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A vortex close to a no-slip wall gives rise to the creation of new vorticity at the
wall. This vorticity may organize itself into vortices that erupt from the separated
boundary layer. We study how the eruption process in terms of the streamline
topology is initiated and varies in dependence of the Reynolds number Re. We
show that vortex structures are created in the boundary layer for Re around 600,
but that these disappear again without eruption unless Re > 1000. The eruption
process is topologically unaltered for Re up to 5000. Using bifurcation theory, we
obtain a topological phase space for the eruption process, which can account for
all observed changes in the Reynolds number range we consider. The bifurcation
diagram complements previously analyzes such that the classification of topological
bifurcations of flows close to no-slip walls with up to three parameters is now
complete. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921527]

I. INTRODUCTION

A vortex convected close to a no-slip wall induces a viscous response from the wall boundary
layer. For a sufficiently high Reynolds number, vorticity from the boundary layer is ejected into
the surrounding fluid, resulting in secondary vortex structures. This phenomenon has been denoted
eruption of the boundary layer,1,2 unsteady separation,3,4 or bursting,5 and it occurs for a wide range
of Reynolds numbers.6,7 The interaction between concentrated vorticity in a fluid and the vorticity
created at a no-slip wall occurs in many important settings. In dynamic stall of an unsteady airfoil,
the vortex created at the leading edge plays a key role in generating the transition to separated
flow.8,9 A vortex wake created by the flow around a bluff body may interact with a wall or a free
surface and give rise to secondary vortices.10–13 This is also the case when vortices, solid bodies, or
jets impinge directly on a wall.14–17

Here, we are concerned with a precise and formal description of the qualitative changes in
the flow structure that occur during the eruption process and how the sequence of these transitions
depends on the Reynolds number. Our starting point is the analysis by Kudela and Malecha1,2 who
showed numerically how the streamline pattern changes through several stages as a vortex erupts
from the boundary layer. We will provide further numerical simulations to understand the process in
more detail and also provide a theoretical framework to establish the possible topological changes in
the streamline pattern as time and Reynolds number vary.
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No generally accepted or generally applicable definition of spatial structures in fluid flows
is available, and even for a fundamental object such as a vortex, many definitions have been
suggested.18–20 Possibly, the most elementary approach to the identification of structures in flows
is to consider the topology of the streamlines, that is, the trajectories of the system of ordinary
differential equations in dimensions two or three,

ẋ = v(x), (1)

where v is the instantaneous velocity field. From the qualitative theory of differential equations, it
is known that the phase portrait of an autonomous system like (1) is primarily organized by the
critical points defined by v = 0 and the stable and unstable manifolds of these points which form
dividing streamlines and streamsurfaces. The analysis of streamline topology has a long history in
fluid mechanics with pioneering work by Dean21 and Legendre22–24 followed by many others.25–28 If
parameters such as the Reynolds number or geometric properties are varied, bifurcation theory can
be applied to characterize the changes in the streamline pattern that may arise. For unsteady flows,
time can also be considered a parameter in system (1). A general bifurcation theory for streamline
patterns has been developed by several authors28–33 and many applications to specific flow problems
such as vortex breakdown,34,35 driven cavities,36–38 the cylinder wake,39,40 and peristaltic flows41 are
available.

The analysis of topological bifurcations consists in identifying degenerate streamline patterns
and their unfoldings, that is, parametrized families of velocity fields which can represent all possible
perturbations of the given degenerate pattern. By a series of coordinate transformations, one tries
to obtain a special unfolding, denoted a normal form, which contains as few free parameters as
possible. The number of parameters is the codimension of the degeneracy. The parameter space is a
bifurcation diagram which is partitioned by bifurcation curves and surfaces into regions of different
flow topologies. Such a bifurcation diagram constitutes a topological phase space for a class of flow
problems.

