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Abstract

This paper presents data for supercooled squalane’s frequency-dependent shear modulus cover-

ing frequencies from 10 mHz to 30 kHz and temperatures from 168 K to 190 K; measurements are

also reported for the glass phase down to 146 K. The data reveal a strong mechanical beta process,

also above the glass transition. A model is proposed for the shear response of the metastable

equilibrium liquid phase of supercooled liquids. The model is an electrical equivalent-circuit char-

acterized by additivity of the dynamic shear compliances of the alpha and beta processes. The

nontrivial parts of the alpha and beta processes are represented by a “Cole-Cole retardation ele-

ment” defined as a series connection of a capacitor and a constant-phase element, resulting in the

Cole-Cole compliance function well-known from dielectrics. The model, which assumes that the

high-frequency decay of the alpha shear compliance loss varies with angular frequency as ω−1/2,

has seven parameters. Assuming time-temperature superposition for the alpha and the beta pro-

cesses separately, the number of parameters varying with temperature is reduced to four. The

model provides a better fit to data than a seven-parameter Havriliak-Negami type model. From

the temperature dependence of the best-fit model parameters the following conclusions are drawn:

1) the alpha relaxation time conforms to the shoving model; 2) the beta relaxation loss-peak fre-

quency is almost temperature independent; 3) the alpha compliance magnitude, which in the model

equals the inverse of the instantaneous shear modulus, is only weakly temperature dependent; 4)

the beta compliance magnitude decreases by a factor of three upon cooling in the temperature

range studied. The final part of the paper briefly presents measurements of the dynamic adiabatic

bulk modulus covering frequencies from 10 mHz to 10 kHz in the temperature range 172 K to 200

K. The data are qualitatively similar to the shear data by having a significant beta process. A

single-order-parameter framework is suggested to rationalize these similarities.

∗ dyre@ruc.dk
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I. INTRODUCTION

Many organic liquids are easily supercooled and excellent glass formers, usually with the

glass transition taking place far below room temperature. Such systems are experimentally

convenient for studying the physics of highly viscous liquids, the glass transition, glassy

relaxation, etc, phenomena that are believed to be universal for basically all liquids [1–8]. As

the liquid is cooled, the relaxation time and viscosity increase by many orders of magnitude

over a narrow temperature range. Beyond the dominant and slowest alpha relaxation process

many liquids have additional faster relaxation(s), notably the so-called beta relaxation. The

alpha and beta processes are often studied by means of dielectric spectroscopy. They are

also present, however, in the liquid’s mechanical properties, which are the focus of the

present paper presenting squalane data and a model for supercooled liquids’ dynamic shear-

mechanical properties.

Squalane is a liquid alkane consisting of a linear C24 backbone with six symmetri-

cally placed methyl groups. Its systematic name is 2,6,10,15,19,23-hexamethyltetracosane.

Squalane is a van der Waals liquid that is an excellent glass former [1, 9–12]. Squalane’s

melting point is Tm = 235 K and its glass transition temperature Tg ∼= 168K follows the

well-known rule Tg ∼ (2/3)Tm [5, 13]. Squalane has low toxicity and is used in cosmetics as

moisturizer; due to the complete saturation squalane is not subject to auto-oxidation [14].

In basic research squalane is used as reference liquid in tribology and for elucidating the

mechanism of elastohydrodynamic friction [15–18]. Squalane has been studied in molecu-

lar dynamics simulations of nonlinear flows [19]. Squalane has also been used as a solvent

for studying the intriguing Debye dielectric relaxation of mono-hydroxy alcohols [20], the

rotation of aromatic hydrocarbons in viscous alkanes [21], and the Stokes-Einstein relation

for diffusion of organic solutes [22]. Due to its low vapor pressure squalane is used as a

benchmark molecule for reaction-dynamics experiments performed under ultrahigh vacuum

[23, 24].

Measurements of neat supercooled squalane’s dynamic shear modulus in the MHz range

were reported many years ago [25]. Subsequent studies of squalane include measurements

of its dielectric relaxation [10] and dynamic shear modulus over frequencies ranging from a

few mHz to 10 Hz [9], later extended to 30 kHz [11]. The present paper covers the latter

range of frequencies with more accurate data and for more temperatures than Ref. 11.
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The main motivation is not to present new data, however, but to introduce an electrical

equivalent-circuit model representing data very well. The model is a modification of one

discussed previously by our group, which introduces a crucial extra capacitor [26].

Section II presents the squalane data and the piezo-ceramic transducer used to obtain

them. Section III introduces electrical-equivalent circuit modeling of linear mechanical re-

laxation phenomena in general and motivates the model. It has four free parameters of

dimensions and three dimensionless “shape” parameters that are fixed from fitting to data

at one temperature. Section IV shows that the model fits data very well, considerably better

than a similar Havriliak-Negami type model with the same number of parameters. While

the paper’s main focus is on the dynamic shear data, Sec. V supplements these by present-

ing dynamic adiabatic bulk-modulus data. It is briefly shown that these may interpreted

in terms of an electrical equivalent circuit model in which the dissipation is controlled by

the dynamic shear modulus. Finally, Sec. VI gives a discussion with a focus on the tem-

perature dependence of the best-fit model parameters, showing that these conform to the

shoving model and that the beta process activation energy is temperature independent. If

these two findings were built into the model, it would have just two parameters varying with

temperature.

