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Research group PLIS: Programming, Logic and Intelligent Systems Department
of Communication, Business and Information Technologies, Roskilde University,

Roskilde, Denmark
{henning,majaht}@ruc.dk

Abstract. Previous results on confluence for Constraint Handling Rules,
CHR, are generalized to take into account user-defined state equivalence
relations. This allows a much larger class of programs to enjoy the advan-
tages of confluence, which include various optimization techniques and
simplified correctness proofs. A new operational semantics for CHR is
introduced that significantly reduces notational overhead and allows to
consider confluence for programs with extra-logical and incomplete built-
in predicates. Proofs of confluence are demonstrated for programs with
redundant data representation, e.g., sets-as-lists, for dynamic program-
ming algorithms with pruning as well as a Union-Find program, which
are not covered by previous confluence notions for CHR.

1 Introduction

A rewrite system is confluent if all derivations from a common initial state end in
the same final state. Confluence, like termination, is often a desirable property,
and proof of confluence is a typical ingredient of a correctness proof. For a
programming language based on rewriting such as Constraint Handling Rules,
CHR [8,9], it ensures correctness of parallel implementations and application
order optimizations.

Previous studies of confluence for CHR programs are based on Newman’s
lemma. This lemma concerns confluence defined in terms of alternative deriva-
tions ending in the exact same state, which excludes a large class of interesting
CHR programs. However, the literature on confluence in general rewriting sys-
tems has, since the early 1970s, offered a more general notion of confluence mod-
ulo an equivalence relation. This means that alternative derivations only need
to end in states that are equivalent with respect to some equivalence relation
(and not necessarily identical). In this paper, we show how confluence modulo
equivalence can be applied in a CHR context, and we demonstrate interesting
programs covered by this notion that are not confluent by any previous defin-
ition of confluence for CHR. The use of redundant data representations is one
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example of what becomes within reach, and programs that search for one best
among multitudes of alternative solutions is another.

Example 1. The following CHR program, consisting of a single rule, collects a
number of separate items into a (multi-) set represented as a list of items.

set(L), item(A) <=> set([A|L]).

This rule will apply repeatedly, replacing constraints matched by the left hand
side by those indicated to the right. The query

?- item(a), item(b), set([]).

may lead to two different final states, {set([a,b])} and {set([b,a])}, both
representing the same set. This can be formalized by a state equivalence relation
≈ that implies {set(L)} ≈ {set(L′)}, whenever L is a permutation of L′. The
program is not confluent in the classical sense as the end states are not identical,
but it will be shown to be confluent modulo ≈.

Our generalization is based on a new operational semantics that permits extra-
logical and incomplete predicates (e.g., Prolog’s var/2 and is/2), which is out
of the scope of previous approaches. It also leads to a noticeable reduction of
notational overhead due to a simpler structure of states.

It is shown that previous results for CHR confluence, based upon critical
pairs, to a large extent can be generalized for confluence modulo equivalence.
We introduce additional mechanisms to handle the extra complexity caused by
the equivalence relation. We do not present any (semi-) automatic approach to
confluence proofs, as this would need a formal language for specifying equiva-
lences, which has not been considered at present.

Section 2 reviews previous work on confluence, in general and for CHR.
Sections 3 and 4 give preliminaries and our operational semantics. Section 5 con-
siders how to prove confluence modulo equivalence for CHR. Section 6 shows
confluence modulo equivalence for a CHR version of the Viterbi algorithm; it
represents a wider class of dynamic programming algorithms with pruning, also
outside the scope of earlier proposals. Section 7 shows confluence modulo equiv-
alence for the Union-Find algorithm, which has become a standard test case for
confluence in CHR; it is not confluent in any previously proposed way (except
with contrived side-conditions). Section 8 comments on related work in more
detail, and the final section provides a summary and a conclusion.

2 Background

A binary relation → on a set A is a subset of A × A, where x → y denotes
membership of →. A rewrite system is a pair 〈A,→〉; it is terminating if there
is no infinite chain a0 → a1 → · · · . The reflexive transitive closure of → is
denoted ∗→. The inverse relation ← is defined by {(y, x) | x → y}. An equivalence
(relation) ≈ is a binary relation on A that is reflexive, transitive and symmetric.
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A rewrite system 〈A,→〉 is confluent if and only if y
∗← x

∗→ y′ ⇒ ∃z. y
∗→

z
∗← y′, and is locally confluent if and only if y ← x → y′ ⇒ ∃z. y

∗→ z
∗← z′.

In 1942, Newman showed his fundamental lemma [13]: A terminating rewrite
system is confluent if and only if it is locally confluent. An elegant proof of
Newman’s lemma was provided by Huet [11] in 1980.

The more general notion of confluence modulo equivalence was introduced in
1972 by Aho et al. [3] in the context of the Church-Rosser property.

Definition 1 (Confluence Modulo Equivalence). A relation → is confluent
modulo an equivalence ≈ if and only if

∀x, y, x′, y′. y
∗← x ≈ x′ ∗→ y′ ⇒ ∃ z, z′. y

∗→ z ≈ z′ ∗← y′.

This shown as a diagram in Fig. 1a. In 1974, Sethi [17] showed that confluence
modulo equivalence for a bounded rewrite system is equivalent to the following
properties, α and β, also shown in Fig. 1b.

