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Thermodynamics of freezing and melting
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Although the freezing of liquids and melting of crystals are fundamental for many areas of the

sciences, even simple properties like the temperature–pressure relation along the melting line

cannot be predicted today. Here we present a theory in which properties of the coexisting

crystal and liquid phases at a single thermodynamic state point provide the basis for

calculating the pressure, density and entropy of fusion as functions of temperature along the

melting line, as well as the variation along this line of the reduced crystalline vibrational

mean-square displacement (the Lindemann ratio), and the liquid’s diffusion constant

and viscosity. The framework developed, which applies for the sizable class of systems

characterized by hidden scale invariance, is validated by computer simulations of the

standard 12-6 Lennard-Jones system.
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M
elting is the prototypical first-order phase transition1–3.
Its qualitative description has been textbook knowledge
for a century, but it has proven difficult to give

quantitatively accurate predictions. This is the case not only for
the kinetics of freezing and melting, which are exciting and highly
active areas of research4–8; there is not even a theory for calculating,
for example, the entropy of fusion as a function of temperature
along the melting line in the thermodynamic phase diagram.

The everyday observation that matter sticks together but is at
the same time almost impossible to compress9 is modelled, for
example, in the system proposed by Lennard-Jones (LJ) in 1924
(ref. 10). Here, particles interact via a pair potential that as a
function of distance r is a difference of two inverse power-law
terms: uLJ(r)¼ 4e((r/s)� 12� (r/s)� 6). The first term reflects the
fact that the repulsive ‘Pauli’ forces are harsh and short-ranged,
the negative term models the softer, longer ranged attractive van
der Waals forces. The 1970s led to the development of highly
successful thermodynamic perturbation and integral-equation
theories for simple liquids11–16. Their main ingredient is the
assumption that the structure of a dense, monatomic fluid closely
resembles that of a collection of hard spheres14,16–18. Confirming
this, the structure of melts of, for example, metallic elements near
freezing is close to that of the hard-sphere system15,16,18,19. The
term ‘structure’ generally refers to the entire collection of spatial
equal-time density correlation functions, but our focus below is
on the pair correlation function (in the form of its Fourier
transform, the structure factor) as the most important structural
characteristic.

Since the hard-sphere system has only a single nontrivial
thermodynamic state parameter, the packing fraction, the phase
diagram is basically one-dimensional, which implies that the
system has a unique freezing/melting transition. On the basis of
this, for simple systems one expects invariance along the freezing
and melting lines of structure and dynamics in proper units, as
well as of thermodynamic variables like the relative density
change upon melting and the melting entropy20. Empirical
freezing and melting rules, which follow from the hard-sphere
melting picture and are fairly well obeyed for most simple
systems, include the fact that the ratio between the crystalline
root-mean-square atomic displacement and the nearest-neighbor
distance—known as the Lindemann ratio—is constant and about
0.1 along the melting line; this is the famous Lindemann melting
criterion from 1910 (refs 20–25). In the hard-sphere model the

Lindemann ratio is universal at melting because, as mentioned,
there is just a single melting point. Thus, for systems well
described by the hard-sphere model the Lindemann ratio is
predicted to be invariant along the melting line. Other empirical
rules, which are predicted by the hard-sphere picture and
reasonably well obeyed by many systems, include the facts that
in properly reduced units the liquid’s self-diffusion constant
and viscosity are invariant along the freezing line26,27, the
Hansen–Verlet rule17,28 that the amplitude of the first peak of the
liquid static structure factor is about 2.85 at freezing, or Richard’s
melting rule3 that the entropy of fusion DSfus is about 1.1kB

(which in a more modern and accurate version is the fact that the
constant-volume entropy difference across the density–temperature
coexistence region is close to 0.8kB (refs 23,29)).

The below study shows how the thermodynamics of freezing
and melting for a large class of systems may be predicted to a good
approximation from computer simulations carried out at a single
coexistence state point. In particular, the theory developed
quantifies the deviations from the above mentioned hard-sphere
predicted melting-line invariants16,22,30–32. The theory is validated
by computer simulations of the standard 12-6 LJ system.

Results
General theory. It is well-known that adding a mean-field
attractive term to the hard-sphere model broadens the
coexistence region, which on the other hand, narrows if the
repulsive part is softened13,16,33–36. Such terms are therefore
expected to modify the hard-sphere predicted invariances along
the freezing and melting lines. As an illustration, Fig. 1a shows
that in reduced units there is approximate identity of structure
along the LJ freezing line, but the structure is not entirely
invariant as seen in the inset where the dashed line marks the
predicted maximum based on simulations at T0¼ 2.0e/kB, if the
structure were invariant.

In order to develop a quantitative theory of freezing and
melting, we take as starting point the ‘hidden scale invariance’
property of systems38 characterized by a potential-energy
function U(R), where R¼ (r1, r2,y,rN) is the collective
coordinate of the system’s N particles, which to a good
approximation obeys the scaling condition.39

UðRaÞoUðRbÞ ) UðlRaÞoUðlRbÞ: ð1Þ
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Figure 1 | Structure of the LJ liquid. (a) Liquid structure factor along the freezing line37 showing results from T¼0.7e/kB, which is close to the triple

point, to T¼ 3.4e/kB. The hard-sphere model predicts that the height of the first peak is invariant along the freezing line as indicated by the blue dashed line

in the inset. Small, but systematic deviations are observed. (b) Liquid structure factor along the isomorph crossing the freezing line at temperature