II. DATA FOR THE DYNAMIC SHEAR MODULUS OF SQUALANE

This paper focuses on the modeling of the dynamic shear-mechanical properties of

metastable equilibrium supercooled liquids, in casu squalane above its glass transition tem-

perature 168 K. Measurements were performed at temperatures down to 146 K, however,

which is well into the glass. Data were obtained with 2 K intervals using the three-disk

piezo-ceramic shear transducer shown in Fig. 1(a) [27] in the setup described in Ref. 28.

The cryostat keeps temperature stable within 10 mK. References 29 and 30 give details

about the home-built cryostat and impedance-measuring setup.

Before measuring, the filled transducer was annealed at the highest temperature for 30

hours in order to equilibrate the ceramics. After this, with 2 K intervals several temperatures

were monitored by first equilibrating for one hour, after which a frequency spectrum was

measured which lasted approximately one hour. This measurement was repeated to ensure

reproducibility, i.e., that the liquid is in metastable equilibrium and that the setup works
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FIG. 1. (a) Three-disc transducer used for measuring the dynamic shear modulus over frequencies

from 1 mHz to 50 kHz above which resonances make it impossible to measure in the quasi-static

mode [27]; this paper presents data from 10 mHz to 30 kHz. The discs are polarized piezo-ceramics

with electrodes on both sides that are electrically coupled in such a way that when the middle

disc expands radially, the upper and lower discs contract by half the amount [27]. Each disc has

thickness 0.5 mm and diameter 20 mm. The liquid is placed between discs 1 and 2 and between

discs 2 and 3 at room temperature at which squalane has low viscosity. (b) Examples of data for the

imaginary part of the shear modulus as a function of frequency, G′′(ω), illustrating the measurement

protocol: Starting at a high temperature data were generated by moving in steps of 2 K down to

146 K. At each temperature the sample was equilibrated for one hour before measuring, which

takes approximately another hour (in the present case when the lowest frequency is 10 mHz). The

procedure was repeated to ensure reproducibility and that the sample is in (metastable) thermal

equilibrium. The 166 K data show that equilibrium was not reached. We do not analyze data

below 168 K, but above this temperature the liquid is in a state of metastable equilibrium and

there is full reproducibility.

properly. All in all, approximately three hours were spent at each temperature. The protocol

is illustrated in Fig. 1(b). After all measurements had finished, the empty transducer was

calibrated [28]. If everything works, a set of data as those analyzed below may be obtained

within less than a week.

Figures 2(a) and (b) present the real and imaginary parts of squalane’s dynamic shear

modulus G(ω) in which ω is the angular frequency. Shown in Fig. 2(c) is a so-called Nyquist
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FIG. 2. The dynamic shear modulus G(ω) and shear compliance J(ω) = 1/G(ω) of the metastable

equilibrium supercooled liquid phase of squalane for temperatures ranging from 168 K to 190 K

probed at intervals of 2 K [31]. The blue symbols correspond to low temperatures, the red ones to

high temperatures. (a) and (b) show the real and imaginary parts of G(ω) ≡ G′(ω) + iG′′(ω). (c)

shows a so-called Nyquist plot of G(ω) plotting the real part along the x axis and the imaginary

part along the y axis in a curve parametrized by the frequency; we here included data extending

into the glassy state where only the β process is observable. (d) and (e) show the real and negative

imaginary parts of J(ω) ≡ J ′(ω)−iJ ′′(ω); (f) shows the Nyquist plot of J(ω) (excluding the highest

temperatures).
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plot of G(ω), i.e., the real versus imaginary parts parametrized by the frequency; in this

figure data for the glassy phase were included. A strong beta relaxation is observed. Figures

2(d) and (e) present the real and imaginary parts of the dynamic shear compliance J(ω) =

1/G(ω), while Fig. 2(f) gives the Nyquist plot of J(ω).

III. ELECTRICAL-EQUIVALENT CIRCUIT MODEL

A. Philosophy of circuit modeling

Some scientists regard the modeling of linear-response data by an electrical equivalent

circuit as old-fashioned. A common argument is that all data may be fitted by an electrical

circuit and that, consequently, such type of models can contribute little if physical insight

is the goal. In our opinion this is not quite correct [32], and the following reasons may be

given for using electrical equivalent circuits for rationalizing data as a first step towards a

physical understanding:

• Physical consistency. Circuit models guarantee that inconsistencies are avoided. Not

only is linearity ensured, so is causality and positive dissipation, requirements that any

linear-response model must obey.

• Simplicity. The electrical circuit defines the model. Even simple circuits represent

several differential equations.

• Same language as that used for modeling the experimental setup. This paper is con-

cerned with the interpretation of linear-response data for the dynamic shear modulus.

The experimental setup used for obtaining the data is itself modeled by an electri-

cal equivalent circuit [28–30], and there is an element of economy in using electrical

equivalent circuits for both purposes.

• High- and low-frequency limits. These limits are straightforward to identify for a given

circuit.

• Couplings between different linear-response functions are easily introduced. For glass-

forming liquids a major challenge is to understand the relation between different
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frequency-dependent linear-response functions like the shear and bulk moduli, dielec-

tric constant, specific heat, etc [33]. Such relations are conveniently modeled via

electrical equivalent circuits related by transformers in which, for instance, charge

is transformed into mechanical displacement / entropy, electrical current into veloc-

ity (shear rate) / heat current over temperature, and voltage into mechanical force

/ temperature [34, 35]. Shifts between different types of variables are represented

by transformer elements with the property that the power – the product of general-

ized “voltage” and “current” – is invariant. For more on the general “energy-bond”

formalism the reader is referred to Refs. 34–38; a brief discussion is given below.