Definition 2 (α & β). A relation → has the α property and the β property if
and only if it satisfy the α condition and the β condition, respectively:

α : ∀x, y, y′. y ← x → y′ =⇒ ∃z, z′. y
∗→ z ≈ z′ ∗← y′

β : ∀x, x′, y. x ≈ x′ → y =⇒ ∃z, z′. x′ ∗→ z′ ≈ z
∗← y

In 1980, Huet [11] generalized this result to any terminating system.

Definition 3 (Local Confl. Mod. Equivalence). A rewrite system is locally
confluent modulo an equivalence ≈ if and only if it has the α and β properties.

Theorem 1. Let → be a terminating relation. For any equivalence ≈, → is
confluent modulo ≈ if and only if → is locally confluent modulo ≈.

The known results on confluence for CHR are based on Newman’s lemma.
Abdennadher et al. [2] in 1996 seem to be the first to consider this, and they
showed that confluence (without equivalence) for CHR is decidable and can be
checked by examining a finite set of states formed by a combination of heads of
rules. A refinement, called observational confluence was introduced in 2007 by
Duck et al. [6], in which only states that satisfy a given invariant are considered.

Fig. 1. Diagrams for the fundamental notions. A dotted arrow (single wave line) indi-
cates an inferred step (inferred equivalence).
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3 Preliminaries

We assume standard notions of first-order logic such as predicates, atoms and
terms. For any expression E, vars(E) refers to the set of variables that occurs
in E. A substitution is a mapping from a finite set of variables to terms, which
also may be viewed as a set of first-order equations. For substitution σ and
expression E, Eσ (or E ·σ) denotes the expression that arises when σ is applied
to E; composition of two substitutions σ, τ is denoted σ◦τ . Special substitutions
failure, error are assumed, the first one representing falsity and the second one
runtime errors.

Two disjoint sets of (user) constraints and built-in predicates are assumed.
For the built-ins, we use a semantics that is more in line with implemented
CHR systems than previous approaches and also allows extra-logical devices
such as Prolog’s var/1 and incomplete ones such as is/2. While [2,5,6] collect
built-ins in a separate store and determine their satisfiability by a magic solver
that mirrors a first-order semantics, we execute a built-in right away. Thereby, it
serves as a test, possibly giving rise to a substitution that is immediately applied
to the state.

An evaluation procedure Exe for built-ins b is assumed, such that Exe(b) is
either a (possibly identity) substitution to a subset of vars(b) or one of failure
and error . It extends to sequences of built-ins as follows.

Exe((b1, b2))=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Exe(b1) when Exe(b1) ∈ {failure, error},

Exe(b2 · Exe(b1)) when otherwise Exe(b2 · Exe(b1))
∈ {failure, error},

Exe(b1) ◦ Exe(b2 · Exe(b1)) otherwise

A subset of built-in predicates are the logical ones, whose meaning is given by
a first-order theory B. For a logical atom b with Exe(b) �= error , the following
conditions must hold.

– Partial correctness: B |= ∀vars(b)(b ↔ ∃vars(Exe(b))\vars(b)Exe(b)).
– Instantiation monotonicity: Exe(b · σ) �= error for all substitutions σ.

A logical predicate p is complete whenever, for any atom b with predicate symbol
p, we have Exe(b) �= error ; later we define completeness with respect to a state
invariant. Any built-in predicate which is not logical is called extra-logical. The
following predicates are examples of built-ins; ε is the empty substitution.

1. Exe(t = t′) = σ where σ is a most general unifier of t and t′; if no such unifier
exists, the result is failure.

2. Exe(true) is ε.
3. Exe(fail) is failure.
4. Exe(t is t′) = Exe(t = v) whenever t′ is a ground term that can be inter-

preted as an arithmetic expression e with the value v; if no such e exists, the
result is error .

5. Exe(var(t)) is ε if t is a variable and failure otherwise.
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6. Exe(ground(t)) is ε when t is ground and failure otherwise.
7. Exe(t == t’) is ε when t and t′ are identical and failure otherwise.
8. Exe(t \= t’) is ε when t and t′ are non-unifiable and failure otherwise.

The first three predicates are logical and complete; “is” is logical but not com-
plete without an invariant that grounds its second arguments (considered later).
The remaining ones are extra-logical.

The practice in previous semantics [2,5,6] of conjoining built-ins and testing
them by satisfiability leads to ignorance of runtime errors and incompleteness.

To represent the propagation history, we introduce indices: An indexed set
S is a set of items of the form x:i where i belongs to some index set and each
such i is unique in S. When clear from context, we may identify an indexed set
S with its cleaned version {x | x:i ∈ S}. Similarly, the item x may identify the
indexed version x:i. We extend this to any structure built from indexed items.

4 Constraint Handling Rules

We define an abstract syntax of CHR together with an operational semantics
suitable for considering confluence. We use the generalized simpagation form as
a common representation for the rules of CHR. Guards may unify variables that
occur in rule bodies, but not variables that occur in the matched constraints. In
accordance with the standard behaviour of implemented CHR systems, failure
and runtime errors are treated the same way in the evaluation of a guard, but
distinguished when occurring in a query or rule body, cf. Definitions 4 and 8,
below.

