
Roskilde
University

Capturing the dynamics of pathogens with many strains

Kucharski, Adam; Andreasen, Viggo; Gog, Julia

Published in:
Journal of Mathematical Biology

DOI:
10.1007/s00285-015-0873-4

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Kucharski, A., Andreasen, V., & Gog, J. (2016). Capturing the dynamics of pathogens with many strains. Journal
of Mathematical Biology, 72(1), 1-24. https://doi.org/10.1007/s00285-015-0873-4

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain.
            • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 26. Dec. 2021

https://doi.org/10.1007/s00285-015-0873-4
https://doi.org/10.1007/s00285-015-0873-4


J. Math. Biol. (2016) 72:1–24
DOI 10.1007/s00285-015-0873-4 Mathematical Biology

Capturing the dynamics of pathogens with many strains

Adam J. Kucharski1 · Viggo Andreasen2 · Julia R. Gog3

Received: 13 March 2014 / Revised: 5 March 2015 / Published online: 24 March 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Pathogens that consist of multiple antigenic variants are a serious public
health concern. These infections, which include dengue virus, influenza and malaria,
generate substantial morbidity and mortality. However, there are considerable theo-
retical challenges involved in modelling such infections. As well as describing the
interaction between strains that occurs as a result cross-immunity and evolution, mod-
els must balance biological realism with mathematical and computational tractability.
Here we review different modelling approaches, and suggest a number of biological
problems that are potential candidates for study with these methods. We provide a
comprehensive outline of the benefits and disadvantages of available frameworks, and
describe what biological information is preserved and lost under different modelling
assumptions. We also consider the emergence of new disease strains, and discuss how
models of pathogens with multiple strains could be developed further in future. This
includes extending the flexibility and biological realism of current approaches, as well
as interface with data.

Keywords Transmission model · Evolution · Cross-immunity · Multi-strain
pathogens · Influenza

B Adam J. Kucharski
adam.kucharski@lshtm.ac.uk

1 Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene
and Tropical Medicine, London, UK

2 Department of Mathematics and Physics, Roskilde University, 4000 Roskilde, Denmark

3 Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
University of Cambridge, Cambridge, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-015-0873-4&domain=pdf


2 A. J. Kucharski et al.

Mathematics Subject Classification 37N25 Dynamical systems in biology · 92B
Mathematical Biology

1 Introduction

Many human pathogens can be categorized into distinct strains, each defined by its
antigenic properties (Balmer and Tanner 2011; Grenfell et al. 2004). These infec-
tions, which include influenza (Webster et al. 1992; Wilson and Cox 1990), dengue
virus (Rothman 2011) and malaria (McKenzie et al. 2008) are responsible for sub-
stantial morbidity and mortality each year. Further, prior infection with one strain of
a disease may not always protect against another. For instance, as the influenza virus
evolves, antibodies generated against a specific past strain become progressively less
effective against the current one (Davenport et al. 1953; Potter 1979). This results in a
highly complex system, with pathogens interacting through the partial cross-immunity
they generate in the host population. Examining the effect of this interaction on disease
outbreaks has therefore posed a major challenge, both theoretically and biologically.

Population dynamic models can generate insights into the mechanisms that drive
the transmission of an infection, as well as test new hypotheses about evolution and
immunity. In this paper, we review current research into diseases with many strains,
providing a detailed comparison of available methods. We also aim to identify key
topics for future research that will unify recent developments in the field, provid-
ing powerful tools with which to understand the evolutionary, epidemiological and
immunological dynamics of these diseases.

2 Multiple-strain models

2.1 Influenza

Mathematical models have long been used been used to study disease transmission
(Kermack and McKendrick 1927) and control (Ross 1911), but the interaction of dis-
ease strains through cross-immunity is a more recent area of research. Early models
looked at competition between two strains; infection with one strain conferred immu-
nity to the other for the duration of infection. Such models have been implemented in
both discrete (Elveback et al. 1964) and continuous-time (Dietz 1979). Following this
work, Castillo-Chavez et al. (1989) introduced a model in which one strain could give
imperfect cross-immmunity to another. The work was motivated by the dynamics of
influenza, and considered two interacting strains.

Althoughmodelling studies have looked atmulti-strain pathogens such asPlasmod-
ium falciparum (Gupta and Day 1994; Gupta et al. 1994) or Neisseria meningitidis
(Gupta et al. 1996; Buckee et al. 2008), influenza remains a central focus for theoretical
work. As well as its impact on public health, with seasonal epidemics causing substan-
tial morbidity and mortality, the virus undergoes frequent mutations, resulting in rapid
turnover of seasonal strains, as well as between-subtype reassortment, which can lead
to the occasional emergence of pandemic variants (Webster et al. 1992; Wilson and
Cox 1990). Further, multiple influenza infections are possible during an individual’s
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Capturing the dynamics... 3

lifetime, with a host’s history of infection and immunity determining the result of
future exposures (Francis 1960). In turn, this collection of varying individual infec-
tion histories shapes the dynamics of the disease at the population level. Capturing the
behaviour of diseases such as influenza can therefore require the use of a model that
accounts for multiple strains.

One of the most detailed—and computationally intensive—of these frameworks
is the individual-based model (Bedford et al. 2012; Ferguson et al. 2003; Tria et al.
2005), which tracks the infection history of every host, updating individuals’ immune
status as the disease spreads and evolves during a simulation. Alternatively, popula-
tion models, in which individuals are grouped into compartments, provide a way of
exploring disease dynamics that is analytically tractable as well as easier to imple-
ment numerically. One of the earliest of these was the susceptible–infective–recovered
(SIR) model (Kermack and McKendrick 1927), which considers the proportion of the
population susceptible to, infectious with, and recovered from—and hence assumed
immune to—a particular infection. However, the SIRmodel focuses only the dynamics
of a single pathogen: it does not account for the evolving nature of the influenza virus.
The susceptible-infective-recovered-susceptible (SIRS) model (Pease 1987; Girvan
et al. 2002) can incorporate changes in immunity as a result of disease evolution by
assuming individuals who are recovered gradually again become susceptible to the
current circulating infection. This can be expanded further by including an additional
set of ‘cross-immune’ individuals, resulting in the susceptible–infective–recovered–
cross-immune (SIRC) model (Casagrandi et al. 2006). Although they can be explored
analytically, theSIRSandSIRCmodels collect all information about population immu-
nity into one or two variables, which means they do record information about the
combination of past infections that generated this immunity.

