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Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most
metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the
isochoric ensemble. This demonstrates a general “hidden” scale invariance of metals making the condensed part
of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT
computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental
values for the 16 elements where reliable data were available. Hidden scale invariance is demonstrated in detail
for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three
metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted
by assuming scale invariant inverse power-law (IPL) pair interactions. However, crystal packings of several
transition metals (V, Cr, Mn, Fe, Nb, Mo, Ta, W, and Hg), most post-transition metals (Ga, In, Sn, and Tl), and
the metalloids Si and Ge cannot be explained by the IPL assumption. The virial-energy correlation coefficients
of iron and phosphorous are shown to increase at elevated pressures. Finally, we discuss how scale invariance
explains the Grüneisen equation of state and a number of well-known empirical melting and freezing rules.
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I. INTRODUCTION

Scale invariance plays an important role in many branches
of science. It greatly simplifies a given phenomenon by
reducing the parameter space and introducing universalities
over length or time scales. Some examples of this are the
size distribution of earthquakes [1], Brownian motions of
microscopic particles [2], cosmic microwave background
radiation [3,4], and biological fractal structures [5] such as
those of lung tissue or Romanesco broccoli. In the physics
of matter, scale invariance controls the properties of a fluid
near the gas-liquid critical point [6]. This paper establishes
an approximate “hidden” scale invariance in the dense liquid
part of the thermodynamic phase diagram of certain elements
from ab initio computations. While the above classic examples
of scale invariance cover several decades of variations, the
scale invariance of condensed matter covers much smaller
length-scale differences. Nonetheless, hidden scale invariance
implies a great simplification, namely that the thermodynamic
phase diagram becomes effectively one dimensional.

Specifically, we have performed ab initio density functional
theory (DFT) computations on 58 liquid elements at their
triple point. We infer hidden scale invariance of metals from
strong correlations in thermal fluctuations of virial W (the
potential part of the pressure) and potential energy U . We
find that metals in general possess hidden scale invariance.
These results give the first ab initio quantum-mechanical
confirmation of the picture proposed in Refs. [7–13], according
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to which some systems have strong virial potential-energy
correlations in the condensed phases, whereas this is not the
case for other systems—typically those with strong directional
bonding. Liquids belonging to the former class of systems
were originally referred to as “strongly correlating,” but to
avoid confusion with strongly correlated quantum systems
the term Roskilde (R) simple system is now sometimes used
[14–19]. Although the focus here is on monatomic liquids,
experimental and molecular-dynamics simulation results have
shown that (R) simple systems include some molecular van der
Waals bonded systems [20], polymers [21,22], and crystalline
solids [23]. Returning to the elements, molecular liquids
like N2 [9] and the noble gases [7] are also expected to be
simple [8].

What is the microscopic origin of hidden scale invariance?
To answer this, we start by noting that at high pressure the
dominant interatomic forces are harshly repulsive [24–32].
These forces can be modeled approximately by scale-invariant
inverse-power-law (IPL) pair potentials ∝ r−n [33–48] in
which r is the interparticle distance, plus a density-dependent
constant g(ρ) taking long-ranged attractive interactions into
account [24,27]. By Euler’s theorem for homogeneous func-
tions, there is exact correlation between the fluctuations of the
virial and the potential energy in the IPL case. Strong corre-
lations between virial and potential energy are, however, not
necessarily a consequence of approximately scale-invariant
pair interactions, but rather a property of the multidimensional
energy function U (R,V ) per se. This fact motivates the present
paper in which we show from first-principles computations
that many metals possess hidden scale invariance also at low
pressure, i.e., when virtually uncompressed compared to the
zero-pressure state.

For metals, the outer electrons result in complex many-body
interactions of the atoms, which this study takes explicitly into
account. At low pressure hidden scale invariance is nontrivial
since the forces on the atoms are not at all dominated by
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pairwise additive repulsive IPL-type forces [49]. Hidden scale
invariances have been found to be absent if the multidimen-
sional energy function U (R,V ) has prominent contributions
characterized by two or more length scales [8,9]. Examples of
this are water with hydrogen bonds and core repulsions and
the Dzugutov model with core repulsions supplemented by
repulsive forces on second-nearest neighbors [8,9]. However,
it is possible to have multibody interactions and hidden scale
invariance. Below we do not make any assumptions on the
potential energy landscape and verify hidden scale invariance
for the majority of metals directly from a quantum-mechanical
description. Density functional theory (DFT) currently pro-
vides the best means to do so [50–53], and although DFT
can only approximate the true electronic behavior, it provides
accurate predictions on a broad scale, such as crystal structures,
densities, and melting points.

The remainder of the paper is organized as follows: Sec. II
gives the theoretical background of hidden scale invariance,
and Sec. III gives details on the ab initio DFT method. Results
are presented in Sec. IV, and in Sec. V we relate our findings
to the Grüneisen equation of state and well-known empirical
melting and freezing rules.