Definition 4. A rule r is of the form

H1 \ H2 <=> g | C,

where H1 and H2 are sequences of constraints, forming the head of r, g is the
guard being a sequence of built-ins, and C is a sequences of constraints and
built-ins called the body of r. Any of H1 and H2, but not both, may be empty.
A program is a finite set of rules.

For any fresh variant of rule r with notation as above, an application instance
r′′ is given as follows.

1. Let r′ be a structure of the form
H1τ \ H2τ <=> Cτσ

where τ is a substitution for the variables of H1,H2, Exe(gτ) = σ,
σ �∈ {failure, error}, and it holds that (H1 \ H2)τ = (H1 \ H2)τσ,

2. r′′ is a copy of r′ in which each atom in its head and body is given a unique
index, where the indices used for the body are new and unused.

The substitution gτ is referred to the as the guard of r′′. The application record
for r′′ is a structure of the form

r @ i1, . . . , in

where i1, . . . , in is the sequence of indices of H1,H2 in the order they occur.
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A rule is a simplification when H1 is empty, a propagation when H2 is empty; in
both cases, the backslash is left out, and for a propagation, the arrow symbol is
written ==> instead. Any other rule is a simpagation. In case the guard is the
built-in true, it and the vertical bar may be omitted. A guard (or single built-in
atom) is logical if it contains only logical predicates. Guards are removed from
application instances as they are a priori satisfied. The following definition will
become useful later on when we consider confluence.

Definition 5. Consider two application instances ri = (Ai \ Bi <=> Ci), i =
1, 2. We say that r1 is blocking r2 whenever B1 ∩ (A2 ∪ B2) �= ∅.
For this to be the case, r1 must be a simplification or simpagation. Intuitively,
it means that if r1 has been applied to a state, it is not possible subsequently
to apply r2. In the following definition of execution states for CHR, irrelevant
details of the state representation are abstracted away using principles of [14].
To keep notation consistent with Sect. 2, we use letters such as x, y, etc. for
states.

Definition 6. A state representation is a pair 〈S, T 〉, where
– S is a finite, indexed set of atoms called the constraint store,
– T is a set of application records called the propagation history.

Two state representations S1 and S2 are isomorphic, denoted S1 ≡ S2 whenever
one can be derived from the other by a renaming of variables and a consistent
replacement of indices (i.e., by a 1-1 mapping). When Σ is the set of all state
representations, a state is an element of Σ/≡ ∪ {failure, error}, i.e., an equiva-
lence class in Σ induced by ≡ or one of two special states; applying the failure
(error) substitution to a state yields the failure (error) state. To indicate a given
state, we may for simplicity mention one of its representations.

A query q is a conjunction of constraints, which is also identified with an
initial state 〈q′, ∅〉 where q′ is an indexed version of q.

To make statements about, say, two states x, y and an instance of a rule r, we
may do so mentioning state representatives x′, y′ and application instance r′

having recurring indices. The following notions becomes useful in Sect. 5, when
we go into more detail on how to prove confluence modulo equivalence,

Definition 7. An extension of a state 〈S,R〉 is a state of the form 〈Sσ∪S+, R∪
R+〉 for suitable σ, S+ and R+; an I-extension is one that satisfies I; and a state
is said to be I-extendible if it has one or more extensions that are I-states.

In contrast to [2,5,6], we have excluded global variables, which refer to those
of the original query, as they are easy to simulate: A query q(X) is extended
to global(′X ′,X), q(X), where global/2 is a new constraint predicate; ′X ′ is a
constant that serves as a name of the variable. The value val for X is found
in the final state in the unique constraint global(′X ′, val). References [2,5,6]
use a state component for constraints waiting to be processed, plus a separate
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derivation step to introduce them into the constraint store. We avoid this as the
derivations made under either premises are basically the same. Our derivation
relation is defined as follows; here and in the rest of this paper, � denotes union
of disjoint sets.

Definition 8. A derivation step → from one state to another can be of two
types: by rule

r→ or by built-in
b→, defined as follows.

Apply: 〈S � H1 � H2, T 〉 r→ 〈S � H1 � C, T ′〉
whenever there is an application instance r of the form
H1\H2 <=> C with applied(r) �∈ T , and T ′ is derived from T by (1) remov-
ing any application record having an index in H2 and (2) adding applied(r)
in case r is a propagation.

Built-in: 〈{b} � S, T 〉 b→ 〈S, T 〉 · Exe(b).
A state z is final for query q, whenever q

∗→ z and no step is possible from z.

The removal of certain application records in Apply steps means to keep only
those records that are essential for preventing repeated application of the same
rule to the same constraints (identified by their indices).

As noticed by [6], introducing an invariant makes more programs confluent,
as one can ignore unusual states that never appear in practice. An invariant may
also make it easier to characterize an equivalence relation for states.

Definition 9. An invariant is a property I(·) which may or may not hold for a
state, such that for all states x, y, I(x)∧(x → y) ⇒ I(y). A state x for which I(x)
holds is called an I-state, and an I-derivation is one starting from an I-state.
A program is I-terminating whenever all I-derivations are terminating. A set of
allowed queries Q may be specified, giving rise to an invariant reachableQ(x) ⇔
∃q ∈ Q : q

∗→ x.
A (state) equivalence is an equivalence relation ≈ on the set of I-states.

