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In this paper, the dynamical equation for polarization is derived. From this the dielectric response to a
spatially varying electric field is analyzed showing a reduced response due to flux of polarization
in the material. This flux is modeled as a diffusive process through linear constitutive relations
between the flux and the gradient of the polarization. Comparison between the theory and molecular
dynamics simulations confirms this effect. The effect is significant for small length scale electric
field variations and the inclusion of the flux is thus important in nanoscale modeling of dielectric
response. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935825]

I. INTRODUCTION

For weak electric fields the dielectric response is
commonly modeled by a linear constitutive relation between
the polarization and the field.1 In the case of a spatially
varying field the local response is given by a convolution of
the dielectric susceptibility and the electric field.2 In Fourier
space this corresponds to introducing a wave vector dependent
susceptibility, or kernel, which then accounts for the response
at different wavelengths.

The fact that there exists a local response means that
the polarization of the material can vary, that is, there
exists a polarization gradient. This gradient must, intuitively,
result in a corresponding flux. To the author’s knowledge,
this additional mechanism is often overlooked and its effect
unwarily incorporated into the susceptibility kernel hiding the
actual underlying mechanism. Dahler and Scriven3 derived the
relevant balance equation, but application of the theory is not
shown. de Groot and Suttorp,4 de Groot and Mazur,1 and more
recently Dávalos-Orozco and del Castillo5,6 derived the full
dynamical equations for polar viscoelastic fluids; however,
their approach is based on the Maxwell stress1 and different
from the one presented here and, therefore, leads to a different
formalism.

In this paper, the fundamental balance equation for the
polarization is derived from the microscopic hydrodynamic
operator (MH-operator).7 This particular formalism gives a
microscopic interpretation of the polarization flux in terms
of the molecular degrees of freedom in the strict limit of
zero wave vector. Linear constitutive relations are proposed
relating the flux to thermodynamic forces through differential
operators acting on the polarization. The theory is then applied
to an isotropic linear dielectric in a non-uniform electric field
and a dimensionless number quantifying the effect of the flux is
defined. Molecular dynamics (MD) simulations are performed
for two dielectric materials and data of the dielectric response
are analyzed in the framework of the theory.

a)jschmidt@ruc.dk

II. THEORY

A. Polarization balance equation

Consider a dielectric material composed of permanent
molecular dipoles. Only the alignment of the dipoles with the
field is treated here and induced effects are ignored. Let µi be
the dipole moment of molecule i with center-of-mass position
ri, the polarization (dipole moment density) P is then defined,
up to the dipole moment,4 as

P(r, t) = ρ(r, t)p(r, t) =

i

µi(t)δ(r − ri(t)), (1)

where ρ is the mass density, p is the dipole moment per unit
mass, and δ is the Dirac delta. In Fourier space we have for
wave vector k,

ρp(k, t) =

i

µi(t)e−ik·ri(t). (2)

From here on, the explicit wave vector and time dependence
are omitted unless they provide valuable information. The rate
of change is given by differentiation of Eq. (2),

∂

∂t
ρp(k, t) =


i

(
dµi

dt
+ µi(−ik · vi)

)
e−ik·ri, (3)

which in the strict limit of k → 0 is

∂

∂t
ρp(k, t) =


i

(1 − ik · ri) dµi

dt
− ik ·


i

viµi. (4)

Note the identity µi(−ik · vi) = −ik · (viµi), where viµi is
the dyadic between the molecular velocity vi and the dipole
moment µi. The resultant is a rank-2 tensor.

The molecular velocity vi is decomposed into the thermal
(or peculiar) velocity, ci, and the streaming velocity, u(ri, t).
That is, letting vi = ci + u(ri, t) one arrives at, in short-hand
notation,

∂

∂t
ρp(k, t) = H [µi], (5)

0021-9606/2015/143(19)/194507/5/$30.00 143, 194507-1 © 2015 AIP Publishing LLC
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where H is the MH-operator7 acting on the molecular dipole
moment

H [µi] =

i

(1 − ik · ri) dµi

dt

− ik ·

i

ciµi − ik ·

i

u(ri, t)µi. (6)

