond-
ing to AND tree in Figure 6.2(b) is shown in Figure 6.3(b).

1   c3  false  φ1  

2  c2  fib(A,B) φ2 

3  c1  fib(A2,B2)  φ3 4  c1  fib(A1,B1)  φ4 

1   c3  false   false

2  c2  fib(A,B)  A ≤ 3 

3  c1  fib(A2,B2)  A2 ≤ 1 4  c1  fib(A1,B1)  true 

Figure 6.3: AND tree of Figure 6.2 (left) and its tree interpolant (right). Let Ij represents an interpolant
of the node j. Then I1 ≡ false; I4 ≡ I(φ4,φ3 ∧φ1 ∧φ2) ; I3 ≡ I(φ3,φ1 ∧φ2 ∧ I4); I2 ≡
I(I3 ∧ I4 ∧φ2,φ1).

Since there is a one-one correspondence between an AND-tree and a trace-term, we can
define a tree interpolant for a trace-term as follows:

Definition 6.6 (Tree Interpolant of a trace-term TI(t)). Given an infeasible trace-term t, its tree
interpolant, represented as TI(t), is the tree interpolant of its corresponding AND-tree.

Definition 6.7 (Interpolant mapping ΠTI). Given a tree interpolant TI for some tree, ΠTI is a
mapping from the atom labels and node numbers of each node in TI to the formula label such that
ΠTI(A

j) = ψ where A is the atom label and ψ is the formula label at node j.

For our example program ΠTI is the following:

{false1 7→ false, fib2(A,B) 7→ A 6 3, fib3(A2,B2) 7→ A 6 1, fib4(A1,B1) 7→ true}
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Property 6.1 (Tree interpolant property). Let TI(T) be a tree interpolant for some infeasible AND-
tree T . Then

1. ΠTI(ri) = false where r is the atom label of the root of TI(T);

2. for each node j with children j1, ..., jn (n > 0) the following property holds:
(
∧n
k=0ΠTI(A

jk))∧φj → ΠTI(A
j) where φj is the formula label of the node j of T ;

3. for each node j the following property holds:
vars(ΠTI(A

j)) ⊆ (vars(F(Tj))∩vars(G(Tj))), where the formula F(Tj) andG(Tj) corresponds
to T .

Definition 6.8 (Interpolant tree automaton for Horn clauses AIt=(Q,Qf,Σ,∆) [147]). Let P
be a set of CHCs, t ∈ L(AP) be any infeasible trace-term and TI(t) be a tree interpolant of t. Let
σ : As × J → Q where σ maps an atom at node i ∈ J of TI(t) to an FTA state in Q. Define
ρ : PredJ → Pred which maps a predicate name with superscript to a predicate name of P. Then the
interpolant automaton of t is defined as an FTA AIt such that

• Q = {σ(A, i) : A is the atom label of the node i of TI(t)};

• F = {σ(A, i) : A is the atom label of the root of TI(t)};

• Σ is a set of function symbols of P;

• ∆ = {c(pj11 , . . . ,pjkk )→ pj | cl = p(X)← φ,p1(X1), . . . ,pk(Xk) ∈ P, c = idP(cl), ρ(pi) =
p , ρ(pim) = pm for m = 1..k and ΠTI(pj)(X)← φ,ΠTI(p

j1
1 )(X1), . . . ,ΠTI(p

jk
k )(Xk)}.

Example 6.4 (Interpolant automata for c3(c2(c1, c1))).

Q = {fib2, fib3, fib4, error}

Qf = {error}

Σ = {c1, c2, c3}

∆ = {c1 → fib2, c1 → fib3, c1 → fib4,

c2(fib
2, fib2)→ fib4, c2(fib2, fib3)→ fib2,

c2(fib
2, fib3)→ fib4, c2(fib2, fib4)→ fib4,

c2(fib
3, fib2)→ fib2, c2(fib3, fib2)→ fib4,

c2(fib
3, fib3)→ fib2, c2(fib3, fib3)→ fib4,

c2(fib
3, fib4)→ fib2, c2(fib3, fib4)→ fib4,

c2(fib
4, fib2)→ fib4, c2(fib4, fib3)→ fib2,

c2(fib
4, fib3)→ fib4, c2(fib4, fib4)→ fib4,

c3(fib
2)→ error, c3(fib3)→ error}

The construction described in Definition 6.8 recognizes only infeasible traces terms of P as
stated in Theorem 6.1.
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Theorem 6.1 (Soundness). Let P be a set of CHCs and t ∈ L(AP) be any infeasible trace-term. Then
the interpolant automaton AIt recognises only infeasible trace-terms of P.

It is hard to characterise the set of traces. But these are the traces which share the same
reason of unsatisfiability as t.

Definition 6.9 (Conjunctive interpolant mapping). Given an interpolant mapping ΠTI of a tree
interpolant TI, we define a conjunctive interpolant mapping for an atom label A of any node in TI,
represented as ΠcTI(A), to be the following formula ΠcTI(A) =

∧
jΠTI(A

j), where j ranges over the
nodes of TI. It is the conjunction of interpolants of all the nodes of TIwith atom labelA. The conjunctive
interpolant mapping of TI is represented is ΠcTI = {ΠcTI(A) | A is the atom label of TI}.

It is desirable that the interpolant tree automaton of a trace t ∈ L(AP) recognizes as many
infeasible traces as possible, in an ideal situation, all infeasible traces of P. This is possible
under the condition described in Theorem 6.2.

Theorem 6.2 (Model and Interpolant Automata ). Let t ∈ L(AP) be any infeasible trace-term. If
ΠcTI(t) is a model of P, then the interpolant automaton of t recognises all infeasible trace-terms of P.

6.4 application to horn clause verification

An abstraction-refinement scheme for Horn clause verification is described in [96] which is
depicted in Figure 6.4. In this, a set of CHCs P is analysed using the techniques of abstract
interpretation over the domain of convex polyhedra which produces an over-approximation
M of the minimal model of P. The set of traces used during the analysis can be captured by
an FTA AMP (see Definition 6.10). This automaton recognizes all trace-terms of P except some
infeasible ones. Some of the infeasible trace-terms are removed by the abstract interpretation.
P is solved or safe (that is, it has a model) if false 6∈ M. If this is not the case, a trace-term
t ∈ L(AMP ) is selected and checked for feasibility. If the answer is positive, P has no model,
that is, P is unsafe.

Otherwise t is considered spurious and this drives the refinement process. The refinement
in [96] consists of constructing an automaton A ′P which recognizes all traces in L(AMP )\L(At)

and generating a refined set of clauses from P and A ′P. The automata difference construction
refines a set of traces (abstraction), which induces refinement in the original program. The re-
fined program is again fed to the abstract interpreter. This process continues until the problem
is safe, unsafe or the resources are exhausted. We call this approach Refinement of Abstraction
in Horn clauses using Finite Tree automata, Rahft in short.

The approach just described lacks generalisation of spurious counterexamples during re-
finement. However, in our current approach, we generalise a spurious counterexample through
the use of interpolant automata. Section 6.3 describes how to compute an interpolant automaton
(taken from [147]) corresponding to an infeasible Horn clause derivation. We first construct
an interpolant automaton viz. AIt corresponding to t. In Figure 6.4, this is shown by a blue line
(in the middle) connecting the Abstraction and Refinement boxes. The refinement proceeds
as in Rahft with the only difference that A ′P now recognizes all traces in L(AMP ) \ L(AIt). We
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call this approach Refinement of Abstraction in Horn clauses using Interpolant Tree automata,
Rahit in short.

FTAM – Finite tree automata manipulator
AI –Abstract interpretation

CG – Clauses generator

Abstraction Refinement

CHC P

AI
AMP

M

safe
no

unsafe

yes and feasible

AMP

AIt
At

CHC P1P ← P1

CHC P

false ∈ M?
t ∈ L(AMP ) FTAM

A ′P
CG

Figure 6.4: Abstraction-refinement scheme in Horn clause verification [96]. M is an approximation produced as
a result of abstract interpretation. A ′P recognizes all traces in L(AMP ) \ L(At).

Next we briefly describe how to generate an FTA, AMP , corresponding to a set of clauses
P using the approximation produced by abstract interpretation. Finally we show some experi-
mental results using our current approach on a set of Horn clause verification benchmarks.

obtaining an fta from a program and a model . Let M be a set of constrained
atoms of the form p(X) ← φ where p is a program predicate and φ is a constraint over
X. Given such a set M, define γM to be the mapping from atoms to constraints such that
γM(p(X)) = φ for each constrained fact p(X) ← φ. M is a model of P (called a syntactic
solution in [147]) if for each clause p(X)← φ,p1(X1), . . . ,pn(Xn) in P, φ∧

∧n
i=1 γM(pi(Xi))→

γM(p(X)).
Given such an M, we construct an FTA corresponding to P, which is the same as AP (Defi-

nition 6.2) except that transitions corresponding to clauses whose bodies are not satisfiable in
the model are omitted, since they cannot contribute to feasible derivations.

Definition 6.10 (FTA defined by a model.). Let P be a set of CHCs and M be a model defined by a
set of constrained facts. Then the FTA AMP = (Q,Qf,Σ,∆M) where Q,Qf and Σ are the same as for
AP (Definition 6.2) and ∆M is the following set of transitions.

∆M = {c(p1, . . . ,pn)→ p | idP(c) = p(X)← φ,p1(X1), . . . ,pn(Xn),

SAT(φ∧
∧n
i=1 γM(pi(Xi)))

Lemma 6.1. Let P be a set of clauses and M be a model of P then L(AMP ) includes all feasible trace-
terms of P rooted at false.
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In our experiments, the abstraction interpretation was over the domain of convex polyhedra,
yielding a set of constrained facts where each constraint is a conjunction of linear equalities
and inequalities representing a convex polyhedron.

Example 6.5 (FTA produced as a result of abstract interpretation). For our example program in
Figure 6.1, the convex polyhedral abstraction produces an over-approximation M which is represented
as

M = {fib(A, B)← A >= 0, B >= 1,−A + B >= 0}

Since there is no constrained fact for false in M, this is a model for the example program. Our
abstraction-refinement approach terminates at this point. However for the purpose of example, we
show the FTA constructed for the example program using M. Since the bodies of each clause except the
integrity constraint are satisfied under M, the FTA is same as the one depicted in Example 6.1 except
the transition c3(fib)→ false, which is removed because of abstract interpretation.

6.4.1 Experiments

For our experiment, we have collected a set of 68 programs from different sources.

1. A set of 30 programs from SV-COMP’15 repository1 [13] (recursive category, Horn
clauses derived from recursive C programs) and translated them to Horn clauses us-
ing inter-procedural encoding of SeaHorn [71, 70] producing (mostly) non-linear Horn
clauses.

2. A set of 38 problems taken from the source repository2, compiled by the authors of the
tool Eldarica [80]. This set consists of problems, among others, from the NECLA static
analysis suite, from the paper [87]. These tasks are also considered in [147] and are
interpreted over integer linear arithmetic.

We made the following comparison between the tools.

1. We compare Rahit with Rahft, which compares the effect of removing a set of traces
rather than a single trace.

2. We compare Rahit with the trace-abstraction tool [147] (TAR from now on). Rahit uses
polyhedral approximation combined with trace abstraction refinement whereas TAR
uses only trace abstraction refinement.

The results are summarized in Table 6.1.

1 http://sv-comp.sosy-lab.org/2015/benchmarks.php
2 https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/LIA/Eldarica
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implementation : Most of the tools in our tool-chain depicted in Figure 6.4 are imple-
mented in Ciao Prolog [78] except the one for determinisation of FTA, which is implemented
in Java following the algorithm described in [61]. Our tool-chain obtained by combining var-
ious tools using a shell script serves as a proof of concept which is not optimised at all. For
handling constraints, we use the Parma polyhedra library [5] and the Yices SMT solver [44]
over linear real arithmetic. The construction of tree interpolation uses constrained based algo-
rithm presented in [138] for computing interpolant of two formulas.

description : In Table 6.1, Program represents a verification task, Time (secs) RAHFT and
Time (secs) RAHIT - respectively represent the time in seconds taken by the the tool Rahft

and Rahit respectively for solving a given task. Similarly, the number of abstraction-refinement
iteration needed in these cases to solve a task are represented by #Itr. RAHFT and #Itr. RAHIT.
Similarly, Time (secs) TAR and #Itr. TAR represent the time taken and the number of iterations
needed by the tool TAR. The experiments were run on a MAC computer running OS X on 2.3
GHz Intel core i7 processor and 8 GB memory.

discussion : The comparison between Rahft and Rahit would reflect purely the role
of interpolant tree automata in Horn clause verification (Table 6.1) since the only difference
between them is the refinement part using (interpolant) tree automata. The results show that
Rahit is more effective in practice than its counterpart Rahft. This is justified by the num-
ber of tasks 61/68 solved by Rahit using fewer iterations compared to Rahft, which only
solves 56/68 tasks. This is due to the generalisation of a spurious counterexample during
refinement, which also captures other infeasible traces. Since these traces can be removed
in the same iteration, it (possibly) reduces the number of refinements, however the solving
time goes up because of the cost of computing an interpolant automaton. It is not always
the case that Rahit takes less iterations for a task (for example Addition03 false-unreach) than
Rahft. This is because the restructuring of the program obtained as a result of removing a
set of traces may or may not favour polyhedral approximation. It is still not clear to us how
to produce a right restructuring which favours polyhedral approximation. Rahit times out
on cggmp2005_true-unreach whereas Rahft solves it in 5 iterations. We suspect that this is
due to the cost of generating interpolant automata. We are not sure about the complexity of
interpolant generation algorithm we used (the size of the formula generated was quite large
with respect to the original program, magnitude not known) and there are several calls to the
theorem prover to label each tree node with interpolants. So the bigger is the trace-tree, the
longer it takes to compute the interpolant tree. On average, Rahit needs 2.08 iterations and
11.40 seconds time to solve a task whereas Rahft needs 2.32 iterations and 10.55 seconds.