The central Theorem 1 applies specifically for CHR programs equipped with
invariant I and equivalence relation ≈. When ≈ is identity, it coincides with a
theorem of [6] for observable confluence. If, furthermore, I ⇔ true, we obtain
the classical confluence results for CHR [1].

The following definition is useful when considering confluence for programs
that use Prolog built-ins such as “is/2”.

Definition 10. A logical predicate p is complete with respect to invariant I (or,
for short, is I-complete) whenever, for any atom b with predicate symbol p in
some I-state, that Exe(b) �= error.

A logical guard (or a built-in atom) is also called I-complete, whenever all its
predicates are I-complete. We use the term I-incomplete for any such notion
that is not I-complete.

As promised earlier, “is/2” is complete with respect to an invariant that
guarantees groundness of the second argument of any call to “is/2”.
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Example 2. Our semantics permits CHR programs that define constraints such
as Prolog’s dif/2 constraint and a safer version of is/2.

dif(X,Y) <=> X==Y | fail.
dif(X,Y) <=> X\=Y | true.
X safer_is Y <=> ground(Y) | X is Y.

5 Proving Confluence Modulo Equivalence for CHR

We consider here ways to prove the local confluence properties α and β from
which confluence modulo equivalence may follow, cf. Theorem 1. The corners in
the following definition generalize the critical pairs of [2]. For ease of usage, we
combine the common ancestor states with the pairs, thus the notion of corners
corresponding to the “given parts” of diagrams for the α and β properties,
cf. Fig. 1a. The definitions below assume a given I-terminating program with
invariant I and state equivalence ≈. Two states x and x′ are joinable modulo ≈
whenever there exist states z and z′ such that x

∗→ z ≈ z′ ∗← x′.

Definition 11. An α-corner consists of I-states x, y and y′ with y �= y′ and
two derivation steps such that y

γ← x
δ→ y′. An α-corner is joinable modulo ≈

whenever y and y′ are joinable modulo ≈.
A β-corner consists of I-states x, x′ and y with x �= x′ and a derivation step

such that x′ ≈ x
γ→ y. A β-corner is joinable modulo ≈ whenever x′ and y are

joinable modulo ≈.

Joinability of α1-corners holds trivially in a number of cases:

– when γ and δ are application instances, none blocking the other,
– when γ and δ are built-ins, both logical and I-complete, or having no common

variables, or
– when, say, γ is an application instance whose guard is logical and I-complete,

and δ is any built-in that has no common variable with the guard of γ.

These cases are easily identified syntactically. All remaining corners are recog-
nized as “critical”, which is defined as follows.

Definition 12. An α-corner y
γ← x

δ→ y′ is critical whenever one of the fol-
lowing properties holds.

α1: γ and δ are application instances where γ blocks δ (Definition 5).
α2: γ is an application instance whose guard is extra-logical or I-incomplete,
and δ is a built-in with vars(g) ∩ vars(δ) �= ∅.
α3: γ and δ are built-ins with γ extra-logical or I-incomplete, and vars(γ) ∩
vars(δ) �= ∅.

A β-corner x′ ≈ x
γ→ y is critical whenever the following property holds.
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– x �= x′ and there exists no state y′ and single derivation step δ such that
x′ δ→ y′ ≈ y.

Our definition of critical β-corners are motivated by the experience that often
the δ step can be formed trivially by applying the same rule or built-in of γ
in an analogous way to the state x′. By inspection and Theorem 1, we get the
following.

Lemma 1. Any non-critical corner is joinable modulo ≈.

Theorem 2. A terminating program is confluent modulo ≈ if and only if all its
critical corners are joinable modulo ≈.

5.1 Joinability of α1-Critical Corners

Without invariant, equivalence and extra-logicals, the only critical corners are of
type α1; here [2] has shown that joinability of a finite set of minimal critical pairs
is sufficient to ensure local confluence. In the general case, it is not sufficient to
check such minimal states, but the construction is still useful as a way to group
the cases that need to be considered. We adapt the definition of [2] as follows.

Definition 13. An α1-critical pattern (with evaluated guards) is of the form

〈S1σ1, ∅〉 r1← 〈S, ∅〉 r2→ 〈S2σ2, R〉
whenever there exist, for k = 1, 2, indexed rules rk = (Ak \ Bk <=> gk | Ck),
and

R =

{
{a} whenever r2 is a propagation with application record a,

∅ otherwise.

The remaining entities are given as follows.

– Let Hk = Ak ∪ Bk, k = 1, 2, and split B1 and H2 into disjoint subsets by
B1 = B′

1 � B′′
1 and H2 = H ′

2 � H ′′
2 , where B′

1 and H ′
2 must have the same

number of elements ≥ 1.
– The set of indices used in B′

1 and H ′
2 are assumed to be identical, and any

other index in r1, r2 unique, and σ is a most general unifier of B′
1 and a

permutation of H ′
2.