We organize our analysis as follows: In Sec. II, we report detailed numerical simulations of
the vortex-driven flow for Re up to 5000 and establish all the topological bifurcations that are
relevant. In Sec. III, we first note that none of the topological phase spaces which are available in
the literature can account for all the observed bifurcations in the eruption process and thereafter
proceed to establish and analyze the relevant normal form which has codimension three. In Sec. IV,
we verify that the normal form does in fact cover all the observed bifurcations, and in Sec. V, we
draw conclusions and provide an outlook.

II. TOPOLOGICAL BIFURCATIONS IN BOUNDARY LAYER ERUPTION

From numerical computations, Kudela and Malecha1,2 have identified various changes in the
topology of the streamlines during the eruption process, when described in a coordinate system
fixed to the wall. The configuration is shown in Fig. 1. At t = 0, a Gaussian vortex with core radius
a and negative circulation −Γ is placed a distance d from a flat wall, and an image vortex is placed

FIG. 1. Initial configuration of the eruption process. A Gaussian vortex with core radius a and negative circulation −Γ is
placed at (0,d).
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FIG. 2. Numerically obtained streamlines for the vortex-induced flow for Re= 200. In each panel, the dimensionless time
and the topological classification according to the bifurcation diagram in Fig. 11 are shown.

below the wall. This is then evolved for a short relaxation time with a free-slip wall boundary
to smooth out transient oscillations, allowing the flow to adjust.42 When the initial oscillations
are reduced, the wall boundary condition is instantaneously switched to a no-slip wall and the
computation is continued. The equations were solved in a coordinate system where the vortices
are initially at rest. The equations are non-dimensionalized by the length scale L = d and the time
scale T = 2πad/Γ. The Reynolds number is defined by Re = L2/Tν. The flow equations are solved
by a well-established finite-element code using GLL quadrature and Lagrange polynomials.43–45

Standard domain and resolution studies were performed to ensure the reliability of predictions, and
very good agreement with the results by Kudela and Malecha2 is obtained. For more details on the
computational aspects, see Ref. 46.

In Figs. 2–6, we show representative sequences of streamline patterns for increasing values of
Re. Shortly after the initiation of the flow, the main vortex appears as closed streamlines encircling a
critical point (not displayed) located at (0,1) at t = 0. At later times, the pictures focus on structures
close to the wall such that the main vortex is outside the plotting window. Each streamline pattern is
classified according to its topology following the theory we develop in Sec. III.

For Re = 200, Fig. 2, a separation zone occurs at the wall which grows and then shrinks and
disappears again. Not further changes in topology occur, and there is consequently no eruption. For
Re = 600, Fig. 3, a separation zone is again created, but rather than shrinking while attached to
the wall it pinches off, creating a saddle point in the fluid. The dividing streamlines of the saddle
enclose a region with closed streamlines around a critical point of center type. This can be consid-
ered as a vortex structure which is not yet erupted. However, soon after the creation, the vortex
structure shrinks and disappears as the saddle and the center merge in a saddle-center bifurcation
before it has left the boundary layer.

For Re = 800, Fig. 4, a saddle-center bifurcation occurs inside the attached separation zone.
This creates a figure-eight structure visible at t = 10.3125. Shortly thereafter, another saddle-center
bifurcation occurs where the lower center and the saddle disappear, leaving only a single center
inside the separation zone. The rest of the process is identical to that at Re = 600.

For Re = 1000 and up to 5000, eruption takes place following the sequence of events which we
show in Fig. 5. As for Re = 800, a figure-eight is created inside the separation zone (t = 13.3225),
but now the top center and the saddle pinch off in a global bifurcation, leaving a separation zone
attached to the wall and an erupted vortex structure (t = 13.897 50). The separation zone shrinks

FIG. 3. As Fig. 2, but for Re= 600.
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FIG. 4. As Fig. 2, but for Re= 800.

and disappears, while the erupted vortex leaves the boundary layer as it rotates around the main
vortex, much like two point vortices of opposite sign in an ideal fluid would do.