The use of interpolant tree automata for trace generalisation and the tree automata based
operations for trace-refinement are same in both Rahit and TAR. Since TAR is not publicly
available, we chose the same set of benchmarks used by TAR for the purpose of comparison
and presented the results (the results corresponding to TAR are taken from [147]). The com-
puter used in our experiments and in TAR [147] have similar characteristics. Rahit solves
more than half of the problems only with abstract interpretation over the domain of convex
polyhedra without needing any refinement, which indicates its power. Rahit solves 33/38



86 interpolant tree automata and their application in horn clause verification

problems whereas TAR solves 28/38 problems. In average, Rahit takes less time than TAR.
In many cases TAR solves a task faster than Rahit, however it spends much longer time in
some tasks. Our current constraint solver is over linear real arithmetic, that is, a given program
is safe/unsafe over reals. If we use it over linear integer arithmetic then the results may differ.
We made some observation with the problems boustrophedon.c, boustrophedon_expansed.c and
cousot.correct (which are supposed to be interpreted over integers). In them, if we replace strict
inequalities (>,<) with non-strict inequalities (>,6) over integers (for example replace X > Y
with X > Y + 1), then we can solve them only with abstract interpretation without refinement
which were not solved before the transformation using our solver. On the other hand, Rahit

times out for mergesort.error whereas TAR solves it in a single iteration. This indicates that
the choice of a spurious counterexample and the quality of interpolant generated from it for
generalisation have some effects on verification.

6.5 related work

Horn Clauses, as an intermediate language, have become a popular formalism for verification
[17, 59], attracting both the logic programming and software verification communities [16].
As a result of these, several verification techniques and tools have been developed for CHCs,
among others, [70, 65, 94, 37, 96, 85, 80]. To the best of our knowledge, the use of automata
based approach for abstraction-refinement of Horn clauses is relatively new [96, 147], though
the original framework proposed for imperative programs goes back to [74, 75].

The work described in [96] uses FTA based approach for refining abstract interpretation over
the domain of convex polyhedra [31], which is similar to trace abstraction [74, 77, 147] with
the following differences. In [96], there is an interaction between state abstraction by abstract
interpretation [32] and trace abstraction by FTA but there is no generalisation of spurious
counterexamples. On one hand, [74, 77, 147] use trace-abstraction with the generalisation of
spurious counterexamples using interpolant automata and may diverge from the solution due
to the lack of right generalisation. On the other hand, abstract interpretation [32] is one of
the most promising techniques for verification which is scalable but suffers from false alarms.
When combined with refinement false alarms can be minimized. Our current work takes the
best of both of these approaches.

6.6 conclusion

This chapter brings together abstract interpretation over the domain of convex polyhedra and
interpolant tree automata in an abstraction-refinement scheme for Horn clause verification and
combines them in a new way. Experimental results on a set of software verification bench-
marks using this scheme demonstrated their usefulness in practice; showing some slight im-
provements over the previous approaches. In the future, we plan to evaluate its effectiveness
in a larger set of benchmarks, compare our approach with other similar approaches and
improve the implementation aspects of our tool. Further study is needed to find a suitable
combination of abstract interpretation and interpolation based techniques, based on a deeper
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Program Time (secs) RAHFT #Itr. RAHFT Time (secs) RAHIT #Itr. RAHIT Time (secs) TAR [147] #Itr. TAR

addition 1 0 1 0 0.26 3

anubhav.correct 2 0 2 0 1.72 9

bfprt 1 0 1 0 0.43 6

binarysearch 2 0 2 0 0.36 5

blast.correct 5 1 11 1 8.93 65

boustrophedon.c TO - TO - 53.65 193

boustrophedon_expansed.c TO - TO - 69.06 340

buildheap 44 9 44 9 TO -

copy1.error 11 0 11 0 12.79 19

countZero 1 0 1 0 TO -

cousot.correct TO - TO - TO -

gopan.c 3 0 3 0 TO -

halbwachs.c TO - TO - TO -

identity 1 0 1 0 7.67 34

inf1.error 4 1 9 1 0.51 6

inf6.correct 5 1 5 1 1.96 33

insdel.error 2 0 2 0 0.17 1

listcounter.correct 1 0 1 0 TO

listcounter.error 9 1 9 1 0.21 1

listreversal.correct 4 0 4 0 35.79 149

listreversal.error 9 0 9 0 0.3 1

loop.error 3 0 3 0 3 3

loop1.error 8 0 8 0 10.87 19

mc91.pl 139 24 7 3 0.57 7

merge 2 0 2 0 0.86 10

mergesort.error TO - TO - 0.32 1

palindrome 2 0 2 0 0.61 6

parity 3 1 4 1 0.62 7

rate_limiter.c 3 0 3 0 49.96 130

remainder 1 0 1 0 1.5 17

running 3 1 8 2 0.4 5

scan.error 3 0 3 0 TO -

string_concat.error 6 0 6 0 TO -

string_concat1.error TO - TO - TO -

string_copy.error 3 0 3 0 TO -

substring.error 5 0 5 0 0.55 1

substring1.error 15 0 15 0 2.84 5

triple 27 10 13 1 0.86 6

average (over 38) 8.78 0.93 9.52 38.64

solved/total 33/38 - 28/38

Primes_true-unreach 16 4 4 1

sum_10x0_false-unreach 5 2 12 2

afterrec_false-unreach 2 1 3 1

id_o3_false-unreach 6 3 7 3

cggmp2005_variant_true-unreach 2 1 3 1

recHanoi01_true-unreach 8 3 10 3

cggmp2005b_true-unreach 3 1 3 1

gcd02_true-unreach 11 4 11 4

diamond_false-unreach 3 1 3 1

Addition03_false-unreach 6 2 13 5

diamond_true-unreach-call1 2 1 3 1

id_i5_o5_false-unreach 19 8 12 5

diamond_true-unreach-call2 6 1 5 1

cggmp2005_true-unreach 10 5 TO -

gsv2008_true-unreach 3 1 3 1

Fibocci01_true-unreach 52 10 29 6

id_b3_o2_false-unreach 5 2 3 1

Ackermann02_false-unreach 68 17 25 7

mcmillan2006_true-unreach 2 1 3 1

ddlm2013_true-unreach TO - 17 7

sum_2x3_false-unreach 2 1 3 1

fibo_5_true-unreach TO - 77 7

Addition01_true-unreach 6 2 5 2

Ackermann04_true-unreach TO - 59 8

Addition02_false-unreach 4 2 5 2

id_i10_o10_false-unreach TO - 39 10

gcd01_true-unreach 9 4 5 2

id_o10_false-unreach TO - 38 10

gcnr2008_false-unreach 13 4 6 2

Fibocci04_false-unreach TO - 91 11

average (over 68) 10.55 2.32 11.40 2.08

solved/total 56/68 61/68

Table 6.1: Experiments on software verification problems. In the table “TO” means time out which is
set for 300 seconds, “-” indicates the insignificance of the result.
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understanding of the interaction among interpolation, trace elimination and abstract interpre-
tation.



7
D E C O M P O S I T I O N B Y T R E E D I M E N S I O N I N H O R N C L A U S E
V E R I F I C AT I O N

With John P. Gallagher and Pierre Ganty

Abstract
In this chapter we investigate the use of the concept of tree dimension in Horn clause analysis
and verification. The dimension of a tree is a measure of its non-linearity – for example a list of
any length has dimension zero while a complete binary tree has dimension equal to its height.
We apply this concept to trees corresponding to Horn clause derivations. A given set of Horn
clauses P can be transformed into a new set of clauses P6k, whose derivation trees are the
subset of P’s derivation trees with dimension at most k. Similarly, a set of clauses P>k can be
obtained from P whose derivation trees have dimension at least k+ 1. In order to prove some
property of all derivations of P, we systematically apply these transformations, for various
values of k, to decompose the proof into separate proofs for P6k and P>k (which could be
executed in parallel). We show some preliminary results indicating that decomposition by
tree dimension is a potentially useful proof technique. We also investigate the use of existing
automatic proof tools to prove some interesting properties about dimension(s) of feasible
derivation trees of a given program.

Keywords: Tree dimension, proof decomposition, program transformation, Horn clauses.

7.1 introduction

In this chapter, we study the role of tree dimension in Horn clause analysis and verification.
The dimension of a tree is a measure of its non-linearity – for example a list of any length
has dimension zero while a complete binary tree has dimension equal to its height. We apply
this concept to trees corresponding to Horn clause derivations. A given set of Horn clauses P
can be transformed into a new set of clauses P6k (whose derivation trees are the subset of P’s
derivation trees with dimension at most k) and P>k (whose derivation trees have dimension
at least k + 1). Each such set of clauses represents an under-approximation of the original
set of clauses and the proof for the original clauses can be constructed from their individual
proofs. In order to prove some property of all derivations of P, we systematically apply these
transformations, for various values of k, to decompose the proof into separate proofs for
P6k and P>k (which could be executed in parallel). This decomposition is motivated by
the work by Esparza et al. [46]. They claim that analysis of programs by reasoning about
dimension of their derivation trees provides certain advantage over reasoning about height
of their derivation trees.

89
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c1. fib(A, A):- A>=0, A=<1.

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),

A1 = A - 1, fib(A1, B1), B = B1 + B2.

c3. false:- A>5, fib(A,B), B<A.

Figure 7.1: Example CHCs Fib: it defines a Fibonacci function.

We prove each such set of clauses using abstract interpretation [32] over the domain of
convex polyhedra [31] as described in [94]. Finally, the preliminary results in a set of Horn
clause verification benchmarks show that this is a useful program transformation. This de-
composition can also be viewed as refinement where one eliminates possibly infinite sets of
program traces. As a result of this, the proof for the remaining part becomes simpler. To mo-
tivate readers, we present an example set of constrained Horn clauses (CHCs) P in Figure
7.1 which defines the Fibonacci function. This is an interesting problem whose dimension
depends on the input number and its computations are trees rather than linear sequences.
The main contributions of this chapter are the following.

1. We describe how to generate at-most k-dimension program and at-least k-dimension
program from a given program using the notion of tree dimension (Section 7.2);

2. We give a verification algorithm for Horn clauses program based on its proof decompo-
sition (Section 7.3);

3. We give an alternative way of generating the at-least k-dimension program using the
theory of finite tree automata (Section 7.4);

4. We demonstrate the feasibility of our approach in practice applying it to non-linear
Horn clause verification problems (Section 7.7);

5. We instrument a program with its dimension and use existing automatic verification
tools to prove some interesting properties about its dimension (Section 7.5).

7.2 preliminaries

A constrained Horn clause is a first order formula of the form p(X) ← C,p1(X1), . . . ,pk(Xk)
(k > 0) (using Constraint Logic Programming (CLP) syntax), where C is a conjunction of
constraints with respect to some background theory, Xi,X are (possibly empty) vectors of
distinct variables, p1, . . . ,pk,p are predicate symbols, p(X) is the head of the clause and
C,p1(X1), . . . ,pk(Xk) is the body. A clause is called non-linear if it contains more than one
atom in the body (k > 1), otherwise it is called linear. A set of Horn clauses is sometimes
called a program.

A labeled tree c(t1, . . . , tk) is a tree with its nodes labeled, where c is a node label and
t1, . . . , tk are labeled trees rooted at the children of the node and leaf nodes are denoted by c.

Definition 7.1 (Tree dimension (adapted from [45])). Given a labeled tree t = c(t1, . . . , tk), the
tree dimension of t represented as dim(t) is defined as follows:
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dim(t) =


0 if k = 0

maxi∈[1..k] dim(ti) if there is a unique maximum

maxi∈[1..k] dim(ti) + 1 otherwise

Figure 7.2 (a) shows a derivation tree t for Fibonacci number 3 and Figure 7.2 (b) shows its
tree dimension. It can be seen that dim(t) = 1. This number is a measure of its non-linearity,
the smaller the number the closer the tree is to a list. Since it is not a perfect binary tree, the
height of t (3) is greater than its dimension.

Figure 7.2: (a) derivation tree of Fibonacci 3 and (b) its tree dimension.

Given a set of CHCs P and k ∈ N, we split each predicate H occurring in P into the predi-
cates H6d and H=d where d ∈ {0, 1, . . . ,k}. Here H6d and H=d generate trees of dimension
at most d and exactly d respectively.

Definition 7.2 (At-most-k-dimension program P6k). It consists of the following clauses (adapted
from [121]):

1. Linear clauses:

If H← C ∈ P , then H=0 ← C ∈ P6k.

If H← C,B1 ∈ P then H=d ← C,B=d
1 ∈ P6k for 0 6 d 6 k.

2. Non-linear clauses:

If H← C,B1,B2, . . . ,Br ∈ P with r > 1:

a) For 1 6 d 6 k, and 1 6 j 6 r:

Set Zj = B=d
j and Zi = B

6d−1
i for 1 6 i 6 r∧ i 6= j. Then: H=d ← C,Z1, . . . ,Zr ∈

P6k.

b) For 1 6 d 6 k, and J ⊆ {1, . . . , r} with |J| = 2:

Set Zi = B=d−1
i if i ∈ J and Zi = B

6d−1
i if i ∈ {1, . . . , r} \ J. If all Zi are defined, i.e.,

d > 2 if r > 2, then: H=d ← C,Z1, . . . ,Zr ∈ P6k.
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%linear clauses

1. fib(0)(A,A) :- A>=0, A=<1.

2. false(0) :- A>5, B<A, fib(0)(A,B).

%epsilon-clauses

3. false[0] :- false(0).

4. fib[0](A,B) :- fib(0)(A,B).

Figure 7.3: Fib60 : at-most 0-dimension program of Fib.

3. ε-clauses:

H6d ← H=e ∈ P6k for 0 6 d 6 k , and every 0 6 e 6 d.

Let nl and l be the number of non-linear and linear clauses in P, r be the max number of
non-constraint atoms in the body of clauses in P and a be the number of non-constraint atoms
of P. Then the size of P6k is given as follows. There are l ∗ (k+ 1) linear clauses, nl ∗ k ∗ r
number of non-linear clauses of the first kind (Point 2(a) of Definition 7.2), nl ∗ k ∗ r ∗ (r− 1)/2
number of non-linear clauses of the second kind (Point 2(b) of Definition 7.2) and a ∗ (k+ 1) ∗
(k+ 2)/2 ε-clauses.

The at-most 0-dimension program of Fib in Figure 7.1 is depicted in Figure 7.3 (where the
numbers on the first column are not clause identifiers and are there for future reference). In
textual form we represent a predicate p6k by p[k] and a predicate p=k by p(k). Since some
programs have derivation trees of unbounded dimension, trying to verify a property for its
increasing dimension separately is not a practical strategy. To deal with this, we need some
construction which characterises derivation trees of at-least k-dimension. Next we define this
construction (at-least k-dimension program). For this, we split each predicate H occurring in P
into the predicates H>d and H>0 where d ∈ {0, 1 . . . ,k}. Here H>d generates trees of dimen-
sion at-least d+ 1 and H>0 generates trees of any dimension.