II. THEORY: HIDDEN SCALE INVARIANCE
OF CONDENSED MATTER

Certain condensed-matter systems are characterized by
a “hidden scale invariance” as reflected in the following
approximate representation of the potential energy function
at density ρ = N/V [11–13]:

U (R) ∼= h(ρ)�̃(R̃) + Ng(ρ) , (1)

where the coordinates of the system’s N particles have
been merged into a single vector, R ≡ (r1,r2, . . . ,rN ), and
the reduced coordinate vector is R̃ ≡ ρ1/3R. The intensive
functions h(ρ) and g(ρ) both have dimension energy, and
�̃ is a dimensionless, state-point-independent function of
the dimensionless variable R̃, i.e., a function that involves
no lengths or energies. Physically, Eq. (1) means that a
change of density to a good approximation leads to a linear
affine transformation of the high-dimensional potential energy
surface. Thus, if temperature is adjusted in proportion to
h(ρ), state points in the thermodynamic phase diagram are
reached where the particles move in the same way according
to Newton’s laws, except for a uniform scaling of space and
time. Sets of such thermodynamic state points are referred
to as isomorphs, and along the isomorphs structure and
dynamics are identical in properly reduced units to a good
approximation [10]. The local slope d ln(T )/d ln(ρ) of the
isomorph is given by

γ (ρ) = d ln(h(ρ))/d ln(ρ) (2)

and is referred to as the density scaling exponent
[11–13,21,22,54–57]. Thus, the phase diagram becomes ef-
fectively one dimensional, and density and temperature merge
into a single parameter.

Hidden scale invariance is revealed in the thermal fluc-
tuations at a single state point. There are two contributions
to the pressure: the ideal-gas pressure pid—a term that is
always present and which only depends on the velocities of the

particles (atoms)—plus a term deriving from the interaction
between the particles. The latter is the so-called virial W ,
and it only depends on the coordinates of the particles. W is
an extensive quantity of dimension energy, and the general
pressure relation is p = pid + W/V . Hidden scale invariance
dictates that fluctuations of virial and potential energy are
strongly correlated in the NV T ensemble [7–9,11]:

W (R,V ) ∼= γ (ρ)U (R,V ) + const., (3)

where the virial is defined by W (R,V ) ≡ −V ∂U (R,V )/∂V

[58,59]. We omit the explicit volume dependence of the
potential energy in the following for brevity. Below we use
the Person correlation coefficient

R = 〈�W (R)�U (R)〉/
√

〈[�W (R)]2〉〈[�U (R)]2〉 (4)

of virial and potential energy fluctuations to determine to
which degree the multibody energy function U (R) has hidden
scale invariance. Here, 〈. . . 〉 indicates a thermodynamic
average in the NV T ensemble and � denotes the difference
to the average value. R is an intensive quantity with a value
between −1 and 1. A value close to 1 indicates hidden scale
invariance. The density scaling exponent is given by [10]

γ = 〈�W (R)�U (R)〉/〈[�U (R)]2〉. (5)

It was previously conjectured that metals possess a hidden
scale invariance, but this was based on assuming Lennard-
Jones-type pair potentials [7]. Reference [8] showed via
the effective medium theory that pure copper, as well as
a magnesium alloy, exhibit hidden scale invariance. We do
not make such assumptions in this paper, as detailed in the
following section.

Before proceeding we note that the isomorph theory was
recently generalized by defining hidden scale invariance via
the property that the order of potential energies is maintained
for uniform scaling of configurations, i.e., U (Ra) < U (Rb) ⇒
U (λRa) < U (λRb) [60].

III. METHOD: DENSITY FUNCTIONAL THEORY

DFT molecular dynamics is a computationally efficient
method with a quantum-mechanical treatment of the electron-
density field. Examples of recent successes of DFT are com-
putation of anharmonic contribution due to phonon-phonon
interactions for fcc crystals of metals [61], dynamics of water
dissociative chemisorption on a Ni surface [62], and accurate
computations of the melting points of period-three metals [63].

In this paper we present calculations of 58 elements using
the Vienna ab initio simulation package (VASP) [64] employ-
ing the projector augmented wave (PAW) method [65] with
the frozen-core assumption and the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional [66]. Dispersion cor-
rections are not included, but they are not expected to be
important for metals near the melting point [63]. We use peri-
odic simulation cells containing 125 atoms for most elements
except for the elements Li, Na, Mg, and Al where we use 256,
250, 384, and 256 atoms, respectively. Initial equilibration
trajectories cover between 9 and 24 ps corresponding to several
structural relaxation times. Constant temperature is obtained
with a Langevin thermostat with a coupling time of 1 ps.
Table I contains the electronic configurations of the calculated
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TABLE I. Correlation coefficients R [Eq. (4)] and density scaling exponents γ [Eq. (5)] of the elements at the estimated DFT triple points
T ,ρ. Values in round parenthesis are the statistical uncertainties. N is the number of atoms in the periodic simulation cell. The electronic
configurations of the calculated electrons as well as the plane wave cutoff energies Emax are listed in the fourth and fifth columns. The
last two columns list the σ parameter of the IPL approximation [Eq. (8)] and the correlation between IPL and DFT energy fluctuations.
Experimental values of T and ρ at the triple points are given in square brackets. Note that here ρ denotes the mass density rather than the
number density [40,67–69].