T0¼ 2.0e/kB (henceforth used as the liquid reference isomorph), demonstrating structural invariance to a much higher degree. This is the basis for the

theory proposed in the present paper.
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Here, l is a scaling factor and it is understood that the sample
container undergoes the same scaling as the configuration; thus
l41 corresponds to a density decrease and lo1 to a density
increase. This form of scale invariance is exact only for systems
with Euler-homogeneous interactions (plus a constant)13. It is a
good approximation, however, for the condensed phases of many
systems in which this property is not obvious from inspection of
the analytical expression for U(R), thus the term ‘hidden scale
invariance’39–42. Equation (1), which is formally equivalent to
the conformal-invariance condition U(Ra)¼U(Rb)3U(lRa)¼
U(lRb), implies invariance of structure and dynamics along the
configurational adiabats in the phase diagram39. These lines are
referred to as isomorphs42. It was very recently shown by
Maimbourg and Kurchan43 that in high dimensions all pair-
potential systems obey hidden scale invariance in their condensed
phase. Experimentally, hidden scale invariance has been
demonstrated directly and indirectly for molecular van der
Waals bonded liquids and polymers44–46. Further evidence for
the existence of isomorphs comes from computer simulations of
single-component systems40,42 as well as, for example, of glass-
forming mixtures47, nanoflows48, molecular models38 and
molecular dynamics (MD) simulations of the dynamics of most
metallic elements based on quantum-mechanical, density-
functional-theory potentials49. Isomorphs have also been
demonstrated in simulations of out-of-equilibrium situations
like zero-temperature shear flows of glasses or nonlinear steady-
state liquid flows (see, for example, ref. 38 and its references). It is
important to emphasize, however, that not all condensed matter
exhibits hidden scale invariance; for instance, water is a notable
exception41. The general picture is that most metals and organic
van der Waals bonded systems obey equation (1) to a
good approximation in the condensed-phase part of their
thermodynamic phase diagram, whereas systems with strong
directional bonding generally do not38. The former systems are
simpler than the latter because their phase diagrams are

effectively one-dimensional in regard to structure and
dynamics, reminiscent of the hard-sphere system. Systems with
hidden scale invariance are sometimes referred to as Roskilde (R)
simple35,50–62 to distinguish them from simple systems
traditionally defined as pair-potential systems16. The theory
presented below makes use of R simple systems’ almost one-
dimensional phase diagrams38 and gives corrections to the hard-
sphere picture of melting and freezing calculated by the first-
order Taylor expansions. Figure 2 illustrates the idea.

Along an isomorph the structure is invariant in the
reduced-unit system defined42 by the length unit r� 1/3

(r�N/V is the number density and V is the system volume),
the energy unit kBT (T is the temperature) and the time unitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mr� 2=3=kBT
p

(m is the particle mass). Figure 1b shows the LJ
liquid’s static structure factor S(q) along an isomorph close to the
freezing line (used below as the liquid-state reference isomorph)
plotted for a range of temperatures. A comparison with Fig. 1a
confirms the recent finding of Heyes and Branka32 that
the freezing line is not an exact isomorph, although it is close
to one.

The melting pressure as a function of temperature, pm(T), can
be predicted from information obtained at a single coexistence
reference state point. The details about how this works are given
in the ‘Methods’ section. The argument may be summarized as
follows. Recalling that the entropy as a function of density and
temperature is a sum of an ideal-gas term and an ‘excess’ term Sex

(ref. 16), isomorphs are the phase-diagram lines of constant
excess entropy for any system obeying equation (1)39,42.
A computer simulation at the liquid/solid reference state point
generates a series of configurations R1

0,y, Rn
0. Scaling each

of these uniformly to density r one obtains configurations
representative for the state point with density r and temperature
T on the isomorph through the reference state point39 in which T
is identified from the configurational temperature expression63

kBT¼h(rU)2i/hr2Ui. The average potential energy U and virial
W at the state point (r, T) are likewise found by averaging over
the scaled configurations. The key assumption here is that the
canonical probabilities of the scaled configurations are identical to
those of the original configurations, which follows from
equation (1)39 (thus no new MD simulations are required). As
shown in the ‘Methods’ section, in conjunction with the excess
isochoric specific heat CV

ex calculated from the potential-energy
fluctuations of the scaled configurations (CV

ex¼h(DU)2i/kBT2)
and the so-called density-scaling exponent g � ð@ ln T=@ ln rÞSex

also calculated from the fluctuations (g¼hDUDWi/h(DU)2i), one
has enough information to determine the thermodynamics of
freezing and melting, as well as the variation along the melting
line of isomorph-invariant properties like the Lindemann ratio
and the reduced-unit viscosity.

The LJ system. For LJ type systems, the general procedure
described above may be implemented analytically by making use
of the fact that because the structure is isomorph invariant, it is
possible to calculate the variation of the average potential energy
and other relevant quantities analytically along an isomorph. This
is done as follows. In reduced coordinates the pair correlation
function gð~rÞ is isomorph invariant ð~r ¼ r1=3rÞ. Consequently,
for pairs of LJ particles at distance r the thermal average hr� ni
scales with density as rn/3 along an isomorph. Thus hr� nip rn/3

with a proportionality constant that only depends on Sex,
implying that the average potential energy U is of the form64

