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dimensions highlight the need for a liquid-state 1/d expansion
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The recent theoretical prediction by Maimbourg and Kurchan [e-print arXiv:1603.05023 (2016)]
that for regular pair-potential systems the virial potential-energy correlation coefficient increases
towards unity as the dimension d goes to infinity is investigated for the standard 12-6 Lennard-Jones
fluid. This is done by computer simulations for d = 2,3,4 going from the critical point along the
critical isotherm/isochore to higher density/temperature. In both cases the virial potential-energy
correlation coefficient increases significantly. For a given density and temperature relative to the
critical point, with increasing number of dimension the Lennard-Jones system conforms better to
the hidden-scale-invariance property characterized by high virial potential-energy correlations (a
property that leads to the existence of isomorphs in the thermodynamic phase diagram, implying
that it becomes effectively one-dimensional in regard to structure and dynamics). The present paper
also gives the first numerical demonstration of isomorph invariance of structure and dynamics in
four dimensions. Our findings emphasize the need for a universally applicable 1/d expansion in
liquid-state theory; we conjecture that the systems known to obey hidden scale invariance in three
dimensions are those for which the yet-to-be-developed 1/d expansion converges rapidly. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4954239]

Recent years have brought notable progress in the
understanding of the liquid state coming from studies of
the high-dimensional limit. With roots back in time1–5 and
in a continuation of recent progress,6–10 Charbonneau and
collaborators in 2014 in a tour de force replica symmetry
breaking calculation solved the glass problem in high
dimensions for the prototypical hard-sphere (HS) model.11

This was followed by a proof by Maimbourg, Kurchan, and
Zamponi that the dynamics satisfies a universal equation
in high dimensions for systems of particles interacting via
pairwise additive forces.12 This is how a “simple” liquid is
traditionally defined,13–17 although during the last 20 years
it has gradually become clear that some systems—like the
Gaussian core model, the Lennard-Jones Gaussian model, and
the Jagla model—exhibit quite complex behavior (see, e.g.,
Ref. 18 and references therein).

Very recently, Maimbourg and Kurchan showed that
in the condensed phase, i.e., for states dominated by
hard repulsions, any well-behaved pair-potential system has
strong virial potential-energy correlations in sufficiently high
dimensions.19,20 Specifically, it was shown that the Pearson
correlation coefficient R of the constant-volume canonical-
ensemble equilibrium fluctuations of virial W and potential
energy U,

R =
⟨∆W∆U⟩⟨(∆W )2⟩⟨(∆U)2⟩ , (1)

converges to unity as the number of dimensions d goes to
infinity. The analysis presented in Ref. 19 also showed that the
EXP pair potential (a simple exponential decay in space) plays
the role as a building block of all pair potentials.21,22 Note that,

in contrast to the inverse-power-law pair potentials ∝ r−n (r
being the pair distance), due to its rapid spatial decay the EXP
pair potential has a thermodynamic limit in all dimensions.

Systems with R close to unity are characterized by
“hidden scale invariance,” an approximate symmetry that
has been studied in several publications since its introduction
in 2008; there are now also experimental verifications of
the concept for van der Waals liquids.23–26 Systems with
hidden scale invariance are simple because they have so-
called isomorphs in the thermodynamic phase diagram, which
are lines along which structure and dynamics in suitably
reduced units are invariant to a good approximation. The
isomorph theory has been applied to atomic and molecular
liquid and crystalline models in thermal equilibrium, as
well as to non-equilibrium phenomena like shear flows
of liquids and glasses (see, e.g., Ref. 27 and references
therein). Recently, it was shown from state-of-the-art DFT
ab initio simulations of 58 liquid elements at their triple
points that most metals possess hidden scale invariance.28

An overview of the isomorph theory was given in Ref. 27
from 2014. After that paper was written, it became clear
that Roskilde (R) simple systems29–42—those with R > 0.9—
are characterized by approximately obeying the following
condition:43 U(Ra) < U(Rb)⇒ U(λRa) < U(λRb) in which
R specifies all particle positions, U(R) is the potential-
energy function, and λ is a scaling parameter. Thus hidden
scale invariance is equivalent to an approximate conformal
invariance property. The non-trivial finding of these works is
that many realistic model systems—as well as many real-world
liquids and solids—obey hidden scale invariance. It appears
that most metals and van der Waals bonded liquids and solids
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exhibit hidden scale invariance, whereas systems with strong
directional bonds like covalently or hydrogen-bonded systems
do not and are generally more complex.27