Definition 7.3 (At-least k+1-dimension program P>k). In addition to the linear, non-linear and
ε-clauses from Definition 7.2 (with each predicate H6k+1 and H=k+1 from P6k+1 renamed to H>0

and H>k respectively), the at-least k+1-dimension program P>k consists of the following clauses:

1. Link-clauses:

For each H← B ∈ P there is a clause H>0 ← H ∈ P>k.

2. Original clauses:

All clauses in P are also in P>k.

7.3 procedure for verification

Given a set of CHCs P (including clauses with false head, also known as integrity constraints),
the CHC verification problem is to check whether there exists a model of P. This is equivalent
to checking whether there is any feasible derivation tree for false; if there is such a derivation
then there is no model. We say P is safe if it has a model and unsafe if it has no model.
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Algorithm 7.1: Verification algorithm for Horn clauses

1 Procedure VERIFY (P)
Input: Set of CHCs P
Output: safe, unsafe, unknown

2 initialization: k← 0

3 while true do
4 generate P6k

5 r1 ← SAFE(P6k)
6 if r1 6= safe then
7 return r1
8 generate P>k

9 r ′1 ← SAFE( P>k)
10 if r ′1 6= unknown then
11 return r ′1
12 k← k+ 1

The procedure VERIFY(P) is described in algorithm 1. VERIFY makes use of the procedure
SAFE(P) in Algorithm 1, which is an oracle that returns safe, unsafe or unknown. The oracle
is sound: if SAFE(P) returns safe (unsafe) then P is safe (unsafe). SAFE could be any existing
automatic Horn clause solver [64, 95, 94, 79, 37]. When it cannot verify a program within
a given time limit, the unknown answer is emitted. A given set of Horn clauses P can be
transformed into a new set of clauses P6k and P>k. In order to prove some property of all
derivations of P, we systematically apply these transformations, for various values of k, to
decompose the proof into separate proofs for P6k (line 4) and P>k (line 9); which can be done
in parallel. If both are safe then P is safe. If one of them is unsafe then P is unsafe. If an oracle
cannot prove whether P6k is safe/unsafe then we return an unknown answer (we assume that
the oracle would also return unknown for larger values of k). But if it cannot prove whether
P>k is safe/unsafe then we try the while loop in the algorithm 1 with k = k+ 1.

One possible optimisation that we can make in Algorithm 1 is to consider P>k instead of P
in the next iteration of the while loop if we reach line 14. This is because at this stage we have
already proven the safety of P6k.

The soundness of Algorithm 1 is captured by the following lemma and proposition.

Lemma 7.1 (Decomposition by dimension). For all k, program P is safe if and only if both P6k

and P>k are safe.

Proposition 7.1 (Soundness). If Algorithm 1 returns safe then the input program is safe. If it returns
unsafe then the program is unsafe.
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7.4 dimension decomposition using finite tree automata

In this section, we show an alternative method for constructing an at-least k-dimension pro-
gram, using operations on finite tree automata (FTAs). We first describe the connection be-
tween Horn clauses and FTAs and show how to construct an FTA from a set of Horn clauses.

7.4.1 Trace automata for CHCs

We add identifiers to clauses, whose purpose is to act as constructors of trace trees represent-
ing derivations. The identifiers are chosen from a set Σ of ranked function symbols. If P is a
set of CHCs, let idP : P → Σ be an assignment of function symbols to clauses, such that for
every clause cl ∈ P, the arity of idP(cl) equals the number of atoms in the body of cl. We
allow the same symbol to be assigned by idP to more than one clause. We can also identify
the predicates whose derivations are of interest (the accepting predicates in Definition 7.4).

Definition 7.4 (Trace FTA for a set of CHCs). Let P be a set of CHCs, Σ be a set of ranked function
symbols and idP : P → Σ be a mapping from clauses to function symbols of appropriate arity. Let F be a
set of predicates from P called the accepting predicates. Define the trace FTA for P as AFP = (Q, F,Σ,∆)
where

• Q is the set of predicate symbols of P;

• F ⊆ Q is the set of accepting predicate symbols;

• Σ is a set of function symbols;

• ∆ = {c(p1, . . . ,pk)→ p | cl ∈ P, cl = p(X)← C,p1(X1), . . . ,pk(Xk), c = idP(cl)}.

If F is the set of all predicate symbols occurring in the clauses we omit the superscript F from AFP.

The set of trees accepted by AFP is written L(AFP). Elements of L(AFP) are called the trace
trees for P. L(AFP) is isomorphic to the set of (successful and unsuccessful) derivation trees
(for atomic formulas with accepting predicates) constructible from P and from now on we
identify trace trees with derivations. We do not define derivation trees formally here, but
refer to the notion of an AND-tree in the literature [142, 56].

Example 7.1. Let P be the set of CHCs in Figure 7.1 and let F = {fib, false}. Let idP map the clauses
to c1, c2, c3 respectively. Then AFP = (Q, F,Σ,∆) where:

Q = {fib, false} ∆ = {c1 → fib,

Σ = {c1, c2, c3} c2(fib, fib)→ fib,

c3(fib)→ false}

Figure 7.2(a) shows a trace tree recognised by this FTA. The tree can also be written as the trace-term
c3(c2(c2(c1, c1), c1)).
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If a mapping idP : P → Σ assigns a unique identifier to each clause, that is, idP is injective,
then there is an inverse mapping id−1 : range(idP)→ P.

Definition 7.5 (chcid(A)). Given an FTA A = (Q, F,Σ,∆) and an injective mapping id such that
Σ ⊆ range(id), we can construct a set of CHCs from A, called chcid(A), defined as follows:

chcid(A) = {q(X)← C,q1(X1), . . . ,qn(Xn) | c(q1, . . . ,qn)→ q ∈ ∆,

id−1(c) = q(X)← C,q1(X1), . . . ,qn(Xn)}

The set of accepting predicates of chcid(A) is defined to be F.

In the definitions we reuse the states in the FTA as predicate symbols in the constructed
clauses. In practice we use some injective renaming function from states to predicates in
the constructed program. Further discussion of the mappings between CHCs and FTAs can
be found in [95]. By construction, the derivations of chcid(A) (for the accepting predicates)
correspond to the elements of L(A).

7.4.2 Construction of the at-least k-dimensional program using FTA operations

In the construction of the at-least k-dimension program P>k in Definition 7.3, the original
program clauses from P are included in the generated clauses. The presence of the original
clauses suggests that the “decomposed" verification problem for P>k is as hard as the original
problem for P, since it contains the clauses of P as well as others, and so this form might not
lend itself to verification.

Thus in the following construction we build P>k based on FTA language difference, and the
original clauses are not copied to the at-least k-dimension program. We first define a general
FTA-difference for CHCs.

Definition 7.6 (FTA-difference for CHCs). Let P and Q be sets of CHCs, F1 and F2 their respective
accepting predicates and idP : P → Σ and idQ : Q → Σ their respective identifier assignments, where
idP is injective. Let A

F1
P and A

F2
Q be the trace FTAs constructed from P,Q respectively. Then the

FTA-difference of P and Q (with their respective accepting predicates) written PF1 −QF2 , is given as
chcidP(A

F1
P \ A

F2
Q ) where \ is the difference of FTAs [28]. The set of accepting predicates is the set of

accepting states for the difference FTA.

The set of derivations for PF1 −QF2 contains, by construction, those derivations of PF1 that
are not derivations of QF2 . We now apply these notions to the verification procedure based
on decomposition. We are given a set of CHCs P, with accepting predicates F = {false}. In the
program P6k, the set of accepting predicates is Fk = {false6k}. Note that we can ignore the
derivations for the other predicates of the form false6j or false=j since false6k by construction
accumulates their derivations, for all j 6 k.

7.4.2.1 Assignment of identifiers in the at-most-k-dimension program

Given a program P and the at-most-k-dimension program P6k, we intend to construct the
difference P{false} − P6k{false6k} using Definition 7.6. In order to do so, we first need to con-
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struct the identifier assignment idP6k so as to preserve trace trees from P. This requires the
modification of P6k to eliminate the ε-clauses, as follows.

Definition 7.7 (Unfolding of ε-clauses in P6k). Let P6k be the at-most-k-dimension program
obtained from P using Definition 7.2. Replace each ε-clause of form H6d ← H=e by the set of clauses
H6d ← B, where H=e ← B is either a linear or non-linear clause in P6k.

The elimination of ε-clauses is an instance of the well-known unfolding transformation
which preserves the derivability of atomic formulas. In other words an atom A is derivable
from a program P if and only if it is derivable after applying the unfolding transformation
[131].

In the following definition, the clause identifiers are chosen for clauses in P6k Informally,
every clause of P6k inherits the clause identifier for the clause in P from which it originates.
More precisely we define the clause identifiers for P6k as follows.

Definition 7.8 (Assignment of clause identifiers in P6k). Let P6k be the at-most-k-dimension
program obtained from P using Definition 7.2, with ε-clauses eliminated according to Definition 7.7.
Each clause of P6k is a linear, non-linear or an ε-unfolded-clause. The clause identifiers are assigned
in two steps as follows.

1. Assign to each linear or non-linear clause the clause identifier from the clause in P from which it
is derived in Definition 7.2.

2. Assign to each unfolded ε-clause the clause identifier for the linear or non-linear clause used to
unfold it using Definition 7.7.

We are now in a position to compare the sets of trace trees for P and P6k using their
respective FTAs.

Lemma 7.2. Let P be a set of CHCs and let idP : P → Σ be an injective function assigning clause
identifiers to P. Let F1 = {false}. Let k > 0 and let P6k be the at-most-k-dimension program obtained
from P using Definition 7.2 with ε-clauses unfolded using Definition 7.7 and let F2 = {false6k}. Then
L(AF2

P6k) = {t | t ∈ L(AF1P ), dim(t) 6 k}.

The proof is by induction on derivations in P6k and uses the correspondence of the clause
identifiers as set up in Definition 7.8.

Theorem 7.1. Let P be a set of CHCs and let idP : P → Σ be an injective function assigning clause
identifiers to P. Let k > 0 and let P6k be the at-most-k-dimension program obtained from P using
Definition 7.2 with ε-clauses unfolded using Definition 7.7. Then false is derivable from P − P6k if
and only if false>k is derivable from P>k.

Thus we have shown a different method of constructing the at-least k-dimension program
P>k, namely by taking the difference of P with P6k, which contains only derivations (for its
accepting predicates) that have dimension greater than k.

Details on difference construction can be found in [95]. We construct the difference of two
FTAs by (1) standardising apart the predicate names; (2) forming the union of the two FTAs;
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c1. fib(0)(A,A) :- A>=0, A=<1.

c3. false(0) :- A>5, B<A, fib(0)(A,B).

c3. false[0] :- A>5, B<A, fib(0)(A,B).

c1. fib[0](A,B) :-A>=0, A=<1.

Figure 7.4: Fib60 after unfolding ε-clauses and assigning clause identifiers.

(3) determinising the union; (4) removing from the determinised FTA all states (and transi-
tions that contain them) that contain an accepting state of the second FTA. Note that the set
of states of the determinised FTA is a subset of the powerset of the original states. Note that
determinisation of FTAs is often considered prohibitively complex even for small FTAs. We
use a recent optimised FTA determinisation algorithm [60], returning a compact form of the
determinised called product form, which can be used directly in constructing the resulting
clauses.

Example 7.2. We illustrate this through an example using Fib60 (Figure 7.3). The clauses 1 and
2 in Fib60, will have c1 and c3 as identifiers since they were derived respectively from the clauses
c1 and c3 in Fib (Figure 7.1). By unfolding ε-clauses (clauses 3 and 4) using respectively clauses 2
and 1 in Figure 7.3, we obtain false[0] :- A>5, B<A, fib(0)(A,B) and fib[0](A,B) :-A>=0,

A=<1. They will have identifiers c3 and c1 respectively. Therefore, the clauses in Fib60 will have the
identifiers assigned as shown in Figure 7.4.

After assigning identifiers to each of the clauses in Fib60, we can construct an FTA corre-
sponding to it using Definition 7.4, and obtain the FTA shown in Figure 7.5: as before we
represent a predicate p6k by p[k] and a predicate p=k by p(k).

Q = {fib(0), false(0), false[0], fib[0]} ∆ = {c1 → fib(0),

F = {false[0]} c3(fib(0))→ false(0),

Σ = {c1, c3} c3(fib(0))→ false[0],

c1 → fib[0]}

Figure 7.5: FTA (Q, F,Σ,∆) corresponding to Fib60.

The difference FTA between A
{false}
Fib and A

{false60}
Fib60 accepts trees rooted at false which have

dimension greater than 0. The determinised FTA (DFTA) constructed as explained above is
shown in the Figure 7.6. DFTA states are sets of predicates, and we represent a set using
square brackets instead of curly brackets in the code, e.g. [fib(0), fib[0], fib]. Further-
more the product form referred to above contains set of DFTA states, such as [[fib(0),

fib[0], fib], [fib]].
We can generate a new program from this DFTA together with the original program Fib

following the approach taken in [95] obtaining the program in Figure 7.7. It should be noted
that the derivation trees rooted at false have dimension at-least 1. Now verification of the
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c1 -> [fib(0), fib[0], fib].

c2([[fib(0), fib[0], fib], [fib]],

[[fib(0), fib[0], fib], [fib]]) -> [fib].

c3([[fib]]) -> [false].

Figure 7.6: Transitions of the determinised FTA.

original program Fib is decomposed into verifying the program in Figure 7.3 (where false[0]

is replaced by false and the program in Figure 7.7.

fib_0(A,A) :- A>=0, A=<1.

fib(A,B) :- A>1,C=A-2,D=A-1,B=E+F,fib_1(C,F), fib_1(D,E).

false :- A>5, B<A, fib(A,B).

fib_1(A,B) :- fib_0(A,B).

fib_1(A,B) :- fib(A,B).

Figure 7.7: At-least 1-dimension program of Fib produced using the difference of FTAs

7.5 program instrumentation with dimension

The dimension of successful derivations in a set of CHCs is not always obvious from the
text of the clauses. In some cases a bound on the dimension is clear from the form of the
clauses; for instance all derivations using a set of linear clauses clearly have dimension zero.
But consider the well known 91-function of McCarthy1, represented in Figure 7.8 using Horn
clauses.