U ¼ A12ðSexÞ~r4þA6ðSexÞ~r2 in which ~r is the density
relative to the reference state-point density and A6(Sex)o0
derives from the attractive term of the LJ potential. Since
T¼ (qU/qSex)r, one has T ¼ A012ðSexÞ~r4þA06ðSexÞ~r2. It follows
that if the five quantities Sex, A12(Sex), A6(Sex), A012 Sexð Þ and
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Figure 2 | Illustration of the main idea of the theory. The freezing and

melting lines are both close to isomorphs along which basically everything

is known because the reduced-unit structure and dynamics are invariant

to a very good approximation. Properties along the freezing and melting

lines are estimated via first-order Taylor expansions by moving from an

isomorph to the freezing or melting line; the two reference isomorphs

(a liquid and a solid one) are determined from computer simulations at

T0¼ 2.0e/kB. Details are given in the ‘Methods’ section.
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A06 Sexð Þ are known, the excess Helmholtz free energy, U–TSex, is
known along the reference isomorph. The required quantities are
easily determined from reference state-point simulations (see
the ‘Methods’ section)—for instance the reference state-point’s
potential energy and virial give two linear equations for
determining A12(Sex) and A6(Sex). Once the excess Helmholtz
free energy is known along the reference isomorph, the Gibbs free
energy is found by adding the ideal-gas Helmholtz free energy
and the pV term (pV¼NkBTþW in which the virial is given42 by
W ¼ ð@U=@ ln ~rÞSex

¼ 4A12ðSexÞ~r4þ 2A6ðSexÞ~r2).

Comparing theory to simulation results for the LJ system.
Following the above procedure, we generated two reference
isomorphs for the LJ system starting from the coexistence state
point with temperature T0¼ 2.0e/kB, a liquid-phase isomorph and
a crystal-phase isomorph. Gibbs free energy of the liquid phase at
coexistence, Gl(T), is found by utilizing the fact that the freezing
line is close to an isomorph. Since (qG/qp)T ¼V, a good
approximation to Gl at coexistence is

GlðpmðTÞ;TÞ ffi GI
lðTÞþV I

l ðTÞðpmðTÞ� pI
lðTÞÞ: ð2Þ

Here, pm(T) is the coexistence pressure to be determined; Gl
I(T) is

the Gibbs-free energy, Vl
I(T) the volume and pl

I(T) the pressure
along the liquid-state reference isomorph. These quantities are all
known functions of the (relative) density on the isomorph

henceforth denoted by ~rI, which for temperature T is found by
solving T ¼ A012ðSexÞð~rIÞ4þA06ðSexÞð~rIÞ2.

An analogous expression applies for the crystal’s Gibbs free
energy, of course, again involving only parameters determined
from reference state-point simulations. The coexistence pressure
is determined by equating the liquid and solid phases’ Gibbs free
energies. As shown in the ‘Methods’ section (equation (21)),
this results in pm(T)(Vl

I(T)�Vs
I(T))¼C1(T)þC2(T)�C3(T) in

which C1(T) is the difference between Us
I(T)� (T/T0)Us

I(T0) and
the analogous term for the liquid reference isomorph (here Us

I(T)
is the crystal’s potential energy along the reference isomorph),
C2(T) is the difference between NkBT ln ð~rI

sðTÞÞ and the
analogous liquid term and C3(T) is the difference between
(T/T0)Ws

I(T0) and the analogous liquid term.
Figure 3a,b compare the theoretically predicted pm(T) to the

coexistence pressure computed numerically by means of the
interface-pinning method37. The density of the crystalline and
liquid phases may also be computed by means of a first-order
Taylor expansion working from the reference isomorph (see the
‘Methods’ section). Figure 3c compares the predicted (r,T) phase
diagram based on equation (26) to that obtained by the interface-
pinning MD simulations. Finally, Fig. 3d shows the predicted and
simulated fusion entropy DSfus and enthalpy DHfus, the latter
quantity being of course measured in experiments as the latent
heat. In all cases there is good agreement between theoretical
prediction and simulations.

0 1 2 3 4
T (�/kB)

0.1

1

10

100

p m
 (
�/

�3 )

Interface pinning
Theoretical prediction
Clausius–Clapeyron
extrapolation

Reference point

crystal

liquid

0 1 2 3 4
T (�/kB)

0

10

20

30

40

50

p m
 (
�/

�3 )

Interface pinning
Theoretical prediction
Clausius–Clapeyron
extrapolation

Reference point

crystal
liquid

0.9 1.0 1.1 1.2

� (1/�3)

1

2

3

T
 (
�/
k

B
)

Interface pinning
Theoretical prediction

0.90 0.95 1.00

0.8

0.9

Reference
points

cr
ys

ta
l m

el
tin

g

liq
ui

d 
fre

ez
in

g
co

ex
is

te
nc

e

1 2 3 4
T  (�/kB)

1

1.2

1.4

1.6

ΔS
fu

s 
(k

B
)

Interface pinning
Theoretical prediction

1 2 3
T [�/kB]

1

2

3

ΔH
fu

s 
[�

]

a

c d

b

Figure 3 | Theoretical predictions (full red curves) and results of MD simulations (black dots) for the LJ system. The theoretical predictions are

based on simulations at the coexistence reference state point indicated by an arrow in each figure (T0¼ 2.0e/kB), the MD simulations employed the

interface-pinning method37, see the ‘Methods’ section. No fitting was done in these figures—the only input to the theory is properties of the coexisting

liquid and crystal at the reference temperature. (a) Temperature–pressure phase diagram. The green dashed line marks the expectation based on a linear

extrapolation of the Clausius–Clapeyron relation dpm/dT¼DSfus/DVfus from the reference state point, that is, assuming that the entropy of fusion and the

volume change are both constant. (b) The same data plotted with a linear pressure axis. (c) The freezing and melting lines in the density–temperature

phase diagram; the coloured area is the coexistence region. (d) Fusion entropy (main panel) and enthalpy (inset).
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Having in mind the fact that the pressure at the triple point is
very low for the LJ system, we estimate the triple point
temperature to Ttp¼ 0.688(2)e/kB from the theory by assuming
zero pressure. This is within the statistical uncertainty of the triple
point temperature computed with the interface-pinning method.
For comparison, a linear extrapolation of the Clausius–Clapeyron
relation from the reference temperature (the green dashed lines in
Fig. 3a,b) predicts a triple point temperature of 0.909(2)e/kB.