Emax T [exp.] ρ [exp.] p

Element N Electrons [eV] [K] [g/cm3] [GPa] R γ σ RIPL

3 Li 256 2s1 140.0 470 [454] 0.534 [0.512] 0.29 0.72(0.04) 1.0(0.1) 2.03(0.27) 0.75(0.04)
4 Be 125 2s2 308.8 1850 [1560] 1.570 [1.690] − 0.27 0.75(0.03) 1.8(0.3) 1.16(0.09) 0.50(0.13)
5 B 125 2s22p1 318.6 2400 [2349] 2.245 [2.08] − 1.69 0.10(0.12)
6 C 125 2s22p2 273.9 6000 [4800] 1.514 [1.37] − 1.04 − 0.04(0.18)

11 Na 250 3s1 62.1 370 [371] 0.941 [0.927] − 0.02 0.84(0.02) 1.9(0.1) 1.25(0.05) 0.89(0.01)
12 Mg 384 3s2 98.5 900 [923] 1.581 [1.584] 0.07 0.90(0.01) 2.6(0.2) 1.13(0.03) 0.83(0.08)
13 Al 256 3s23p1 116.4 1000 [933] 2.352 [2.375] − 0.27 0.88(0.05) 4.0(0.2) 1.02(0.01) 0.91(0.02)
14 Si 125 3s23p2 245.3 1700 [1687] 2.827 [2.57] 0.51 0.79(0.03) 4.1(0.2) 0.94(0.02) 0.79(0.04)
15 P 125 3s23p3 255.0 650 [317] 1.850 [1.74] − 0.43 0.01(0.17)
16 S 125 3s23p4 258.7 550 [388] 1.784 [1.819] 0.07 0.13(0.12)

19 K 125 3p64s1 116.7 350 [337] 0.815 [0.828] 0.07 0.86(0.11) 1.6(0.4) 1.40(0.21) 0.87(0.20)
20 Ca 125 3p64s2 266.6 1200 [1115] 1.378 [1.378] − 0.44 0.80(0.06) 1.9(0.1) 1.20(0.03) 0.83(0.04)
21 Sc 125 4s23d1 154.8 1900 [1814] 2.800 [2.80] − 0.38 0.63(0.24) 1.4(0.5) 1.43(0.56) 0.81(0.19)
22 Ti 125 4s23d2 178.3 3900 [1941] 4.161 [4.11] − 0.48 0.78(0.08) 2.0(0.2) 0.96(0.04) 0.88(0.06)
23 V 125 3p64s2d3 263.7 2500 [2183] 5.773 [5.5] − 0.13 0.81(0.07) 2.6(0.6) 1.02(0.12) 0.81(0.05)
24 Cr 125 3p64s1d5 265.7 2600 [2180] 6.735 [6.3] − 1.55 0.90(0.04) 3.3(0.9) 0.98(0.07) 0.83(0.07)
25 Mn 125 4s23d5 269.9 2400 [1519] 7.973 [5.95] 0.66 0.93(0.02) 3.6(0.2) 0.95(0.03) 0.72(0.08)
26 Fe 125 3p64s23d6 267.9 2400 [1811] 8.338 [6.98] 0.03 0.95(0.02) 3.6(0.1) 1.00(0.01) 0.90(0.04)
27 Co 125 4s23d7 268.0 1870 [1768] 8.924 [7.75] 0.22 0.93(0.01) 3.5(0.1) 1.06(0.01) 0.94(0.01)
28 Ni 125 4s23d8 269.5 2000 [1728] 8.189 [7.81] − 0.17 0.92(0.03) 3.5(0.3) 1.03(0.02) 0.96(0.02)
29 Cu 125 4s13d10 295.4 1480 [1358] 8.020 [8.02] − 0.72 0.90(0.02) 4.1(0.2) 1.01(0.01) 0.94(0.01)
30 Zn 125 4s23d10 276.7 760 [693] 6.570 [6.57] − 0.61 0.53(0.12) 3.3(0.9) 1.03(0.04) 0.43(0.17)
31 Ga 125 4s24p1 134.7 500 [303] 5.967 [6.095] − 0.41 0.74(0.09) 3.3(0.5) 1.09(0.04) 0.65(0.09)
32 Ge 125 4s23d104p2 310.3 1250 [1211] 5.600 [5.60] − 1.46 0.82(0.15) 4.8(1.1) 0.91(0.02) 0.80(0.15)
33 As 125 4s24p3 208.7 1300 [1090] 5.220 [5.22] 0.58 − 0.04(0.08)
34 Se 125 4s24p4 211.6 550 [494] 3.838 [3.99] 0.16 − 0.02(0.21)