• Straightforward extension to a nonlinear model via parametric control. An electrical

equivalent circuit’s parameters vary with the thermodynamic state point. Having such

dependencies controlled by charges or voltages at particular points of the circuit opens

for constructing fairly simple models of physical aging, which automatically ensure

that no fundamental physical laws are violated.

Once an electrical equivalent circuit has been constructed representing data accurately,

this provides an important input for constructing a microscopic physical model of the system

in question. We regard the circuit as a help towards eventually obtaining the ultimate

microscopic understanding, not as the final model itself.

B. Basic circuit elements

Rheology has its own circuit language based on dashpots representing Newtonian viscous

flow and springs representing a purely elastic response [39]. This language is mathematically

equivalent to that of electrical circuit modeling, and which language to use is a matter

of convenience. As physicists we are more used to electrical circuits. Their use has the

additional advantage of easily relating to dielectric relaxation phenomena, which are of

great importance for glass-forming liquids [40] and experimentally closely connected to the

shear-mechanical properties [41–44].

Translating from electrical to rheological circuits is a bit counterintuitive when it comes

to the diagrammatic representation because series connections become parallel connections

and vice versa: two elements in series in an electrical circuit have the same current, which
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corresponds to the analogous rheological elements being placed in parallel because the two

shear displacements are identical. Likewise, an electrical-circuit parallel connection trans-

lates into a mechanical series connection. Once this is kept in mind, however, translation

between the two languages is straightforward and unique.

Since electrical equivalent circuits are used for modeling dynamic mechanical relaxation

phenomena, we shall not distinguish between the dynamic capacitance C(ω) and the dy-

namic shear compliance J(ω). There is as mentioned a general circuit modeling language

– the energy-bond graph formalism [34–37] – which may be used also, e.g., for thermal

relaxation phenomena. A general energy-bond is characterized by an “effort” variable e

and a “flow” variable f , the product of which gives the power transferred into the system

from its surroundings. For instance, for a thermodynamic energy-bond e is the temperature

deviation from a reference temperature and f is the entropy current, i.e., the heat flow over

temperature [34, 45, 46].

How to translate electrical linear-response functions to the corresponding rheological

ones? With the energy-bond formalism in mind, the displacement q represents electrical

charge or shear displacement (strain), the flow given by f ≡ q̇ represents electrical current

or shear rate, and the effort e represents voltage drop or shear stress [34, 36, 37].

The most important complex-valued linear-response functions translate as follows when

given as functions of the angular frequency ω in the standard way, e.g., q(t) = Re [q(ω) exp(iωt)]

in which q(ω) is the complex amplitude:

• Electrical capacitance C(ω) corresponds to the complex shear compliance J(ω) since

both in the Fourier domain are equal to displacement/effort, i.e., q(ω)/e(ω). If the

symbol ∼ is used for “corresponds to”, this is summarized follows:

C(ω) ∼ J(ω) ∼ q(ω)

e(ω)
. (1)

• Inverse electrical capacitance 1/C(ω) corresponds to the complex shear modulus

G(ω) = 1/J(ω) since both in the Fourier domain are equal to effort/displacement,

i.e., e(ω)/q(ω):

1

C(ω)
∼ G(ω) ∼ e(ω)

q(ω)
. (2)
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• Electrical impedance Z(ω) = 1/Y (ω) corresponds to the complex shear viscosity

η(ω) since both in the Fourier domain are equal to effort/flow, i.e., e(ω)/f(ω) =

e(ω)/q̇(ω) = e(ω)/(iωq(ω)):

Z(ω) ∼ η(ω) ∼ e(ω)

iωq(ω)
. (3)

Three basic elements are used below (Fig. 3(a)): resistors, capacitors, and constant-phase

elements (CPE) [47]. A CPE is characterized by a capacitance that as a function of ω varies

as

C(ω) ∝ (iω)−x (4)

in which 0 < x < 1. The name CPE reflects the fact that the ratio between the real

and imaginary parts of C(ω) is the same at all frequencies, which implies a constant phase

difference between displacement and effort. The CPE is a generalization of capacitors and

resistors because a capacitor obeys C(ω) ∝ (iω)0= Const. while a resistor’s capacitance is

given by C(ω) ∝ (iω)−1. Thus allowing for 0 ≤ x ≤ 1 there is just a single “Lego block” in

the model tool box, namely the CPE. – Note that Eq. (4) translates into

• J(ω) ∝ (iω)−x for the CPE dynamic shear compliance,

• G(ω) ∝ (iω)x for the CPE dynamic shear modulus,

• η(ω) ∝ (iω)x−1 for the CPE dynamic shear viscosity.