Although it is possible to construct derivation trees of arbitrary dimension using the clauses
in Figure 7.8, the dependencies between the two recursive calls to mc91 imply that no successful
derivation has dimension greater than 2. We now show how to establish this using a trans-
formation to instrument the clauses with dimension information, and then use automatic
verification tools to establish properties of the dimension.

Definition 7.9 (Dimension-instrumented clauses). Let P be a set of CHCs. Define the set Pdim of
CHC as follows.

• For each predicate p of arity m define a predicate p ′ of arity m+ 1.

• For each clause in P of the form

p(X)← C,p1(X1), . . . ,pn(Xn)

1 http://en.wikipedia.org/wiki/McCarthy_91_function

mc91(N,X) :- N > 100, X = N-10.

mc91(N,X) :- N =< 100, Y = N+11,

mc91(Y,Y2), mc91(Y2,X).

Figure 7.8: McCarthy’s 91-function defined as Horn clauses
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construct a clause

p ′(X,K)← C,p
′
1(X1,K1), . . . ,p

′
n(Xn,Kn),dimn(K1, . . . ,Kn,K)

in Pdim, where K1, . . . ,Kn,K are variables added as the final argument for their respective
predicates, and dimn(K1, . . . ,Kn,K) is defined according to the rules in Definition 7.1 for
determining the dimension of a tree.

Example 7.3. The dimension-instrumented version of the McCarthy 91-function contains the follow-
ing clauses.

mc91(N,X,K) :- N >100, X=N-10, dim0(K).

mc91(N,X,K) :- N =<100, Y=N+11,

mc91(Y,Y2,K1), mc91(Y2,X,K2), dim2(K1,K2,K).

dim0(K):-K=0.

dim2(K1, K2, K3):-K1>=K2+1, K3=K1.

dim2(K1, K2, K3):-K2>=K1+1, K3=K2.

dim2(K1, K2, K3):- K1=K2, K3 = K1+1.

Using the instrumented program we can try to get information about the dimension, such
as upper or lower bounds or other relationships between the dimension and other predicate
arguments. It follows from the undecidability result of Gruska [66] on context-free grammars,
that the problem of determining whether the dimension of set of CHC is bounded by a
constant is, in general, undecidable.

Example 7.4. To establish that the upper bound of successful derivations is 2, for facts mc91(X,Y), we
add the following integrity constraint to the dimension-instrumented clauses.

false :- K > 2, mc91(X,Y,K).

The clauses together with the integrity constraint are given to an automatic solver for Horn clauses
[64, 95], which is able to prove the safety of the clauses and thus establish the upper bound of 2.

In the next example, we show that the dimension can depend on the values of other predi-
cate arguments.

Example 7.5. The dimension-instrumented version of the Fib clauses is shown in Figure 7.9. The
property to be proved is that the dimension of Fib is lesser or equal to the half of its input value,
expressed by the integrity constraint false:- fib(A,B, K), 2*K -1>=A. Again, this property is
established by applying a Horn clause solver to prove the safety of the clauses together with the integrity
constraint.

Example 7.6. We present the well known counting change example taken from [2, Chapter 1]. The
Figure 7.10 shows its CLP encoding and the Figure 7.11 shows the dimension-instrumented version
in CLP. The property of interest is to relate the number of different coins (counts) with the program
dimension. We can establish that the dimension is at most the number of different coins as expressed
by the integrity constraint false :- B>=1, K > B, cc(A, B, C, K).
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fib(A, A, K):- A>=0, A=<1, dim0(K).

fib(A, B, K) :- A>1, A2=A-2, fib(A2, B2, K1),

A1= A-1, fib(A1, B1, K2), B=B1+B2, dim2(K1, K2, K).

dim0(K):-K=0.

dim2(K1, K2, K3):-K1>=K2+1, K3=K1.

dim2(K1, K2, K3):-K2>=K1+1, K3=K2.

dim2(K1, K2, K3):- K1=K2, K3=K1+1.

Figure 7.9: Fib program instrumented with its dimension

% base case: that is a hit

cc(0, Y, 1) :- Y>0.

% base case: that is a miss

cc(X, _, 0) :- X<0.

cc(_, Y, 0) :- Y=<0.

%inductive case

cc(X, Y, Z) :- X>0, kinds_of_coins(Y,A),

X1=X-A, cc(X1, Y, Z1),

Y1=Y-1, cc(X, Y1, Z2), Z=Z1+Z2.

kinds_of_coins(A,B) :- A >=1, B>=1.

Figure 7.10: Counting change example encoded as CLP clauses

cc(0, Y, 1,K) :- Y>0, dim0(K).

cc(X, _, 0,K) :- X<0, dim0(K).

cc(_, Y, 0,K) :- Y=<0, dim0(K).

cc(X, Y, Z,K) :-

X>0, kinds_of_coins(Y,A, K0), X1=X-A,

cc(X1, Y, Z1,K1), Y1=Y-1, cc(X, Y1, Z2,K2),

Z = Z1+Z2, dim3(K0, K1,K2,K).

kinds_of_coins(A,B, K) :- A >= 1, B >= 1, dim0(K).

dim3(K0, K1,K2,K):-

dim2(K0, K1, K3), dim2(K3,K2, K).

%predicates dim0(K) and dim2(K1, K2, K) are defined as above

Figure 7.11: Counting change example instrumented with its dimension

In general, verifying whether a program has a certain dimension is as challenging as prov-
ing any other properties of the program. But in some cases the knowledge of program dimen-
sion is useful for proving other program properties. For instance, using the knowledge that
the McCarthy 91-function has dimension at most 2 would allow us to restrict the proof of any
program property relating to successful derivations to the program P62 where P is the set of
clauses for the McCarthy 91-function.
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Program Result Time(s) dim(k) Program Result Time(s) dim(k)

addition safe 4 0 fib safe 4 0

bfprt safe 4 0 mc91 safe 4 0

binarysearch safe 4 0 revlen safe 4 0

countzero safe 3 0 running unsafe 6 1

floodfill safe 3 0 triple unsafe - -

identity safe 4 0 buildheap unsafe - -

merge safe 5 0 parity unsafe 4 0

palindrome safe 3 0 remainder unsafe 4 0

average 4

Table 7.1: Experimental results on non-linear CHC verification problems

7.6 related work

The notion of dimension of a tree has a long history in science (starting with Geology) which
has been detailed by Esparza et al. [48]. However, the use of dimension for program verifi-
cation is more recent. Ganty and Iosif used it [63] for computing summaries of programs
with procedures whose variables (global, local and parameters) take their value from the set
of integers. Roughly speaking, the method they define first computes procedure summaries
for all derivation trees of dimension 0, then they compute summaries for derivation trees of
dimension 1 reusing the summaries computed for dimension 0 and so on.

Decomposition can be compared to refinement techniques based on automata [74, 77, 95] in
which the aim is to eliminate sets of program traces that have been shown to be safe. Proof of
the safety of a given dimension or dimensions of a set of clauses allows those dimensions to
be eliminated, focusing the proof on the remaining dimensions. Our decomposition technique
offers a very precise and practical approach to checking and eliminating infinite sets of traces.

7.7 experimental results

We carried out an experiment on a set of 16 non-linear CHC verification problems taken from
the repository2 of software verification benchmarks. Our aim here is not to make a systematic
comparison with other verification techniques; these are exploratory experiments to establish
whether dimension-based decomposition is practical. The results are summarized in Table 7.1.
Columns Program, Result, Time and dim(k) respectively represent a program, its verification
result using our approach, time in seconds taken to generate the programs and solve it and a
value of a proof decomposition parameter k.

2 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/RECUR/
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For the safety check (the procedure SAFE in Algorithm 1) we use the verification procedure
described in [94] which uses abstract interpretation over the domain of convex polyhedra,
with a timeout of 5 minutes. The symbol “-” in Table 7.1 denotes that we were unable to
solve these problems within the given time. Our approach solves 14 out of 16 problems with
an average time of 4 seconds (over the solved problems). Our previous approach based on
refinement with finite tree automata described in [95] solves 1 additional problem, that is,
triple than our current approach. These examples were also run on QARMC [65] which solves
all the problems (much faster).

Most of the problems are solved when we decompose the proof with the value of k = 0.
This indicates that separating the proofs for linear programs eases the verification task. The
splitting induced as a result of separating a set of traces has an effect on delaying join and
widening operations during convex polyhedra analysis which increases its precision.

7.8 conclusion and future work

We presented a program transformation approach to Horn clause verification using the no-
tion of tree dimension to decompose the verification problem by separating dimensions. We
presented one algorithm based on this idea which yielded preliminary results on set of non-
linear Horn clause verification benchmarks, showing that the approach is feasible and this
transformation is useful both for proving safety of a program as well as for finding bugs.

Other ideas of program verification based on tree-dimension are worth investigating, in-
cluding proof by induction based on tree dimension, and further investigation of proof strate-
gies that could exploit knowledge of dimension bounds (such as those discussed in Section
7.5).

Although it is formulated in the context of Datalog, it is known from Afrati et al. [3] that a
set of CHC of bounded dimension can be turned into an equivalent set of linear CHC. The
exact complexity of their procedure is still open.
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Abstract
In this chapter we show that checking satisfiability of a set of non-linear Horn clauses (also
called a non-linear Horn clause program) can be achieved using a solver for linear Horn
clauses. We achieve this by interleaving a program transformation with a satisfiability checker
for linear Horn clauses (also called a solver for linear Horn clauses). The program transforma-
tion is based on the notion of tree dimension, which we apply to a set of non-linear clauses,
yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be
linearised. The main algorithm then proceeds by applying the linearisation transformation
and solver for linear Horn clauses to a sequence of sets of clauses with successively increas-
ing dimension bound. The approach is then further developed by using a solution of clauses
of lower dimension to (partially) linearise clauses of higher dimension. We constructed a
prototype implementation of this approach and performed some experiments on a set of
verification problems, which shows some promise.

Keywords: Horn clause linearisation, linear Horn clause solver, dimension bounded Horn
clauses, Horn clause solving.

8.1 introduction

Many software verification problems can be reduced to checking satisfiability of a set of
Horn clauses (the verification conditions). In this chapter we propose an approach for checking
satisfiability of a set of non-linear Horn clauses (clauses whose body contains more than one
non-constraint atom) using a linear Horn clause solver. A program transformation based on the
notion of tree dimension is applied to a set of non-linear Horn clauses; this gives a set of clauses
that can be linearised and then solved using a linear solver for Horn clauses. This combination
of dimension-bounding, linearisation and then solving with a linear solver is repeated for
successively increasing dimension. The dimension of a tree is a measure of its non-linearity –
for example a linear tree (whose nodes have at most one child) has dimension zero while a
complete binary tree has dimension equal to its height.

A given set of Horn clauses P can be transformed into a new set of clauses P6k, whose
derivation trees are the subset of P’s derivation trees with dimension at most k. It is known
that P6k can be transformed to a linear set of clauses preserving satisfiability; hence if we can
find a model of the linear set of clauses then the original clauses P6k also have a model. Fur-
thermore, P6k is included in P6k+1. This allows reusing the solution of P6k to solve P6k+1.

103



104 solving non-linear horn clauses using a linear horn clause solver

c1. fib(A, B):- A>=0, A=<1, B=A.

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),

A1 = A - 1, fib(A1, B1), B = B1 + B2.

c3. false:- A>5, fib(A,B), B<A.

Figure 8.1: Example CHCs Fib defining the Fibonacci function.

This motivated us to use this specific construction based on tree dimension to underapproxi-
mate a set of Horn clauses.

The algorithm terminates with success if a model (solution) M of P6k is also a model (after
appropriate translation of predicate names) of P. However if M is not a solution of P, then
we proceed to generate P6k+1 and repeat the procedure. The algorithm terminates if P6k is
shown to be unsatisfiable (unsafe) for some k, since this implies that P is also unsatisfiable.

A more sophisticated version of the algorithm attempts to use the model M of P6k to
(partially) linearise P6k+1. We can exploit the model of P6k in the following way; if P6k+1

has a counterexample that does not use the (approximate) solution M for P6k , then P is
unsatisfiable. We continue this process successively for increasing values of k until we find a
solution or a counterexample to P, or until resources are exhausted.

As an example program, we consider a set of constrained Horn clauses P in Figure 8.1
which defines the Fibonacci function. It is an interesting problem since its derivations are
trees whose dimensions depend on an input argument. The last clause represents a property
of the Fibonacci function expressed as an integrity constraint.

We have made a prototype implementation of this approach and performed some exper-
iments on a set of software verification problems, which shows some promise. The main
contributions of this chapter are as follows.

1. We present a linearisation procedure for dimension-bounded Horn clauses using partial
evaluation (Section 8.3).

2. We give an algorithm for solving a set of non-linear Horn clauses using a linear Horn
clause solver (Section 8.4).

3. We demonstrate the feasibility of our approach in practice applying it to non-linear
Horn clause problems (Section 8.5).

8.2 preliminaries

A constrained Horn clause (CHC) is a FOL formula of the form p(X)← C,p1(X1), . . . ,pk(Xk)
(k > 0) (using Constraint Logic Programming syntax), where C is a conjunction of constraints
with respect to some constraint theory, Xi,X are (possibly empty) vectors of distinct variables,
p1, . . . ,pk,p are predicate symbols, p(X) is the head of the clause and C,p1(X1), . . . ,pk(Xk) is
the body. An atomic formula, or simply atom, is a formula p(t) where p is a non-constraint
predicate symbol and t a tuple of arguments. Atoms are sometimes written as A, B or H,
possibly with sub- or superscripts.



8.2 preliminaries 105

A clause is called non-linear if it contains more than one atom in the body, otherwise it is
called linear. A set of Horn clauses P is called linear if P only contains linear clauses, otherwise
it is called non-linear. Integrity constraints are a special kind of Horn clauses whose head is
false where false is always interpreted as False. A set of Horn clauses is sometimes called a
(constraint logic) program.

An interpretation of a set of CHCs is represented as a set of constrained facts of the form
A ← C where A is an atomic formula p(Z) where Z is a tuple of distinct variables and C is a
constraint over Z with respect to some constraint theory. An interpretation that makes each
clause in P True is called a model of P. We say a set of Horn clause P (including integrity
constraints) is safe (solvable) iff it has a model. In some works e.g. [15, 126], a model is also
called a solution and we use them interchangeably here.