37 Rb 125 4p65s1 121.9 340 [312] 1.460 [1.46] 0.01 0.80(0.03) 2.3(0.6) 1.12(0.16) 0.91(0.02)
38 Sr 125 4s24p65s2 229.4 1100 [1050] 2.375 [2.375] − 0.24 0.88(0.14) 1.9(0.7) 1.19(0.22) 0.89(0.14)
39 Y 125 4s24p65s24d1 202.6 1850 [1799] 4.359 [4.24] − 0.47 0.60(0.09) 1.3(0.2) 1.47(0.25) 0.82(0.07)
40 Zr 125 4s24p65s24d2 229.9 2500 [2128] 6.305 [5.8] 0.01 0.82(0.07) 2.2(0.5) 1.13(0.11) 0.93(0.03)
41 Nb 125 4p65s14d4 208.6 2900 [2750] 7.669 0.96 0.89(0.04) 3.2(0.2) 1.01(0.02) 0.91(0.01)
42 Mo 125 5s14d5 224.6 3000 [2896] 9.330 [9.33] 0.42 0.89(0.03) 3.2(0.4) 0.98(0.04) 0.77(0.10)
43 Tc 125 5s24d5 228.7 2500 [2430] 10.606 − 0.43 0.87(0.09) 4.0(0.4) 0.94(0.02) 0.65(0.18)
44 Ru 125 5s14d7 213.3 2800 [2607] 11.200 [10.65] 1.18 0.94(0.05) 4.6(0.5) 0.97(0.02) 0.85(0.07)
45 Rh 125 5s14d8 229.0 2400 [2237] 10.807 [10.7] − 1.86 0.88(0.07) 5.2(0.4) 0.96(0.01) 0.89(0.03)
46 Pd 125 5s14d9 250.9 1900 [1828] 10.380 [10.38] − 1.32 0.92(0.04) 4.9(0.5) 0.98(0.01) 0.94(0.01)
47 Ag 125 5s14d10 249.8 1350 [1235] 9.320 [9.320] 0.98 0.90(0.03) 4.8(0.4) 1.00(0.01) 0.96(0.01)
48 Cd 125 5s24d10 274.3 650 [594] 7.996 [7.996] 0.61 0.78(0.07) 5.5(0.6) 0.99(0.02) 0.84(0.04)
49 In 125 5s25p1 95.9 600 [430] 6.859 [7.02] 0.28 0.90(0.05) 4.2(0.5) 1.02(0.04) 0.88(0.08)
50 Sn 125 5s25p2 103.2 900 [505] 6.685 [6.99] − 0.89 0.88(0.06) 4.7(0.9) 0.99(0.03) 0.83(0.04)
51 Sb 125 5s25p3 172.1 950 [904] 6.530 [6.53] 0.68 0.40(0.15) 3.0(1.7) 1.03(0.33) 0.41(0.09)
52 Te 125 5s25p4 175.0 750 [723] 5.700 [5.70] − 0.64 0.03(0.22)

55 Cs 125 5s25p66s1 220.3 330 [302] 1.826 [1.843] 0.04 0.90(0.22) 1.7(0.6) 1.33(0.77) 0.96(0.45)
56 Ba 125 5s25p66s2 187.2 1050 [1000] 3.338 [3.338] − 0.41 0.64(0.24) 1.0(0.4) 1.89(1.15) 0.69(0.29)
57 La 125 5s25p66s25d1 219.3 1280 [1193] 5.940 [5.94] − 1.86 0.72(0.23) 1.7(0.6) 1.25(0.30) 0.86(0.16)
72 Hf 125 5p66s25d2 220.3 2600 [2506] 12.349 [12] − 1.92 0.83(0.03) 2.2(0.3) 1.16(0.07) 0.91(0.02)
73 Ta 125 5p66s25d3 223.7 3450 [3290] 15.000 [15] 0.45 0.90(0.03) 3.3(0.3) 1.02(0.02) 0.91(0.06)
74 W 125 5p66s25d4 223.1 3900 [3695] 16.803 [17.6] − 0.78 0.86(0.08) 3.7(0.6) 0.99(0.03) 0.88(0.06)
75 Re 125 6s25d5 226.2 3650 [3459] 18.787 [18.9] 0.98 0.82(0.09) 4.5(0.7) 0.97(0.02) 0.81(0.10)
76 Os 125 6s25d6 228.0 3450 [3306] 19.741 [20] 0.46 0.86(0.06) 5.1(0.4) 0.97(0.01) 0.85(0.04)
77 Ir 125 6s15d8 210.9 2900 [2719] 19.275 [19] − 0.91 0.71(0.07) 5.1(0.4) 0.96(0.01) 0.83(0.05)
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TABLE I. (Continued.)