Since the melting line is not an isomorph, the Lindemann ratio
is not invariant along it. The theory estimates the deviation from
a constant Lindemann ratio by a first-order Taylor expansion
from the reference isomorph (see Fig. 2 and the ‘Methods’
section). Figure 4a demonstrates good, though not perfect
agreement between theory and numerical computations of the
Lindemann ratio. The liquids’ self-diffusion constant plays an
important role for the crystal growth rate as expressed, for
example, in the Wilson–Frenkel law65,66. This motivated us to use
the theory also for calculating the liquid’s diffusion constant
variation along the freezing line (Fig. 4b). Another important
component for crystal growth is the thermodynamic driving force
on the crystal–liquid interface, which is the Gibbs free energy
difference between the two phases, DGD(Tm�T)DSfus (DSfus is
shown on Fig. 3d). Finally, Fig. 4c shows the viscosity along the
freezing line. In all cases the blue dashed lines mark the
prediction if the dynamics were invariant in reduced units, that is,
if the freezing/melting lines were isomorphs.

Discussion
The theory presented above predicts the thermodynamics of
freezing and melting from a single coexistence state point. The

theory also enables one to calculate the deviations from the
invariance of several quantities along the melting line predicted
by the hard-sphere melting picture16,22,30–32. The theory is
analytic for LJ type systems, that is, systems involving a pair
potential that is a difference of two inverse power laws, but the
framework developed applies to any system with hidden scale
invariance, including molecular systems. The theory works well
for the LJ system, with the largest deviations found close to the
triple point where the structure is less invariant along the
reference isomorph (Fig. 1b).

Having established a firm foundation for the thermodynamics
of freezing and melting for R simple systems, it is our hope that it
will soon be possible to address the exciting questions of how
nucleation and growth proceed, processes that are not well
understood even for simple systems beyond the hard-sphere
system67. It seems likely that variations of the nucleation and
growth mechanisms along the melting line can be analyzed in the
same way as above, that is, by utilizing the fact that the freezing
and melting lines are close to isomorphs along which the
dynamics is invariant to a quite good approximation.

It is not clear to which degree this approach to melting can be
generalized to quantum systems for which an outstanding
question is the possible existence of a zero-temperature quantum
fluid of metallic hydrogen. The quantum nature of the proton
modifies classical melting, for example by increasing the value of
the Lindemann ratio68. It would be interesting to investigate
whether melting of quantum crystals may be understood in the
above framework, but this awaits the development of an
isomorph theory for quantum systems. In ongoing work we are
addressing another open question, namely whether the above can
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Figure 4 | Predictions (red curves) versus results of computer simulations (black dots) for three properties along the freezing/melting lines of the LJ

system. The blue dashed lines show the predictions if perfect invariance of structure and dynamics in reduced units applies along the freezing/melting

lines, the arrows indicate the reference state point upon which the predictions are based. (a) Lindemann ratio along the melting line. (b) Self-diffusion

constant along the freezing line. (c) Viscosity along the freezing line.
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be generalized to deal with more realistic systems, for instance
metals for which density-functional-theory computer simulations
nowadays give realistic representations of the physics and have
demonstrated hidden scale invariance for most metals49.

Methods
Computer simulations. We studied a LJ system of N¼ 5,000 particles with pair
interactions truncated and shifted at 6s. Coexistence pressures, pm, are computed with
the interface-pinning method37 in which coexistence state points are determined by
computing the thermodynamic driving force on a solid-liquid interface. Table 1 lists the
energy U0 and virial W0 at the reference temperature T0¼ 2e/kB for both the liquid and
crystal states at coexistence. The A12 and A6 coefficients (for the liquid and the crystal
separately) are computed from reference state-point data using equation (8) below. The
derivatives of the A coefficients with respect to excess entropy, A012 and A06, are
computed from reference state-point data using equation (11) with the g0’s listed in
Table 1. Melting pressures (Fig. 3a,b) are computed from reference state-point data
using equation (21) in which the potential energies along the two reference isomorphs
are expressed in equation (6). The densities along the liquid and crystal reference
isomorphs are found as functions of temperature by inversion of equation (9)
(upper equation). The second derivatives of the A coefficients, A0012 and A006, are given by
equation (15) where the reference state point excess heat capacity Cex

V ;0 and
B0 � @ðT=Cex

V Þ=@ ln r
� �

Sex
are listed in Table 1. The freezing and melting densities

(Fig. 3c) are computed from the pressures by combining equations (22) and (25). The
entropy of fusion DSfus (Fig. 3d) is computed by combining equations (27–30).
The value of the Lindemann ratio L of the crystal at the reference temperature, L0 and
its temperature derivative along an isochore, (qL/qT)r, are listed in Table 1. By letting
X¼ L in equations (32) and (38), we arrive at the prediction shown in Fig. 4a. Similarly,
the predictions of the self-diffusion constant D (Fig. 4b) and viscosity Z (Fig. 4c) are
found by letting X ¼ ~D ¼ Dr1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
and X ¼ ~Z ¼ Z=r2=3

ffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p

,
respectively. D is determined from the long-time limit of the mean-square
displacement; Z is computed using the SLLOD algorithm as detailed in ref. 27 except
that in the present work we increased the number of particles to 4,096 and used the
above-mentioned larger cutoff.