As we move from an individual-based model, which keeps track of both infec-
tion and immune history, to a simpler system, we inevitably sacrifice information for
tractability. Population models of multiple strains can therefore be classified by the
information that they retain, and the information they do not.

2.2 History-based models

2.2.1 Two strain model

The history-based model is an extension of the SIR model. It has one compartment for
each possible combination of prior infection, with cross-immunity dependent on an
individual’s infection history. If we assume that immunity is acquired after recovery
from infection, we can define a two strain model using eight compartments (Castillo-
Chavez et al. 1989): individuals begin in the naive S∅ compartment, which represents
the proportion of the populationwho have never been infected; upon primary infection,
they move into Ii , where i ∈ {1, 2} denotes the infecting strain. Individuals in I1 then
recover into the S1 compartment; upon secondary infection with strain 2, they move
into J2; and once recovered from both strains they end up in S12. These transitions,
and analogous transitions for infection with strain 2 then strain 1, are shown in Fig. 1a.
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4 A. J. Kucharski et al.

Fig. 1 Possible routes of
infection in a two strain
history-based model. a Two
strain model in which a host’s
new infection history is obtained
upon recovery from
infection (Castillo-Chavez et al.
1989). Si denotes the proportion
of hosts who have previously
been infected—and recovered
from—the set of strains {i}; Ii
denotes hosts who are
experiencing a primary infection
with strain i ; Ji denotes hosts
who are experiencing a
secondary infection with strain
i ; �i is the force of infection for
strain i ; γ is the rate of recovery;
and τ is the relative
susceptibility of hosts who have
previously been infected with a
heterologous strain. Births and
deaths are not shown. b Two
strain model in which infection
history obtained immediately
upon infection (Andreasen et al.
1997; Gupta et al. 1996). Here
Si denotes hosts who have been
infected with the set of strains
{i}, and σ denotes the relative
infectiousness of hosts who have
previously been infected with a
heterologous strain

S0 I1 S1 

S2 J1 S12 

I2 J2 

Λ1

Λ1 
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γγ
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If a host has previously been infected with one strain and is subsequently exposed
to another, cross-immunity can be assumed to act in one of—at least—two ways
(Andreasen et al. 1997; Gupta et al. 1996): either the host is either less likely to be
infected by the second strain (‘reduced susceptibility’), or the host will be less likely
to transmit the second strain (‘reduced transmission’). Let τ denote reduced suscep-
tibility, specifically the relative susceptibility of individuals that have already been
infected with one strain. This means the rate at which individuals leave the S1 com-
partment owing to infection with strain 2 is �2τ S1, where �2 is the force of infection
for strain 2. Next, let σ be the relative infectiousness of hosts who have previously
been infected with the other strain. We define βi to be the rate of transmission for a
primary infection with strain i . Therefore �2 = β2(I2 + σ J2). Finally, we assume
that each strain confers total immunity to itself and the population birth/death rate is
μ. With these assumptions, the model is as follows,

dS∅
dt

= μ − [β1(I1 + σ J1) + β2(I2 + σ J2)]S∅ − μS∅ (1)

d I1
dt

= β1(I1 + σ J1)S∅ − (γ + μ)I1 (2)
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Capturing the dynamics... 5

d I2
dt

= β2(I2 + σ J2)S∅ − (γ + μ)I2 (3)

dS1
dt

= γ I1 − β1(I2 + σ J2)τ S1 − μS1 (4)

dS2
dt

= γ I2 − β2(I1 + σ J1)τ S2 − μS2 (5)

d J1
dt

= β1(I1 + σ J1)τ S2 − (γ + μ)J1 (6)

d J2
dt

= β2(I2 + σ J2)τ S1 − (γ + μ)J2 (7)

dS12
dt

= γ (J1 + J2) − μS12 (8)

where γ is the rate of recovery.
As additional strains are added, the complexity of this model increases substan-

tially. For n strains, the model has (n + 2)2n−1 variables (Andreasen et al. 1997). To
simplify the model, we can assume that individuals obtain an updated infection his-
tory immediately upon infection (Gupta et al. 1996; Ferguson and Andreasen 2002).
This is equivalent either to assuming that hosts are immediately available for further
infection—and hence superinfection is implicitly allowed—or having a mathemati-
cal approximation in which hosts spend a negligibly small part of their lives infected
(i.e. μ/γ is small).

We define Îi = Ii + σ Ji to be the weighted proportion of the population who
contribute to the force of infection for strain i . Because infection history is updated
immediately, individuals who are in the Îi compartment are always in one of the S
compartments too. Hence S∅ + S1 + S2 + S12 = 1.