– S = A1σ ∪ B1σ ∪ A2σ ∪ B2σ, with S being I-extendible,
– Sk = S \ Bkσ ∪ Ckσ, k = 1, 2,
– gk is logical with σk = Exe(gkσ) �∈ {error , failure} for k = 1, 2.

An α1-critical pattern (with delayed guards) is of the form

〈S1, ∅〉 r1← 〈S, ∅〉 r2→ 〈S2, R〉,

where all parts are defined as above, except in the last step, that one of gk is extra-
logical or its evaluation by Exe results in error; the guards gkσ are recognized as
the unevaluated guards.
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Definition 14. An α1-critical corner y
r1← x

r2→ y′ is covered by an α1-critical
pattern

〈S1, ∅〉 r1← 〈S, ∅〉 r2→ 〈S2, R〉,

whenever x is an I-extension of 〈S, ∅〉.
Analogously to previous results on confluence of CHR [2], we can state the
following.

Lemma 2. For a given I-terminating program with invariant I and equivalence
≈, the set of critical α1-patterns is finite, and any critical α1-corner is covered
by some critical α1-pattern.

The requirement of definition 13, that a critical α1-corner needs to be I-extendible,
means that there may be fewer patterns to check than if classical confluence is
investigated. Examples of this is used for when showing confluence of the Union-
Find program, Sect. 7 below. We can reuse the developments of [2] and joinability
results derived by their methods, e.g., using automatic checkers for classical con-
fluence [12].

Lemma 3. If a critical α1-pattern π (viewed as an α1-corner) is joinable modulo
the identity equivalence, then any α1-corner covered by π is joinable under any
I and ≈.

This means that we may succeed in showing confluence modulo ≈ under I in
the following way for a program without critical α2, α3 and β corners.

– Run a classical confluence checker (e.g., [12]) to identify which classical, critical
pairs that are not joinable. Those such that do not correspond to I-extendible
α1 patterns can be disregarded.

– Those critical α1-patterns that remain need separate proofs, which may suc-
ceed due to the stronger antecedent given by I and the weakening of the
joinability consequent by an equivalence relation.

Example 3 (Example 1, continued). We consider again the one line program of
Example 1 that collects a items into a set, represented as a list. Suitable invariant
and equivalence are given as follows; the propagation history can be ignored as
there are no propagations.

I: I(x) holds if and only if x = {set(L)}∪Items, where Items is a set of item/1
constraints whose argument is a constant and L a list of constants.

≈: x ≈ x′ if and only if x = {set(L)} ∪ Items and x′ = {set(L′)} ∪ Items
where Items is a set of item/1 constraints and L is a permutation of L′.

There are no built-ins and thus no critical α2- or α3-patterns. There is only one
critical α1-pattern, namely

{set([B|L]), item(A)} ← {set(L), item(A), item(B)} → {set([A|L]), item(B)}.



Confluence Modulo Equivalence in Constraint Handling Rules 51

The participating states are not I-states as A, B and L are variables; the set of all
critical α1-corners can be generated by different instantiations of the variables,
discarding those that lead to non-I-states. We cannot use Lemma 3 to prove
joinability as the equivalence is ≈ essential. Instead, we can apply a general
argument that goes for any I-extension of this pattern. The common ancestor
state in such an I-extension is of the form {set(L), item(A)} ∪ Items, and
joinability is shown by applying the rule to the two “wing” states (not shown)
to form the two states {set([B, A, |L])} ∪ Items ≈ {set([A, B, |L])} ∪ Items. To
show confluence modulo ≈, we still need to consider the β-corners which we
return to in Example 5 below.

5.2 About Critical α2-, α3- and β-Corners

It is not possible to characterize the sets of all critical α2-, α3- and β-corners by
finite sets of patterns of mini-states in the same way as for α1.

The problem for α2 and α3 stems from the presence of extra-logical or incom-
plete built-ins. Here the existence of one derivation step from a given state S does
not imply the existence of another, analogous derivation step from an extension
Sσ ∪ S+. This is demonstrated by the following example.

Example 4. Consider the following program that has extra-logical guards.

r1: p(X) <=> var(X) | q(X).
r2: p(X) <=> nonvar(X) | r(X).
r3: q(X) <=> r(X).

There are no propagation rules, so we can identify states with multisets of con-
straints. The invariant I is given as follows, and the state equivalence is trivial
identity so there are no critical β-corners to consider.

I(S): S is a multiset of p, q and r constraints and built-ins formed by the “=”
predicate. Any argument is either a constant or a variable.

The meaning of equality built-ins is as defined in Sect. 3 above.
It can be argued informally that this program is I-confluent as all user-

defined constraints will eventually become r constraints unless a failure occurs
due to the execution of equality built-ins; the latter can only be introduced in
the initial query, so if one derivation leads to failure, all terminated derivations
do. Termination follows from the inherent stratification of the constraints.

To prove this formally, we consider all critical corners and show them joinable.
One group of critical α2-corners are of the following form, (1)

S1 =
({q(x), x = a} � S

) r1← ({p(x), x = a} � S
) =→ ({p(a)} � S

)
= S2;

x is a variable, a a constant and S an arbitrary set of constraints such that I is
maintained. Any such corner is joinable, which can be shown as follows, (2).

S1
=→ S′

1

r2→ {r(a)} � S
r2← S2;
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The remaining critical α2-corners form a similar group.