We proceed to describe the theory in detail. The reference state point is selected
at coexistence, that is, with known temperature T0 and pressure p0. There are two
different reference densities, a solid and a liquid one, below denoted, respectively,
by rs,0 and by rl,0. In the density–temperature phase diagram there are two
reference isomorphs. The arguments developed in the next two sections refer to
either one of these.

Isomorph characteristics of arbitrary R simple systems. As mentioned,
the temperature–pressure reference state point defines two reference
density–temperature state points, a liquid and a solid one. Let us focus on one of
these with density r0 and temperature T0 (thus dropping in this and the next
subsection subscripts s and l). From an NVT MD equilibrium simulation
(for example, with a Nosé–Hoover thermostat) n configurations R1

0,R2
0,y,Rn

0 are
sampled. In order to map out the reference isomorph parametrized by density, one
first identifies the temperature T such that (r,T) is on the isomorph through the
reference state point (r0,T0). This is done as follows. If the configurations scaled
uniformly to density r are denoted by R1,R2,y,Rn in which Ri¼ (r0/r)1/3Ri

0,
the temperature T is determined from the standard configurational temperature
expression (in which the averages are over the n sampled configurations)

kBT ¼ hðrUðRiÞÞ2ii
hr2UðRiÞii

: ð3Þ

This determines the function Tð~rIÞ where we define the relative density
along the isomorph by ~rI � rI=r0 with superscript I indicating ‘isomorph’
(thus T(1)¼T0). By averaging the potential energy U(R) and the virial
W(R)�(� 1/3)R?rU(R) over the scaled configurations one identifies the functions
Uð~rIÞ and Wð~rIÞ. Cex

V ð~rIÞ is found from the scaled configurations’ potential
energy via CV

ex¼h(DU)2i/kBT2 in which T ¼ Tð~rIÞ. The density-scaling exponent
gð~rIÞ � ð@lnT=@lnrÞSex

may be found either via the statistical-mechanical
identity42,69 g¼hDUDWi/h(DU)2i or simply by taking the derivative of an
analytical approximation to the the function Tð~rÞ.

As shown in the below subsection ‘The melting-line pressure’, one now has
enough information to calculate the pressure along the melting line, pm(T).
To calculate the liquid and solid densities along the melting line (see subsection
‘The freezing- and melting-line densities’ below) one needs to know the below
three partial derivatives. Denoting the derivative of the virial along the
isomorph with respect to ~rI by W 0ð~rIÞ and recalling that W ¼ ð@U=@ ln ~rÞSex

and
T ¼ ð@U=@SexÞ~r (refs 42,69), the three required quantities are given by

@W
@ ln ~r

� �I

Sex

¼~rI W 0ð~rIÞ

@W
@Sex

� �I

~r
¼ @2U
@Sex@ ln ~r

¼ @T
@ ln ~r

� �
Sex

¼ Tð~rIÞgð~rIÞ

@Sex

@ ln ~r

� �I

T

¼�
@T
@ ln ~r

� �
Sex

@T
@Sex

� �
~r

¼ � Tð~rIÞgð~rIÞ
Tð~rIÞ=Cex

V ð~rIÞ ¼ �Cex
V ð~rIÞgð~rIÞ:

ð4Þ

The entropy of fusion DSfus is calculated by use of equations (27–30) below. The
three quantities needed here are given by

@U
@ ln ~r

� �I

Sex

¼Wð~rIÞ

@U
@Sex

� �I

~r
¼Tð~rIÞ

@Sex

@ ln ~r

� �I

T

¼�Cex
V ð~rIÞgð~rIÞ:

ð5Þ

Isomorph characteristics of generalized LJ pair potentials. The above quan-
tities may be calculated analytically for generalized LJ pair potentials, that is, for
systems of particles interacting via pair potential(s) given as a sum or difference of
two inverse power laws, r�m and r� n. The derivation given below applies for any
exponents m4n40 and for general multi-component systems; its subsequent
application to freezing and melting deals with single-component systems only.

Invariance of the structure along an isomorph implies that the
thermodynamic average potential energy at a given state point, U, may be written
U ¼ Am~rm=3 þAn~rn=3 (in this section the superscript I is dropped on the reference
isomorph density) in which the two A coefficients are functions only of the excess
entropy Sex. For simplicity of notation we shall not indicate the Sex dependence.
The first and second order derivatives of Am with respect to Sex are marked by A0m
and A00m and likewise for An.

The identity for the virial W ¼ ð@U=@ ln ~rÞSex
implies

U ¼Am~rm=3 þAn~rn=3

W ¼m
3

Am~rm=3 þ n
3

An~rn=3:
ð6Þ

At the reference state point ~r ¼ 1, so for determining Am and An from reference
state-point data we have the following two equations:

U0 ¼Am þAn

W0 ¼
m
3

Am þ
n
3

An:
ð7Þ

This implies

Am ¼
3W0 � nU0

m� n

An ¼
mU0 � 3W0

m� n
:

ð8Þ

From the identity T ¼ ð@U=@SexÞ~r and the definition of the density-scaling
exponent, g � ð@ ln T=@ ln ~rÞSex

, we get

T ¼A0m~rm=3 þA0n~rn=3

gT ¼m
3

A0m~rm=3 þ n
3

A0n~rn=3:
ð9Þ

For determining A0m and A0n from reference state-point data one has

T0 ¼A0m þA0n

g0T0 ¼
m
3

A0m þ
n
3

A0n:
ð10Þ

Table 1 | Quantities characterizing the two reference state
points in coexistence.