A labeled tree c(t1, . . . , tk) (k > 0) is a tree whose nodes are labeled by identifiers, where c
is the label of the root and t1, . . . , tk are labeled trees, the children of the root.

Definition 8.1 (Tree dimension (adapted from [45])). Given a labeled tree t = c(t1, . . . , tk), the
tree dimension of t represented as dim(t) is defined as follows:

dim(t) =


0 if k = 0

maxi∈[1..k] dim(ti) if there is a unique maximum

maxi∈[1..k] dim(ti) + 1 otherwise

Given a set of Horn clauses, we associate with each clause p(X) ← C,p1(X1), . . . ,pk(Xk) a
unique identifier c whose arity is k.

Labelled trees can represent Horn clause derivations, where node labels are clause identi-
fiers.

Definition 8.2 (Trace tree). A trace tree for an atom A in a set of Horn clauses P is a labelled tree
c(t1, . . . , tk) if c is a clause identifier for a clause A ← C,A1, . . . ,Ak in P (with variables suitably
renamed) and t1, . . . , tk are trace trees for A1, . . . ,Ak in P respectively.

There is a one-one correspondence between trace trees and derivation trees of Horn clauses
up to variable renaming. Thus when we speak about the dimension of a Horn clause deriva-
tion, we refer to the dimension of its corresponding trace tree.

Using the clauses shown in Figure 8.1 along with their identifiers, Figure 8.2 (a) shows a
trace tree t = c3(c2(c2(c1, c1), c1)) and Figure 8.2 (b) shows its tree dimension. It can be seen
that dim(t) = 1.

To make the chapter self contained, we describe the transformation to produce a dimension-
bounded set of clauses. Given a set of CHCs P and k ∈N, we split each predicate p occurring
in P into the predicates p6d and p=d where d ∈ {0, 1, . . . ,k}. An atom with predicate p6d or
p=d is denoted H6d or H=d respectively. Such atoms have derivation trees of dimension at
most d and exactly d respectively.

Definition 8.3 ( At-most-k-dimension program P6k). Let P be a set of CHCs. P6k consists of the
following clauses (adapted from [121, 99]):
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Figure 8.2: (a) a trace tree and (b) its tree dimension.

1. Linear clauses:

If H← C ∈ P , then H=0 ← C ∈ P6k.

If H← C,B1 ∈ P then H=d ← C,B=d
1 ∈ P6k for 0 6 d 6 k.

2. Non-linear clauses:

If H← C,B1,B2, . . . ,Br ∈ P with r > 1 and one of the following holds:

• For 1 6 d 6 k, and 1 6 j 6 r:

Set Zj = B=d
j and Zi = B

6d−1
i for 1 6 i 6 r∧ i 6= j. Then: H=d ← C,Z1, . . . ,Zr ∈

P6k.

• For 1 6 d 6 k, and J ⊆ {1, . . . , r} with |J| = 2:

Set Zi = B=d−1
i if i ∈ J and Zi = B

6d−1
i if i ∈ {1, . . . , r} \ J. If all Zi are defined, i.e.,

d > 2 if r > 2, then: H=d ← C,Z1, . . . ,Zr ∈ P6k.

3. ε-clauses:

H6d ← H=e ∈ P6k for 0 6 d 6 k , and every 0 6 e 6 d 6 k.

P6k is also called the k-dimension-bounded program corresponding to P. When the value
of k is not important, any program generated using the Definition 8.3 is called a dimension-
bounded program. The relation between P and its k-dimensional program is given by in the
Proposition 8.1 where |= is the usual “logical consequence” operator.

Proposition 8.1 (Relation between P and P6k). Let P be a program and P6k (k > 0) be its k-
dimension-bounded program. Let p(t) be an atom where p is a predicate of P and p?(t) (? ∈ {=,6})
be an atom where p? is a predicate of P6k. Then we have: P6k |= p?(t) =⇒ P |= p(t).

In other words, Proposition 8.1 says that the set of facts that can be derived from P6k is
a subset of the set of facts that can be derived from P, taking the predicate renaming into
account. In this sense P6k is an under-approximation of P. In particular, if P6k |= false? then
P |= false.

Let S be an interpretation of a dimension-bounded set of clauses P6k. That is, S is a set of
constrained facts of the form H=d ← C or H6d ← C. An interpretation of P is constructed
from S as follows.
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%linear clauses

1. fib(0)(A,B) :- A>=0, A=<1, B=A.

2. false(0) :- A>5, B<A, fib(0)(A,B).

%epsilon-clauses

3. false[0] :- false(0).

4. fib[0](A,B) :- fib(0)(A,B).

Figure 8.3: Fib60 : at-most-0-dimension program of Fib.

fib(0)(A,B) :- B=A, A=<1, A>=0.

fib(1)(A,B) :- B=F+D, C=A-2,

E=A-1, A>1, fib[0](E,F), fib(1)(C,D).

fib(1)(A,B) :- B=F+D, C=A-2, E=A-1,

A>1, fib[0](C,D), fib(1)(E,F).

fib(1)(A,B) :- B=F+D, C=A-2, E=A-1,

A>1, fib(0)(C,D), fib(0)(E,F).

false(1) :- B<A, A>5, fib(1)(A,B).

false(0) :- B<A, A>5, fib(0)(A,B).

false[1] :- false(1).

false[1] :- false(0).

false[0] :- false(0).

fib[1](A,B) :- fib(1)(A,B).

fib[1](A,B) :- fib(0)(A,B).

fib[0](A,B) :- fib(0)(A,B).

Figure 8.4: Fib61 : at-most-1-dimension program of Fib.

Definition 8.4 (S↑P
6k

: an interpretation of P constructed from an interpretation of P6k). Let S
be an interpretation of P6k. Then S↑P

6k
is the following set of constrained facts.

S↑P
6k

= {p(X)←
∨

{C | p=d(X)← C ∈ S∨ p6d(X)← C ∈ S} | d ∈ {0...k} and p : pred. in P}

The set S↑P
6k

is a disjunctive interpretation of P where the interpretation of p is the disjunction of the
interpretations of the corresponding dimension-bounded versions of p in P6k.

The at-most-0-dimension program of Fib in Figure 8.1 is depicted in Figure 8.3. In textual
form we represent a predicate p6k by p[k] and a predicate p=k by p(k). The at-most-1-
dimension program of Fib in Figure 8.1 is depicted in Figure 8.4. Note that 0-dimension
program is included in 1-dimension program. In general, all the clauses in P6k are also in
P6k+1. This provides a basis for an iterative strategy for a bounded set of Horn clauses. Since
some programs have derivation trees of unbounded dimension, trying to verify a property
for its increasing dimension separately is not a practical strategy. It only becomes a viable
approach if a solution of p6k for some k > 0 is general enough to hold for all dimensions of
P.
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8.3 linearisation strategies for dimension-bounded set of horn clauses

In this section, we present linearisation strategies for set of clauses of bounded dimension. It is
known [3] that a dimension-bounded set of clauses can be linearised, preserving satisfiability.
In this section we describe a practical technique for linearisation, based on partial evaluation
of an interpreter.

8.3.1 Linearisation based on partial evaluation

Partial evaluation (PE) has been studied for a variety of languages including logic programs
[89, 58, 110, 91, 115]. We follow the pattern of transforming a program (a set of Horn clauses)
by specialising an interpreter for that program [51, 91]. Let PE be a partial evaluator, I an
interpreter and P an object program. Then the partial evaluation of Iwith respect to P, denoted
PE(I,P), represents the “compilation" of P using the semantics given by I.

We first write an interpreter for Horn clause programs, which is also written as a set of
Horn clauses. Given a (possibly empty) conjunction of atoms (called a goal) the interpreter
constructs a derivation, implementing a standard left-to-right, depth-first search. In the inter-
preter predicate solve(Gs), Gs is the goal, represented as a list of atoms. The basic step of the
interpreter is represented by the clauses for solve(Gs) shown in Figure 8.5. If the conjunction
is not empty, its first atom G is selected along with a matching Horn clause G ← Cs,B in the
program being interpreted, where Cs is a conjunction of constraints and B is a conjunction of
atoms. This clause is represented by hornClause(G,Cs,B) in the interpreter. The body of the
clause is conjoined with the remaining goal atoms, and the derivation continues with the new
goal Gs1. If the conjunction is empty, the derivation is successful (second clause).

solve([G|Gs]) :-

hornClause(G,Cs,B), solveConstraints(Cs), append(B,Gs,Gs1),

solve(Gs1).

solve([]).

Figure 8.5: Depth-first interpreter for Horn clauses

To interpret a dimension-bounded set of clauses (say the bound is k), we use the fact that
in all successful runs of the interpreter in which goals are selected in increasing order of
dimension, the size of the conjunction of goals (that is, the length of the argument of solve)
has an upper bound related to k. This bound is known as the index of the set of clauses
and is given as (i− 1) ∗ k+ 1, where i is the maximum number of non-constraint atoms in
the body of clauses [47]. Given this index, we can augment the interpreter with a check on
the size of the conjunction, ensuring that it never exceeds the index. In addition, due to the
requirement of increasing dimension in the selection of atoms, a left-to-right computation
rule is not sufficient; therefore we permute the set of atoms in each clause body, since in
at least one permutation the goals will be ordered by dimension. With these changes the
interpreter remains complete for clauses of the given maximum index, at the possible cost of
some redundancy in the search.
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These additions result in the interpreter whose top level is shown in Figure 8.6. Let the
interpreter predicate solve(Gs,Index,L) mean that the conjunction of goals Gs is to be solved,
and L, Index are numbers representing the size of Gs and the maximum size of the stack of
goals.

go(Index) :-

solve([false],Index,1).

solve([G|Gs],Index,L) :-

hornClause(G,Cs,B), solveConstraints(Cs),

length(B,L1), L2 is L1+L-1, L2 =< Index,

perm(B,B1), append(B1,Gs,Gs1),

solve(Gs1,Index,L2).

solve([],_,_).

Figure 8.6: Interpreter for linearisation

partial evaluation of the interpreter . Given a set of facts of the form
hornClause(G,Cs,B) representing the Horn clauses to be linearised, and some value of Index,
the interpreter can be partially evaluated. We use Logen [116] to perform the partial evalu-
ation with respect to a call to go(Index), which initiates a proof of the goal false (see first
clause of interpreter). All interpreter computations are partially evaluated except for the calls
to solve(Gs,Index,L) and the execution of constraints within the goal solveConstraints(Cs).
Furthermore Logen performs standard structure-flattening and predicate renaming opera-
tions, yielding a set of clauses of the form solve_i(X) :- Cs, solve_j(Y), where solve_i(X)

and solve_j(Y) are instantiations of
solve(Gs,Index,L) and Cs is a constraint. Thus the resulting clauses are linear, and further-
more preserve the meaning of the original clauses as given by the interpreter, by correctness of
the partial evaluation procedure. The linearisation procedure is independent of the constraint
theory underlying the clauses.

Proposition 8.2. Let P be a program and P6k (k > 0) be its k-dimension-bounded program. Let i
be the maximum number of atoms in clause bodies of P. Let Index = (i − 1) ∗ k + 1. Let P ′ be a
partial evaluation of the interpreter in Figure 8.6, with respect to P and the goal go(Index). Then
P6k |= false6k iff P ′ |= go(Index).

Furthermore P ′ is linear if the partial evaluator follows the strategy described above. Com-
bining Propositions 8.2 and 8.1, we conclude that P ′ |= go(Index)⇒ P |= false.

Note that linearisation required partial evaluation of the perm predicate, giving a blow-up
in program size related to the length of the clause bodies. This is further discussed at the end
of Section 8.5.
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8.3.2 Obtaining linear over-approximations with a partial model

First we note that the set of predicates in P6k is a subset of the set of predicates in P6k+1.
Given a model M for the predicates in P6k, P6k+1 can be linearised if we replace each
occurrence of a predicate from P6k in the body of a clause in P6k+1 with the corresponding
constraint from the model M. The resulting set of clauses is linear since P6k+1 contains at
most one predicate in its body from P6k+1 which is not in P6k. Furthermore if P6k+1 has a
model then so does the set of clauses resulting from the replacement; the converse is however
not the case since the modelM represents an over-approximation of P6k. An example is given
in Section 8.4.

More generally, we can replace any subset of the occurrences of predicates from P6k in
P6k+1. We summarise this in the following lemma.

Lemma 8.1 (Linear over-approximation). Let M be a model of the predicates in P6k, represented
by a set of “constrained facts" p(X) ← C where p is a predicate in P6k. Let P ′ be any set of clauses
obtained from P6k+1 by replacing some of the occurrences of predicates p(X) from P6k in the bodies
of clauses in P6k+1 with their corresponding interpretation C in M. Then

1. If P6k+1 has a model then so does P ′;

2. If P ′ contains no predicate from P6k, then P ′ is linear.

8.4 algorithm for solving sets of non-linear horn clauses

A basic procedure for solving a set of non-linear Horn clauses using a linear Horn clause
solver is presented in Algorithms 8.1 and 8.2. We use the term “linear solver" for linear
Horn clause solver for brevity. The main procedure SOLVE(P) takes a set of non-linear Horn
clauses P as input and outputs (upon termination) (safe, solution) if P is solvable or (unsafe,
counterexample) otherwise. We represent a counterexample as a trace tree. For a linear program
it corresponds to a sequence of clauses used to derive a counterexample.

Definition 8.5. (S|t) Let S be an interpretation of a set of Horn clauses P. Let t be any trace tree for
some atom A in P (Definition 8.2) and let At be the set of heads of clauses with identifiers in t. Then
S|t is defined to be the set

S|t = {(H← C) | (H← C) ∈ S∧H 6∈ At}.

Informally, the derivation corresponding to t does not use any predicate interpreted by S|t.
This notion is used in Algorithm 8.2.

Algorithm 8.2 is an extended version of Algorithm 8.1, which uses the solution for P6k

to help to linearise P6k+1 and also allows a more refined termination condition based on
whether or not the solution for P6k is used in constructing a counterexample for P6k+1.

The procedures make use of several sub-procedures which will be described next.
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8.4.1 Components of the algorithm

• KDIM(P,k): produces an at-most-k-dimension program P6k (Definition 8.3). By defini-
tion, P6k is linear for k = 0. For our example program presented in Figure 8.1, Fib60

is shown in Figure 8.3 which is linear since there is at-most one non-constraint atom in
the body of each clause.