{q(x), x = y} � S
r1← {p(x), x = y} � S

=→ {p(x)} � S;

x and y variables, r1 and S and S an arbitrary set of constraints such that I is
maintained. Joinability is shown by a similar argument that goes for this entire
group. The only critical corners are those α2 cases that have been considered,
so the program is confluent.

We notice, however, that the derivation steps in (1) and (2) are possible
only due to the assumptions about the permitted instances of x, a and S. The
symbol a, for example, is not a variable in a formal sense, neither is it a constant,
but a meta-variable or placeholder of the sort that mathematicians use all the
time. This means that we cannot reduce the formulas (1) and (2) to refer to
derivations over mini-states, with proper variables as placeholders, as then r2
can never apply.

To see critical α3-corners, we change I into I ′ by allowing also var constraints
in a state. One group of such corners will have the following shape.

{var(a)} � S
=← {var(x), x = a} � S

var→ {x = a} � S

x is a variable, a a constant and S an arbitrary set of constraints such that I ′ is
maintained. For, e.g., S = ∅, this corner is obviously not joinable, so the program
is not confluent (module equivalence) under I ′. As above, we observe that the
set of critical α3 corners cannot be characterized by a finite set of mini-states.

The β property needs to be considered when the state equivalence is non-trivial,
as in the following example

Example 5 (Examples 1 and 3, continued). To check the β property, we notice
that any β-corner is of the form

{set(L′), item(A)} � Items ≈ {set(L),item(A)} � Items → {set([A|L])} � Items

where L and L′ are lists, one being a permutation of the other. Applying the
rule to the “left wing” state leads to {set([A|L′])} ∪ Items which is equiv-
alent (wrt. ≈) to the “right wing” state; there are thus no critical β-corners.
Together with results for critical α-corners above, we have now shown local con-
fluence modulo ≈ for the sets-as-lists program, and as the program is clearly
I-terminating, it follows that it is confluent modulo ≈.

6 Confluence of Viterbi Modulo Equivalence

Dynamic programming algorithms produce solutions to a problem by generating
solutions to a subproblem and iteratively extending the subproblem and its solu-
tions (until the original problem is solved). The Viterbi algorithm [20] finds a
most probable path of state transitions in a Hidden Markov Model (HMM) that
produces a given emission sequence Ls, also called the decoding of Ls; see [7]
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for a background on HMMs. There may be exponentially many paths but an
early pruning strategy ensures linear time. The algorithm has been studied in
CHR by [4], starting from the following program; the “@” operator is part of the
implemented CHR syntax used for labelling rules.

:- chr_constraint path/4, trans/3, emit/3.

expand @ trans(Q,Q1,PT), emit(Q,L,PE), path([L|Ls],Q,P,PathRev) ==>

P1 is P*PT*PE | path(Ls,Q1,P1,[Q1|PathRev]).

prune @ path(Ls,Q,P1,_) \ path(Ls,Q,P2,_) <=> P1 >= P2 | true.

The meaning of a constraint path(Ls,q,p,R) is that Ls is a remaining emission
sequence to be processed, q the current state of the HMM, and p the probability
of a path R found for the already processed prefix of the emission sequence.
To simplify the program, a path is represented in reverse order. Constraint
trans(q,q′,pt) indicates a transition from state q to q′ with probability pt , and
emit(q,�,pe) a probability pe for emitting letter � in state q.

Decoding of a sequence Ls is stated by the query “HMM, path(Ls,q0,1,[])”
where HMM is an encoding of a particular HMM in terms of trans and emit
constraints. Assuming HMM and Ls be fixed, the state invariant I is given as
reachability from the indicated query. The program is I-terminating, as any
new path constraint introduced by the expand rule has a first argument shorter
than that of its predecessor. Depending on the application order, it may run in
between linear and exponential time, and [4] proceeds by semantics preserving
program transformations that lead to an optimal execution order.

The program is not confluent in the classical sense, i.e., without an equiva-
lence, as the prune rule may need to select one out of two different and equally
probable paths. A suitable state equivalence may be defined as follows.

Definition 15. Let 〈HMM ∪ PATHS 1, T 〉 ≈ 〈HMM ∪ PATHS 2, T 〉 whenever:
For any indexed constraint (i : path(Ls, q, P,R1)) ∈ PATHS 1 there is a corre-
sponding (i : path(Ls, q, P,R2)) ∈ PATHS 2 and vice versa.