Let �i = β Îi denote the force of infection for strain i . We can specify d�i/dt
using the definition of �i and Eqs. 3–4 and 6–7. Hence our system no longer depends
explicitly on Ii and Ji , and we can rewrite the model using 2n + n variables. Note
that we do not need to keep track of individuals who have left Îi , as they are already
included in one of the Si compartments. As before, τ denotes the relative susceptibility
of hosts previously infected with the other strain and σ denotes relative infectiousness.
Hence τ influences the transitions between the S compartments (Fig. 1b), while both
τ and σ influence the rate at which the force of infection changes. The updated system
is as follows:

dS∅
dt

= μ − (�1 + �2)S∅ − μS∅ (9)

dS1
dt

= �1S∅ − τ�2S1 − μS1 (10)

dS2
dt

= �2S∅ − τ�1S2 − μS2 (11)

dS12
dt

= τ�1S2 + τ�2S1 − μS12 (12)

d�1

dt
= β(S∅ + στ S2)�1 − (γ + μ)�1 (13)
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6 A. J. Kucharski et al.

d�2

dt
= β(S∅ + στ S1)�2 − (γ + μ)�2. (14)

2.2.2 Extension to multiple strains

When multiple strains are included in a model, set notation can be used to distinguish
between infection histories (Andreasen et al. 1997). For n disease strains, we define
N = {1, . . . , n} to be the set of all strains, and let X be some subset of N . There are
2n subsets of N , each representing a different infection history (including the empty
set ∅ for totally naive individuals). The possible subsets for a three strain model are
shown in Fig. 2. SX denotes the proportion of the population that have been infected
by all strains in set X ⊆ N , but not by any strain in N \X (i.e. strains not in their
infection history). These sets are disjoint and

∑
X⊆N SX = 1.

To include the reduced transmission assumption, we define σ(Y, i) to be the relative
contribution to the force of infection for strain i from individuals who have infection
history Y . We require σ(∅, i) = 1 for any i , so total lack of acquired immunity results
in transmission at rate β, and σ(Y, i) = 0 if i ∈ Y , to prevent transmission of an
already seen strain.

As before, reduction in susceptibility acts in twoways. First, individuals with infec-
tion history Y have the force of infection of strain i reduced by a factor τ(Y, i). Second,
the rate at which�i increases is also reduced by τ(Y, i), due to reduced disease preva-
lence among hosts in SY . If we assume that infecting strains immediately become part
of an individual’s infection history (Anderson andMay 1991), we obtain the following
set of equations (Ferguson and Andreasen 2002),

dSX
dt

= μδX,∅ +
∑

j∈X
τ(X\ j, j)� j SX\ j −

∑

j /∈X
τ(X, j)� j SX − μSX (15)

Fig. 2 Possible infection
histories in a three strain model.
Sets are disjoint, with subscripts
indicating which collection of
strains have previously been
seen S1 S2 

S3 

S23 

S123 

S12 

S13 

S0 

123
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d�i

dt
= β�i

∑

Y⊂N
τ(Y, i)σ (Y, i)SY − (γ + μ)�i (16)

where μ represents population birth and death rate (assuming constant population
size), δX,∅ is the Kronecker delta function (hence individuals are born only into the
S∅ compartment), and γ denotes recovery rate.

2.3 Model dimension

The drawback with history-based models is the sheer number of possible variables
that the system generates: given n strains, there are 2n combinations of infection an
individual could have seen (Andreasen et al. 1997). Although the dynamics of up to
ten strains have been examined using a full history-based framework (Gomes et al.
2002), it has been technically challenging to explore more strains than this.

One alternative is to focus on the equilibrium dynamics of a completely symmetric
system, where all strains have the same epidemiological properties (Abu-Raddad and
Ferguson 2004).Modelswith this very specific structure are not intended as a system to
be fitted to disease data, but rather make it possible to make some analytic progress on
the problem of strain complexity by exploring symmetric extreme cases. Alternatively,
reduced versions of the history-based model, described in the following sections, can
be used to explore certain aspects of the system in a tractable way.

2.4 Model reduction via symmetry

It is possible to use the symmetry of the strain space to reduce the number of variables
in Eqs. 15–16. For instance, suppose there are three strains, with strains 1 and 3 giving
the same degree of cross-immunity to strain 2, but no cross-immunity to each other.
If strains 1 and 3 have the same epidemiological properties, they can therefore be
recorded as one variable in the system (Lin et al. 1999).

Next, suppose each strain is defined by two loci and two alleles, which is analogous
in terms of symmetry to a circle of four strains (Gog and Swinton 2002). If cross-
immunity only acts to reduce transmission (i.e. τ ≡ 1), then Gupta et al. (1998)
showed that symmetry of this strain space can be exploited to define the model using
only 8 immunity variables, rather than 24 = 16. This approach was an extension of an
earlier, approximate method, which used four immunity variables (Gupta et al. 1996).
The approach can also be extended for strains with multiple alleles (Gupta et al. 1998).

The same type of reduction may be exploited more generally if we assume cross-
immunity between strains—as measured by antigenic similarity—is consistent with
a space in which a given set of strains can be organized into antigenic ‘neigh-
bourhoods’ (Ferguson and Andreasen 2002). For each strain i , define {i} = N0(i)
⊆ N1(i) ⊆ · · · ⊆ Nm(i) = N to be a nested sequence denoting collections of strains
that are within a particular antigenic distance of strain i . At one end, we have the strain
i itself, {i}; at the other, the complete set of all strains N .
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8 A. J. Kucharski et al.

Fig. 3 Example of
cross-immunity in nested model.
Circles show antigenic
neighbourhoods for strain i ,
indicated by black dot. Blue
crosses show strains in infection
history. As the nearest strains are
in the set N2 but not in N1,
cross-immunity would be equal
to σ2 (colour figure online)

N =N4

N3

N2

N1

{i}=N0

Given a particular infection history, we require cross-immunity against strain i to
depend on the distance between past infections and strain i . If a host’s most related
previous infection is in the set Nk(i)\Nk−1(i), thenwe assume transmission is reduced
by a factor σk (Fig. 3). Previously seen strains that are less related, and hence in
larger neighbourhoods, do not influence cross-immunity. Hence this formulation is
equivalent to cross-immunity taking the form of a minimum function, with σ(Y, i) =
σk , where

k = min{ j | Y ∩ (
N j (i)\N j−1(i)

) �= ∅}. (17)

If this form holds, population immunity to strain i can be expressed in terms of the
number of hosts with immunity to one or more strains in each of the k = 0, . . . ,m
neighbourhoods,