C. Parametrizing the constant-phase element

For the CPE we define a magnitude constant C0 and a characteristic time τc by writing

C(ω) = C0 (iωτc)
−x . (5)

Because the CPE is time-scale invariant, the constants C0 and τc are not uniquely determined

since the same physics is described by using instead for any number k > 0 the magnitude

constant kC0 and the characteristic time k1/xτ . The CPE is central for the model proposed

below, and for the discussion of the model parameters’ temperature dependence in fit to

10
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x

(iω)−x

x

(iω)−1 (iω)0J(ω) ∝

J0

C0 (iωτc)
−x

J(ω) = (1/J0 + 1/C0 (iωτc)
x)−1

FIG. 3. Electrical equivalent-circuit modeling. (a) The three basic elements: a resistor (R), a capac-

itor (C), and a constant-phase element (CPE). Their complex, frequency-dependent capacitances

– corresponding to the dynamic shear compliance J(ω) (Eq. (1)) – vary with angular frequency ω

in proportion to, respectively, (iω)−1, (iω)0 = Const., and (iω)−x (0 < x < 1). (b) The Cole-Cole

retardation element (CCRE) leading to the well-known Cole-Cole expression for the capacitance

(shear compliance) [48], Eq. (8).

data (Sec. VI) we need a convention about the magnitude constant and the characteristic

time. We take C0 to be a universal, temperature-independent number. The motivation is

that, if any physics is to be ascribed to τc, the CPE magnitude constant C0 should also

make sense physically. Since squalane like most other organic glass-forming liquids have an

instantaneous shear modulus, i.e., high-frequency plateau shear modulus, of order GPa, we

fix the magnitude constant as follows:

C0 ≡ 1 GPa−1 . (6)

D. The Cole-Cole retardation element

What is here termed a Cole-Cole retardation element (CCRE) consists of a series connec-

tion of a CPE and a capacitor (Fig. 3(b)). Recall that the capacitance C(ω) of two elements

in series with capacitances C1(ω) and C2(ω) is given by 1/C(ω) = 1/C1(ω)+1/C2(ω). Thus
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if the CCRE capacitor’s value is J0, the CCRE compliance J(ω) is given by

1

J(ω)
=

1

J0
+

1

C0(iωτc)−x
. (7)

The CCRE is named after the Cole-Cole dielectric capacitance function from 1941 [48],

which in the mechanical language is the following expression

J(ω) =
J0

1 + (iωτ)x
. (8)

Here J0 is the DC shear compliance and τ the inverse angular loss-peak frequency. It is

straightforward to show that Eq. (7) leads to Eq. (8) if one identifies

τ ≡ τc

(
J0
C0

)1/x

. (9)

Note that the characteristic time is not identical to the inverse loss-peak frequency of the

CCRE.

The fit to data (Sec. IV) gives CPE characteristic times τc that are thermally activated

for both the alpha and the beta process. As demonstrated in Fig. 12 below, the alpha

CPE characteristic time activation energy is proportional to the instantaneous shear mod-

ulus, whereas the beta CPE characteristic time activation energy is virtually temperature

independent. Physically, we think of each CPE’s characteristic time τc as reflecting this

element’s “inner” clock somewhat analogous to the material time of the Narayanaswamy

physical-aging theory [49–52].

E. Model for the dynamic shear-mechanical properties

To arrive at an electrical equivalent circuit model of a supercooled liquid’s shear dynamic

properties, we first note that a standard parallel electrical RC element corresponds to the

classical Maxwell model for viscoelasticity. This beatifully simple model is based on the

assumption that the stress decays exponentially to zero whenever the sample is at rest

[1, 5, 53]. If the time-dependent shear stress is denoted by σ(t), the shear displacement

(strain) by γ, the DC shear viscosity by η0, and the instantaneous shear modulus by G∞,

the differential equation describing the Maxwell model for an arbitrary shear rate as a

function of time, γ̇(t), is [1, 5, 53]
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FIG. 4. The electrical equivalent-circuit model for the dynamic shear-mechanical properties of a

supercooled liquid. The model is characterized by additivity of the alpha and beta compliances.

The alpha process is represented by a standard RC element – corresponding to the classical Maxwell

model Eq. (10) – in parallel with a Cole-Cole retardation element (CCRE) with exponent 1/2. The

beta process is represented by an additional CCRE. The model has seven parameters, one for each

basic element except for the beta CPE element that has two parameters. In the fit to squalane

data three dimensionless parameters are assumed to be temperature independent, corresponding

to the assumption that the alpha and beta shear compliances separately obey time-temperature

superposition.

γ̇(t) =
σ(t)

η0
+
σ̇(t)

G∞
. (10)

The Maxwell model is equivalent to a parallel electrical RC element because for such an

element the voltage is the same across both resistance and capacitor, which in the Maxwell

model corresponds to having the same shear stress. The resistor current corresponds to

the first term on the right hand side of Eq. (10) (a dashpot in the traditional language of

viscoelasticity), and the capacitor current corresponds to the second term (a spring in the

viscoelastic language).

The Maxwell model is too simple to fit data for glass-forming liquids, however, and must

be extended by including one or more non-trivial dissipative terms. This paper’s basic idea

is that these terms are described by CCREs placed in parallel to the Maxwell RC element,

one for the alpha process and one for the beta process (Fig. 4).

In the model none of the two CCREs are inherently linked to the alpha process RC

13



element. Nevertheless, one CCRE will be regarded as part of the alpha process for the

following reasons. Previous publications of the Glass and Time group have presented exper-

imental [28, 54, 55] and theoretical [56–58] evidence that in the absence of beta relaxation

the alpha process has a generic ω−1/2 high-frequency decay of the dielectric loss and shear

compliance. This is an old idea that keeps resurfacing, recently in an interesting biophysical

context [59], and a generic ω−1/2 high-frequency decay is the characteristic feature of the

1967 Barlow-Erginsav-Lamb (BEL) model [1, 53, 56, 60, 61]. In view of this we fix the

exponent to 1/2 for one CCRE and regard this element as a part of the alpha process. Con-

firming this assignment, for liquids without a mechanical beta relaxation like the silicone

diffusion pump oils DC704 and DC705, the dynamic shear compliance is well fitted by the

model of Fig. 4 without the beta CCRE (unpublished). It should be mentioned that a finite

one-dimensional so-called diffusion chain describing, e.g., the relation between temperature

and heat flux entering from one end, has a compliance function that is very close to that of

the alpha part of the model in Fig. 4.