Emax T [exp.] ρ [exp.] p

Element N Electrons [eV] [K] [g/cm3] [GPa] R γ σ RIPL

78 Pt 125 6s15d9 230.3 2200 [2041] 18.532 [19.77] − 1.00 0.87(0.06) 6.0(1.4) 0.97(0.02) 0.94(0.03)
79 Au 125 6s15d10 229.9 1470 [1337] 16.690 [17.31] 1.06 0.86(0.14) 7.9(1.6) 0.95(0.02) 0.92(0.06)
80 Hg 125 6s25d10 233.2 470 [234] 11.917 0.48 0.84(0.13) 4.4(1.9) 1.00(0.07) 0.67(0.19)
81 Tl 125 6s26p1 90.1 600 [577] 11.220 [11.22] 0.53 0.90(0.09) 3.7(0.2) 1.06(0.02) 0.86(0.12)
82 Pb 125 6s26p2 98.0 900 [601] 10.671 [10.66] 0.48 0.90(0.10) 4.1(0.7) 1.03(0.03) 0.94(0.09)
83 Bi 125 6s26p3 105.0 580 [545] 10.050 [10.05] − 0.27 0.10(0.19)
84 Po 125 6s26p4 159.7 850 [527] 9.039 − 0.01 0.36(0.21) 2.5(1.7) 1.13(0.40) 0.35(0.23)

electrons as well as the cutoff energies of the plane wave basis
set. All calculations were done non-spin-polarized, and the
Brillouin zone was sampled at its center, the 	 point. Statistical
uncertainties are estimated by dividing MD trajectories into
statistically independent blocks. Details on estimating DFT
triple points are given in the Appendix.

IV. RESULTS

A. Correlated virial and potential energy fluctuations

Figure 1 shows the results of DFT computations on the first
six period-three elements. Each subfigure gives a scatter plot
of virial versus potential energy of configurations taken from
NV T equilibrium simulations of the liquid phase at the triple
points. For the metals (Na, Mg, and Al) and the metalloid
(Si) the scatter plots show strong correlations, implying that
Eq. (3) is obeyed to a good approximation. The value of the
Pearson correlation coefficient R [Eq. (4)] quantifies how well
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FIG. 1. (Color online) Results from ab initio quantum-
mechanical calculations of the first six period-three elements in the
liquid phase at the triple point. Each subfigure shows a scatter plot
of the potential energy U (R) and the corresponding virial W (R)
for configurations of the NV T ensemble. Fluctuations of virial and
potential energy are strongly correlated for the metals Na, Mg, and
Al and the metalloid Si, but not for the covalently bonded nonmetals
P and S. The strong correlation validates hidden scale invariance for
metals. Each subfigure reports the Pearson correlation coefficient R

[Eq. (4)] and the density-scaling exponent γ of Eq. (3) determined
as the linear-regression slope [Eq. (5)].

the approximation is obeyed [7–11]. The nonmetals P and S
do not exhibit strong WU correlations.

B. Invariant structure and dynamics

To demonstrate hidden scale invariance directly, we in-
vestigated liquid magnesium in more detail. The results are
summarized in Fig. 2, which studies isomorphic as well
as isochoric state points for temperatures between 900 and
1600 K. Panels (a) and (b) give the radial distribution functions
for the isomorphic and isochoric state points, respectively,
while (c) and (d) give the translational order parameter Q

suggested by Truskett, Torquato, and Debenedetti [70] and
the reduced diffusion constant. We see that structure and
dynamics are almost invariant along the isomorph, which
confirms magnesium’s hidden scale invariance.

The isomorph in Fig. 2 is determined as follows: First
we choose to identify state points with density increases of
9%, 20%, and 30% relative to that of the triple point. Then
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FIG. 2. (Color online) Predicted isomorph invariants of magne-
sium along an isomorph and an isochore for the same temperature
variation. Panels (a) and (b) show results for the radial distribution
function g(r) in reduced units; panels (c) and (d) show the transla-
tional order parameter Q of Debenedetti et al. [70] and the reduced
diffusion constant D. The reduced unit structural and dynamical
quantities g(r), Q, and D all vary much less along the isomorph
[(a) and (c)] than along the isochore [(b) and (d)]. m is the atomic
mass.
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FIG. 3. (Color online) Determination of the isomorphic temper-
ature at ρ/ρ0 = 1.3 for Mg using Eq. (6) (ρ0 = 1.581 g/cm3 is the
estimated triple point density listed in Table I). The ratio T/T0 is
given as the ratio of the fluctuations of the potential energy of the
scaled and unscaled configurations.

temperatures along the isomorph are determined by relating
the Boltzmann factors of scaled configurations [10]:

exp(−U (R0)/kBT0) ∝ exp(−U (R)/kBT ). (6)

100 representative configurations R0 at the triple point
(T0,ρ0) are rescaled to the new density ρ according to
R = R0[ρ0/ρ]1/3. By taking the logarithm of Eq. (6), we see
that T/T0 is the ratio of the fluctuations of the energy at the
scaled configurations U (R) and the energy of the reference
configurations U (R0). Figure 3 relates the energies of these
configurations at the initial density ρ0 and at the target density
ρ. The computed temperatures of the isomorphic states are
1110, 1370, and 1600 K, respectively.

C. The periodic table of hidden scale invariance

The results of Fig. 1 inspired us to study the elements in
general to investigate whether all liquid metals exhibit hidden
scale invariance. The results for 58 elements are summarized
in Fig. 4 and Table I. We excluded some nonmetallic elements
(gray in Fig. 4) for which standard semilocal density function-
als are inaccurate. Metallic liquid elements all have strong or
fairly strong virial potential-energy correlations at the triple
point as quantified in the virial potential-energy correlation
coefficient R. Most of the metals have R larger than 80%,
however, a few metallic elements show correlation coefficients
in the range of 50–80%. Scale invariance is expected to be
worse for these elements.