Ŝki =
∑

Nk (i)∩X �=∅
SX (18)

where Ŝmi = 1 by definition. If we assume reduced transmission (i.e. τ ≡ 1), Eqs. 15–
16 can be written as follows (Ferguson and Andreasen 2002)

d Ŝki
dt

=
⎛

⎝
∑

j∈Nk (i)

� j

⎞

⎠ (1 − Ŝki ) − μŜki (19)

d�i

dt
= βi�

m∑

k=1

σk(Ŝ
k
i − Ŝk−1

i ) − (γ + μ)�i . (20)

(Note that Ferguson and Andreasen (2002) used T k
i rather than Ŝki .) For n strains with

m immunity neighbourhoods, this method reduces the O(2n) system to n × (m + 1)
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Capturing the dynamics... 9

dynamic equations. For strains defined by E epitopes, each taking one of A alleles, and
immunity depending on the number of epitopes previously seen, there are therefore
AE (E + 1) equations (Minayev and Ferguson 2008).

Reduction in model dimension via symmetry requires three main sacrifices to be
made. First, cross-immunity must take the form of reduced transmission; a similar
general reduction is yet to be achieved for a model with reduced susceptibility. The
cross-immunity function is also constrained by the set of antigenic neighbourhoods,
with the reduction dependent on the use of a minimum function, rather than a generic
σ(Y, i) cross-immunity term. Finally, without information on individuals’ full infec-
tion histories, it is not possible to ascertain the level of immunity against new strains.
For instance, suppose a novel strain z—not previously included in Eqs. 19–20—
were introduced to the population. Using the information stored in the 2n variables,
it would be possible, via the σ(Y, z) function, to calculate susceptibility to the new
strain in the full history based model. However, in this reduced framework there is
no way of constructing the new Ŝkz compartments from the existing set of variables,
{Ŝki | i ∈ N , k = 0, . . . ,m}.

2.5 Model reduction via age structure

Another way to group strains into overlapping sets, as in Eq. 18, is to define Ŝi to be
the proportion of susceptibles who have seen at least strain i . Formally,

Ŝi =
∑

X |i∈X
SX . (21)

If we assume reduced transmission again, Eqs. 15–16 can therefore be expressed as
(Kucharski and Gog 2012a),

dS∅
dt

= μ − S∅
∑

i

�i − μS∅ (22)

d Ŝi
dt

= (1 − Ŝi )�i − μŜi (23)

d�i

dt
= βQi�i − (γ + μ)�i (24)

where Qi is the ‘potential infectivity’ of strain i (Andreasen and Sasaki 2006),

Qi =
∑

Y⊂N
σ(Y, i)SY . (25)

This measures the contribution to the force of infection if all hosts were to become
infected.

Although Eqs. 23–24 only depend on i explicitly, Qi is a function of all 2n sets,
and unless each SY can be expressed in terms of Ŝi variables, the system is intractable.
One solution is to introduce age structure (Kucharski and Gog 2012a).
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10 A. J. Kucharski et al.

If immunity acts only to reduce transmission, onemight naively expect the probabil-
ity of having been infected with any two particular strains to be independent: infection
with the first strain will not change the rate at which hosts become infected with
the second, just the rate at which they transmit. Hence in a two-strain model, might
expect S12 = S1S2. However, if we know a randomly chosen host has previously been
infected with the first strain some point in their life, it means they are more likely to be
old than young. Hence they are more likely to have also experienced another specific
event in the past, such as infection with the second strain. This means S12 ≥ S1S2.

The problem can be resolved using the same age-structured logic; if we focus on
a specific age group, independence is maintained. In the full model, we can therefore
express the proportion of the population with a particular infection history in terms of
the component parts of that infection history:

SY (a, t)

Pa
=

∏

j∈Y

Ŝ j (a, t)

Pa

∏

k /∈Y

(

1 − Ŝk(a, t)

Pa

)

(26)

where Pa as the equilibrium age distribution of the population. This makes it possible
to express Qi (a) as a function of the variables {Ŝ j (a) | j ∈ N }. Using this result, we
obtain an O(n) model:

∂S∅
∂t

= μδ(a) − S∅
∑

i

�i − μS∅ − ∂S∅
∂a

(27)

∂ Ŝi
∂t

= (Pa − Ŝi )�i − μŜi − ∂ Ŝi
∂a

(28)

d�i

dt
=

(∫ ∞

0
βQi (a) da

)

�i − (γ + μ)�i . (29)

where δ(a) is the Dirac delta function. This method of reduction, using independence
to reconstruct the SY sets, avoids two of the drawbacks of the symmetry approach
discussed in the previous section. First, σ(Y, i) is no longer restricted to a minimum
function, and can now take a variety of forms. Second, because we can reproduce any
combination of past infections, it possible to calculate Qi—and hence the level of
population immunity—for any strain, even if it was not present in the system initially.
Themodel can therefore incorporate amuch larger number of potential strains, and can
be used to assess the amount of selection on specific strains of an evolving pathogen.

As well as the necessary reduced transmission assumption, which was also required
in the previous section, there are two additional drawbacks to the age-structured
approach. The introduction of age dependency increases model complexity, requir-
ing a system of PDEs rather than ODEs, making it challenging to obtain analytic
results, and the requirement that infection with each strain is independent for a specific
age group also limits the type of population structure that can be imposed. Although
Eqs. 28–29 are still valid if more realistic transmission between age groups is intro-
duced (Kucharski and Gog 2012c), a metapopulation framework, for example, with
commuting between patches would not be possible because individuals arriving from
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Capturing the dynamics... 11

different subpopulationsmay have previously been exposed to different strains (Wikra-
maratna et al. 2014).