At later stages, further topological changes may occur if Re is sufficiently high. We illustrate
this for Re = 5000 in Fig. 6. Here, an attached separation zone is again created, and a little later, a
vortex structure appears above it in a saddle-center bifurcation. It does not erupt but merges with
the separation zone which subsequently disappears in a few bifurcations. For higher values of Re,
these secondary topological changes may lead to eruption2 and generate more complex streamline
patterns which are outside the scope of the present study.

III. TOPOLOGICAL ANALYSIS

A. The setting of the analysis

We consider two-dimensional incompressible flow close to a flat no-slip wall. The local struc-
ture of the streamlines close to a point which we take to be the origin can be found from a Taylor

FIG. 5. As Fig. 2, but for Re= 5000, early stages.
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FIG. 6. As Fig. 2, but for Re= 5000, later stages.

expansion of the stream function,

ψ = y2
∞

n,m=0

an,m+2xnym. (2)

Here, the wall is given by y = 0 and the factor y2 appears as a consequence of the no-slip boundary
condition. The velocity components are given by

u =
∂ψ

∂ y
, v = −∂ψ

∂x
, (3)

but rather than considering differential equations (1), a time-scaled version where a common factor
y is eliminated is normally used,

ẋ = û =
u
y
= 2a0,2 + 2a1,2x + 3a0,3y + · · ·, ẏ = v̂ =

v

y
= −a1,2y + · · ·. (4)

This system has a critical point at the origin if a0,2 = 0, and the type of the point is given by the
eigenvalues of the Jacobian matrix,

J = *
,

2a1,2 3a0,3

0 −a1,2

+
-
. (5)

If a1,2 , 0, the eigenvalues are real and non-zero, such that the critical point is a regular point of
separation or attachment. If, however, a1,2 = 0, the critical point is degenerate, and a small variation
of the coefficients an,m may result in a qualitative change of the local streamline pattern, that is, a
bifurcation. A bifurcation analysis is efficiently approached by obtaining a normal form, where as
many higher-order terms as possible in (4) are removed by non-linear coordinate transformations.
The number of bifurcation parameters which remain in the normal form is the co-dimension of the
degenerate critical point. Under the non-degeneracy condition a0,3 , 0, normal forms and bifurca-
tion diagrams of co-dimension up to three have been obtained in Refs. 28, 31, and 32. This is known
as the simple case, while the case a0,3 = 0 is non-simple. The most basic non-simple situation has
co-dimension two under the non-degeneracy conditions

a2,2 , 0, ã0,4 = a0,4 −
a1,3

2

4a2,2
, 0, (6)

see Refs. 28 and 31. Two different bifurcation diagrams result from this normal form, depending on
the sign σ of ã0,4/a2,2. See, e.g., Fig. 11 in Ref. 31. For σ > 0, the pinching off of a vortex from
the wall as it occurs in Figs. 3 and 4 is possible. When σ < 0, the pinching off of a vortex from a
figure-eight inside a separation zone attached to the wall is possible. This is the main bifurcation
leading to eruption as shown in Fig. 5, so to get a complete description of all the bifurcations
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in the vortex-driven flow, a single normal form allowing different signs of σ is needed. Hence,
non-degeneracy conditions (6) must be broken.

The case where the first condition is violated, together with other non-degeneracy conditions,

a0,2 = a1,2 = a0,3 = a2,2 = 0, a1,3 , 0, a3,2 , 0, (7)

has co-dimension three.37,40 However, it cannot account for the bifurcations we consider here.
The other case,

a0,2 = a1,2 = a0,3 = ã0,4 = 0, a2,2 , 0, (8)

has, to our knowledge, not been analyzed before. In the rest of this section, we will obtain
the normal form and the bifurcation diagram associated with this degeneracy under a further
non-degeneracy condition of the form ã0,5 , 0, where ã0,5, given in (10c), is a parameter which
appears in the course of the analysis. In Sec. IV, we will show that the bifurcation diagram is the
relevant one for the vortex-driven flow. With this analysis, all topological bifurcation diagrams for
flows close to a no-slip wall with co-dimension up to three have been obtained.