T0¼2.0 e/kB Liquid Crystal

V0/N [s3] 0.9403(2)* 0.8827(2)
r0 [s� 3] 1.0633(2) 1.1329(2)
U0/N [e] �4.7792(2) � 5.7774(2)
W0/N [e] 17.5418(7) 16.3628(6)
g0 4.9164(8) 4.8704(8)
Cex

V;0/N [kB] 1.323(5) 1.301(7)
B0N [e/kB

2] 6.9(5) 7.2(5)
L0 — 0.1398(2)
(qL/qT)r [kB/e] — 0.041(2)
~D0 0.02921(9) —
ð@~D=@TÞr [kB/e] 0.0201(4) —
~Z0 5.2487(6) —
ð@~Z=@TÞr [kB/e] � 2.60(14) —

These numbers were used for calculating the theoretical predictions in Figs 3 and 4 (red curves).
*Numbers in parenthesis give the estimated statistical uncertainty using a 95% confidence
interval.
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This implies

A0m ¼
3g0 � n
m� n

T0

A0n ¼
m� 3g0

m� n
T0:

ð11Þ

In order to arrive at equations for A00m and A00n , we first note that
Cex

V ¼ Tð@Sex=@TÞ~r , that is, ð@T=@SexÞ~r ¼ T=Cex
V . This implies that

T=Cex
V ¼ A00m~rm=3 þA00n~rn=3. If we define a thermodynamic quantity B by

B � @ðT=Cex
V Þ

@ln~r

� �
Sex

; ð12Þ

one has

T
Cex

V
¼A00m~rm=3 þA00n~rn=3

B ¼m
3

A00m~rm=3 þ n
3

A00n~rn=3:

ð13Þ

The two equations for determining A00m and A00n from reference state-point
data are thus

T0

Cex
V ;0
¼A00m þA00n

B0 ¼
m
3

A00m þ
n
3

A00n:

ð14Þ

This implies

A00m ¼
3B0 � nT0=Cex

V ;0

m� n

A00n ¼
mT0=Cex

V ;0 � 3B0

m� n
:

ð15Þ

In summary, we have shown that for each of the two reference isomorphs the
six numbers Am, An, A0m , A0n , A00m and A00n may be found from reference state-point
simulations determining: (1) the potential energy U0, (2) the virial W0, (3) the
temperature T0, (4) the excess isochoric specific heat Cex

V ;0, (5) the density-scaling
exponent g0 and (6) the derivative of CV

ex along the isomorph via the quantity B0

defined in equation (12). The first three quantities are determined directly. The
next two quantities are determined from fluctuations at the reference state point:
Cex

V ;0 ¼ hðDUÞ2i=kBT2
0 and g0¼hDWDUi/h(DU)2i. Finally, the quantity B0 is most

accurately found from simulations along the reference isomorph carried out close
to the reference state point, although in principle B0 can be calculated from
fluctuations at the reference state point (those needed are of third order and
consequently of considerable numerical uncertainty). We calculated B0 numerically
by directly applying equation (12); alternatively, following the methods used in
ref. 70 one may rewrite B as B¼ (gT/CV

ex)[1þ (q ln g/q ln T)r] and evaluate B0 from
the (rather weak) constant-density temperature variation of g at the reference state
point.

The melting-line pressure. In the temperature–pressure phase diagram the
freezing and melting lines are identical. This section shows how to calculate the
pressure on this line as a function of temperature, pm(T), which is determined
by equating the liquid and solid phase’s Gibbs free energies. Recalling that
V¼ (qG/qp)T we estimate these from the Gibbs free energies along the isomorphs,
Gl

I(T) and Gs
I(T), as follows (below Fl

I(T) is the Helmholtz free energy along the
liquid reference isomorph and likewise for the solid)

GlðT; pmðTÞÞ ffiGI
l ðTÞþV I

l ðTÞðpmðTÞ� pI
l ðTÞÞ ¼ FI

l ðTÞþV I
l ðTÞpmðTÞ

GsðT; pmðTÞÞ ffiGI
sðTÞþV I

s ðTÞðpmðTÞ� pI
sðTÞÞ ¼ FI

sðTÞþV I
s ðTÞpmðTÞ:

ð16Þ

The coexistence condition Gl(T,pm)¼Gs(T,pm) leads to

pmðTÞðV I
l ðTÞ�V I

s ðTÞÞ ¼ FI
sðTÞ� FI

l ðTÞ: ð17Þ
If Fid is the ideal-gas Helmholtz free energy, the Helmholtz free energy along the
liquid isomorph is given by

FI
l ðTÞ ¼ U I

l ðTÞ�TSI
ex;l þ FidðT; rI

l ðTÞÞ: ð18Þ

An analogous expression applies for the solid isomorph’s Helmholtz free energy,
FI

s Tð Þ, of course. The two constants SI
ex;l and SI

ex;s are not known, but one needs
only their difference. This is determined from the equilibrium condition at the
reference state point, Gl(T0, p0)¼Gs(T0, p0) as expressed in equation (17), leading,
since pV¼NkBTþW and Fid(T, rl)� Fid(T, rs)¼NkBT ln(rl/rs), to

T0ðSI
ex;l � SI

ex;sÞ ¼ ðUl;0 �Us;0ÞþNkBT0 ln ðrl;0=rs;0Þþ ðWl;0 �Ws;0Þ: ð19Þ

The coexistence condition, equation (17), thus becomes (dropping the explicit
temperature dependencies)

pmðV I
l �V I

s Þ ¼ðU I
s �U I

l Þ�
T
T0
ððUs;0 �Ul;0ÞþNkBT0lnðrs;0=rl;0Þ

þ ðWs;0 �Wl;0ÞÞþNkBTlnðrI
s=r

I
l Þ

ð20Þ

or, in terms of the relative density along the respective isomorphs ~rI,

pmðV I
l �V I

s Þ ¼ U I
s �

T
T0

Us;0

� �
� U I

l �
T
T0

Ul;0

� �

þNkBTlnð~rI
s=~rI

l Þþ
T
T0
ðWl;0 �Ws;0Þ:

ð21Þ

In the case of an arbitrary potential there is no analytical expression for the (average)
potential energy as a function of density. Here, the density (of each phase) is the control
parameter and T is identified from equation (3), resulting by numerical inversion in two
functions ~rI

sðTÞ and ~rI
l ðTÞ. In the case of generalized LJ pair potentials, for a given

temperature T the functions ~rI
l ðTÞ and ~rI

sðTÞ are found by solving equation (9)
(in general numerically, but analytically for the 12-6 LJ system), using the A0 coefficients
of equation (11). The potential energy along the isomorphs is given by equation (6).