The dynamic shear compliance is a sum of the individual elements’ shear compliances.

Thus the model leads to the following expression, which defines the parametrization used

henceforth:

J(ω) = Jα

(
1 +

1

iωτα
+

k1
1 + k2(iωτα)1/2

)
+

Jβ
1 + (iωτβ)b

. (11)

For later use we note that the instantaneous (plateau) shear modulus G∞ = limω→∞G(ω) =

limω→∞ 1/J(ω) is given by

G∞ =
1

Jα
. (12)

The modulus plateau between the alpha and beta processes at temperatures low enough

that these are well separated, i.e., when frequencies exist obeying ωτα � 1 and ωτβ � 1, is

denoted by Gp,αβ and given by

Gp,αβ =
1

Jα + Jβ
. (13)

In the low-frequency limit the shear compliance diverges as ∝ 1/iωτα as required for any

liquid with a finite DC viscosity. In the DC limit the real part of the shear compliance, the

so-called recoverable shear compliance, is given by
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Re (J(0)) = (1 + k1)Jα + Jβ . (14)

The model has seven parameters:

• two compliance strengths Jα and Jβ [unit: 1/GPa],

• two relaxation times τα and τβ [unit: s],

• two alpha “shape parameters” k1, k2 [dimensionless],

• the beta CCRE exponent b [dimensionless].

We shall assume that time-temperature superposition (TTS) applies for both the alpha and

the beta processes, implying that in fit to data the three dimensionless shape parameters k1,

k2, and b cannot vary with temperature. The parameters allowed to vary with temperature

are the two compliance strengths and the two relaxation times.

The characteristic times of the alpha and beta CPEs are denoted by τc,α and τc,β, respec-

tively. In the below fit to squalane data we take as mentioned the constants k1 and k2 to be

independent of temperature, which implies that τc,α ∝ τα with a temperature-independent

constant of proportionality. For this reason τc,α will not be discussed separately from τα. The

beta characteristic time τc,β, on the other hand, is not proportional to τβ in its temperature

variation, which makes both beta times important to keep track of (Sec. VI).

IV. FITTING THE MODEL TO DATA FOR SQUALANE

The model was fitted to the squalane data of Fig. 2 using MATLAB’s “fminsearch”

Nelder-Mead downhill simplex least-squares fitting procedure. The fit excluded data taken

at too low a temperature to be in equilibrium or at such high temperatures that the alpha and

beta process have almost completely merged. These limitations leave data for temperatures

between 168 K and 182 K for fitting and parameter identification.

The data for the real and imaginary parts of the frequency-dependent shear modulus cover

angular frequencies ranging from 10 mHz to 30 kHz, with up to 16 frequencies per decade

evenly distributed on a logarithmic scale. The data were fitted to Eq. (11) for the shear-

modulus (fitting to the shear compliance would have been dominated by the low-frequency
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compliance divergence). First, the three temperature-independent shape parameters k1,

k2, b were identified by fitting to the 172 K data, which have the alpha and the beta loss

peaks both well within the frequency window, but still clearly separated. Subsequently, the

remaining four parameters were determined from the best fit at each temperature.
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FIG. 5. Comparison between data (black crosses) and model predictions Eq. (11) (full green

curves). At each temperature the four free parameters were determined as described in the text,

but first the three temperature-independent shape parameters k1, k2, and b were identified by

fitting to the 172 K data.
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Figure 5 compares model fits (full green curves) to data (black crosses). Figure 5(a)

gives model prediction versus data for the real part of the dynamic shear modulus, Fig. 5(b)

gives the same for the imaginary part, and Fig. 5(c) gives model prediction versus data in a

Nyquist plot of the shear modulus. Figures 5(d), (e), and (f) give the same for the dynamic

shear compliance.
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FIG. 6. Comparing the quality of fitting data to Eq. (11) and to Eq. (15), quantified via the

frequency-averaged deviation of the complex shear modulus from that of the data. Although the

two models have the same number of parameters, the former fits data better by at least a factor

of two and more than a factor of ten at low temperatures.

The fits are excellent, which given the number of free parameters may not appear very

surprising. Our experience with fitting data to similar models over the last 20 years shows,

however, that the present model is better than other models with the same number of

parameters. As an illustration of this, we have compared to a fit assuming a Havriliak-

Negami (HN) type function for the alpha process. The function fitted to data is the following:

J(ω) = JHN
α

(
1− 1

(1 + (iωτHN
α )c)a

)−1
+

JHN
β

1 + (iωτHN
β )b

. (15)

This has the same number of parameters as Eq. (11): two strength parameters, two relax-

ation times, and three dimensionless shape parameters (a, b, c). A qualitative difference to

Eq. (11) should be mentioned, because the latter has a finite recoverable compliance, i.e., a

finite low-frequency limit of J ′(ω), whereas Eq. (15) like the BEL model [60] diverges in this

limit. We determined the best-fit parameters in the same way as above. The fit to data is
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not as good as that of Eq. (11), which is clear from Fig. 6 that compares the overall quality

of the two best fits as functions of temperature.