B. Normal form for the degenerate case

In this section, we perform a series of coordinate transformations in an attempt to simplify
stream function (2) assuming conditions (8).

Following Hartnack,31 we introduce the new variable ξ = x + a1,3
2a2,2

y to eliminate the term

a1,3x y3. As a consequence of the assumption ã0,4 = 0, the streamfunction then reads

ψ = y2 �a2,2ξ
2 + a3,2ξ

3 + ã2,3ξ
2y + ã1,4ξ y

2 + ã0,5y
3 + O(|ξ, y |4)� , (9)

where

ã2,3 = a2,3 −
3a3,2a1,3

2a2,2
, (10a)

ã1,4 = a1,4 −
a2,3a1,3

a2,2
+

3a3,2a1,3
2

4a2,2
2 , (10b)

ã0,5 = a0,5 −
a1,4a1,3

2a2,2
+

a2,3a1,3
2

4a2,2
2 −

a3,2a1,3
3

8a2,2
3 . (10c)

Further simplifications can be obtained from non-linear coordinate transformations. We define a
near-identity transformation such that the wall y = 0 is mapped to η = 0 by

ξ = χ + r2,0χ
2 + r1,1χη + r0,2η

2, y = η + s1,1χη + s0,2η
2. (11)

This transforms the stream function into

ψ = η2�a2,2χ
2 + (2a2,2r2,0 + 2s1,1a2,2 + a3,2) χ3

+ (2a2,2r1,1 + 2s0,2a2,2 + ã2,3) χ2η + (2a2,2r0,2 + ã1,4) χη2 + ã0,5η
3 + O(| χ,η |4)�. (12)

The terms χ3η2, χ2η3, and χη4 can be eliminated by choosing r2,0 = 0, r1,1 = 0, r0,2 = −
ã1,4

2a2,2
,

s1,1 = −
a3,2

2a2,2
, and s0,2 = −

ã2,3
2a2,2

and we get

ψ = η2�a2,2χ
2 + ã0,5η

3 + O(| χ,η |4)�. (13)

Finally, we scale time by dividing the stream function by ã0,5 and scale χ by substituting χ =
����
ã0,5
a2,2

����x and obtain

ψ = η2�σx2
+ η3 + O(|x, η |4)�, (14)

where

σ =
a2,2

ã0,5

�����
ã0,5

a2,2

�����
=



+1 for a2,2/ã0,5 > 0
−1 for a2,2/ã0,5 < 0

(15)
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FIG. 7. Streamline patterns close to the degenerate critical point for normal form (14). (a): σ =−1, (b): σ = 1.

and we have assumed ã0,5 , 0. To analyse the topology of the flow close to the critical point (0,0)
of (14), we look for possible separatrices (dividing streamlines) by solving ψ = 0. Disregarding the
O-term, the solutions are

η = 0, η = (−σx2)1/3, (16)

where the first solution corresponds to the wall and the latter forms a cusp which is in the fluid
domain η > 0 only if σ = −1. The two possible streamline patterns are shown in Fig. 7.

It is interesting to note that stream function (9) cannot occur in a steady flow. From the steady
Navier-Stokes equations, further conditions on the coefficients appear which ensure31 that ã0,4 < 0.
Hence, the analysis of this paper is relevant only for unsteady flows.