As mentioned, all systems have the hidden-scale-invariance
property at high pressure where repulsive pair interactions
dominate (see Sec. IV G). Moreover, crystals generally have
stronger virial potential-energy correlations than liquids [23].
We therefore conclude that metallic elements are (R) simple
in the entire condensed-phase part of the phase diagram, i.e.,
exhibit hidden scale invariance to a good approximation. This
excludes state points close to the critical point, as well as those
of the gas phase far from the melting line. Table I also reports

the computed DFT scaling exponents γ , which we discuss in
detail in the following section, Sec. IV D.

D. Density scaling exponents

For a monatomic liquid of N classical particles (above the
Debye temperature) the density scaling exponent γ can be
determined purely from thermodynamic responses [10]:

γ = [γG − kB/cv]/[1 − 3kB/2cv] , (7)

where γG = αpKT /ρcv is the thermodynamic Grüneisen
parameter. Here, αp = [∂V/∂T ]p/V is the isobaric thermal
expansion coefficient, KT = −V [∂p/∂V ]T is the isothermal
bulk modulus, cv = CV /N is the isochoric heat capacity per
atom, and kB is the Boltzmann constant. The density scaling
exponent is proportional to the thermodynamic Grüneisen pa-
rameter up to the accuracy of the Dulong-Petit approximation
cv � 3kB : γ � 2γG − 2/3 (see inset of Fig. 5). In Fig. 5
we compare 16 experimentally determined density scaling
exponents [71] to the values computed with DFT for the liquid
state (see Table I). Incidentally, our computations show that
the Lennard-Jones model does not properly reflect the physics
of most metals because the DFT values of the density-scaling
exponents are generally significantly smaller than γ � 6 of
the Lennard-Jones model [7].

Interestingly, with the exception of Fe and Tl, the elements
Na, K, Rb, and Cs forming the more open body centered cubic
(bcc) crystal structure have lower scaling exponents than the
elements Mg, Al, Co, Ni, Cu, Zn, Ag, Cd, Au, and Pb that
form close packed (cp) structures—face centered cubic (fcc)
or hexagonal close packed (hcp). We explore this further in the
following Sec. IV E.

E. Revisiting the inverse power-law model

As mentioned in the introduction, hidden scale invariance
may be explained if the interactions in a metal can be
approximated with the IPL model [33–48]: U (R) � UIPL(R)
where

UIPL(R) = Ng(ρ) + A

N∑

i<j

|rj − ri |−3γ , (8)

where A = kBT σ 3γ ρ−γ is a material dependent constant.
The mean field term Ng(ρ) takes long-ranged attractive
interactions into account [24,27]. Scale invariance is not
“hidden” for the IPL model but a trivial result: Temperature
and density merge into the dimensionless parameter σ =
[Aργ /kBT ]1/3γ —i.e., σ is the single parameter of the phase
diagram and isomorphs are given by T ∝ ργ . To quantify
the accuracy of this approximation we list the correlation
coefficients between the IPL energy and the DFT energy,
RIPL = 〈�UIPL(R)�U (R)〉/

√
〈[�UIPL(R)]2〉〈[�U (R)]2〉, in

Table I and color the symbols indicating the crystal structures
in Fig. 4 accordingly. Elements with strong correlations
between W and U fluctuations also have strong correlations
between UIPL and U . Figure 6 compares the experimen-
tally determined structure factor S(q) of Mg at the triple
point [72–74] with that of the IPL model (without any
free parameters). The agreement is excellent. The deviation
at small q vectors, related to the bulk modulus, is due
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FIG. 5. (Color online) Density scaling exponents from experi-
mental thermodynamic data collected in Ref. [71] compared to
ab initio DFT computations for liquids. Elements forming bcc
structures are marked with blue diamonds, while elements forming
one of the close-packed structures (fcc or hcp) are marked with green
triangles. The inset compares the experimental values of γ to those of
the Grüneisen parameter γG. The dashed line indicates the prediction
based on the Dulong-Petit approximation (cv � 3kB ).

to the mean-field g(ρ) treatment of long-ranged attractive
interactions [75].