The built-ins used in guards, is/2 and >=/2, are logical and I-complete, so
there are no α2- or α3-critical corners. For simplicity of notation, we ignore the
propagation histories. There are three critical α1 patterns to consider:
(i) y

prune← x
prune→ y′, where x contains two path constraints that may differ only

in their last arguments, and y and y′ differ only in which of these constraints
that are preserved; thus y ≈ y′.
(ii) y

prune← x
expand→ y′ where x = {π1, π2, τ, η}, πi = path(L, q, Pi, Ri) for i = 1, 2,

P1 ≥ P2, and τ, η the trans and emit constraints used for the expansion step.
Thus y = {π1, τ, η} and y′ = {π1, π2, π

′
2, τ, η} where π′

2 is expanded from π2.
To show joinability, we show the stronger property of the existence of a state
z withy

∗→ z
∗← y′. We select z = {π1, π

′
1, τ, η}, where π′

1 is expanded from
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π1.1 The probability in π′
1 is greater or equal to that of π′

2, which means that a
pruning of π′

2 is possible when both are present. Joinability is shown as follows.

y
expand→ z

prune← {π1, π
′
1, π2, τ, η} prune← {π1, π

′
1, π2, π

′
2, τ, η} expand← y′

(iii) As case ii but with P2 ≥ P1 and y = {π2, τ, η}; proof similar and omitted.
Thus all α-critical corners are joinable. There are no critical β corners, as

whenever x′ ≈ x
r→ y, the rule r can apply to x′ with an analogous result, i.e.,

there exists a state y′ such that x′ r→ y′ ≈ y. This finishes the proof of confluence
modulo ≈.

7 Confluence of Union-Find Modulo Equivalence

The Union-Find algorithm [19] maintains a collection of disjoint sets under union,
with each set represented as a tree. It has been implemented in CHR by [16]
who proved it nonconfluent using critical pairs [2]. We have adapted a version
from [6], extending it with a new token constraint to be explained; let UF token

refer to our program and UF 0 to the original without token constraints.

union @ token, union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).

findRoot @ root(A) \ find(A,X) <=> A=X.

linkEq @ link(A,A) <=> token.

link @ root(A) \ link(A,B), root(B) <=> B ~> A, token.

The ~> and root constraints, called tree constraints, represent a set of trees.
A finite set T of ground tree constraints is consistent whenever: for any constant
a in T , there is either one and only one root(a) ∈ T , or a is connected via a
unique chain of ~> constraints to some r with root(r) ∈ T . We define sets(T ) to
be the set of sets represented by T , formally: the smallest equivalence relation
over constants in T that contains the reflexive, the transitive closure of ~>;
set(a, T ) refers to the set in sets(T ) containing constant a.

The allowed queries are ground and of the form T ∪ U ∪ {token}, where T
is a consistent set of tree constraints, and U is a set of constraints union(ai,bi),
where ai, bi appear in T . The token constraint is necessary for triggering the
union rule, so it needs to be present in the query to get the process started;
it is consumed when one union operation starts and reintroduced when it has
finished (as marked by the linkEq or link rules), thus ensuring that no two
union operations overlap in time. The invariant I is defined by reachability
from these queries. By induction, we can show the following properties of any
I-state S.

1 It may be the case that π′
1 was produced and pruned at an earlier stage, so the

propagation history prevents the creation of π′
1 anew. A detailed argument can

show, that in this case, there will be another constraints π′′
1 in the store similar to

π′
1 but with a ≥ probability, and π′′

1 can be used for pruning π′
2 and obtain the

desired result in that way.
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– Either S = T ∪ U ∪ {token}, where T is a consistent set of tree constraints
and U a set of union constraints whose arguments are in T , or

– S = T ∪ U ∪ {link(A1, A2)} ∪ F1 ∪ F2 where T,U are as in the previous case,
and for i = 1, 2,

• if Ai is a constant, Fi = ∅, otherwise
• Fi = {find(ai, Ai)} or Fi = {(ai = Ai)} for some constant ai.

As shown by [16], UF 0 is not confluent in the classical sense, which can be related
to the following issues.

(i) When the detailed steps of two union operations are intertwined in an unfor-
tunate way, the program may get stuck in a state where it cannot finish the
operation as shown in the following derivation.
root(a), root(b), root(c), union(a,b), union(b,c)

∗→
root(a), root(b), root(c), link(a,b), link(b,c) →
b ~> a, root(a), root(c), link(b,c)

(ii) Different execution orders of the union operations may lead to different data
structures (representing the same sets). This is shown in the following deriva-
tions from a query q0 = {root(a), root(b), root(c), union(a,b), union(b,c)}.
q0

∗→ root(a), root(c), b ~> a, union(b,c)
∗→ root(a), b ~> a, c ~> a

q0
∗→ root(a), root(b), c ~> b, union(a,b)

∗→ root(b), b ~> a, c ~> b

We proceed, now, to show that UF token is confluent modulo an equivalence ≈,
defined as follows; letters U and T refer to sets of union and of tree constraints.

– T ∪ U ∪ {token} ≈ T ′ ∪ U ∪ {token} whenever sets(T ) = sets(T ′).
– T ∪U ∪{link(A1, A2)}∪F1∪F2 ≈ T ′∪U ∪{link(A′

1, A
′
2)}∪F ′

1∪F ′
2 whenever

sets(T ) = sets(T ′) and for i = 1, 2, that
• if Ai is a constant and (by I) Fi = ∅, then A′

i is a constant, set(Ai, T ) =
set(A′

i, T
′) and F ′

i = ∅
• if Ai is a variable and Fi = {find(ai, Ai)} for some constant ai, then

F ′
i = {find(a′

i, A
′
i)} and set(ai, T ) = set(a′

i, T
′),

• if Ai is a variable, Fi = {(ai = Ai)} for some constant ai with root(ai) ∈ T
then F ′

i = (a′
i = A′

i)}, root(a′
i) ∈ T ′ and set(ai, T ) = set(a′

i, T
′).