2.6 Status-based models

The full individual-basedmodel records both the infection history and current immune
status of each host. However, there may not be a straightforward relationship between
the two: for influenza, infections may not always produce an immune response, and
immunity to a certain strain could potentially be generated by one of several past
infections (Potter 1979). In principle, it should be possible to develop a compartmental
model that accounted for both infection history and immune status. However, in prac-
tice the number of possible combinations of infection history and immune status—and
hence compartments required—would likely result a model more complex than even a
full individual-based framework. To ensure analytical and computational tractability,
history-based models therefore capture the individual infection histories in a popula-
tion, but not the immune statuses; status-based models (Gog and Swinton 2002) do
the opposite, recording the current immune status of individuals in the population, but
not the combination of past infections that generated that immunity.

In a history-based framework, partial cross-immunity must take form of every
individual being equally partially immune to a particular strain. In other words, it is
assumed that individuals with the same infection history will respond to subsequent
infection in an identical way: if the set of strains Y have been previously seen, they
will transmit strain i with probability σ(Y, i).

An alternative assumption is that upon infection some individuals become com-
pletely immune, while the rest remain susceptible. This is known as ‘polarized
immunity’ (Gog and Swinton 2002). It is possible to include this assumption if the
model is ‘status-based’, with compartments that represent which strains an individu-
als is totally immune to. The assumption of polarized immunity is not essential in a
status-based model (see below), although it does serve to give perhaps the simplest
verbal interpretation of the system and also illustrates a type of model that cannot be
captured in a history-based framework.

First, we describe the full status-based model. Suppose SX now represents the
proportion of individuals who are immune to strains in set X . Define C(Y, X, j) to
be the probability an individual who previously had immunity to a set of strains Y
gains immunity against the set of strains X upon infection with strain j . Assuming
that cross-immunity acts to reduce susceptibility, the full status-based model can be
expressed as follows (Gog and Swinton 2002),

dSX
dt

= μδX,∅ +
∑

j∈N

∑

Y⊂N
C(Y, X, j)� j SY −

∑

j /∈X
� j SX − μSX (30)

d�i

dt
= βi�i

∑

Y | j /∈Y
SY − (γ + μ)�i (31)

It is assumed that hosts are susceptible to the infecting strain, that each strain gives
immunity to itself, and immunity is only gained. In Eqs. 30–31, this means that
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12 A. J. Kucharski et al.

C(Y, X, j) takes non-zero values only if j /∈ Y , j ∈ X and Y ⊂ X (Gog and
Swinton 2002).

Once again, if cross-immunity is assumed to reduced transmission rather than sus-
ceptibility, a reduced version of the status-based model can be expressed in terms of
the proportion of the population susceptible to each particular strain (Gog andGrenfell
2002),

θi = 1 −
∑

i∈X
SX . (32)

The full system is as follows (Gog and Grenfell 2002),

dθi

dt
= μ − θi

∑

j

βσi j I j − μθi (33)

d Ii
dt

= βθi Ii − γ Ii − μIi . (34)

where σi j is the probability an individual will leave compartment θi upon infection
with strain j . Although the assumption of reduced transmission is important, it is
possible to collapse the system toO(n) because the equations track the immune status
of the population in a minimal way. Only the information essential for knowing how
strain prevalences change in future is retained.

In an equivalent interpretation of Eqs. 33–34, the variable θi can be thought of as
tracking the ‘effective susceptibility’ of the population to strain i . Under the reduced
transmission assumption, this means the contribution to force of infection if the full
population were infected.

Such an interpretation includes the possibility that individuals are partially immune,
and hence upon infection would transmit at a lower rate. These individuals are rep-
resented in the model by being partially in the θi compartment (Gog 2008). In the
reduced transmission status-based model, θi can therefore be thought of as a sum
of the population proportions weighted by their relative transmission potential for
strain i .

As well as deriving an O(n) model using the reduced transmission assumption,
it is possible to simplify the model in Eqs. 30–31 to an O(n2) framework through a
moment-closure approximation (Kryazhimskiy et al. 2007). This is implemented by
expressing higher order terms as a combination of lower order ones. For example, an
order-1 approximation reduces the model so that the dynamics are expressed in terms
of Ŝi , the proportion of the population that have immunity against strain i , where

Ŝi =
∑

X |i∈X
SX . (35)

If we assume that individuals have probability σi j of gaining immunity to strain i upon
infection with strain j , we can set C(Y, X, j) = σi j if i, j /∈ Y , and zero otherwise.
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Rewriting Eqs. 30–31 using Eq. 35, we obtain (Kryazhimskiy et al. 2007) :

d Ŝi
dt

=
∑

j∈N
� jσi j (1 − Ŝi − Ŝ j + Ŝi j ) − μŜi (36)

d�i

dt
= βi�i (1 − Ŝi ) − (γ + μ)�i . (37)

Note that (1 − Ŝi − Ŝ j + Ŝi j ) is the proportion of the population that do not have
immunity against strain i or j . For the model to be order-1, we need to express Ŝi j ,
the proportion of the population that have immunity against strains i and j , in terms
of Ŝi and Ŝ j . One option is to use independence closure, with higher order terms
approximated as follows,

Ŝi j =
{
Ŝi Ŝ j if i �= j
Ŝi if i = j

. (38)

2.7 Comparison of models

2.7.1 Model structure

In mathematical modelling of biological systems, there is often a need to balance
complexity, particularly the number of variables in a model, with the ability to include
biologically realistic assumptions. When evaluating strain models here, we also con-
sider whether a model can incorporate the addition of new strains mid-way through a
simulation without recording additional variables in advance.