C. Unfolding of the degenerate case

The degenerate case is structurally unstable. Small perturbations of the parameters away from
the degenerate value may result in different streamline patterns. Following the approach from
Sec. III B, we will now derive a normal form to simplify the bifurcation analysis. We define again
the new variable ξ = x + a1,3

2a2,2
y and substituting this into (2), we get

ψ = y2(ϵ1 + ϵ2ξ + ϵ3y + ϵ4y
2 + a2,2ξ

2 + a3,2ξ
3 + ã2,3ξ

2y + ã1,4ξ y
2 + ã0,5y

3 + O(|ξ, y |4)), (17)

where

ϵ1 = a0,2, ϵ2 = a1,2, ϵ3 = a0,3 −
a1,3a1,2

2a2,2
, ϵ4 = ã4 = a0,4 −

a1,3
2

4a2,2
(18)

are small (bifurcation) parameters and ã2,3, ã1,4, ã0,5 are given in (10).
To further simplify the stream function, we apply the near-identity transformation

ξ = χ + r0,2η
2, y = η + s1,1χη + s0,2η

2. (19)

As in the degenerate case, we aim at removing the χ3y2, χ2y3, and χy4-terms. The coefficients for
these terms in the transformed stream function are

f (ϵ2, s1,1) = s1,1
2ϵ2 + a3,2 + 2s1,1a2,2, (20a)

g(ϵ2, ϵ3, s0,2) = 2s0,2a2,2 + 2s1,1s0,2ϵ2 + ã2,3 + 3s1,1
2ϵ3, (20b)

h(ϵ2, ϵ3, ϵ4,r0,2) = 6s1,1ϵ3s0,2 + 4s1,1r0,2ϵ2 + 4ϵ4s1,1 + ã1,4 + 2a2,2r0,2 + s0,2
2ϵ2. (20c)

Since

f
(
0,−

a3,2

2a2,2

)
= 0,

∂ f
∂s1,1

(
0,−

a3,2

2a2,2

)
= 2a2,2 , 0, (21)

it follows from the implicit function theorem that there exists a function s1,1(ϵ2) with s1,1(0) =
− a3,2

2a2,2
such that f (ϵ2, s1,1(ϵ2)) = 0, for ϵ2 sufficiently small. Similarly, we find functions s0,2(ϵ2, ϵ3)

and r0,2(ϵ2, ϵ3, ϵ4) which solve g = 0 and h = 0, respectively. Again, we only use the assumption
a2,2 , 0 and the implicit function theorem. This yields the stream function

ψ = η2 �ϵ1 + ϵ̂2χ + ϵ̂3η + â2,2χ
2 + ϵ̂4χη + ϵ̂5η

2 + â0,5η
3� , (22)
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where the ϵ̂ are transformed small parameters and â2,2 = ã2,2 + O(ϵ̂), â0,5 = ã0,5 + O(ϵ̂). Further, by
a scaling of the time by dividing the stream function by â0,5, we obtain

ψ = η2
(
ϵ̃1 + ϵ̃2χ + ϵ̃3η +

â2,2

â0,5
χ2 + ϵ̃4χη + ϵ̃5η

2 + η3 + O(| χ,η |4)
)
, (23)

and, finally, to eliminate the χη2 and χη3-terms, we use a transformation

χ = a + bx1 + cy1, η = y1. (24)

Choosing the coefficients as

a = −
ϵ̃2â0,5

2â2,2
, b =

�����
â0,5

â2,2

�����

1/2

, c = −
ϵ̃4â0,5

2â2,2
, (25)

the stream function becomes

ψ = y2
1(c0,0 + c0,1y1 + c0,2y

2
1 + y

3
1 + σx2

1 + O(|x1, y1|4)), (26)

where

c0,0 = ϵ1 −
ϵ̃2

2â0,5

4â2,2
, c0,1 = ϵ̃3 −

ϵ̃2ϵ̃4â0,5

2â2,2
, c0,2 = ϵ̃5 −

ϵ̃2
4â0,5

4â2,2
, σ =

â2,2

â0,5

�����
â0,5

â2,2

�����
. (27)

Note that the definition of σ agrees with that of (15) for the degenerate case. When the bifurcation
parameters are sufficiently small, a2,2 and â2,2 are of the same sign, as is the case for ã0,5 and â0,5.
We summarize our findings in the following.

