

Methyl 1-ethyl-3-[hydroxy(naphthalen-1-yl)methyl]-1-methyl-2- oxospiro[indoline-3,2pyrrolidine]-3-carboxylate

Kumar, Vinodh: Peters, Günther H.; Raghavachary, Raghunathan ; Jagadeesan, G.

Published in: Acta Crystallographica. Section E: Structure Reports Online

DOI: 10.1107/S1600536814007065

Publication date: 2014

Document Version Publisher's PDF, also known as Version of record

Citation for published version (APA):

Kumar, V., Peters, G. H., Raghavachary, R., & Jagadeesan, G. (2014). Methyl 1-ethyl-3-[hydroxy(naphthalen-1-yl)methyl]-1-methyl-2- oxospiro[indoline-3,2-pyrrolidine]-3-carboxylate. *Acta Crystallographica. Section E: Structure Reports Online*, 70(5), o540. https://doi.org/10.1107/S1600536814007065

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain.
 You may freely distribute the URL identifying the publication in the public portal.

Take down policy

If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work immediately and investigate your claim.

organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 1-ethyl-3'-[hydroxy(naphthalen-1-yl)methyl]-1'-methyl-2-oxospiro[indoline-3,2'-pyrrolidine]-3'-carboxylate

Vinodhkumar Vijayakumar,^a* Gunther H. Peters,^b M. Suresh,^c Raghunathan Raghavachary^c and G. Jagadeesan^d

^aDepartment of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark, ^bDepartment of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark, ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^dDepartment of Physics, Presidency College, Chennai 600 005, India

Correspondence e-mail: vinothdlsc@gmail.com

Received 12 December 2013; accepted 30 March 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.111; data-to-parameter ratio = 15.5.

In the title compound, $C_{27}H_{28}N_2O_4$, the pyrrolidine ring adopts a twist conformation. The plane of the indole ring is almost perpendicular to that of the pyrrolidine ring, making a dihedral angle of 88.50 (6)°. The planes of the naphthyl ring system and the pyrrolidine ring are tilted by an angle of 55.86 (5)°. The molecular conformation is stabilized by intramolecular O-H···O and O-H···N hydrogen bonds.

Related literature

For general background to spiro compounds and their biological activity, see: Pradhan *et al.* (2006); For uses of pyrrolidine derivative, see: Amal Raj *et al.* (2003); For conformation studies, see: Nardelli (1983).

Experimental

Crystal data

V = 4547.23 (16) Å ³
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 293 K
$0.25\times0.20\times0.20$ mm

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.979, T_{\rm max} = 0.983$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$ 299 parameters	
$wR(F^2) = 0.111$ H-atom parame	ters constrained
$S = 1.02 \qquad \qquad \Delta \rho_{\rm max} = 0.22 \text{ e} .$	Å ⁻³
4636 reflections $\Delta \rho_{\min} = -0.14$ e	$e Å^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···O4	0.82	2.37	2.9121 (16)	124
O1−H1···N1	0.82	2.39	2.9439 (17)	126

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009).

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6950).

References

- Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.
- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Pradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). *Tetrahedron*, **62**, 779–828.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

44640 measured reflections

 $R_{\rm int} = 0.041$

4636 independent reflections

3429 reflections with $I > 2\sigma(I)$

supplementary materials

Acta Cryst. (2014). E70, o540 [doi:10.1107/S1600536814007065]

Methyl 1-ethyl-3'-[hydroxy(naphthalen-1-yl)methyl]-1'-methyl-2-oxospiro-[indoline-3,2'-pyrrolidine]-3'-carboxylate

Vinodhkumar Vijayakumar, Gunther H. Peters, M. Suresh, Raghunathan Raghavachary and G. Jagadeesan

1. Comment

Spiro compounds have received considerable interest due to their biological properties (Pradhan *et al.*, 2006). In addition, pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj *et al.*, 2003). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein. In the title molecule (Fig. 1) the five-membered pyrrolidine ring [DS (N1) = 0.101 (1) Å and D2 (C10) = 0.051 (9) Å] adopts a twist conformation defined by the above asymmetry parameters (Nardelli, 1983). The indole ring (C1—C8/N2) is almost perpendicular to the pyrrolidine ring with dihedral angle of 88.50 (6)°. The naphthyl and pyrrolidine rings are tilted by an angle of 55.86 (5)°. The molecular conformation is stabilized by an intramolecular O—H…O and O—H…N hydrogen bond (Fig. 2 and Table 1).

2. Experimental

A mixture of methyl 2-(hydroxy(naphthalen-1-yl)methyl)acrylate (1 mmol), *N*-ethyl isatin (1.1 mmol) and sarcosine (1.1 mmol) was refluxed in methanol until completion of the reaction was evidenced by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The reaction mixture was dissolved in ethyl acetate and washed with water followed by brine solution. The organic layer was separated and evaporated under reduced pressure. The crude mixture was purified by column chromatography using ethyl acetate and hexane as eluent (3: 7). The product was dissolved in ethyl acetate and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 h resulting in the formation of single crystals

3. Refinement

All H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom with $U_{iso}(H) = 1.5U_{eq}(O,C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title compound, Displacement ellipsoids are drawn at the 30% probability level, H atoms have been omitted for clarity.

Figure 2

Crystal packing of the title compound, Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.