Following the seminal 1972 paper by Hoover, Young,
and Grover [34], we look for a connection between the
density scaling exponents and crystal packings. An IPL liquid

0 6 12 18
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or

, S
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)

[Tahara et al (2006)]
IPL (γ=3.4; σ=1.094)
ab initio DFT

Mg

FIG. 6. (Color online) Experimental structure factor of Mg at the
triple point [73] (green squares), compared to the IPL prediction (red
triangles). The prediction has no free parameters: The exponent γ =
3.4 of the IPL potential [Eq. (8)] is given by experimental values [71]
of cv , αp , and KT [using Eq. (7)], and σ = 1.094 was chosen to match
that of the solid-liquid coexistence shown in Fig. 7. The blue dots are
the results of an ab initio DFT calculation.
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FIG. 7. (Color online) Phase diagram of the IPL model [Eq. (8)
with kBT = ρ = 1 and g(ρ) = 0] computed with the interface
pinning method [80]. Green triangles are the liquid sides of the
liquid-fcc transitions, blue diamonds are liquid-bcc transitions. Full
lines are guides to the eye. The vertical dashed line indicates the
bcc-fcc transition at γ = 2.5 [34,77]. The inset shows the pair
energies and a representative liquid radial distribution at coexistence.

is known [33,34,40,41,47,76,77] to crystallize into a close
packed (cp) fcc crystal structure when the IPL γ is above
2.5, while the more open body centered cubic (bcc) crystal is
stable at lower values of γ (Fig. 7). The IPL model exhibits
a polymorphic cp-bcc transition when γ < 2.5 also seen for
many metals [40,78,79]. Thus, at the triple point elements
with γ < 2.5 are expected [34] to form bcc crystals while
elements with γ > 2.5 are expected to form cp crystals (fcc or
hcp). Figure 8 shows the agreement of this prediction with the
experimental crystal structure formed at the triple point (using
the DFT values of γ given in Table I).

The prediction holds for many elements despite the small
free energy differences between the respective crystal struc-
tures. However, it fails for several transition metals (V, Cr,
Mn, Fe, Nb, Mo, Ta, W, and Hg), most post-transition metals
(Ga, In, Sn, and Tl), and the metalloids Si and Ge. Moreover,
the IPL model predicts that metals that form bcc structures at

H He

Li Be B C N O F Ne

Na Mg Al Si P S Cl Ar

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

FIG. 8. (Color online) Periodic table where green elements have
a crystal structure at the triple point [40,78,79] predicted by assuming
IPL interactions (see Sec. IV E). The IPL prediction fails for the
red elements. Zn and Cd have been colored yellow since their
distorted hcp crystals makes the IPL prediction ambiguous. All
colored elements have hidden scale invariance judged from their
highly correlated WU fluctuations (see Fig. 4 and Table I).
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TABLE II. Correlation coefficients and scaling exponents for the
period-three metals in the liquid phase at the triple point. Comparing
the last two columns shows that the melting-line scaling exponent γm

agrees with the density-scaling exponent γ . Numbers in parenthesis
indicate the statistical uncertainties.

Element R γ γm

Na 0.84(0.02) 1.9(0.1) 1.7(0.5)
Mg 0.90(0.01) 2.6(0.2) 2.6(0.5)
Al 0.88(0.05) 4.0(0.2) 4.6(0.8)

the triple point also have a low temperature cp phase; this
is not always the case. For all of these elements we find
significant WU correlations (see Fig. 4). Thus, we conclude
that scale invariance can be present even when the element’s
crystal structure cannot be accurately predicted by IPL-like
interactions. This also illustrates the importance of choosing
an ab initio method for investigating hidden scale invariance.

F. The melting lines follow isomorphs

The melting line follows an isomorph to a good approxima-
tion [10,11,63]. In Table II this prediction is validated for the
period-three metals by showing that the melting-line scaling
exponent γm ≡ d ln Tm/d ln ρ [23,63,80,81], calculated from
the slope of the melting line, agrees with that of the isomorph,
the density-scaling exponent γ .

G. Elevated pressure behavior of Fe and P

Fe shows a fairly good correlation between the virial and
the potential energy. Interestingly, the melting line Tm(ρ)
reported in Refs. [82,83] coincides to a good degree with an
extrapolation along the isomorph starting from the triple point,
using Tm ∝ ργ with γ = 3.6 (see Table I).

To exemplify that the behavior of elements becomes simpler
at high pressure we compare in Fig. 9 the WU scatter
plot of Fe at the triple point [Fig. 9(a)] with simulation
results at the pressure 310 GPa [Fig. 9(b)] corresponding to
a pressure in Earth’s liquid outer core and near the melting
line of pure iron [82,83]. The correlation coefficient increases
from R = 0.95 to R = 0.98. Figure 9(c) shows that WU

fluctuations are uncorrelated in the gas-liquid coexistence
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FIG. 10. (Color online) High-pressure calculations of phospho-
rus (P) show that the correlation coefficient increases with increasing
pressure.

regime, which is presumably associated with the formation
of a gas-liquid interface in the simulation cell and the onset of
critical fluctuations. Likewise, the WU correlation coefficient
of the nonmetal phosphorus (P) increases at high pressures
from nearly uncorrelated at the triple point to R = 0.30 and
R = 0.52 at (p = 63 GPa, T = 1880 K) and (p = 210 GPa,
T = 2200 K), respectively (Fig. 10).