Returning to the model Eq. (11), Fig. 7 shows the temperature variation of the four

free parameters. Figure 7(a) shows how the alpha and beta relaxation times τα and τβ vary

with temperature. As always for a glass-forming liquid, the alpha relaxation time increases

strongly when temperature is decreased. The beta relaxation time τβ is almost constant and,

in fact, not even a monotonic function of temperature. In contrast, the beta characteristic

time τc,β decreases systematically with temperature. The dielectric beta loss-peak frequency

is usually reported to be Arrhenius [40, 65], but it is important to note that almost all

literature data for τβ (the inverse beta loss-peak frequency) refer to the glass phase, not

to the metastable liquid phase about Tg. Figure 7(b) shows the best-fit shear-compliance

strengths Jα and Jβ as functions of temperature. Note that the beta process strength varies

considerably more than the alpha strength.

These findings are consistent with previous ones for the beta dielectric relaxation pro-

cess, which may be summarized as follows [62–64, 66]: In the metastable liquid phase the

relaxation strength increases considerably with increasing temperature whereas the relax-

ation time is almost temperature independent, in the glassy phase the strength is almost

constant whereas the loss-peak frequency (inverse relaxation time) is strongly temperature

dependent (Arrhenius). As an alternative to the minimal model of Ref. 64 it is possible to

rationalize these properties of the beta process – as well as its behavior under annealing of

the out-of-equilibrium liquid – by assuming that the relaxation strength freezes at the glass

transition whereas the characteristic time τc,β is Arrhenius with an activation energy that is

unaffected by the glass transition (unpublished).

V. DATA FOR THE DYNAMIC ADIABATIC BULK MODULUS OF SQUALANE

Figure 8 shows our transducer for measuring the dynamic adiabatic bulk modulus. It

consists of a radially polarized piezo-ceramic spherical shell coated with electrodes on the

inner and outer surfaces. An applied electrical potential induces a slight compression or

expansion of the sphere in which the liquid is placed (the top is a reservoir allowing for the

liquid’s thermal expansion) [28, 67, 68]. Figure 9 shows data for the real and imaginary

parts of the dynamic adiabatic bulk modulus K(ω) = K ′(ω) + iK ′′(ω), as well as a Nyquist
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FIG. 7. Temperature dependence of the parameters when Eq. (11) is fitted to the shear-modulus

data of Fig. 2 assuming temperature independence of the three shape parameters k1, k2, and b,

which were identified by fitting to the 172 K data resulting in k1 = 7.9, k2 = 4.8, b = 0.36. (a)

shows the alpha and beta relaxation times, τα and τβ, as well as the beta characteristic time τc,β.

Note that τc,β differs from τβ and has a more systematic variation with temperature. τα decreases

strongly with increasing temperature, which is a well-known feature of glass-forming liquids. (b)

shows the temperature dependence of the shear-compliance strengths Jα and Jβ. The latter changes

by a almost factor of three whereas Jα changes by just 25% over the same range of temperatures.

The results of (a) and (b) for the beta process are qualitatively similar to previous findings of ours

for the dielectric beta loss-peak frequency of glass-forming liquids, which is found to be Arrhenius

in the glass phase but only weakly temperature dependent in the metastable liquid phase, whereas

the beta strength has the opposite behavior with strong temperature dependence in the liquid and

weak in the glass [62–64].

plot of the same data.
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FIG. 8. The piezo-ceramic transducer used for measuring the dynamic adiabatic bulk modulus

[28–30, 67, 68]. The device consists of a piezo-electric ceramic shell coated with electrodes on both

sides with wires connecting the two electrodes to a frequency analyzer. The inner diameter is 18

mm, the shell thickness is 0.5 mm. A small hole in the shell makes it possible to fill the transducer

with liquid at room temperature at which the viscosity is low. A tube acting as a liquid reservoir

is attached on top of the hole, which ensures that the sphere remains filled as the liquid inside

contracts upon cooling.

Comparing the bulk modulus loss in Fig. 9(b) to the shear modulus loss in Fig. 2(b),

we see a qualitatively similar behavior with an alpha loss peak that moves rapidly to lower

frequencies upon cooling and a large beta peak appearing. To the best of our knowledge

this is the first observation of a beta process for the dynamic bulk modulus.

How to interpret the similarity between the dynamic shear and bulk moduli? This finding

is certainly consistent with many previous ones [28, 33], but it is important to emphasize

that there is no fundamental reason for the similarity. This is because the dynamic bulk

modulus – whether adiabatic or isothermal – is a scalar linear-response function whereas

the dynamic shear modulus is a vector linear-response function. As discussed by Meixner

long time ago these functions therefore belong to fundamentally different symmetry classes

[45]. Nevertheless, by reference to the Eshelby picture of structural rearrangements within

a surrounding elastic matrix, Buchenau has recently discussed how the relaxational parts of

the bulk and shear moduli may be connected [69] in arguments that may be extended to

finite frequencies, thus establishing a connection between G(ω) and K(ω).

Referring to the energy-bond formalism [34–38], there are two fundamental thermody-
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FIG. 9. Data for the dynamic adiabatic bulk modulus of squalane K(ω) = K ′(ω)+iK ′′(ω) covering

temperatures from 172 K to 200 K. (a) and (b) show the real and the imaginary parts of K(ω),

respectively. (c) shows a Nyquist plot of the same data.

namic scalar energy bonds: a thermal energy bond with effort equal to temperature difference

and flow equal to entropy current, and a mechanical bond with effort equal to minus pressure

difference and flow equal to rate of volume change. Consistent with Buchenau’s reasoning

[69] we propose a general energy-bond model in which all dissipation connected with the two

scalar thermodynamic energy bonds is controlled by the dynamic shear modulus (or, equiv-

alently, the dynamic shear compliance). A representation of this idea is given in Fig. 10(b).