• SOLVE_LINEAR(P′): solves a set of linear Horn clauses P ′. We assume the following
about a linear solver: (i) if it terminates on P ′, then it returns either safe and a solution or
unsafe and a counterexample; (ii) it is sound, that is, if it returns a solution S for P ′ then P ′

has a model and S is a solution (model) of P ′; if it returns unsafe and a counterexample
cEx then P ′ is unsafe and cEx is a witness. In our setting (Algorithms 8.1 and 8.2), P ′

corresponds to a linearised version of P6k for some P and k > 0. For technical reasons,
the top level predicate false=k of P6k if any, is renamed to false before passing to a linear
solver.

In essence, any Horn clause solver which complies with our assumption, for example
QARMC [65], Convex polyhedral analyser [96], ELDARICA [80] etc. can be used in a
black-box fashion but in this chapter, we make use of a solver described in [96], which is
based on abstract interpretation [32] over the domain of convex polyhedra [33] but with-
out refinement using finite tree automata. The solver produces the following solution
for the program in Figure 8.3. We can check it is in fact a solution (model).

fib(0)(A,B) :- [-A>= -1,A>=0,B=A].

fib[0](A,B) :- [-A>= -1,A>=0,B=A].

false[0] :- <>. % <> means that there is no model for false[0],

%so we can discard it

• LINEARISE(P,k,S) generates a linear set of clauses from P6k and an interpretation S
for P6k. Let S be a set of constrained facts of the form p(X)← C, where p is a predicate
from P6k, the procedure replaces every clause from P6k with head p(X) by p(X) ← C.
This produces a set of clauses say P ′. Then the procedure LINEARISE_PE(P ′,Index)
is called, which is the linearisation procedure based on partial evaluation described in
Section 8.3 where Index is a bound for the stack usage for linearising P6k.

An excerpt from Fib61 is shown below.

false(1) :- A>5, B<A, fib(1)(A,B).

fib(1)(A,B) :- A>1, C=A-2, E=A-1, B=F+D, fib(1)(C,D), fib[0](E,F).

fib(0)(A,B) :- B=A, A=<1, A>=0.

After reusing the solution obtained for Fib60 and linearising, we obtain the following set
of linear clauses.

false(1) :- A>5, B<A, fib(1)(A,B).

fib(1)(A,B) :- -A>= -2, A>1, A-C=2, B-D=1, fib(1)(C,D).
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Continuing to run our algorithm, the following solution obtained for Fib62 becomes a
solution for the program in Figure 8.1 (the original program) and the algorithm terminates.

fib(0)(A,B) :- [-A>= -1,A>=0,B=1].

fib[0](A,B) :- [-A>= -1,A>=0,B=1].

fib(1)(A,B) :- [A>=2,A+ -B=0].

fib[1](A,B) :- [A+ -B>= -1,B>=1,-A+B>=0].

fib(2)(A,B) :- [A>=4,-2*A+B>= -3].

fib[2](A,B) :- [A>=0,B>=1,-A+B>=0].

Algorithm 8.1: Algorithm for solving a set of Horn clauses

1 Procedure SOLVE(P)
Input: A set of CHCs P
Output: (safe, solution), (unsafe, cex)

2 k← 0;
3 P ′ ← LINEARISE(P,k, ∅);
4 (status, Result)← SOLVE_LINEAR(P′) ; /* Result is a solution or a cex */

5 if status = safe then
6 if (Result↑P

6k
is a solution of P) then return (safe, Result↑P

6k
) ;

7 ;
8 k← k+ 1;
9 else

10 return (unsafe, Result) ; /* Result is a cex */

11 goto 3;

8.4.2 Reuse of solutions, refinement and linearisation

Algorithm 8.2 solves non-linear Horn clauses P in essentially the same way as Algorithm 8.1,
but incorporates a refinement phase in the case that the linear solver finds a counterexample.
This counterexample possibly uses some of the model of the lower-dimension predicates
S, in which case it is not certain whether it is a false alarm or a real counterexample. If
the counterexample did use some of the predicate solutions from S, then we discard those
solutions (Algorithm 8.2, line 12) and return to the linearisation step. If the counterexample
does not use any predicate solutions from S, then it is a real counterexample (Algorithm 8.2,
line 12). We will clarify this with an example program (linear for simplicity) shown below.

c1. false:- X=0, p(X).

c2. false:- q(X).

c3. p(X):- X>0.

c4. q(X):-X=0.
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Algorithm 8.2: Algorithm for solving a set of Horn clauses, with reuse of lower dimension
solutions

1 Procedure SOLVE(P)
Input: A set of CHCs P
Output: (safe, solution), (unsafe, cex)

2 k← 0;
3 S← ∅;
4 P ′ ← LINEARISE(P,k,S);
5 (status, Result)← SOLVE_LINEAR(P′) ; /* Result is a solution or a cex */

6 if status = safe then
7 if (Result↑P

6k
is a solution of P) then return (safe, Result↑P

6k
) ;

8 ;
9 k← k+ 1;

10 S← Result;
11 else
12 if S = S|Result then return (unsafe, Result);; /* Result is a linear cex */

13

14 S← S|Result; /* S|Result: Definition 8.5 */

15 goto 4;

Algorithm 8.3: Algorithm for linearising a set of clauses

1 Procedure LINEARISE(P, k, S)
Input: A set of CHCs P, an integer k and a set of constrained facts S
Output: A linearised set of clauses Plin

2 P6k ← KDIM(P,k) ; /* Definition 8.3 */

3 P ′ ← SUBSTITUTE(P6k,S); /* substitute atoms of P6k with their

interpretations from S */

4 Index← (i− 1) ∗ k+ 1 ; /* where i is the maximal number of body atoms of P */

5 Plin ← LINEARISE_PE(P′, Index) ; /* Section 8.3.1 */

6 return Plin
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Suppose we have an approximate solution S = {p(X) : −true} for the predicate p(X). Using
this solution, the above program is transformed into the following program.

c1. false:- X=0, p(X).

c2. false:- q(X).

c3. p(X):- true. (approximate solution)

c4. q(X):-X=0.

The trace c1(c3) is a counterexample for this transformed program but not to the original
program (since it uses an approximate solution for the predicate p). However the trace c2(c4)
is a counterexample for this program as well as to the original since it does not use any
approximate solution for the predicates appearing in the counterexample.

A schematic overview of Algorithm 8.2 is shown in Figure 8.7. At each iteration of the
abstraction-refinement loop, the at-most-k-dimension under-approximation of P is computed,
then linearised and solved using a solver for linear Horn clauses.

CA – Counterexample Analyser
Lin – Linearisation procedure LS – Linear Horn clause solver

Abstraction Refinement

CHC P
k = 0,S = ∅

Lin
P ′,S,k

LS

(safe, R↑P
6k
)

R solution P?

NoS← R,k = k+ 1

S,R,k
CA

S← S|R,k

(unsafe, R)
S = S|R?

Figure 8.7: Abstraction-refinement scheme for solving non-linear Horn clauses using a solver for linear Horn
clauses. P ′ is a set of linear CHC obtained by linearising the at-most-k-dimension underapproxima-
tion, P6k, of P.

The soundness of Algorithms 8.1 and 8.2 is captured by Proposition 8.3.

Proposition 8.3 (Soundness). If Algorithm 8.1 or 8.2 returns safe and a solution S for a set of clauses
P then P is safe and S is in fact a solution of P; if it returns unsafe and a counterexample cEx then P
is unsafe and cEx is a witness.

Another property of the Algorithm 8.2 is that of progress, that is, the same counterexample
does not arise more than once.

8.5 experimental results

We made a prototype implementation of Algorithm 8.2 in the tool called LHornSolver1. It uses
the solver described in [96] without refinement as a linear Horn clause solver, but it would

1 https://github.com/bishoksan/LHornSolver

https://github.com/bishoksan/LHornSolver
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have been ideal to use a specialised linear Horn clause solver. We did not find any such solver
which fulfills our purpose. LHornSolver is written in Ciao Prolog [78] and is interfaced with
the Parma Polyhedra Library [5] and the Yices SMT solver [44] for handling constraints. Then
we carried out an experiment on a set of 44 non-linear CHC verification problems taken from
the repository2 of software verification benchmarks, the recursive category of SV-COMP3 [13]
and the tool QARMC. The experiments were run on a MAC computer running OS X on 2.3
GHz Intel core i7 processor and 8 GB memory. The benchmarks that we use in the experiments
are not beyond the capabilities of existing solvers, but they are challenging. These programs
are first translated to Prolog syntax using the tools ELDARICA [80] and SeaHorn [71]. Our
aim with these experiments is to explore: (1) whether using a linear solver for non-linear
problem solving is practical; (2) the relationship between the solvability of a problem and its
dimension; and (3) how the current results compare with the results using the state of the art
non-linear Horn clause verification tool (in our case Rahft [96]). The results are summarized
in Table 8.1.

In the table Program represents a program, Safety represents a verification result, #iter. and
Time (s) successively represent the number of refinement iterations and the time in seconds
need to solve a program using both Rahft and LHornSolver. It is to note that the underlying
abstract interpreter, that is, the convex polyhedral analyser (CPA) is the same for both Rahft

and LHornSolver but LHornSolver uses it to solve linear Horn clauses though the CPA is not
optimised for linear problems. The column #iter. for LHornSolver represents a value of k for
which a solution of P6k (under-approximation) of a set of clauses P becomes a solution for P
or P6k becomes unsafe. The symbol “?” means that the result is unknown within the given
time bound. The result “safe” means that the program is safe (solvable) and “unsafe” means
it is unsafe.

LHornSolver solves 27 out of 44 (about 61%) problems within a second. In most of these
problems, a solution of an under approximation (P6k) becomes a solution for the original
program or P6k becomes unsafe for a fairly small value of k (1 or 2). This suggests that
the solvability of a problem is shallow with respect to its dimension. This demonstrates the
feasibility of solving a set of non-linear Horn clauses using a solver for linear Horn clauses.

In contrast, Rahft solves all the problem. The difference in results maybe due to the fol-
lowing reason: the linear solver that is used in LHornSolver is the CPA (without refinement
in contrast to [96]). The solver terminates but produces false alarms. If we use CPA with re-
finement as in [96], then we lose predicate names (due to program transformation), so the
solution or counterexamples produced by the tool do not correspond to the original program
(it is very hard to keep track of the changes). This hinders the reuse of solution from lower
dimension to linearise program of higher dimension or refine it using the counterexample
trace. Other solvers which don’t modify the programs but produce solutions or counterexam-
ples can be used as a linear solver in principle and we leave it for the future work. Another
disadvantage of using CPA is that, if it cannot solve a linear program, then it emits an abstract
trace which is checked for feasibility. If it is spurious then LHornSolver returns with unknown
(in principle we can refine the program but the refinement will have the problem as men-

2 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/RECUR/

3 http://sv-comp.sosy-lab.org/2015/benchmarks.php

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/RECUR/
http://sv-comp.sosy-lab.org/2015/benchmarks.php
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RAHFT LHornSolver

Program Safety # iter. Time (s) Safety #iter. Time (s)

Addition03_false-unreach safe 2 < 1 ? ? ?

McCarthy91_false-unreach unsafe 0 < 1 ? ? ?

addition.nts.pl safe 0 < 1 safe 1 < 1

bfprt.nts.pl safe 0 < 1 safe 2 4

binarysearch.nts.pl safe 0 < 1 safe 1 1.1

countZero.nts.pl safe 0 < 1 safe 1 < 1

eq.horn unsafe 0 < 1 unsafe 2 < 1

fib.pl safe 0 < 1 ? ? ?

identity.nts.pl safe 0 < 1 safe 1 < 1

merge.nts.pl safe 0 < 1 safe 1 1.7

palindrome.nts.pl safe 0 < 1 safe 1 < 1

parity.nts.pl unsafe 1 < 1 ? ? ?

remainder.nts.pl unsafe 0 < 1 unsafe 1 < 1

revlen.pl safe 0 < 1 safe 1 < 1

running.nts.pl unsafe 1 < 1 ? ? ?

sum_10x0_false-unreach unsafe 10 10 ? ? ?

sum_non_eq_false-unreach unsafe 0 < 1 ? ? ?

suma1.horn unsafe 0 < 1 unsafe 1 < 1

suma2.horn unsafe 0 < 1 unsafe 2 < 1

summ_SG1.r.horn safe 0 < 1 ? ? ?

summ_SG2.r.horn safe 8 78 ? ? ?

summ_SG3.horn safe 0 < 1 safe 1 < 1

summ_b.horn safe 2 1.7 ? ? ?

summ_binsearch.horn safe 1 3 ? ? ?

summ_cil.casts.horn safe 0 < 1 safe 1 < 1

summ_formals.horn safe 0 < 1 safe 1 < 1

summ_g.horn safe 0 < 1 ? ? ?

summ_globals.horn safe 0 < 1 safe 1 < 1

summ_h.horn safe 0 < 1 safe 2 < 1

summ_local-ctx-call.horn safe 0 < 1 safe 1 < 1

summ_locals.horn safe 0 < 1 ? ? ?

summ_locals2.horn safe 0 < 1 safe 1 < 1

summ_locals3.horn safe 0 < 1 safe 1 < 1

summ_locals4.horn safe 0 < 1 safe 2 2.2

summ_mccarthy2.horn safe 3 5 ? ? ?

summ_multi-call.horn safe 0 < 1 safe 1 < 1

summ_nested.horn safe 0 < 1 safe 1 < 1

summ_ptr_assign.horn safe 0 < 1 safe 1 < 1

summ_recursive.horn safe 0 < 1 ? ? ?

summ_rholocal.horn safe 0 < 1 safe 1 < 1

summ_rholocal2.horn safe 0 < 1 safe 1 < 1

summ_slicing.horn safe 0 < 1 ? ? ?

summ_summs.horn safe 0 < 1 ? ? ?

summ_typedef.horn safe 0 < 1 safe 1 < 1

summ_x.horn safe 0 < 1 ? ? ?

Average 0.64 2.3 1.185 < 1

Table 8.1: Experimental results on non-linear CHC verification problems with a timeout of 5 minutes.
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tioned above). So it is highly unlikely that the trace picked by the tool non-deterministically
results to be a real counterexample. We noticed in our experiments that the trace picked was
spurious most of the times and LHornSolver immediately returned “unknown” answer before
the timeout. This also explains why solving time of LHornSolver is less than that of Rahft.