The main compartmental models currently available for exploring multiple
strain dynamics are summarised in Table 1. Many of the models with few vari-
ables require that cross-immunity between strains acts to reduce transmission. The
assumption of reduced transmission is mathematically convenient because it means
immunity to one strain does not influence susceptibility to another. Hence immu-

Table 1 Comparison of different models for n strains

Model Type Variables New strains Immunity reduces

Individual-based model – Many Yes Susceptibility/transmission

Andreasen et al. (1997) HB O(2n) Yes Susceptibility/transmission

Gupta et al. (1998)∗ HB O(n) No Transmission

Kucharski and Gog (2012a) HB O(n) Yes Transmission

Gog and Swinton (2002) SB O(2n) No Susceptibility

Gog and Grenfell (2002) SB O(n) No Transmission

Kryazhimskiy et al. (2007) SB O(n2) No Susceptibility/transmission

Only two models store enough information to permit the introduction of new strains
HB history-based, SB status-based
∗ Generalised by Ferguson and Andreasen (2002)
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14 A. J. Kucharski et al.

nity will only change the rate at which individual passes the infection on, and
not their probability of being infected. If cross-immunity leads to a reduction in
susceptibility, the crucial simplifications in Eqs. 19, 23 and 33 are no longer pos-
sible.

From a biological point of view the assumption of reduced transmission can be
awkward (Ballesteros et al. 2009; Kryazhimskiy et al. 2007). This is because upon
infection we expect two events: the host becoming ill and transmitting the disease,
and the production of antibodies by host’s immune system. If the host already has
immunity to that strain, their current antibodies might block infection without trans-
mission or production of new antibodies occurring. Under the reduced infectivity
assumption, immunity prevents an infected host from transmitting the virus, but does
not prevent additional gain of immunity. This could lead to an overestimate of pop-
ulation immunity (Ballesteros et al. 2009). Despite this potential caveat, however,
the dynamics of the history-based model appear to relatively insensitive to whether
immunity is assumed to reduce transmissionor susceptibility (Ferguson andAndreasen
2002).

There is also the issue of whether cross-immunity is more plausible as it appears in
a history-based model, or a status-based model with polarised immunity. Comparing
to model output with the observed evolutionary dynamics of influenza can provide
some insights (Ballesteros et al. 2009). Although it has been suggested that antigenic
cluster replacement cannot occur in a simple SIR model (Gökaydin et al. 2007), the
results of Ballesteros et al. (2009) imply that it is possible in a status-based model with
reduced transmission, but not in reduced susceptibility models, or a reduced transmis-
sion history-based model: in these, punctuated antigenic evolution results in too high
a depletion of susceptibles. In addition, there appears to be a fundamental difference
in the dynamics of the status-based and history based-models, with oscillations absent
in the status-based framework (Dawes and Gog 2002). The precise assumptions that
lead to oscillations in different strain models are yet to be established, however, and
the determining factors in a mathematical framework may not have comprehensi-
ble analogues in our interpretations of the ‘biology’ of the model (Dawes and Gog
2002).

These discrepancies illustrate the importance of understanding how different
assumptions about cross-immunity affect model outputs. Biologically plausible
assumptions do not necessarily generate biologically plausible dynamics, and vice
versa. Moreover, choosing between two biologically distinct assumptions—such as
reduced susceptibility and transmission—can sometimes have a negligible effect on
model dynamics. Strain models inevitably have to balance realism with tractability; it
is therefore important to know howdifferent simplifications and assumptions influence
model predictions.

In some cases, it is possible to incorporate additional realism without substan-
tial additional complexity. History-based models require that all individuals with a
particular infection history respond to a new strain in the same way. In contrast, status-
basedmodels using polarised immunity can include heterogeneity in immune response
between individuals, as can individual-based models. For history-based models, one
way to incorporate heterogeneity is to explicitly group hosts by a characteristic such
as genotype (Gupta and Galvani 1999). Alternatively, if the characteristic of interest is
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age, differences could be explored in an age-structured reduced model: individuals are
already grouped by age, and cross-immunity could therefore be defined as a function
of age as well as infection history. Such a framework could be used to explore the
phenomenon of ‘immunosenescence’, whereby the elderly exhibit a weaker immune
response than younger groups (Caruso et al. 2009).

Further, in status-based models probability distributions have been used to vary the
transition from one immune status to another (Cobey and Pascual 2011). This idea
could also be used in history-based models, by treating the cross-immunity parameter
as a random variable. There is also potential for this approach to be combined with
within-host approximations (Pepin et al. 2010; Volkov et al. 2010). This would allow
for more detailed exploration of how assumptions about the immune system affect
population level dynamics.

2.7.2 Biological applications

As well as depending on the assumptions that can be included, choice of modelling
formulation will be influenced by the biological question being addressed. If the aim
is to understand how cross-immunity affects the dynamics of the infection, models
need to be sufficiently simple to simulate the number of hosts infectious with each
strain at each point in time. Knowledge of the precise population history of infection
and immunity is not required, as long as disease incidence is recorded. Some studies
have used such models to examine the extent of antigenic variation over time, and
the antigenic relationship (‘strain structure’) between co-circulating strains (Gog and
Grenfell 2002; Gomes et al. 2002; Gupta et al. 1996, 1998). Other studies have looked
factors that can generate oscillations in strain incidence (Castillo-Chavez et al. 1989;
Dawes and Gog 2002), or the frequency at which epidemics occur (Andreasen 2003).

Previous comparisons of strain models have generally focused on the dynamics
of a small number of strains (Dawes and Gog 2002; Ferguson and Andreasen 2002;
Ballesteros et al. 2009). However, one of the strengths of reduced frameworks is that
they allow a much larger strain space to be explored. The price of this simplicity is
usually information: it is often not possible to introduce a novel strain and use existing
variables to calculate immunity against it (Table 1).

There are several biological questionswhich require effective tracking of population
immunity. To examinewhether a new strain can replace endemic strains, it is necessary
to record the changing immune structure of the population in a tractable model. This
can either be achievedby focusingon a small number of strains (Ballesteros et al. 2009),
or by making simplifying assumptions about the cross-immunity function (Andreasen
and Sasaki 2006; Boni et al. 2004).