Theorem 1. Let a0,2, a1,2, a0,3, and ã0,4 be small parameters. Assuming the non-degeneracy
conditions a2,2 , 0 and ã0,5 , 0, a normal form for stream function (17) is

ψ = y2 �c0,0 + c0,1y + c0,2y
2 + y3 + σx2 + O(|x, y |4)� , (28)

where

σ =



+1 for a2,2/ã0,5 > 0
−1 for a2,2/ã0,5 < 0

, (29)

and c0,0, c0,1, c0,2 are transformed small parameters.

D. Bifurcation analysis of the normal form

In this section, we analyze the bifurcations in the dynamical system defined by normal form
(28). The results are displayed in form of the bifurcation diagrams in Figs. 8–10. The parameter

FIG. 8. Bifurcation diagrams for normal form (14) for ∆ < 0. (a): σ = 1, (b): σ =−1.
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FIG. 9. Bifurcation diagrams for normal form (14) for ∆= 0. (a): σ = 1, (b): σ =−1.

space is three-dimensional, and it turns out to be convenient to use the parameter

∆ = 16c2
0,2 − 45c0,1 (30)

rather than c0,1. Here, we only outline the analysis which is quite involved.
Truncating the O-term in (28), the differential equations for the streamlines are, after a scaling

of the time by y ,

ẋ = 2 c0,0 + 3 c0,1y + 4 c0,2y
2 + 5 y3 + 2σx2, (31a)

ẏ = −2σyx, (31b)

with the determinant of the Jacobian

|J | = 6σc0,1y + 16σc0,2y
2 − 8x2 + 30σy3. (32)

Several types of bifurcation can occur in this system: local bifurcations of on-wall and off-wall
critical points; global bifurcations associated with off-wall critical points and global bifurcations

FIG. 10. Bifurcation diagrams for normal form (14) for ∆ > 0. (a): σ = 1, (b): σ =−1. The full lines are local bifurcation
curves c0,0= 0 and Γ±, the dotted lines are the global bifurcation curvesγ±, and the dashed-dotted line is the global bifurcation
curve ζ+. The points A–E mark where different bifurcation curves meet.
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associated with on-wall and off-wall critical points. A global bifurcation appears when the value of
ψ at different critical points of saddle type coincide. This allows a global (heteroclinic) connection
by a dividing streamline from one saddle point to the other. To find local bifurcations of on-wall
critical points, we insert y = 0 into (31a),

ẋ = 2c0,0 + 2σx2 = 0. (33)

From this, one finds that ±
�√−σc0,0,0

�
are critical points. There are two on-wall critical points

when σc0,0 < 0, and no critical points when σc0,0 > 0. Hence, a local bifurcation occurs when
c0,0 = 0.

To find local bifurcation of off-wall critical points, we substitute x = 0 into (31a) and (32).
Eliminating y from ẋ = 0 and |J | = 0, one finds

128c0,0c3
0,2 − 36c2

0,1c2
0,2 − 540c0,0c0,1c0,2 + 135c3

0,1 + 675c2
0,0 = 0, (34)

where we have removed a factor c0,0 which is zero for on-wall bifurcation only. This equation is
quadratic in c0,0, the discriminant is ∆3, and we find the solution of (34) to be the surfaces in the
(c0,0,c0,2,∆) parameter space given by

Γ
± : c0,0 =

32
675

c0,2
3 − 2

225
∆c0,2 ±

1
675

√
∆3, (35)

which are defined only in the half-space ∆ ≥ 0. Furthermore, only part of these surfaces correspond
to bifurcations at points in the fluid domain y > 0. It can be shown that the bifurcations at Γ+ takes
place below the wall for c0,2 >

√
∆/4 and similarly for Γ− for c0,2 > −

√
∆/4, and hence these parts

do not correspond to a physical bifurcation. The end-points of the bifurcation curves are marked by
A and B in Fig. 10.