The freezing- and melting-line densities. We work from the respective reference
isomorphs knowing as functions of temperature the coexistence pressure, and the
pressure along the reference isomorphs. From this information one calculates the
solid and liquid densities by moving on an isotherm from the reference isomorph
to the freezing/melting line (Fig. 2). In both cases we define the isothermal dif-
ference DW�W(T)�WI(T). Here and thoughout the paper D refers to isothermal
differences between the reference isomorph and the freezing/melting line.

At any given temperature T the density ~r of the liquid/solid at coexistence is
calculated from

DW ffi @W
@ln~r

� �I

T

Dln~r ¼ @W
@ln~r

� �I

T

lnð~r=~rIÞ: ð22Þ

If ð@W=@ ln ~rÞIT is known, we can determine ~r from equation (22).
The following standard identity is used

@W
@ln~r

� �
T

¼ @W
@ln~r

� �
Sex

þ @W
@Sex

� �
~r

@Sex

@ln~r

� �
T

: ð23Þ

In the case of an arbitrary potential, the three terms on the right hand side are
calculated from equation (4). For the generalized LJ case, these terms are expressed
in terms of the A coefficients by making use of equations (6) and (9), resulting in

@W
@ ln ~r

� �I

Sex

¼ m
3

� �2
Amð~rIÞm=3 þ n

3

� �2
Anð~rIÞn=3

@W
@Sex

� �I

~r
¼m

3
A0mð~rIÞm=3 þ n

3
Anð~rIÞn=3

@Sex

@ ln ~r

� �I

T

¼�
@T
@ ln ~r

� �I
Sex

@T
@Sex

� �I
~r

¼ �
m
3 A0mð~rIÞm=3 þ n

3 A0nð~rIÞn=3

A00mð~rIÞm=3 þA00nð~rIÞn=3 :

ð24Þ

We thus have in the generalized LJ case

@W
@ ln ~r

� �I

T

¼ m
3

� �2
Amð~rIÞm=3 þ n

3

� �2
Anð~rIÞn=3 �

m
3 A0mð~rIÞm=3 þ n

3 A0nð~rIÞn=3
� �2

A00mð~rIÞm=3 þA00nð~rIÞn=3 :

ð25Þ
In both the arbitrary potential case and that of generalized LJ systems, the

equation for the density r(T)¼N/V(T) is found from equation (22) solved
numerically in the form

pmðTÞVðTÞ�NkBT �WIðTÞ ¼ @W
@ ln ~r

� �I

T

lnð~r=~rIÞ: ð26Þ

The entropy of fusion. In this section we calculate the constant-pressure entropy
of fusion DSfus. One way to do this is to use the Clausius–Clapeyron equation
dpm/dT¼DSfus/DVfus in which we now know all quantities except DSfus. An
alternative method similar to the above proceeds as follows. Across the melting line
one has DGfus¼ 0, that is, DEfus�TDSfusþ pm(T)DVfus¼ 0 (E is the total energy).
Since the kinetic energy is the same for liquid and solid at the given temperature T,
one has DEfus¼DUfus and thus

DSfus ¼
DUfus þ pmDVfus

T
: ð27Þ

This equation is used for evaluating DSfus from interface-pinning simulations. It is
also used for predicting DSfus(T) by proceeding as follows. We have predictions for
pm¼ pm(T) and for DVfus¼Vl(T)�Vs(T). The missing term is DUfus¼DUfus(T),
which is estimated via

DUfus ¼ U I
l ðTÞþ

@U
@ln~r

� �I;l

T

lnð~rlðTÞ=~rI
l ðTÞÞ�U I

s ðTÞ�
@U
@ln~r

� �I;s

T

lnð~rsðTÞ=~rI
sðTÞÞ:

ð28Þ
The partial derivatives refer to the respective reference isomorph as in the last
section, and these are evaluated like those of W. Thus,

@U
@ln~r

� �I

T

¼ @U
@ln~r

� �I

Sex

þ @U
@Sex

� �I

~r

@Sex

@ln~r

� �I

T

: ð29Þ

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12386 ARTICLE

NATURE COMMUNICATIONS | 7:12386 | DOI: 10.1038/ncomms12386 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


In the case of an arbitrary potential, the three terms on the right hand side are
calculated from equation (5). For the generalized LJ case, these terms may be
expressed in terms of the A coefficients of the reference isomorph as follows

@U
@ln~r

� �I

Sex

¼WI ¼ m
3

Amð~rIÞm=3 þ n
3

Anð~rIÞn=3

@U
@Sex

� �I

~r
¼T ¼ A0mð~rIÞm=3 þA0nð~rIÞn=3

@Sex

@ln~r

� �I

T

¼�
@T
@ln~r

� �I
Sex

@T
@Sex

� �I

~r

¼ �
m
3 A0mð~rIÞm=3 þ n

3 An0 ð~rIÞn=3

A00mð~rIÞm=3 þA00nð~rIÞn=3 :

ð30Þ

We now have all information required for calculating the entropy of fusion.