It is convenient to express the rate of change of the
molecular dipole moment according to Euler’s equation of
motion. For rigid molecules the permanent dipole will be a
constant in the molecule’s principle frame of reference. The
rate of change is then

dµi

dt
= Ωi × µi, (7)

whereΩi is the molecular intrinsic angular velocity seen from
the inertial frame. Substitution yields the polarization balance
equation in Fourier space for k → 0,

∂

∂t
ρp(k, t) = −ik ·


i

u(ri, t)µi +

i

Ωi × µi

− ik · *
,


i

ciµi + ri(Ωi × µi)+
-
. (8)

In real space this suggests a balance equation in real space at
small wave vector

∂ρp
∂t
= −∇ · (ρup) + 2ρ

3
(Ω × µ) − ∇ · R. (9)

Except for the factor 2/3, this is in agreement with the result
derived by Dahler and Scriven.3 Each term on the right-hand
side is discussed in the following. The first term, i.e., the
advection, is

ρup = uρp =
1
V


i

u(ri, t)


µi


=

1
V


i

u(ri, t)µi


(10)

as the cross correlation effects are assumed to be zero, that
is, 

i


i, j

u(ri, t)µ j


= 0. (11)

Importantly, one sees that the ensemble average is taken of the
product (this case the dyadic). The product of the ensemble
averages will lead to an inconsistency with the microscopic
derivation. For the second term on the right-hand side in
Eq. (9) it is noted that Ω = 3

2 ⟨


iΩi⟩.8 We then have

Ω × ρp =
1
V


3
2


i

Ωi ×

i

µi


=

3
2V


i

Ωi × µi


,

(12)

where, again, the cross correlation in Eq. (8) effects are
zero. Notice, the factor 3/2. Finally, the last term defines a
polarization flux tensor for zero wave vector, that is,

R(t) = 1
V


i

ciµi + ri (Ωi × µi)

. (13)

This definition is analogous to the Irving-Kirkwood interpre-
tation.9

The second term on right-hand side of Eq. (9) can be
regarded as a production term and is non-zero if the dipoles
are rotating around their center of mass. Non-zero rotation
can be achieved by a rotating electric field.10,11 Due to the
production term, the polarization is not a conserved quantity
but couples to the fluid’s mechanical properties. From the
microscopic definition it is also seen that the polarization flux
tensor R is non-symmetric as both dyadics, cp and r(Ω × p),
are non-symmetric.

B. Local constitutive relations

If one follows the usual decomposition,12,13 the polar-
ization flux tensor can be written as a sum of the trace,
R, traceless symmetric part,

os

R, and the antisymmetric part
a

R. That is, R = RI+
os

R +
a

R. I is the unit tensor. Here the
anti-symmetric tensor is given by its (pseudo) vector dual
ad

R= ( a

Ryz,
a

Rzx,
a

Rxy). For linear isotropic dielectrics these three
fluxes are proposed to be associated with the divergence,
gradient, and curl of polarization field through the linear
phenomenological relations

R = −χv(∇ · p),
os

R= −2χ0

os(∇p),
and

ad

R= −χr(∇ × p). (14)

Here χv, χ0, and χr are phenomenological transport
coefficients. Note that the constitutive relations, Eq. (14),
are local in that the flux is only dependent on the local
derivatives of p.

Allowing for an external forcing term, σP, and
substituting Eq. (14) into Eq. (9) one arrives at
∂ρp
∂t
+ ∇ · (ρup) = σP +

2ρ
3
(Ω × p) + χl∇(∇ · p) + χt∇2p,

(15)

with χt = χ0 + χr and χl = χv + χ0/3 − χr . Equation (15)
is the dynamical equation for the polarization in the
hydrodynamic regime of small wave vector.

C. Application of a sinusoidal electrical field

Let an external electric field act on a dielectric material.
The field is sinusoidal varying in the z-direction and acting in
the x-direction only,

Eext(z) = E0 sin (kn z) i, (16)

where E0 is the field amplitude, kn = 2πn/L is the field
wave vector, n is the wave number, and i is the unit vector
parallel to the x-axis. L is the length of the system in the
z-direction.