History-based based models, which record the possible infection histories in
a population, can also be compared with observed serological data to under-
stand how individual- and population-level factors shape antibody responses over
time (Kucharski and Gog 2012c). Using models that can calculate cross-immunity
against unseen strains, it should also be possible to examine the introduction of novel
strains similar to those that have previously circulated, as happened with the 2009
influenza pandemic (Miller et al. 2010; Xu et al. 2010).
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3 Incorporating pathogen evolution

3.1 Stochastic emergence

New influenza strains emerge frequently throughmutationswith antigenic effects (Both
et al. 1983). When modelling influenza evolution it is therefore necessary to consider
the random nature of the mutation and emergence process, and integrate this with a
model of the epidemic dynamics. In an individual-based model (Bedford et al. 2012;
Ferguson et al. 2003; Tria et al. 2005), both processes can be modelled explicitly:
within each infected individual, a strain may mutate with a certain probability, with
the new infection either taking off or failing to emerge as a result of stochastic trans-
mission in the population. However, emergence of new strains can also be included in
the reduced frameworks described in the preceding sections.

As with choice of strain model, selecting an appropriate evolution framework
depends on the biological dynamics of interest, and on the corresponding processes
that are likely to be influenced by stochasticity. One study used a stochastic status-
based model with evolution represented by an explicit genotype-to-phenotype map
to investigate observed patterns of influenza diversity and strain replacement (Koelle
et al. 2006). Alternatively, the evolutionary process can be implemented in a stochastic
two-tiered model, with one tier representing population dynamics, and the other mole-
cular evolution (Koelle et al. 2010). Such an approachmakes it possible tomodel entire
genetic sequences in a computationally viable way, and hence generate phylogenies
that can be compared quantitatively with observed data.

If the information of interest is the speed of antigenic drift rather than the specific
evolutionary trajectory of the virus, a simpler approach is to use a stochastic proxy for
the evolution process, based on a probability distribution, along with a deterministic
status-based (Koelle et al. 2009) or history-based (Minayev and Ferguson 2009)model
for the epidemic. Such models assume mutation is stochastic, but do not include the
possibility of extinction at start of an epidemic as the result of a stochastic transmission
process.Branchingprocesses canbeused to approximate the stochastic transmission—
or extinction—that can occur as a result of the small number of people initially infected
with a new strain (Gog 2008; Kucharski and Gog 2012b). Such models assume that
virus mutation is deterministic, but that transmission is initially stochastic when a new
strain emerges.

3.2 Separating epidemics from evolution

As there is evidence that temperate regions are annually ‘seeded’ with influenza after
low levels of prevalence over the summer (Nelson et al. 2006), it is reasonable to con-
sider the epidemic process during an influenza season separately from the evolutionary
process between seasons.

Andreasen (2003) implemented annual epidemics as a discrete season-to-season
map, which described the change in population immune structure as a result of anti-
genic evolution each summer following the winter outbreak. Cross-immunity in the
model was assumed to reduce susceptibility, so if we assume births and deaths occur
between seasons, the relevant part of the model given by Eqs. 15–16 each season is:
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dSX
dt

=
{
τ(X\i, i)�i SX\i if i ∈ X
−τ(X, i)�i SX if i /∈ X

(39)

d�i

dt
= β�i

∑

i /∈Y
τ(Y, i)SY − γ�i . (40)

Next, define the expression
Qi =

∑

i /∈Y
τ(Y, i)SY (41)

to be the ‘potential susceptibility’ to strain i . The model can be simplified by using a
minimum function and assuming antigenic distance is always increasing. If i is a new
strain, with i > j for each j ∈ Y , this means τ(Y, i) = τ(max Y, i). Let S̃ j denote
the set of individuals whose most recent infection was with strain j ,

S̃ j =
∑

max Y= j

SY . (42)

Assuming that each epidemic starts and ends with a negligible level of infection (0 <

I � 1), we can find p = Q∞/Q0, the ratio of final to initial potential susceptibility
in season i , by solving log p + R0Q0(1− p) = 0, where R0 = β/γ . The value of S̃ j

at the end of the epidemic is

S̃ j (∞) =
{

(1 − p)Q0 if j = i
pτ( j,i) S̃ j (0) if j < i

(43)

It is possible to perform a detailed bifurcation analysis in the case of two year
immune recognition (Andreasen 2003), with immunity to a strain only conferring
cross-immunity to strains that appear in the following two seasons, i.e. in the case

Qi =
i∑

j=i−2

τ( j, i)S̃ j . (44)

The season-to-season approach can also help simplify reduced transmission frame-
works. In particular, by considering the age-structured multi-strain model in Eqs. 28–
29 as a series of single epidemics, the system can be expressed using ODEs rather than
PDEs (Kucharski and Gog 2012a). As the strains introduced each season are known,
the sequence of possible infections that an individual could have seen is constrained
by the order in which strains are introduced.

Further, under the single season approach evolution need not be independent of the
epidemic process: Boni et al. (2004) explored a framework in which larger epidemics
generated more antigenic drift, showing that a positive feedback can occur between
the number of cases and number of new variants. Such a model can also be extended
to examine the relationship between viral fitness and drift (Boni et al. 2006).
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3.3 Mutation-free approaches

It is also possible to model aspects of influenza dynamics without considering an
explicit mutation process. Competition between strains resulting from cross-immunity
has been seen to generate oscillations in disease incidence (Gupta et al. 1998; Lin et al.
1999) as well as sequential outbreaks of antigenically diverse pathogens (Recker et al.
2007). Further, the additional model tractability in the absence of a mutation process
makes it possible to derive expressions for the conditions needed for invasion of new
strains (Adams and Sasaki 2007, 2009) and transitions in epidemic dynamics (Blyuss
and Gupta 2009; Blyuss 2012).

4 Interface with data

4.1 Infection and immunity

Tractable disease models have the advantage of being quick to simulate, which means
they can be incorporated into inference frameworks. With the increasingly avail-
ability of detailed serological and social contact data (Conlan et al. 2010; Lessler
et al. 2011; Mossong et al. 2008), multi-strain models are a promising tool with
which to understand the processes behind infection and immunity for diseases such
as influenza.