This paper presents computer simulations of the standard
12-6 Lennard-Jones (LJ) system in two, three, and four
dimensions consisting of particles interacting via the pair
potential

vLJ(r) = 4ε
( r
σ

)−12
−

( r
σ

)−6

. (2)

Here ε and σ define the characteristic energy and length
scales of the pair potential. The LJ system does not have a
proper thermodynamic limit in more than five dimensions, and
one may argue what is the correct generalization of this sys-
tem to arbitrary dimension d (for instance, v(r) ∝ (r/σ)−(d+9)
− (r/σ)−(d+3) or v(r) ∝ (r/σ)−4d − (r/σ)−2d or a third option).
We avoided this problem by staying at low dimensions.

It is not obvious how to compare results for different
thermodynamic state points in different dimensions. In high
dimensions one compares different state points by scaling the
density such that the HS packing fraction remains invariant.44

In our case of relatively low dimensions this is too crude;
in any case, we also need a scaling of the temperature in
order to be able to compare results obtained in different
dimensions. The critical point of the LJ system is known for
d = 2,3,4,45–47 and we used this as reference state point. This
choice has the further advantage that in three dimensions the
virial potential-energy correlations are weak in the vicinity
of the critical point, which allows one to monitor how R
increases when the condensed “strongly correlating” liquid
phase is approached upon increasing density or temperature.

Molecular dynamics simulations have been performed
before in four spatial dimensions.48–50 The simulations
reported below used a homemade code applicable in arbitrary
dimensions.51 The code implements NVT dynamics with
periodic boundary conditions52 based on the leap-frog
algorithm coupled with a Nose-Hoover thermostat. A shifted-
forces cutoff at 2.5σ was used in all simulations.53 The
time step ts varied with state point such that the reduced
time step, t̃s ≡ tsρ1/d√kBT/m, was 0.001 (here ρ ≡ N/V is
the particle density and m the particle mass). After melting

and equilibrating from a simple cubic configuration, the LJ
system was simulated at every liquid state point for 2 · 107

time steps. In two dimensions the system crystallized at the
three highest-density state points; simulations at these state
points were performed with a reduced time step of t̃s = 0.0005
and the number of time steps was doubled. In all cases the
thermostat relaxation time was 80 time steps. The system size
was N = 1225 in two, N = 1728 in three, and N = 2401 in
four dimensions.

Our focus is on what happens in the fluid high-density
region of phase space in which the correlation coefficient R
of Eq. (1) is for some state points far from unity in 3d. This
number is close to unity in the “ordinary” 3d condensed liquid
phase not too far from the melting line, as well as in the entire
crystalline phase,54–56 but approaching the gas phase and, in
particular, the critical point in 3d, R drops quickly and the
system is no more R simple.55

Figure 1 reports the reduced-unit radial distribution
function g(r) at the critical temperature Tc at 1.4 and 2
times the critical density; the black symbols mark g(r)
in two dimensions, the red curves in three dimensions,
and the green curves in four dimensions. Figure 1 nicely
confirms the argument of Maimbourg and Kurchan that in
higher dimensions the nearest-neighbor distance increasingly
dominates the physics.19 Thus, beyond the first coordination
shell g(r) converges quickly to unity in high dimensions.
In the words of Ref. 19, what happens in high dimensions
is that a single pair distance dominates the physics because
“particles that are too close are exponentially few in numbers,
while those that are too far interact exponentially weakly.”
This argument presupposes, of course, that the pair potential
in question has been generalized to any number of dimensions
in a way ensuring a proper thermodynamic limit, i.e., such
that it decays more rapidly than r−d at long distances.

A system for which a single pair distance dominates the
physics even in three dimensions is the hard-sphere (HS)
system for which the radial distribution function at contact
determines the equation of state.57,58 The above suggests that
one may regard the 3d HS system as a poor man’s version
of the d → ∞ limit; indeed, it has been known for some
time that the pair correlations of the HS system become