The following two assumptions are made: (i) The local
electric field is given by Eext, that is, the field due to the
polarization is negligible. This is justified for small molecular
dipole moments; in fact, this approximation is applied even
for bulk water in the presence of an external field.14 (ii)
According to Faraday’s law, Ḃ = −∇ × E, the electric field
is associated with a magnetic field B(t) = E0kn cos(knz)t j,
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where j is the unit vector parallel to the y-axis. The amplitude
of the magnetic field is therefore linearly increasing in time,
and the induced magnetic field can only be ignored in some
time interval t < τ′ such that E0knτ′ < B0, where B0 is the
critical magnetic field strength. Furthermore, here only the
steady state is studied, that is, for times larger than the dipole
relaxation time τ. This means that the time interval is limited
to τ < t < τ′. The second assumption is that such time interval
exists.

For linear dielectrics the polarization at a given point
is given by px = κEext

x , where subscript x indicates vector
x-component, and κ is the dielectric susceptibility per unit
mass. κ is here in the local description assumed to be wave
vector independent. The external forcing can now be written
as1

σP =
ρ

τ

�
κEext

x − px

�
. (17)

In steady state Eq. (15) reduces to a simple two point boundary
value problem,

1
τ

�
κEext

x − px

�
+ νt

d2px

dz2 = 0, (18)

with

px(0) = px(L) = 0 (19)

and νt = χt/ρ. The solution is

px(z) = κE0β

k2
n + β

sin (kn z) = An sin (kn z) , (20)

where β = 1/(νtτ) such that 1/
√
β =
√
νtτ is a characteristic

length scale. From this the dimensionless number, Je ≥ 0, is
introduced,

Je = k2
n/β = k2

nνtτ. (21)

For small wave vectors where Je ≈ 0 there is a negligible
effect from the flux, that is,

px(z) ≈ κE0 sin(knz) = A0 sin(knz). (22)

Note, A0 > An for n > 0, and that the relative polarization
amplitude can be written in terms of Je,

A0

An
− 1 = Je. (23)

III. MOLECULAR DYNAMICS: METHOD AND RESULTS

Two dielectric materials are studied using MD simula-
tions. Material I is a generic dielectric where each dipole
is a simple diatomic molecule with atomic charges ±q.
The atoms not belonging to the same molecule interact
through the Weeks-Chandler-Andersen potential15 and the
Coulomb potential. The intra-molecular force is given by
a spring force with zero-force bond length of 1σ and
spring constant 103m2σ2/ϵ , where σ,m, and ϵ are units
of length, mass, and energy, respectively. The state point
is (ρ,T) = (0.5m/σ3,1.0kB/ϵ). Material II is water at high
temperature T = 508 K and low density ρ = 33.68 kg/m3.
This state point is chosen as the dielectric response is linear
even for very large fields. Also, the relaxation time τ is small

which is convenient from a computational point of view. The
water model is the flexible SPC/Fw model, see Refs. 16–18
for details. It is worth stressing that the pressure is positive
for both systems. From here on the results for material I are
expressed in terms of reduced MD units indicated with a
superscript asterisk.

One direct way to implement the electric field is to
apply a pulsating field which is turned on in time interval
0 < t < τ′ and then switched off for a time t > τ. One can
then sample for τ < t < τ′. To compute the exact time interval
the equations of motion for the atoms should be accompanied
with simultaneous solution to the Maxwell equations.19 In
accordance with theory, it is assumed that this interval exists
and a fictitious electric field (FEF) is applied which is not
associated with a magnetic field. The equations of motion
for atom i with mass mi, charge qi, and position ri are then
mir̈i = Fi + qiEext. Fi is the sum of forces on i due to bond,
angle, and pair interactions including Coulomb interactions. It
has been shown that for non-confined bulk MD simulations the
electrostatic force calculations can be simplified considerably
by using shifted force method20 and is used here. To
control the temperature the system is thermostated using an
Andersen-type thermostat.21

First, the dipole relaxation time τ and the dielectric
susceptibility per unit mass κ is evaluated for zero wave vector
by application of a uniform electric field with magnitude E0.
The total dipole moment per unit mass is calculated from
px(t) = 


i µi,x(t)
�
/


i Mi, where Mi is the molecular mass.
This is fitted to the solution of the homogeneous problem
ṗx = (κE0 − px)/τ, that is,

px(t) = κE0(1 − e−t/τ). (24)