Proceeding to global bifurcations involving critical points on and off the wall, the condition is
that ψ = 0 at an off-wall critical point fulfilling ẋ = 0 and x = 0 from (31b). Eliminating y from
these equations yields

4c0,0c0,2
3 − c0,1

2c0,2
2 − 18c0,0c0,1c0,2 + 4c0,1

3 + 27c0,0
2 = 0, (36)

which again can be solved for c0,0,

γ± : c0,0 =
1

27
c0,2

3 − 1
9

Ec0,2 ±
2

27

√
E3, (37)

where

E = c2
0,2 − 3c0,1 =

∆ − c2
0,2

15
. (38)

It follows that the γ± are defined only when −
√
∆ < c0,2 <

√
∆, and since critical points at the wall

must be present, the condition σc0,0 < 0 is also required. Furthermore, the off-wall critical point
must be a saddle and hence |J | < 0. It follows from these inequalities that for σ = 1 only the part
BD of γ+ and for σ = −1, the part AE of γ−, as shown in Fig. 10, are of significance.

Finally, we consider possible heteroclinic connections among the off-wall critical points. Such
connections occur when the stream function attains the same values at two saddle-type critical
points (0, y1) and (0, y2). The following three conditions must be fulfilled:

ẋ(0, y1) = 5y1
3 + 4c0,2y1

2 + 3c0,1y1 + 2c0,0 = 0, (39a)

ẋ(0, y2) = 5y2
3 + 4c0,2y2

2 + 3c0,1y2 + 2c0,0 = 0, (39b)
ψ(0, y1) − ψ(0, y2) = (−y2 + y1) ×

(c0,2y1
3 + c0,2y1

2y2 + c0,2y1y2
2 + c0,2y2

3 + y1
4 + y1

3y2 + y1
2y2

2

+ y1y2
3 + y2

4 + c0,1y1
2 + c0,1y1y2 + c0,1y2

2 + c0,0y1 + c0,0y2) = 0, (39c)

where y1 , y2. Eliminating y1 and y2 from these equations gives

128c0,0c0,2
3 − 36c0,1

2c0,2
2 − 540c0,0c0,1c0,2 + 135c0,1

3 + 675c0,0
2 = 0, (40)
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FIG. 11. The bifurcation diagram for normal form (28) for σ = 1. A slice with ∆ > 0 is shown. The thin lines are time traces
for the eruption flow shown in Figs. 2–6. The dashed part represents parts where the path goes through the region with ∆ < 0.
The trace for Re= 800 is identical to that for Re= 600 except that the dashed part is a full line such that the path goes through
region III.

where we again have removed factors which correspond to bifurcations studied above. Solving for
c0,0 yields

ζ± : c0,0 =
94
225

c0,2
3 − 7

225
∆c0,2 ±

2
675


15 625c0,2

6 − 1875∆c0,2
4 + 75∆2c0,2

2 − ∆3. (41)

Again, only parts of these surfaces correspond to physical bifurcations. In fact, only the branch of
ζ− shown in Fig. 10(b) for ∆ > 0 and σ = −1 is relevant.

IV. THE TOPOLOGICAL PHASE SPACE OF ERUPTION

The bifurcation diagrams obtained in Sec. III D for σ > 0 contains all the bifurcations we have
observed in the eruption flow. In Fig. 11, we show a slice in the (c0,0,c0,2,∆) parameter space for
∆ > 0. The roman numeral in each of the regions is the ones used in Figs. 2–6 to classify the flow
topology. Note that the regions II and II′ are really one region as they are connected through the part
where ∆ < 0, cf. Fig. 8(a).

Time traces corresponding to the temporal developments observed numerically for the eruption
flow are shown in the figure. There are other ways of arranging the paths in accordance with the
observations but the one shown is the simplest possible which implies a smooth transition from one
path to the next as Re is varied.

Hence, we have obtained a topological phase space for the eruption flow. It accounts for how
the streamline patterns are transformed into each other, and it does so in a minimal way: All
topologies in the diagram are realized in the flow, and all three dimensions in the parameter space
are needed. Thus, it will not be possible to describe the eruption process completely in a simpler
topological phase space.