FIG. 1. Radial distribution function of the Lennard-Jones (LJ) fluid along the critical isotherm in two, three, and four dimensions (black, red, and green colors,
respectively; r̃ ≡ ρ1/dr where ρ is the particle density and r the interparticle distance). (a) shows results at 1.4 times the critical density ρc, (b) shows results
at twice the critical density. In both cases the fluid’s long-range structure becomes markedly less pronounced as the number of dimensions increases.
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FIG. 2. The LJ fluid’s virial potential-energy correlation coefficient in 2, 3, and 4 dimensions. (a) shows a sketch of the temperature-density phase diagram
in which both variables are normalized to their values at the critical point, Tc and ρc.45,47,63 The black symbols and full curves represent the phase limits
of the LJ system in 3d (see, e.g., Refs. 64 and 65 and references therein). The orange crosses mark the state points simulated in 2d, 3d, and 4d, whose virial
potential-energy correlation coefficients are reported in (b) and (c), the three green symbols indicate the three isomorphic state points simulated in 4d (Fig. 3). (b)
The virial potential-energy correlation coefficient R (Eq. (1)) along the critical isochore. There is generally a convergence to the hidden-scale-invariance property
characterizing R simple systems defined by R > 0.9 (dashed horizontal line), a situation that is reached much earlier in four than in three dimensions, where it is
reached much earlier than in two dimensions. In two dimensions the system developed “holes” close to the critical point (see the main text), which is indicated
by the two open symbols. (c) The virial potential-energy correlation coefficient along the critical isotherm. There is convergence to the hidden-scale-invariance
property characterizing R simple systems, a situation that is reached earlier in four than in three dimensions, where it is reached earlier than in two dimensions.
The two-dimensional system crystallized at the highest densities (ρ/ρc > 2.5), which is indicated by black square symbols; as in (b) the four open symbols at
the lowest densities indicate that the sample here developed “holes” close to the critical point due to large density fluctuations.

increasingly trivial as d increases.44,59,60 We note, however,
that the HS system is not the only possibility of a 3d poor
man’s d → ∞ limit; alternatives are the Gaussian core model61

or the Mari-Kurchan model.62

In order to systematically compare what happens in
different dimensions we studied the variation of the virial
potential-energy correlation coefficient R of Eq. (1) as
one moves away from the critical point along the critical
isochore and isotherm. In units of ε/kB for temperature
and 1/σd for density, the critical point is given by (ρ,T)
= (0.355,0.515) in two dimensions,45 by (ρ,T) = (0.316,
1.312) in three dimensions,63 and by (ρ,T) = (0.34,3.404)
in four dimensions47 (the 2d and 3d critical point data were
calculated by Monte Carlo (MC) simulations with the LJ
potential truncated at the half-box length, the 4d critical
point was determined by MC simulations with the potential
truncated at 2.5σ).

Figure 2(a) gives an overview of the density-temperature
thermodynamic phase diagram in which both variables in

the standard van der Waals way have been normalized to
unity at the critical point. The full black curves indicate the
freezing and melting lines for the 3d case, and the orange
crosses mark the state points simulated. The results for R are
shown in Fig. 2(b) for the critical isochore and in Fig. 2(c)
for the critical isotherm (in both figures the horizontal dashed
lines mark the (a bit arbitrary) threshold R = 0.9 defining R
simple systems54). In two dimensions the system developed
visible “holes” close to the critical point deriving from
large density fluctuations;66 the corresponding simulations
are marked by open (black) symbols. In all cases, along
both the isochore and the isotherm the correlations increase
significantly as one moves away from the critical point. Note
that in four dimensions R is fairly large already at the critical
point.

When contemplating these findings one should keep in
mind that R is close to unity for the LJ system in three
dimensions in the “ordinary” condensed liquid phase not too
far from the melting line. Our conclusions based on Fig. 2 are
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FIG. 3. Validation of isomorph invariance in four dimensions based on simulations at three state points on the same isomorph. Starting from the reference
state point (ρσ4, kBT /ε)= (0.9,1.0) two isomorphic state points were generated as described in the text. (a) Consistency check of the two different ways
of generating isomorphs. The yellow, purple, and green symbols give the results of using Eq. (3) repeatedly for, respectively, a 1%, 2%, and 5% density
increase starting from the reference state point; the blue point was calculated by the h(ρ) method described in the text. (b) The pair distribution function at the
three isomorphic state points plotted as a function of the reduced pair distance. The collapse demonstrates structural invariance along the isomorph. (c) Reduced
mean-square displacement as a function of reduced time for the same three isomorphic state points, demonstrating isomorph invariance of the dynamics (reduced
units are defined in Ref. 67).