An energy-bond diagram of this sort implies that the system in question is a “single-order-

parameter” liquid [38, 70–72]. This is equivalent to being an R simple system, i.e., one with

so-called isomorphs, which are lines in the thermodynamic phase diagram along which the
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FIG. 10. Schematic energy-bond diagram for the linear dynamic responses of the two fundamental

scalar thermodynamic energy bonds: the thermal bond defined by effort and flow being temperature

T and entropy flow Ṡ, respectively, and the mechanical bond defined by effort and flow being minus

pressure −p and rate of volume change V̇ , respectively. (a) The general scenario. (b) The situation

in which all dissipation via a single “internal” energy bond is controlled by the dynamic shear

modulus, an instance of the general single-order-parameter scenario [70]. This diagram provides

a link between the vector energy bond associated with mechanical shear deformation and the two

scalar thermodynamic energy bonds.

dynamics is invariant to a very good approximation [73–76].

In Fig. 10(b) there may be several non-dissipative elements, but the important point is

that these are all connected to the element of Fig. 4 via a single, internal energy bond.

The predictions for the dynamic adiabatic/isothermal bulk moduli (or those of the dynamic

expansion coefficient [77]) depend, of course, not just on the dynamic shear modulus (com-

pliance), but also on the non-dissipative elements. For a system described by Fig. 10(b) one

a priori expects that all the scalar response functions at any given temperature have alpha

and beta processes located at frequencies similar to those of the shear modulus’ alpha and

beta processes.

As an example of the general modeling philosophy of Fig. 10(b), Fig. 11(b) gives a

specific model for K(ω) in terms of G(ω). First, Fig. 11(a) demonstrates the similarity

between the relaxation times of the equilibrium shear stress fluctuations determining G(ω)

via the fluctuation-dissipation theorem (red circles) and those of the pressure fluctuations

determining K(ω) (blue stars). Clearly these two times are of the same order of magnitude

and have similar dependence on temperature. This means that a model following Fig. 10(b)
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FIG. 11. (a) Loss-peak frequencies of the dynamic shear modulus (red circles) and the dynamic

adiabatic bulk modulus (blue asterices) as functions of temperature. Clearly the two probes of the

dynamics have similar relaxation times and follow each other in the slowing down upon cooling.

This may be rationalized by a model in which the bulk modulus is controlled by the shear modulus.

(b) An example of such a model. This is an instance of the general model philosophy illustrated in

Fig. 10(b) in which all dissipation is controlled by the dynamic shear modulus. (c) Results from

fitting the model in (b) to the dynamic bulk modulus data plotted in a Nyquist plot. Inputs to

the fits at each temperature are the measured G(ω) and zero-frequency adiabatic bulk modulus

K(0), leaving two fitting parameters to determine the three capacitors of (b). We conclude that it

is possible to fit the dynamic bulk modulus data in this way, at least qualitatively.

makes sense. One may think of different such models, and the one shown in Fig. 11(b)

23



is just an example. At each temperature there are only few fitting parameters while the

entire frequency dependence and, in particular, the dissipation is determined by G(ω). In

the fit to data we took the zero-frequency (adiabatic) bulk modulus K(0) measured at the

temperature in question as input, leaving just two free parameters. Nevertheless, the Nyquist

plot of K(ω) demonstrates a reasonable fit (Fig. 11(c)).

VI. DISCUSSION

This paper has demonstrated that dynamic shear-mechanical data for squalane may be

fitted very well with the electrical-equivalent circuit model of Fig. 4 leading to Eq. (11) for the

shear compliance. The model assumes additivity of the alpha and beta shear compliances.

The model has seven parameters, one more than alternative phenomenological models [26,

78]. In the fit to data, however, the three dimensionless shape parameters were taken to be

temperature independent, reflecting the assumption that time-temperature superposition

applies separately to both the alpha and the beta compliance functions. In this picture,

observed deviations from TTS derive from the merging of the alpha and beta processes. We

conjecture that this applies generally for glass-forming liquids.

How to physically justify that the Maxwell RC element and the two CCREs should be

combined in a way that is additive in their shear compliances, not in their shear moduli?

There are no logically compelling arguments for this. We think of it as follows. Imagine a

small particle in the liquid. The particle’s mean-square displacement (MSD) as a function

of time in one axis direction, 〈∆x2(t)〉, will have a rapid increase on the phonon time scale,

followed by a transition to the long-time diffusive behavior proportional to time. If one

assumes that the alpha and beta processes are statistically independent [79], this implies for

the particle’s motion that ∆x(t) = ∆xα(t) + ∆xβ(t) with 〈∆xα(t)∆xβ(t)〉 = 0. In this case

the MSD is a sum of an alpha and a beta contribution: 〈∆x2(t)〉 = 〈∆x2α(t)〉 + 〈∆x2β(t)〉.
If one moreover assumes the Stokes-Einstein relation between the dynamic shear viscosity

and the particle’s dynamic friction coefficient, this translates via the fluctuation-dissipation

theorem into additivity of the dynamic shear compliances for the alpha and beta processes.

In regard to the single-particle MSD, note that associated with any function 〈∆x2(t)〉
there is a characteristic time, namely the time at which the particle has moved a typical

intermolecular distance. This is how we think of each CPE basic element’s characteristic
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τc, which was defined by the absolute value of the compliance at ω = 1/τc being 1 GPa−1

(Eq. (6)). For the beta process, it is important to distinguish between this time and the

inverse loss-peak frequency τβ, because via Eq. (9) the latter time’s temperature variation

reflects the combined effect of the changing compliance strength Jβ and the Arrhenius τc,β.