Strictly, the coupling to the angular velocity is neglected
here. This fitting is done for varying electric field strengths
E0; the result for water (material II) is plotted in Fig. 1.
For convenience the dipole moment is plotted in the inset
rather than the polarization per unit mass. From the inset, it
is seen that the dipole relaxation is ballistic for very short
times and the fit exclude this region. The linear regime is for

FIG. 1. Dielectric susceptibility per unit mass, κ, and dipole relax-
ation time, τ, as a function of field strength E0 for water at (T , ρ)
= (33.68 kg/m3,508 K). Inset: Black circles are MD data points and the full
line is best fit to Eq. (24) using data points after the ballistic regime.
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E0 < 4 × 108 V/m where κ = 1.2 × 10−13 C2m2/(J kg). The
dipole relaxation time is 0.4 ps. For material I with q∗ = 1
the response is linear for all external field strengths studied,
E∗0 ≤ 4, giving κ∗ = 0.17 and τ∗ = 1.1.

For the sinusoidal field the local dipole moment per unit
mass is evaluated from

px(z) = ⟨iµi,xδ(z − zi)⟩
⟨iMiδ(z − zi)⟩ . (25)

Figure 2(a) shows p∗x for material I for n = 4, q∗ = 1, and E∗0
= 1. One clearly sees that the amplitude is reduced compared
to the predictions from Eq. (22) with A∗0 = κ∗E∗0 = 0.17.
Equation (20) is also plotted using ν∗t as the only fitting
parameter giving ν∗t = 0.11. This value is used to compare the
theory with MD data for wave numbers n = 1 and n = 8 in
Fig. 2(b) showing excellent agreement.

To account for the reduced response one can introduce a
wave vector dependent susceptibility,2 i.e., the polarization is
then given by px(z) = κ(kn)E0 sin(knz). However, according
to the theory above the reduction can be due to the additional
polarization flux. In that case we should have a diffusion-type
dependence, that is, Je = κE0/An − 1 ∝ k2

n, where An is found

FIG. 2. Local dipole moment per unit mass for material I for q∗= 1 and
E∗0= 1. (a) Symbols are MD data, broken line predictions from Eq. (22), and
full line is the best fit of Eq. (20) yielding ν∗t = 0.11. (b) Comparison between
theory, Eq. (20), using νt∗= 0.11, and MD simulations data for two different
wave numbers n = 1 and n = 8. No fitting is carried out. Inset: Wave vector
dependence of Je. Error bars are the size of the symbols.

FIG. 3. Local dipole moment for material II (water). Symbols represent MD
data and full lines the predictions from Eq. (22). Inset shows the wave vector
dependence of Je/k2

n: Symbols are MD data and lines are best fit to Eq. (26).

from fitting the MD data to a sine function. The result is shown
in the inset of Fig. 2(b), where the wave vector dependence
predicted from the theory is confirmed.

The reduced response for large wave vectors is also
observed for material II (water), see Fig. 3.

For water Je is not proportional to k2
n which indicates that

the reduction is not only due to the flux but that the parameters
are wave vector dependent in the regime studied here. It is still
possible to extract the zero wave vector transport coefficient
νt. To this end the MD data are fitted to the following
expression:22

νt(kn)τ(kn) = Je/k2
n =

νt(kn = 0)τ(kn = 0)
1 + ak2

n + bk4
n

(26)

using b = 0 (full line) or b , 0 (broken line). From Fig. 1
the zero wave vector relaxation time τ(kn = 0) was found to
0.4 ps, that is, νt(kn = 0) ≈ 6.5 × 10−8 m2/s. The effect of the
flux is then given by Je = k2

n2.6 × 10−20 m2, e.g., on a length
scale of 3 nm the flux results in approximately 10% response
reduction according to the local theory.

IV. CONCLUSION

It was shown that the dielectric response for dielectric
materials is reduced on small length scales. The reduction was
quantified by the dimensionless number Je. For the generic
dumbbell model (material I) the reduction was proportional
to the wave vector squared, inset of Fig. 2(b). This is a
fingerprint of a diffusive process in accordance with the theory
developed in Sec. II. For material II (water) this quadratic
dependency was not observed at the state point and wave
vectors studied here. This is likely due to the very different
molecular structures and corresponding dynamics which can
be modeled phenomenologically using wave-vector dependent
transport coefficients.
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