To summarize, the road to primary eruption goes through three stages. The first stage is Re <
600 where only a separation zone on the wall exists. The intermediate stage is 600 < Re < 1000
where a small vortex structure is created above the recirculation zone but disappears quickly again.
There are different sequences of streamline topologies in this stage, depending on Re, and we have
not resolved it completely. The final stage is Re > 1000 where eruption takes place. While we have
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only performed simulations for Re up to 5000, the results by Kudela and Malecha2 indicate that the
sequence of topology variations during eruption remains the same for Re = 10 000.

V. CONCLUSIONS

Creation and destruction of structures in the streamline pattern of a fluid flow can be classified
with a dynamical systems approach. The starting point is a degenerate critical point of the velocity
field, and by constructing a bifurcation diagram from an unfolding of the degenerate configuration,
a series of possible topological transitions of the flow can be found. The more degenerate the critical
point is, the more bifurcation parameters occur in the unfolding, and the more complex patterns can
be accounted for. In this paper, we have obtained such bifurcation diagrams for the two-dimensional
flow close to a no-slip wall for a degeneracy with co-dimension three. This completes the set of
bifurcation diagrams with up to three parameters obtained previously.28,31,32,37,40

We have shown that the bifurcation diagram thus obtained in the case σ = 1 describes the basic
changes of streamline topology in the eruption process from a boundary layer. The creation of a
secondary vortex erupting from the boundary layer is associated with the “pinching off” of a sad-
dle/center pair of the streamlines in a global bifurcation. The bifurcation diagram associated with
the singularity we study here is the simplest which can account for both the creation of the recircula-
tion zone on the wall and the pinching off, as no other bifurcation diagram with three parameters or
less allows both these transitions. The bifurcation diagrams we have obtained here have at most one
secondary erupted vortex. For higher Re, several vortices may erupt, and a topological description
would require higher-order normal forms for the stream function, occurring as unfoldings of more
degenerate critical points. Nevertheless, the transition I → II′ → III → IV, shown in Fig. 11 for
Re = 5000, appears to be the fundamental process for the generation of a vortex in the eruption
process, and it will occur locally also at much higher Re. As the analysis is topological, and hence
of a qualitative nature, it will be valid for a large range of flows, not being critically dependent of
the specific physical setting of the eruption process. Thus, the basic degeneracy, given by conditions
(8), can be understood as an organizing center for the eruption process.

Other non-simple co-dimension three case (7) plays the same role for vortex shedding behind
bluff bodies. In Ref. 40, it is shown how the bifurcation diagram plays a similar role as a topological
phase space in the periodic regime where, as in the present paper, distinct dynamical stages in
dependence of Re are present.

An alternative approach to study the eruption process is to focus on the topology of the vorticity
rather than the stream function.47 Simulations2,46 clearly indicate that there is a close connection
between the flow structures defined by these two fields in the eruption process. A more detailed
study of this is in preparation.

Establishing a topological phase space will be of interest in any situation where structures in
the flow change as parameters or time vary. The vortex-generated flow studied in the present paper
is only an example; in addition to the cases mentioned in the Introduction, another fundamental
problem where the method we present would be applicable is the recently studied impulsively
started rotation of two cylinders.48 Here, topological changes occur in a flow quite different from the
one considered here, and, in particular, at much lower Reynolds numbers.
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33 A. Deliceoğlu, “Topology of two-dimensional flow associated with degenerate dividing streamline on a free surface,” Eur.

J. Appl. Math. 24, 77–101 (2013).
34 M. Brøns, L. K. Voigt, and J. N. Sørensen, “Streamline topology of steady axisymmetric vortex breakdown in a cylinder

with co- and counter-rotating end-covers,” J. Fluid Mech. 401, 275–292 (1999).
35 M. Brøns, L. K. Voigt, and J. N. Sørensen, “Topology of vortex breakdown bubbles in a cylinder with a rotating bottom and

a free surface,” J. Fluid Mech. 428, 133–148 (2001).
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