Exploring the age pattern of immunity to seasonal influenza with such mod-
els, it has been shown (Kucharski and Gog 2012c) that observed data are best
explained with a model that uses physical contacts and incorporates the phenom-
enon of ‘original antigenic sin’, whereby the first infection of a lifetime inhibits
subsequent acquisition of immunity (Francis 1960). To model original antigenic
sin, it is necessary to know the order of the strains a host’s infection history; in
particular, the antigenic properties of the first infection of a lifetime. Such infor-
mation is available for a single season model, as the framework is designed so
that one specific strain is introduced each year (Andreasen 2003). However, it
would less straightforward to keep track of strain order if multiple strains were co-
circulating.

Recent empirical studies have suggested a pattern of ‘antigenic seniority’ for
influenza, with antibody titres higher to ‘senior’ strains seen earlier in life (Lessler
et al. 2012; Miller et al. 2013). It has also been noted that elderly individuals have
fewer naive B cells (Weinberger et al. 2008). There may well be a unifying mech-
anism behind these disparate observations; identifying it would greatly improve our
understanding of how populations build immunity to diseases like influenza over the
course of a lifetime.

The interaction of different strains through cross-immunity can also be examined
using disease case data. Inference methods based on Sequential Monte Carlo algo-
rithms have recently been developed for two-strain models (Shrestha et al. 2011); the
natural next step would be to scale up this approach to explore a larger number of
strains.
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4.2 Other pathogens

Manymulti-strainmodelling studies have focused on influenza (Andreasen et al. 1997;
Gog and Grenfell 2002; Ferguson et al. 2003), Plasmodium falciparum (Gupta and
Day 1994;Gupta et al. 1994) orNeisseriameningitidis (Gupta et al. 1996; Buckee et al.
2008), but high-dimensional frameworks are likely to be relevant to other pathogens as
well. Phylogenetic analysis has shown that dengue viruses (DENV) can be subdivided
into four distinct groups (Grenfell et al. 2004), known as serotypes. When primary
infectionwith oneDENVserotype is followed by a secondary infectionwith a different
DENV serotype, it can result in severe disease. It has been suggested this is caused
by ‘antibody-dependent enhancement’, with prior immunity promoting rather than
suppressing replication of the second virus (Dejnirattisai et al. 2010).

Models with up to four strains have previously been used to examine the effects
of antibody-dependent enhancement on epidemic patterns (Nagao and Koelle 2008;
Recker et al. 2009; Wikramaratna et al. 2010) and serotype diversity (Ferguson et al.
1999; Kawaguchi et al. 2003; Cummings et al. 2005). However, DENV shows evi-
dence of genetic variation within serotype, and prior infection with different variants
does not always result in the same response to a subsequent infection (Watts et al.
1999). The severity of disease is therefore likely determined by both genetic varia-
tion and serotype-specific immunity (Ohainle et al. 2011). High-dimensional strain
models have been used to address a number of questions about influenza; inter-
faced with appropriate data, they would also be a natural tool with which to explore
DENV.

4.3 Evolutionary dynamics

Multi-strain models can also be a useful tool for exploring disease ‘phylodynam-
ics’: the interaction between pathogen evolution and population-level transmission
(Grenfell et al. 2004). It can be challenging to perform statistical inference with such
frameworks, however, as model complexity often means it is not possible to derive a
likelihood function that incorporates both genetic and population-level data.

One solution is to focus on simple transmission models. For example, statistical
inference for seasonally-forced SIR models can be performed using disease case data
and sequence data (Rasmussen et al. 2011). Using techniques such as particle Markov
chain Monte Carlo (Andrieu et al. 2010), such frameworks can be used to estimate
key epidemiological parameters. Alternatively, approximate Bayesian computation
(ABC) can be used to compare multi-strain models with case reports and sequence
data when the likelihood function is intractable (Ratmann et al. 2012).

Such studies have focused on genealogies and disease incidence, without incorpo-
rating data on population structure or serological data in their inference frameworks.
However, it has been observed that strain diversity can increase when a contact net-
work (Buckee et al. 2004) or community structure (Buckee et al. 2007) is introduced
to a multi-strain model. Further, there is not a clearly defined relationship between
antigenic and genetic variation for pathogens such as influenza (Smith et al. 2004). As
such, reported social contacts, serological surveys, disease incidence and virus iso-
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Fig. 4 Potential sources of data. a Phylogenetic tree for influenza subtype H3N2 [adapted from Holmes
and Grenfell (2009)]; b percent of sampled individuals in Britain with immunity to 2003 H3N2 strain in
2003 and 2004 [adapted from Johnson et al. (2009)]; c results of contact survey in Great Britain [adapted
fromMossong et al. (2008)], with lighter colours representing a larger number of reported contacts between
those age groups; d age specific incidence of ILI, as factor of all-age incidence, for 2003/4 influenza season
in Britain [adapted from Johnson et al. (2009)]

late sequences (Fig. 4) may all need to be considered in the analysis of antigenically
variable pathogens.

Combining such data in a modelling framework presents a number of theoreti-
cal challenges. First, to translate model variables into quantities that can be measured
empirically, multi-strain models need to be combined with an observation process. For
example, given the increasingly availability of serological data, combining a statistical
model of antibody titres with a transmission model would make it possible to investi-
gate population level dynamics using data on individual-level titres. Second, we need
to examine the factors that influence evolution at different temporal and spatial scales.
In particular, models could be used to explore how selection pressure acts on a virus
both in terms of bottlenecks during transmission between hosts and the background
of prior population immunity. Models of multi-strain pathogens could also be used
to understand how within-host immune dynamics influence the acquisition of immu-
nity over a lifetime, and hence the evolutionary trajectory of a disease. By developing
such models in a way that makes them easily compatible with data, there is potential
to substantially improve our knowledge of how population structure, evolution and
immunity contribute to observed disease dynamics.
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