The interpreter described in Figure 8.6 computed a permutation of the atoms in a clause
body; partial evaluation of the permutation procedure can cause a blow-up of the size of
the linearised program, relative to the number of atoms in clause bodies. During our exper-
iment we found that the maximum number of atoms in the bodies of the clauses in our
benchmark programs was 5 and the value of k was relatively small (k = 0 . . . 2). The permu-
tation procedure can be avoided if we first generate an at-most-k-dimension program whose
body atoms are ordered by increasing dimension. This needs unfolding of the ε-clauses, since
atoms whose predicate is p6d cannot be ordered directly; only atoms with predicates of the
form p=dcan be ordered. We have not yet evaluated the trade-offs in these two approaches.

8.6 related work

In the world of Horn clause solvers, after fixing a constraint theory, we can distinguish solvers
depending on whether they can handle general non-linear Horn clauses or not. A majority of
solvers [71, 64, 136, 126, 96] handle non-linear Horn clauses but there are notable exceptions
like VeriMAP [37] or Sally4. For both VeriMAP and Sally, their underlying reasoning engine
handles only linear Horn clauses which restricts, in principle, their applicability. The devel-
opers of VeriMap claim that linearity is not a restriction in principle [40], but in practice we
cannot just get away with non-linear problems because of their ubiquity and one has to find
a way to deal with them. Our contribution is to lift this restriction by allowing those tools to
be applied on arbitrary sets of Horn clauses, linear or not, through a linearisation procedure
that underapproximates the set of solutions. We give empirical evidence that this underap-
proximation often provides enough coverage to enable the verification of the original set of
Horn clauses. To summarize, we allow solvers with restrictions to be applied on any input at
the price of an under-approximation which often results in full coverage.

Our linearisation method based on partial evaluation described in Section 8.3.1 is related to
the linearisation method based on fold-unfold transformations described by De Angelis et al. [40].
While their procedure transforms the target set of clauses directly, we transform an interpreter
for the clauses using a generic partial evaluation procedure. Any clause transformation proce-
dure could be formulated as a meta-program and partial evaluation applied to that program
to yield the specified transformation. Thus neither approach offers any more power than the
other. However the use of partial evaluation is arguably more flexible. The interpreter that is
partially evaluated in our procedure is a standard interpreter for Horn clauses, modified with
a bound on the size of goals, directly incorporating a general result that there is an upper
bound on the size of goals in derivations with dimension-bounded programs. This provides
a very generic starting point for the transformation with an explicit relation to the semantics
of the clauses. A whole family of similar transformations could be formulated by varying

4 https://github.com/SRI-CSL/sally

https://github.com/SRI-CSL/sally
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the interpreter (for example using breadth-first search). The procedure in [40] is tailored to
a restrictive setting where only goal clauses (integrity constraints) are non-linear and rest of
the clauses are linear; correctness has to be established for that case. Unlike [40], we cannot
transform clauses that do not have a solution in linear arithmetic to the clauses that have a
solution.

Ganty, Iosif and Konečný [63] used the notion of tree dimension for computing summaries of
procedural programs by underapproximating them. Roughly speaking, they compute proce-
dure summaries iteratively, starting from the program behaviors captured by derivation trees
of dimension 0. Then they reuse these summaries to compute summaries for program behav-
iors captured by derivation trees of dimension 1 and so on for 2, 3, etc. Kafle, Gallagher and
Ganty [99] adapted the idea of dimension-based underapproximations to the setting of Horn
clause systems. They gave empirical evidence supporting the thesis that for small values of
the dimension the solutions are general enough to hold for every dimension. Their approach
still required the use of general Horn-clause solvers capable of handling non-linear clauses.
In this chapter, we lift this requirement and allow the use of solvers for linear clauses only.
Moreover, we provide an abstraction refinement loop that enables the solutions for lower
dimension to be reused when searching for solutions in higher dimension.

8.7 conclusion and future work

We presented an abstraction-refinement approach for solving a set of non-linear Horn clauses
using an off-the-shelf linear Horn clause solver. It was achieved through a linearisation of a
dimension bounded set of Horn clauses (which are known to be linearisable) using partial
evaluation and the use of a linear Horn clause solver. Experiment on a set of non-linear Horn
clause verification problems using our approach shows that the approach is feasible (a linear
solver can be used for solving non-linear problems) and the solvability of a problem is shallow
with respect to its dimension.

A linear set of clauses is essentially a transition system. Many tools exist whose input
languages have a form such as C programs (without procedure calls), control flow graphs,
Boogie programs, and such formalisms whose semantics is usually given as a transitions
system. The results suggest that such tools could be applied to the verification of non-linear
Horn clauses.

In the future, we plan to compare our results with the results from a specialised linear
Horn clause solver like VeriMap and other non-linear Horn clause solvers. We also plan to
experiment with different linearisation strategies for Horn clauses and study their effects in
Horn clause verification.
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RAHFT : A T O O L F O R V E R I F Y I N G H O R N C L A U S E S U S I N G
A B S T R A C T I N T E R P R E TAT I O N A N D F I N I T E T R E E A U T O M ATA

With John P. Gallagher and José F. Morales

Abstract
We present Rahft (Refinement of Abstraction in Horn clauses using Finite Tree automata),
an abstraction refinement tool for verifying safety properties of programs expressed as Horn
clauses. The chapter describes the architecture, strength and weakness, implementation and
usage aspects of the tool. Rahft loosely combines three powerful techniques for program
verification: (i) program specialisation, (ii) abstract interpretation, and (iii) trace abstraction
refinement in a non-trivial way, with the aim of exploiting their strengths and mitigating
their weaknesses through the complementary techniques. It is interfaced with an abstract
domain, a tool for manipulating finite tree automata and various solvers for reasoning about
constraints. Its modular design and customizable components allows for experimenting with
new verification techniques and tools developed for Horn clauses.

Keywords: Horn clause solvers, abstraction-refinement, tree automata, program specialisa-
tion, abstract interpretation.

9.1 constrained horn clause verification and our approach

A constrained Horn clause (CHC) is a first order predicate logic formula usually written in the
form p(X)← φ,p1(X1), ...,pk(Xk) (k > 0) using Constraint Logic Programming (CLP) syntax,
where φ is a first order logic formula (constraint) with respect to some background theory,
Xi,X are (possibly empty) tuples of distinct variables, and p1, . . . ,pk,p are predicate symbols.
There is a distinguished predicate symbol false which is interpreted as False. Clauses with
false head are called integrity constraints. A set of CHCs is called a (CLP) program.

An interpretation of a set of CHCs P is a set of constrained facts of the form A ← φ where
A is an atom and φ is a formula with respect to some background theory. An interpretation
that satisfies each clause is called a model (a solution in some works [15, 126]). In Horn clause
verification, integrity constraints represent the safety properties to be verified; other clauses
represent the program’s behaviours. The CHC verification problem is to check whether there
exists a model of P.

Several verification tools have been developed for CHCs, including SeaHorn [70], QARMC
[65], VeriMap [37], Convex polyhedral analyser [96], TRACER [85], ELDARICA [80], and
Trace abstraction refinement tool [147]. They exploit either Formulation I or Formulation II
for Horn clause verification.
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false :- Y>X, l(X,Y).

l(X1,Y1) :- X1=X+Y,

Y1=Y+1,

l(X,Y).

l(X,Y) :- X=1, Y=0.

FTAM – Finite tree automata manipulator
AI –Abstract interpreter PP – Pre-processor

CG – Clauses generator

CHC Pi
i = 0

Abstraction Refinement

PP
P ′i

output to other tools
i = i+ 1

AI

approximation M

+ P ′i output to other tools

set of traces
M

safe

no

unsafe

yes and feasible

set of traces
error traces

CHC Pi

CHC P ′i

Verifier
(error traces?) FTAM

FTA operations

traces
CG

Figure 9.1: (a) Example program; (b) The architecture of Rahft.

Formulation I (deductive): P has a model if and only if P 6` false (false is not derivable from P).
In CLP terminology, P ` A if and only if the query ← A succeeds in P. In this formulation it
is sufficient to show that the query ← false fails finitely or infinitely. Formulation I forms the
basis of the tools described in [74, 147]. As the minimal model of P contains exactly the set of
atoms that succeed [81], we have another formulation of the CHC verification problem [59].
Formulation II (model-based): P has a model if and only if P 6|= false. It forms the basis of
tools based on abstract interpretation, interpolation or predicate abstraction [65, 70, 96].

The program in Figure 9.1(a) is a simple but challenging problem for many verification tools.
l(X, Y) ≡ X > Y∧ Y > 0 is a model of the program, whose solution requires the discovery of
the invariants X > Y and Y > 0. For example neither QARMC [65] nor SeaHorn [70] (using
only the PDR engine [19]) terminates on this program. However, SeaHorn (with PDR and the
abstract interpreter IKOS [20]) solves it. Rahft solves it with the pre-processing step alone.

Rahft exploits both of the above formulations using techniques based on abstract inter-
pretation over the domain of convex polyhedra, trace abstraction-refinement using finite tree
automata (FTAs) and program specialisation using constraint specialisation [94]. The motivations
behind this combination are: (i) to benefit from a powerful and scalable technique such as ab-
stract interpretation [32] for verifying properties of programs, (ii) to refine abstract interpretation
through automata theoretic operations which offers the advantages of simplicity and gener-
ality [96] and (iii) to construct highly parametric and configurable verification tools through
program transformation [37].

9.2 architecture and interface

Figure 9.1(b) gives an overview of Rahft. It compiles to a standalone command line utility
that accepts a set of CHCs as input. It consists of two modules namely, Abstraction (green box)
and Refinement (red box). Rahft takes a file containing a set of CHCs P as input and returns
safe or unsafe respectively if P has or does not have a model.

9.2.1 Abstraction

The Abstraction module takes a set of CHCs P as input and returns safe, unsafe or a trace
representing the abstract derivation of false together with the set of all derivations (traces)
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(both represented as FTAs) used while applying abstraction interpretation to P. It consists of
the following components:

Pre-processor (PP): Pre-processing is a model-preserving source-to-source program transfor-
mation of Horn clauses. In principle, any such transformation can be used as a pre-processor,
but we use constraint specialisation [94]. The specialisation consists of strengthening the con-
straints in the clauses using abstract interpretation [32] and query-answer transformation [9, 41]
of the original program. The specialisation is independent of the abstract domain and the
background theory underlying the clauses and does not unfold the clauses at all. This has
been proven to be an effective transformation [94] for verifying Horn clauses [38] and as a
pre-processor to other Horn clause verification tools such as [65].

Abstract Interpreter (AI): The AI implements a fixed point algorithm over the domain of con-
vex polyhedra [31] based on abstract interpretation [32]. It constructs an over-approximation M
of the minimal model of a program P, where M contains at most one constrained fact p(X)← φ

for each predicate p. The constraint φ is a conjunction of linear inequalities, representing a
convex polyhedron. The set of traces used during abstract interpretation of P can be captured
by an FTA, say AP, using M as shown in [97]. An FTA is a mathematical model capable of
capturing tree structured computations (Horn clauses derivations) (see [96] for the correspon-
dence between a program and an FTA).

The approximationM and the pre-processed clauses can be used by other Horn clause tools,
for example [65]. These tools can strengthen M (which may contain some useful invariants)
incrementally to construct a model of P rather than starting from a coarse abstraction (p(X)←
true for each predicate p of P).

Verifier: The verifier receives M and AP and checks the safety of the clauses based on the
following simple condition. The clauses are safe if there is no constrained fact for false in M
(M is called safe inductive invariant or a model of P) or there are no error traces rooted at false.
Otherwise we do not know whether the clauses are unsafe or whether the approximation
was too imprecise. In this case, the verifier picks a trace, say t ∈ AP, representing the abstract
derivation of false (if any) from the set of traces. If t is feasible (while simulating in P), then P
is unsafe and t is a counterexample, otherwise we refine P.

9.2.2 Refinement

The Refinement module takes as input a program P and two FTAs (i) recognising the set of
all possible traces of P; and (ii) recognising a set of infeasible traces. A difference automaton
is computed from these automata which recognises all traces except the infeasible ones. A
refined program is obtained as output using the difference automaton and P. Rather than
eliminating a single infeasible trace in each refinement iteration, we generalise it using an
interpolant automaton [74, 97, 147] thereby eliminating a possibly infinite number of infeasible
traces. The refinement offers the advantages of simplicity and generality which is independent
of the abstract domain and background theory underlying the clauses. The Refinement module
consists of following components:

Finite tree automata manipulator (FTAM): FTAM takes as input two FTAs and outputs their
difference automaton. The FTA difference construction needs determinisation; we built upon an
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optimised determinisation algorithm by Gallagher, Ajspur and Kafle [61] which scales well in
practice, generating transitions of the determinised automaton in a very compact form called
product form.

Clause generator (CG): Given a set of clauses P, and an automaton recognising an over-
approximation of all feasible traces of P, CG produces a set of clauses which is equisatisfiable
to P. For this purpose, we exploit a correspondence between the traces using the clauses and
the language of FTAs to generate a new set of clauses.

The refinement offers two advantages: (i) the refinement is manifested in the clauses generated
– we do not need to keep track of the previous refinements; and (ii) the original predicates get
split in refined clauses which help improve the precision of analysis [59].

9.2.3 Implementation

Rahft is implemented in Ciao [78] and is available from https://github.com/bishoksan/

RAHFT. It consists of a collection of reusable Prolog modules which rely on state-of-the-art
specialised external libraries written in C and C++ for handling constraints. We use the Yices
SMT solver [44] and the Parma Polyhedra Library [5] for handling the constraints and the
FTA library [61] for manipulating FTAs. The construction of an interpolant tree automaton uses
an algorithm presented in [138] for computing an interpolant of two formulas. The code
consists of over 7,000 lines of Ciao Prolog code split over 42 modules, interfaced to the above-
mentioned external libraries. The implementation of iterative fixpoint algorithms is inspired
by the approach to the abstract interpretation of logic programs described by Codish and
Søndergaard [27]. Data structures for manipulating Horn clauses are based on terms and the
internal Prolog database, reusing the optimizations of the underlying machine (e.g., clause
indexing) rather than reimplementing them in our tool. The glue code that ties together the
general purpose Prolog engine and the specialised solvers written in C and C++ is generated
via the Ciao foreign interface [78].

9.2.4 Strength and weakness

Rahft is a verification tool for safety properties of programs expressed as Horn clauses; it
can be used as a back end solver by different front end tools outputting in CLP form. It handles
clauses whose underlying theory is linear arithmetic; other theories are not supported currently.
It accepts input in CLP form.