V. CONCLUDING REMARKS

A. The Grüneisen equation of state

It has been known for a long time that at pressures high
enough to result in non-negligible compression, solids and
liquids generally obey the Grüneisen equation of state from
1912 (also referred to as the Mie-Grüneisen equation) [26,84].
This expresses proportionality between pressure and energy E

per volume V as follows:

p = γG(ρ)E/V + C(ρ) (9)

in which γG(ρ) is the Grüneisen parameter (Sec. IV D) and
C(ρ) the “cold pressure,” both of which are functions only
of the density. The Grüneisen equation has been applied
for describing condensed matter in a wide variety of high-
pressure situations, ranging from the core of Earth [82]
to various forms of explosions [84,85]. The well-proven
Hugoniot shock-adiabatic method is available for determining
γG(ρ) experimentally [84,86,87]. At high pressure in the dense
fluid phase not too far from the melting line [88] the virial
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Fe at the triple point
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FIG. 9. (Color online) Virial potential-energy scatter plots for iron. Panel (a) shows a scatter plot of potential energy and virial of 125 iron
atoms at the DFT triple point. Panel (b) shows that the correlation increases at elevated pressure, here chosen corresponding to a pressure at
Earth’s core and near the melting line of pure iron (310 GPa, 9000 K) [82,83]. Panel (c) shows that the correlation is low in the gas-liquid
coexistence region.
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term dominates. For instance, the ideal-gas contribution to the
pressure is below five percent throughout the liquid outer core
of Earth. The configuration-space analog of the Grüneisen
equation is the relation

W ∼= γ (ρ)U + C(ρ)V . (10)

Equation (10) follows from the hidden scale invariance [10].
The scaling exponent γ (ρ) has a simple relation to γG(ρ) given
in Eq. (7) [10].

B. Empirical melting and freezing rules

As a consequence of our finding, many empirical melting
and freezing rules now find a concise explanation. Specifically,
a number of invariants along the melting line of metals (and
model systems) have been known for years with no good
explanations. These rules follow from hidden scale invariance,
because the melting and freezing lines are both isomorphs [11]
and the rules all involve isomorph invariants. A famous melting
rule is the Lindemann criterion, according to which a crystal
melts when the thermal vibrational atomic displacement is
about 10% of the crystal’s interatomic distance [36,89–91].
While our work does not imply a universal value of 10%,
it does imply invariance of the Lindemann quantity along
the melting line. There are also other empirically well-
established freezing rules of invariance, for instance the
Hansen-Verlet rule that a liquid crystallizes when the first
peak of the structure factor reaches the value 2.85 [92], the
Andrade equation predicting constant reduced-unit viscosity
along the freezing line [93,94], the Raveche-Mountain-Streett
criterion [95] of a quasiuniversal ratio between maximum
and minimum of the radial distribution function at freezing,
Lyapunov-exponent based criteria [96], or the criterion of
zero higher-than-second-order liquid configurational entropy
at crystallization [97]. Connecting the melting and freezing
lines is the rule of invariant constant-volume melting entropy
[98,99].
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APPENDIX: ESTIMATIONS OF DFT TRIPLE POINTS

The main focus of the paper is to investigate the possibility
of hidden scale invariance of elements in the low-pressure part
of the liquid phase. An unbiased choice is to use state points

FIG. 11. (Color online) Panel (a) shows an example of a crystal-
lized configuration (Ga). The inset shows the computed diffraction
patten. In such cases the computations were redone at higher temper-
ature to avoid crystallization. Panel (b) shows a DFT configuration of
Fe at the experimental triple point. DFT overestimates the triple point
density by 16%; thus cavities are formed when iron is simulated at
the experimental density.

near the DFT triple points. However, an accurate determination
of the triple point is beyond the scope of the present paper and
also not relevant for the present work. The DFT triple point
is estimated by performing an NpT computation at a state
point close to, or slightly above, the experimental melting
temperature and at ambient pressure (within an accuracy of
2 GPa or less, see Table I). The NpT ensemble is realized
using the Parinello-Rahman method [100] with a fictitious
mass of 100 atomic units and a thermal coupling time of
1/3 ps. The finite cutoff of the plane wave basis set requires
the exertion of an additional pressure to compensate for the
missing basis set functions. This pressure is referred to as
Pulay stress, and it was estimated in a separate calculation. If
the system froze at the experimental temperature, for instance
due to finite size effects, the temperature was increased until
the system stayed liquid throughout the entire trajectory.
An example of a crystallized configuration is shown in
Fig. 11(a). For some systems, such as Ti, Ga, Sn, and Hg, the
temperature had to be increased significantly compared to the
experimental melting temperature. However, we only found
small variations of γ and R upon increasing the temperature
by a factor of 2. The final state points used to compute
the UW correlations in the NV T ensemble are listed in
Table I.

For Mn, Fe, and Co the computed liquid densities are
25%, 16%, and 15% higher than the respective experimental
densities. Simulations of these liquids at the experimental
density using standard density functional theory led to internal
surfaces and cavities between the atoms as shown in Fig. 11(b).
The reason for this sizable deviation of the DFT liquid densities
from experiment needs to be investigated in the future. A likely
explanation is strong paramagnetic fluctuations at the atomic
sites that would require a treatment beyond standard density
functional theory, for instance using dynamical mean field
theory. Such fluctuations can increase the typical bond length
by some 5%.
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