(1) the simulations confirm the prediction of Maimbourg and
Kurchan that all systems in their condensed-matter (“hard”)
regime have strong correlations in high dimensions. (2)
There is a striking difference between two, three, and four
dimensions, and already in four dimensions the correlations
are strong whenever density and temperature are above their
critical values.

Before proceeding to discuss the implications of these
findings for liquid-state theory, we take the opportunity to
demonstrate the existence of isomorphs in four dimensions.
The most general method for mapping out an isomorph in
the thermodynamic phase diagram makes use of the fact
that isomorphs are configurational adiabats43,67 in conjunction
with the following standard fluctuation identity67 (in which Sex
is the entropy minus that of an ideal gas at the same density
and temperature): (

∂ ln T
∂ ln ρ

)
Sex

=
⟨∆W∆U⟩
⟨(∆U)2⟩ . (3)

We changed density in steps of 1%, 2%, and 5%, respectively,
in each step calculating from Eq. (3) the temperature change

needed to keep Sex constant. An alternative way of generating
isomorphic state points, which is limited to LJ-type systems,
utilizes the fact that due to invariance of the structure in
reduced units, the quantity h(ρ)/T is isomorph invariant
where h(ρ) = Aρ12/d − Bρ6/d (the two constants A and B,
which are (slightly) isomorph dependent, are easily deter-
mined from simulations at a reference state point specifying
the isomorph in question; see Refs. 65 and 68 for justification
and more details of this procedure). Figure 3(a) demonstrates
consistency between the two different ways of generating an
isomorph in 4d, though for the largest density step (5%) there
is a small disagreement.

The isomorph invariance of h(ρ)/T signals a breakdown
of the theory at low densities at which the above expression for
h(ρ) becomes negative. This means that along any isomorph
the virial potential-energy correlations must weaken at low
densities, which is also observed.54,69 Since R → 1 in high
dimensions for the state points not too far from the melting
line,19 one may speculate that in the d → ∞ limit there
is a phase transition between a phase of increasingly perfect
hidden scale invariance and one of poor virial potential-energy
correlations.19,51
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Starting from the 4d state point (ρσ4, kBT/ε) = (0.9,1.0)
two other state points on its isomorph were found. The first
one (ρσ4, kBT/ε) = (0.945,1.23) was identified using Eq. (3)
as described above, the second one (ρσ4, kBT/ε) = (1.5,6.56)
was determined using the isomorph invariance of h(ρ)/T .
Figure 3(b) shows the pair distribution function as a function of
reduced radius for the three state points. The collapse validates
structural invariance along the 4d isomorph. Figure 3(c)
shows the mean-square displacement as a function of time
in reduced units for the same three state points, demonstrating
isomorph invariance also of the dynamics.

Turning back to the dimensionality dependence of the
virial potential-energy correlations, our findings may be
summarized as follows. Above the critical point as the number
of dimensions increases the LJ system converges rapidly to the
state of perfect hidden scale invariance shown by Maimbourg
and Kurchan to characterize the high-dimensional limit.
Assuming that the challenge of generalizing arbitrary systems
to arbitrary dimensions has been addressed, we conjecture
the following: (1) All systems (also molecular systems) obey
hidden scale invariance in sufficiently high dimensions in
their condensed phase; (2) the rate with which this property
translates into lower dimensions depends on the system
in question. In other words, if one defines the van der
Waals scaled density ρ̃ ≡ ρ/ρc and temperature T̃ ≡ T/Tc,
we conjecture that R( ρ̃,T̃) → 1 as d → ∞ for all systems,
at least whenever ρ̃ > 1 and T̃ > 1. The rate of convergence
determines whether or not the system is R simple in three
dimensions.

If the above conjecture is correct, any system at any
given condensed-matter state point has a “transition region”
of dimensionalities above which it becomes R simple. This
range of dimensions is located below three dimensions for
systems that are R simple in three dimensions (at the state
point in question).

An important task for the future will be to construct
a systematic 1/d expansion taking one from the case of R
simple behavior as d → ∞ to three dimensions. Hints of how
this may be done were given in Ref. 11 for the HS case, but
a more general approach is needed. We find it conceivable
that future textbooks in liquid-state theory start by deriving
a simple and general theory for the limit of high dimensions
and subsequently translate this into three dimensions via a
1/d expansion, but clearly much remains to be done before
this becomes reality.

We are indebted to Thibaud Maimbourg for his comments
on an early draft of this paper. This work was supported in
part by the Danish National Research Foundation via Grant
No. DNRF61.
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