The electrical-equivalent circuit model Fig. 4 is identical to that proposed in Ref. 26

except for an extra capacitor, the one in the alpha CCRE. This capacitor eliminates an

unphysical feature of our previous model [26], which predicted an infinite recoverable shear

compliance. This unphysical feature is also present in the BEL model from 1967 [1, 60].

Introducing the extra capacitor has the added benefit of resulting in symmetry between the

alpha and beta CCREs, the only difference being that the alpha CCRE has the exponent

fixed to 1/2.

We note that if the alpha CCRE’s relaxation time is much shorter than RC, the circuit

mimics the situation reported in recent papers for the dielectric relaxation of monohydroxy

alcohols, for which one observes a low-frequency Debye-type process followed by, in order of

increasing frequency, first an alpha and then, in most liquids, a beta process [80, 81].

As regards the temperature dependence of the best-fit model parameters for squalane

we have compared to the prediction of the shoving model [5, 82]. If τ0 ∼= 10−14s is a

typical phonon time and Vc the so-called characteristic volume assumed to be temperature

independent, the shoving model predicts the following relation between the temperature

variation of the alpha relaxation time and that of the instantaneous, i.e., high-frequency

plateau, shear modulus G∞:

τα(T ) = τ0 e
VcG∞(T )/kBT . (16)

The shoving model, which links a supercooled liquid’s fragility to the temperature variation

of G∞, fits data well for many glass-forming liquids [5, 28, 82, 83]. The shoving model relates

directly to Eq. (11) since if it applies, via Eq. (12) the number of temperature-dependent

parameters is reduced from four to three. We have not made this assumption in the fit to

data, but have instead checked Eq. (16) against the best-fit parameters. This is done in

Fig. 12 in which the relaxation times τα and τc,β have been converted into temperature-

dependent activation energies E(T ) by writing for each τ(T ) = τ0 exp(E(T )/RT ) with

τ0 = 10−14s. According to the shoving model Eα(T ) = VcG∞(T ). By comparing the black

crosses and the red triangles in Fig. 12 we conclude that the shoving model applies with G∞
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FIG. 12. Activation energies calculated from E = RT ln(τ/τ0) for the alpha relaxation time τα (red

triangles) and the beta characteristic time τc,β (red circles), assuming in both cases that τ0 = 10−14.

Eβ is temperature independent to a good approximation, showing that τc,β is Arrhenius. The

alpha relaxation time activation energy is compared to the prediction of the shoving model (black

crosses) according to which Eα = VcG∞ where Vc is the “characteristic” (temperature-independent)

volume and G∞ is the instantaneous, i.e., high-frequency limiting shear modulus, which according

to Eq. (11) equals 1/Jα. The shoving model is confirmed. If one in this model, however, instead

of G∞ uses the modulus corresponding to frequencies between the alpha and beta process, Gp,αβ

(Eq. (13)), the Eα prediction results in the blue crosses that do not fit the red triangle data. The

shoving-model based activation energies E(G∞) and E(Gp,αβ) were both normalized to predict the

correct alpha activation energy at T = 182 K (leading to Vc being 9% of the molar volume for the

E(G∞) case).

calculated from the best fit model parameters via Eq. (12).

If the shoving model is instead interpreted with G∞ taken to be the modulus between the

alpha and beta relaxations, the quantity Gp,αβ given by Eq. (13), the model does not apply

(blue crosses). This confirms the basic physical assumption of the shoving model, which is

that the actual barrier transition for a rearrangement of molecules is very fast, presumably

on the picosecond time scale. Consequently, the activation energy is proportional to the

shear modulus of the liquid measured on this short time scale (at which the liquid behaves

like a solid), not to the plateau modulus between the alpha and beta relaxations.

Our new model for G(ω) (Fig. 4) consists of a Maxwell element in parallel with two
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CCREs. One may speculate that additional high-frequency mechanical processes beyond the

alpha and beta relaxations can be included by adding further CCREs in parallel, each one

still subject to time-temperature superposition, i.e., with temperature-independent shape

parameters.

To summarize, an excellent fit to dynamic shear-mechanical data of squalane is provided

by an electrical equivalent circuit model with seven parameters. The model assumes an ω−1/2

high-frequency decay of the alpha compliance [56–58, 60], additivity of the alpha and beta

compliance functions, and that these functions separately obey time-temperature superpo-

sition. The latter assumption reduces the number of parameters varying with temperature

to four. The best fit parameters confirm the shoving model and show that the beta process

characteristic time has a temperature-independent activation energy. If these findings were

both incorporated as model assumptions, the number of parameters varying with tempera-

ture reduces to two. These could be taken to be, e.g., the compliance magnitudes Jα and

Jβ. We also presented data for the adiabatic dynamic bulk modulus and showed that these

may be interpreted in terms of a single-order-parameter model in which all dissipation is

controlled by the shear-mechanical properties. Such a model connects the class of scalar

viscoelastic linear-response functions to that of vector symmetry [45].

In regard to future works, one obvious thing is to compare the model to shear-mechanical

data for other glass-forming liquids. We have not done so systematically, but have found

in all cases tested so far that the model works well (unpublished). The hope is that the

model is general, thus providing a step towards a microscopic understanding of supercooled

liquids’ shear-dynamical properties.
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