Since different components of Rahft are loosely coupled, the tool can be reconfigured
(with a very little effort) to produce verification tools solely based on (i) program transforma-
tion as in iterated specialisation approach [38] by iterating the pre-processing component, (ii)
abstract interpretation, only with the AI component, (iii) trace abstraction refinement [74, 147]
by iterating the FTAM component, and (iv) a sensible combination thereof – all followed by a
lightweight verifier which checks the safety of the clauses based on the conditions mentioned

https://github.com/bishoksan/RAHFT
https://github.com/bishoksan/RAHFT
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above. Since our tool uses both state abstraction and trace abstraction, it allows application of a
wide range of tools and techniques.

We have evaluated Rahft on software verification benchmarks from a variety of sources
[67, 85, 68, 12, 13, 80] and the results show that it compares favourably (in time and the
number of instances solved) with the other state-of-the-art Horn clause verification tools (see
[96, 94, 97] for the details).

Convex polyhedra is an expensive abstract domain and is a potential bottleneck for verifi-
cation of large code bases. Instead, we can use cheaper domains supported by the Parma
Polyhedra Library such as octagons or intervals at the cost of precision. Rahft is also limited
by the hard-coded limits of the libraries and the Prolog implementation used (e.g. arity limit
of the predicates), which may be too restrictive for some verification problems and we intend
to improve this by some suitable data representation. We are aware of some examples from
SV-COMP if not many which cross this limit.

We can leverage state-of-the-art interpolating SMT solvers [22, 125] for the tree interpolant
generation which can be used for constructing an interpolant tree automaton; our current imple-
mentation does not scale well. Furthermore we aim to handle more advanced data structures
such as arrays, maps and sets, requiring more expressive theories than linear arithmetic. One
way to achieve this is by composing abstract domains as described in [34, 29]; we are also
aware of the support for the reduced product of domains in the PPL library.

Rahft is able to generate a model (a counterexample) if it proves the safety (unsafety) a pro-
gram. We need bookkeeping to generate these witnesses with respect to the original program;
and sometimes it becomes rather challenging because of the use of external libraries, tools or
the transformations applied.

9.3 future work

Future work will involve making Rahft a more flexible tool so that the user can configure
other parameters such as abstract domains and pre-processors. We are also planning for a
detailed performance measurement of the tool to detect bottlenecks; and work on language-
based optimisations to minimize them. Generation of a model or a counterexample with respect
to the original program, handling clauses with richer background theories (arrays, uninter-
preted functions) is on our to-do list. In addition, we are extending Rahft to consider Horn
clauses in SMT-LIB format [1], though several Horn clause verification tools use standard CLP
notation [96, 37, 65].
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C O N C L U S I O N A N D F U T U R E W O R K

This thesis described an approach for verifying sets of Horn clauses; these usually represent
safety properties of (imperative) programs. The approach presented, extended and combined
program transformation, abstract interpretation, and trace abstraction refinement into a sin-
gle tool for Horn clause verification. The combination led to a component-based abstraction
refinement framework for Horn clause verification. Next we summarise the achievements of
the research described in the thesis and its possible extensions.

10.1 program transformation for horn clause verification

summary of achievements . The program transformations we propose for Horn clauses
have the goals of propagating constraints throughout the program, splitting program pred-
icates, removing redundant variables from the program and removing some program parts
irrelevant to the properties in question – which have some surprisingly beneficial effects on
verification. These transformations were used as pre-processors to Horn clauses verification
tools and sometimes as proof techniques for Horn clauses. In Chapter 3 and 4, we described
several transformations for Horn clauses and their role in Horn clause verification.

The transformations that were especially important in our experiments are predicate split-
ting and constraint specialisation. Firstly, predicate splitting based on a given criterion creates
separate version of a predicate each defined by its own clauses. The criterion we used was
to split a predicate defined by the clauses with mutually exclusive constraints. Disjunctive
invariants are needed to prove many program properties and disjunctive solvers are compu-
tationally expensive. This transformation allows discovering disjunctive properties using a
conjunctive solver. Secondly, constraint specialisation, a method of program transformation
specialises the constraints in the clauses with respect to a property to be verified (goal). It
simultaneously propagates the constraints from the goal and from the constrained facts. The
surprising fact was that many programs were proven just by the transformation alone. Fur-
thermore the iteration of the method caused more problems to be solved. Not only this, these
transformations can also be used as a pre-processor for other Horn clause verification tools –
improving their effectiveness.

future work . Predicate splitting seems to be crucial in Horn clause verification. It allows
simulating disjunctions which are needed to prove many properties. Different heuristics for
splitting produces different sets of clauses which may have different impact in verification.
We would like to explore and experiment with predicate splitting heuristics evaluating their
effects on verification.

Since the method of constraint specialisation exposes implicit constraints from clauses, this
information can be exploited in several program analysis tasks. One such task is program
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debugging. A specialised program has more explicit information which is available to all de-
bugging tools, which may make errors in the original program apparent. If the constraints in
a clause strengthen to false, then this explains why this clause cannot be used in any deriva-
tion to derive a goal. Another task is iterated specialisation. The explicit information may
allow further specialisations for example by providing some knowledge of the call context
of each program point. Further it can have application in termination analysis. Discovery of
a ranking function is central to termination analysis. A ranking function is some expression
over the program variables, which evaluates to a non-negative value and strictly decreases in
each iteration of the loop. The explicit constraints open the possibility of discovering tighter
ranking functions.

10.2 abstract interpretation for finding invariants

summary of achievements . Proving properties of programs reduces to finding invari-
ants of programs. So we analysed a set of Horn clauses using abstract interpretation over
the domain of convex polyhedra, an abstract domain capable of representing useful numeric
(linear arithmetic) invariants necessary to prove many properties. The fixed point algorithm
over this domain as presented in Chapter 4 proved to be a very powerful verification tool
in itself. This has been demonstrated on a set of Horn clause verification problems. The op-
erations (convex hull and widening) over this domain are computationally expensive and
depend on the dimensions of polyhedra (the number of variables). We performed live vari-
able analysis (described as redundant argument filtering in Chapter 3) of the program to reduce
the number of variables whenever possible before applying abstract interpretation, which has
a positive effect in the verification problems. Furthermore we presented a method for generat-
ing threshold constraints from the Horn clause program which can be used during widening
(as widening with thresholds) operation to control the loss the precision due to widening.

future work . There are at least two promising avenues for future work here. On the one
hand, the domain of convex polyhedra is expensive and is a potential bottleneck for verifica-
tion of large programs. Instead, we can use cheaper domains such as octagons or intervals at
the cost of precision. So we are currently extending our work to incorporate these abstract
domains. On the other hand, our attempt so far has been on verifying Horn clauses expressed
over the theory of linear arithmetic. Usually programs contain more advanced data structures
such as arrays, maps and sets which require more expressive theories than linear arithmetic
to handle them. We plan to analyse these programs over the richer background theories by
composing abstract domains (for example the reduced product of abstract domains) or by
combining decision procedures for the richer theories as described in [34, 29].

10.3 trace abstraction refinement

summary of achievements . Abstract interpretation is a scalable technique but often
suffers from false alarms. Techniques have been proposed in the literature which refine ab-
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stractions, for example predicate abstraction but much less efforts have been spend on refining
abstract interpretations. In addition, the domain of convex polyhedra we used is not directly
amenable to refinement since it is fixed. Instead, we proposed tree-automata techniques to re-
fine traces derived from an abstract interpretation of a set of Horn clauses in Chapter 5 which
induces refinement of programs. Indirectly this can be viewed as refinement of abstraction
interpretations through the refinement of programs.

Tree-automata techniques offer a method for manipulating sets of tree-structured traces. An
overapproximation of a set of all traces of Horn clauses and a set of spurious traces for the
predicate specifying an error state are represented by FTAs. The FTA operation removes these
spurious traces from the set of all traces using the difference automaton construction. This can
be viewed as trace refinement. Furthermore, we use the concept of interpolant tree automata to
discover more infeasible traces by trace generalisation and remove them in a single refinement
step. Then a new program is generated from these refined set of traces. There are number of
achievements reported in Chapter 5. Firstly, we showed how abstract interpretation interacts
with FTAs. Secondly, we exploited the correspondence between FTAs and Horn clause deriva-
tions. This allows transformations in Horn clause to be achieved through transformations of
FTAs. The refinement offers a number of advantages. First, the refinement is manifested in
the clauses generated – we do not need to keep track of the previous refinements. Second,
the original predicates get split in refined clauses which helps to improve the precision of the
analysis. Third, the refinement offers the advantages of simplicity and generality which is in-
dependent of the abstract domain and background theory underlying the clauses. Finally, the
practicality of our approach was demonstrated on a set of Horn clause verification problems.

future work . We will investigate different heuristics for interpolation generation which
may give rise to different interpolant automaton and it may have different impact on verifi-
cation. At the moment, a new program is generated after each refinement and the analysis is
restarted from scratch. In the future, we would like to reuse the result of analysis from the
previous iterations and build on this instead of starting the analysis from scratch. The results
from previous analyses could be the abstraction (narrowing techniques can be applied from
this abstraction) or the interpolants (which can be used as threshold constraints). Further
study is needed to find a suitable combination of abstract interpretation and interpolation
based techniques, based on a deeper understanding of the interaction among interpolation,
trace elimination and abstract interpretation.

10.4 decomposition of the verification problem

summary of achievements . Proof decomposition allows complex proofs to be split
into simpler ones. We proposed a proof decomposition technique for Horn clauses, based
on the concept of tree dimension of Horn clause derivation (a measure of its non-linearity)
in Chapter 7. A proof of a set of CHCs can be decomposed into several proofs for different
values of tree dimension, which can be computed in parallel. In this way, the proof for the
original set of CHCs can be composed from the proofs of its constituents.
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future work . The idea we pursued seems interesting because the technique allows to
decompose programs into several sub-programs based on different values of tree dimension
in a syntactic way. Then the proofs for each such sub-programs can be combined. However,
we did not get much success with our decomposition technique because a program can have
an unbounded tree dimension and the proof of sub-programs of a certain dimension can be
as complex as the original one. There are at least two lines of research on program verifica-
tion based on tree-dimension that are worth investigating. They are proof by induction on
dimension and bounded model checking [14] based on dimension (dimension-bounded).

10.5 sufficiency of a linear solver

summary of achievements . We presented an abstraction-refinement approach for solv-
ing a set of non-linear Horn clauses using available linear Horn clause solvers in Chapter 8.
The approach is based on a linearisation of a dimension-bounded set of Horn clauses (which
are known to be linearisable) using partial evaluation and the use of a linear Horn clause
solver. Experiment on a set of non-linear Horn clause verification problems using our ap-
proach showed that the approach is feasible (a linear solver can be used for solving non-linear
problems) and the solvability of a problem is often shallow with respect to its dimension.

future work . Further study is needed to understand whether there are benefits of linear
Horn clause solving over the non-linear ones. We would like to get a deeper understanding
of the solving algorithms and techniques used for each class of programs (linear and non-
linear) and compare them. The solvability of a problem depends on the linearisation strategies
used, for example depth first or breadth first. So we also plan to experiment with different
linearisation strategies for Horn clauses and study their effects in verification. Linearisation
of Horn clauses is not possible in general, so we would like to find a linearisable class of Horn
clauses potentially useful in practice.

10.6 tools

summary of achievements . The ideas presented in this thesis are implemented in the
tools LHornSolver1 and Rahft2 and the tools’ descriptions are given in Chapters 8 and 9

respectively. Both of these tools follow an abstraction refinement approach for solving a set of
Horn clauses. The first one does so non-linearly, the second linearly, with the same underlying
solver for Horn clauses. They take as input a set of Horn clauses in CLP syntax and return
safe or unsafe. The goal of LHornSolver is to allow linear Horn clause solvers to be applied to
solve non-linear Horn clauses. The experimental results suggest that it is a feasible approach
but we did not find any case where the use of a linear solver could be an advantage over
the non-linear ones. This could be due to the linearisation strategies used or the use of a
solver not optimised for solving linear programs. We have evaluated Rahft on software

1 https://github.com/bishoksan/LHornSolver

2 https://github.com/bishoksan/RAHFT
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verification benchmarks and the results showed that it compares favourably (in time and
the number of instances solved) with the other state-of-the-art Horn clause verification tools.
There are problems which are not solvable by any state of the art tools, solvable by very few
tools including Rahft and solvable by some of the tools but not by Rahft. The techniques
employed by the tools and their foci differ significantly. Some tools focus on finding bugs
(tools based on bounded model checking) whereas some focus on proving programs (tools
based on abstract interpretation). Further, the tools in the literature exploit different program
structures (linear or non-linear). Tools also differ in the way they compute invariants to prove
a program. Some derive invariants using a fixed point algorithm over some abstract domain
using abstract interpretation; some do so by generalising from a specific counterexample
possibly using interpolation and some do so by using generalisation operators (this is case
of transformational approach to verification such as VeriMap). Rahft computes invariants
using abstract interpretation over the domain of convex polyhedra and is usually good for
proving programs. The approach for Horn clause verification proposed in this thesis allows
several different techniques and tools developed for Horn clauses to be combined in a flexible
way and experiment with them. The tool Rahft is a snapshot of a particular combination,
not necessarily an optimal one. The component-based approach allows components to be
reconfigured with a very little effort saving time and effort. Rahft can also serve as a back
end solver for different front end tools outputting in CLP form.

future work . Currently we are extending the tools into several directions. First of all, we
want to consider Horn clauses in SMT-LIB format [1] (the standard format for SMT solvers)
to be able to accept a wider range of input, though several Horn clause verification tools
use standard CLP notation [96, 37, 65]. Second of all, we want to make these tools more
flexible so that the user can configure other parameters such as abstract domains and pre-
processors. The optimisation of our tools is an important topic for future work. The generation
of witnesses (model or a counterexample) with respect to the original program is another area
for investigation. Handling clauses with richer background theories (arrays, uninterpreted
functions) are on our to-do list. Finding a best combination of techniques and tools which
allows us to solve as many problems as possible is an ongoing task.

Horn clauses are suitable representation not only for verification but also for other program
analysis tasks. Many program analysis tasks, for example program equivalence [40] can be re-
duced to Horn clauses solving. We are planning to extend the tools and techniques developed
in this thesis beyond safety verification, for example resource analysis, termination analysis
and liveness analysis.
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