Melting-line variation of isomorph invariants. We finally turn to the problem of
evaluating how much an isomorph invariant X—in casu the reduced vibrational
crystalline mean-square displacement, the reduced liquid-state diffusion constant,
and the reduced liquid-state viscosity—varies along the freezing/melting line.
The starting point is that

X ¼ fðSexÞ: ð31Þ
On the one hand

@X
@T

� �
r
¼ f0ðSexÞ

@Sex

@T

� �
r
¼ f0ðSexÞ

Cex
V

T
: ð32Þ

On the other hand we have the standard fluctuation formula

@X
@T

� �
r
¼ hDXDUi

kBT2
: ð33Þ

Combining these equations at the reference state point leads to (where
subscript 0 denotes an equilibrium average at the reference state point)

f0ðSexÞ ¼
hDXDUi0
kBT0Cex

V ;0
: ð34Þ

Consider next an arbitrary temperature T on the freezing/melting line. If DSex is
the difference between crystal (respectively) liquid excess entropy at melting and
that of the corresponding reference isomorph at the same temperature and Dr
likewise is the difference between crystal (respectively) liquid density at melting
and that of the corresponding reference isomorph, we estimate X via

X ffi X0 þf0ðSexÞDSex ffi X0 þf0ðSexÞ
@Sex

@r

� �
T

Dr: ð35Þ

Equation (4) implies

@Sex

@r

� �I

T

¼ � gCex
V

r
: ð36Þ

Thus we have

X ffi X0 �f0ðSexÞgCex
V

Dr
r
: ð37Þ

This implies

X ffi X0 �
@X
@T

� �
r
gT0

Cex
V

Cex
V ;0

Dr
r

ð38Þ

in which the partial derivative is evaluated at the reference state point. If X is a
thermodynamic quantity, one may use the fluctuation expression, equation (34), to
rewrite this as follows

X ffi X0 �
hDXDUi0

kBT0
g

Cex
V

Cex
V ;0

Dr
r
: ð39Þ

This expression may be used in the case of an arbitrary potential, as well as for
generalized LJ systems for which analytical expressions are available.

Data availability. The data presented in this study are available from the
corresponding author upon request.

References
1. Chandler, D. Introduction to Modern Statistical Mechanics (Oxford University

Press, 1987).
2. Atkins, P. W. Physical Chemistry 4th edn (Oxford Univ. Press, 1990).
3. Glicksman, M. E. Principles of Solidification: An Introduction to Modern

Casting and Crystal Growth Concepts (Springer, 2011).
4. Eggert, J. H. et al. Melting temperature of diamond at ultrahigh pressure. Nat.

Phys. 6, 40–43 (2010).
5. Guillaume, C. L. et al. Cold melting and solid structures of dense lithium. Nat.

Phys. 7, 211–214 (2011).

6. Peng Tan, N. X. & Xu, L. Visualizing kinetic pathways of homogeneous
nucleation in colloidal crystallization. Nat. Phys. 10, 73–79 (2014).

7. Deutschländer, S., Puertas, A. M., Maret, G. & Keim, P. Specific heat in
two-dimensional melting. Phys. Rev. Lett. 113, 127801 (2014).

8. Statt, A., Virnau, P. & Binder, K. Finite-size effects on liquid-solid phase
coexistence and the estimation of crystal nucleation barriers. Phys. Rev. Lett.
114, 026101 (2015).

9. van der Waals, J. D. On the Continuity of the Gaseous and Liquid States. Ph.D.
thesis, Universiteit Leiden (1873).

10. Lennard-Jones, J. E. On the determination of molecular fields. I. From the
variation of the viscosity of a gas with temperature. Proc. R. Soc. Lond. A 106,
441–462 (1924).

11. Barker, J. A. & Henderson, D. What is ‘liquid’? Understanding the states of
matter. Rev. Mod. Phys. 48, 587–671 (1976).

12. Gubbins, K., Smitha, W., Tham, M. & Tiepel, E. Perturbation theory for the
radial distribution function. Mol. Phys. 22, 1089 (1971).

13. Hoover, W. G., Gray, S. G. & Johnson, K. W. Thermodynamic properties
of the fluid and solid phases for inverse power potentials. J. Chem. Phys. 55,
1128–1136 (1971).

14. Weeks, J. D., Chandler, D. & Andersen, H. C. Role of repulsive forces in
determining the equilibrium structure of simple liquids. J. Chem. Phys. 54,
5237–5247 (1971).

15. Hausleitner, C., Kahl, G. & Hafner, J. Liquid structure of transition metals:
investigations using molecular dynamics and perturbation- and integral-
equation techniques. J. Phys.: Condens. Mat 3, 1589 (1991).

16. Hansen, J.-P. & McDonald, I. R. Theory of Simple Liquids: With Applications to
Soft Matter 4th edn (Academic, 2013).

17. Hansen, J.-P. & Verlet, L. Phase transitions of the Lennard-Jones system. Phys.
Rev. 184, 151–161 (1969).

18. Rosenfeld, Y. Theory of simple classical fluids: universality in the short-range
structure. Phys. Rev. A 20, 1208–1235 (1979).

19. Waseda, Y., Yokoyama, K. & Suzuki, K. Structure of molten Mg, Ca, Sr, and Ba
by X-ray diffraction. Z. Naturforsch. A 30, 801–805 (1975).

20. Ross, M. Generalized Lindemann melting law. Phys. Rev. 184, 233–242 (1969).
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