There are no critical α2- and α3-patterns. The α1-patterns (critical pairs) of
UF token are those of UF 0 and a new one, formed by an overlap of the union
rule with itself as shown below. We reuse the analysis of [16] who identified all
critical pairs for UF 0; by Lemma 3, we consider only those pairs, they identified
as non-joinable.

In [16], eight non-joinable critical pairs are identified; thefirst one (“theunavoid-
able” pair) concerns issue (ii). Its ancestor state {find(B,A), root(B), root(C),
link(C,B)}, is excluded by I: any corner covered, B and C must be ground, thus
also the link constraint, which according to I excludes a find constraint. This can
be traced to the effect of our token constraint, that forces any union to complete
its detailed steps, before a next union may be entered. However, issue (ii) pops up
in the new α1-pattern for UF token, y ← x → y′ where:

x = {token, union(A,B), union(A′, B′)}
y = {find(A,X), find(B, Y ), link(X,Y ), union(A′, B′)}
y′ = {find(A′,X ′), find(B′, Y ′), link(X ′, Y ′), union(A,B)}
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To show joinability of any corner covered by this pattern means to find z, z′ such
that y

∗→ z ≈ z′ ∗← y′. This can be done by, from y, first executing all remaining
steps related to union(A,B) and then the steps relating to union(A′, B′) to
reach a state z = T ∪ U ∪ {token}. In a similar way, we construct z′ = T ′ ∪ U ∪
{token}, starting with the steps relating to union(A′, B′) followed by those of
union(A,B). It can be proved by induction that sets(T ) = sets(T ′), thus z ≈ z′.

Next, [16] identifies three critical pairs, that imply inconsistent tree con-
straints. The authors argue informally that these pairs will never occur for a
query with consistent tree constraints. As noticed by [6], this can be formalized
using an invariant. The last four pairs of [16] relate to issue (i) above; [16] argues
these to be avoidable, referring to procedural properties of implemented CHR
systems (which is a bit unusual in a context concerning confluence). In [6], those
pairs are avoided by restricting allowed queries to include only a single union
constraint; we can allow any number of those, but avoid the problem due to
the control patterns imposed by the token constraints and formalized in our
invariant I.

This finishes the argument that UF token satisfies the α property, and by
inspection of the possible derivation steps one by one (for each rule and for the
“=” constraint), it can be seen that there are no critical β corners. Thus UF token

is locally confluent modulo ≈, and since tree consistency implies termination, it
follows that UF token is confluent modulo ≈.

8 Discussion and Detailed Comments on Related Work

We already commented on the foundational work on confluence for CHR by [2],
who, with reference to Newman’s lemma, devised a method to prove confluence
by inspecting a finite number of critical pairs. This formed also the foundation of
automatic confluence checkers [2,5,12] (with no invariant and no equivalence).

The addition of an invariant I in the specification of confluence problems for
CHR was suggested by [6]. The authors considered a construction similar to our
α1-corners and critical α1-patterns. They noted that critical α1-patterns usually
do not satisfy the invariant, so they based their approach on defining a collec-
tion of corners based on I-states as minimal extensions of such patterns. Local
confluence, then, follows from joinability of this collection of minimally extended
states. However, there are often infinitely many such minimally extended states;
this happens even for a natural invariant such as groundness when infinitely
many terms are possible, as is the case in Prolog based CHR versions. We can
use this construction (in cases where it is finite!) to further cluster the space of
our critical corners, but our examples worked quite well without this.

Of other work concerned with confluence for CHR, we may mention [10,15]
which considered confluence for non-terminating CHR programs. We may also
refer to [18] that gives an overview of CHR related research until 2010, including
confluence.
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9 Conclusion and Future Work

We have introduced confluence modulo equivalence for CHR, which allows a
much larger class of programs to be characterized as confluent in a natural way,
thus increasing the practical relevance of confluence for CHR.

We demonstrated the power of the framework by showing confluence modulo
equivalence for programs that use a redundant data representation (the set-as-
lists and Union-Find programs) and a dynamic programming algorithm (the
Viterbi program); all these are out of scope of previous confluence notions for
CHR. With the new operational semantics, we can also handle extra-logical and
incomplete built-in predicates, and the notational improvements obtained by this
semantics may also promote new applications of and research on confluence.

As a first steps towards semi- or fully automatic proof methods, it is impor-
tant to notice that classical joinability of a critical pair – as can be decided
by existing confluence checkers such as [12] – provide a sufficient condition for
joinability modulo any equivalence. Thus only classically non-joinable pairs – in
our terminology α1 patterns – need to be examined in more details involving
the relevant equivalence; however, in some cases there may also be critical α2,
α3 and β patterns that need to be considered.

While the set of critical α1-patterns can be characterized by a finite collection
of patterns consisting of mini-states tied together by derivations, the same things
is not possible for the other sorts of critical patterns. In our examples, we used
semi-formal patterns, whose meta-variables or placeholders are covered by side-
conditions such as “x is a variable” and “a is a constant”. However, this must be
formalized in order to approach automatic or semi-automatic methods. A formal
and machine readable language for specifying invariants and equivalences will
also be an advantage in this respect.
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