(I)

Crystal data	
$C_{27}H_{28}N_2O_4$	F(000) = 1888
$M_r = 444.51$	$D_{\rm x} = 1.299 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 8834 reflections
a = 16.7802 (3) Å	$\theta = 2.1 - 31.2^{\circ}$
b = 14.6690 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 18.4735 (4) Å	T = 293 K
V = 4547.23 (16) Å ³	Block, colourless
Z = 8	$0.25 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD	44640 measured reflections
diffractometer	4636 independent reflections
Radiation source: fine-focus sealed tube	3429 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.041$
ω and φ scan	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -20 \rightarrow 18$
(SADABS; Bruker, 2004)	$k = -18 \rightarrow 18$
$T_{\min} = 0.979, \ T_{\max} = 0.983$	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0509P)^2 + 1.1973P]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
4636 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
299 parameters	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0061 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.96460 (6)	0.22318 (7)	0.34518 (6)	0.0455 (3)
H1	0.9670	0.1849	0.3775	0.068*
O3	0.90834 (6)	0.42866 (7)	0.49176 (5)	0.0417 (3)
O2	0.78729 (7)	0.43761 (8)	0.44130 (6)	0.0539 (3)
N1	0.86301 (8)	0.14862 (9)	0.46083 (7)	0.0430 (3)
O4	1.02618 (7)	0.21025 (9)	0.49220 (6)	0.0573 (3)
N2	0.96210 (8)	0.25963 (9)	0.59423 (7)	0.0456 (3)
C18	1.01590 (8)	0.40195 (9)	0.28012 (7)	0.0332 (3)
C13	0.94194 (8)	0.37632 (10)	0.31325 (7)	0.0328 (3)
C12	0.94494 (8)	0.30940 (9)	0.37557 (7)	0.0332 (3)
H12	0.9891	0.3276	0.4071	0.040*
C17	1.01480 (9)	0.46284 (10)	0.22021 (8)	0.0388 (3)
C3	0.88393 (10)	0.28059 (10)	0.61479 (8)	0.0432 (4)
C1	0.88143 (9)	0.23837 (10)	0.49136 (7)	0.0360 (3)
C4	0.83254 (10)	0.26839 (10)	0.55663 (8)	0.0397 (4)
C10	0.79905 (9)	0.25417 (11)	0.38403 (8)	0.0410 (4)
H10A	0.7503	0.2892	0.3892	0.049*
H10B	0.8108	0.2476	0.3329	0.049*
C19	1.09071 (9)	0.36786 (11)	0.30294 (8)	0.0395 (4)
H19	1.0931	0.3281	0.3421	0.047*
C11	0.86884 (8)	0.30242 (10)	0.42346 (7)	0.0333 (3)
C23	0.84805 (9)	0.39681 (10)	0.45129 (7)	0.0364 (3)
C16	0.94110 (10)	0.49640 (11)	0.19414 (9)	0.0459 (4)
H16	0.9401	0.5363	0.1550	0.055*

C14	0.87276 (9)	0.41091 (11)	0.28530 (8)	0.0415 (4)	
H14	0.8245	0.3943	0.3063	0.050*	
C20	1.15904 (9)	0.39227 (12)	0.26867 (10)	0.0503 (4)	
H20	1.2075	0.3688	0.2844	0.060*	
C2	0.96610 (9)	0.23489 (11)	0.52364 (8)	0.0417 (4)	
С9	0.79001 (10)	0.16118 (11)	0.41925 (9)	0.0471 (4)	
H9A	0.7437	0.1598	0.4507	0.057*	
H9B	0.7845	0.1139	0.3829	0.057*	
C8	0.85759 (13)	0.31094 (12)	0.68131 (9)	0.0583 (5)	
H8	0.8926	0.3189	0.7198	0.070*	
C21	1.15740 (10)	0.45237 (12)	0.20990 (10)	0.0569 (5)	
H21	1.2046	0.4686	0.1869	0.068*	
C5	0.75264 (10)	0.28726 (12)	0.56506 (9)	0.0490 (4)	
Н5	0.7175	0.2798	0.5266	0.059*	
C22	1.08714 (10)	0.48694 (12)	0.18645 (9)	0.0500 (4)	
H22	1.0866	0.5272	0.1475	0.060*	
C27	0.85972 (13)	0.07413 (12)	0.51293 (10)	0.0628 (5)	
H27A	0.9099	0.0696	0.5376	0.094*	
H27B	0.8489	0.0180	0.4880	0.094*	
H27C	0.8182	0.0857	0.5474	0.094*	
C24	0.89186 (12)	0.50715 (12)	0.53604 (10)	0.0605 (5)	
H24A	0.9391	0.5241	0.5620	0.091*	
H24B	0.8502	0.4928	0.5698	0.091*	
H24C	0.8753	0.5569	0.5058	0.091*	
C6	0.72542 (12)	0.31771 (13)	0.63193 (10)	0.0595 (5)	
H6	0.6716	0.3305	0.6383	0.071*	
C25	1.03135 (11)	0.26205 (13)	0.64167 (10)	0.0607 (5)	
H25A	1.0698	0.2172	0.6252	0.073*	
H25B	1.0150	0.2452	0.6902	0.073*	
C15	0.87216 (10)	0.47049 (11)	0.22601 (9)	0.0471 (4)	
H15	0.8239	0.4924	0.2084	0.057*	
C7	0.77716 (14)	0.32907 (13)	0.68843 (10)	0.0647 (5)	
H7	0.7577	0.3495	0.7327	0.078*	
C26	1.07060 (14)	0.35314 (17)	0.64422 (14)	0.0871 (7)	
H26A	1.1159	0.3505	0.6759	0.131*	
H26B	1.0334	0.3976	0.6619	0.131*	
H26C	1.0877	0.3699	0.5965	0.131*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0565 (7)	0.0361 (6)	0.0438 (6)	0.0055 (5)	0.0104 (5)	-0.0025 (5)
O3	0.0426 (6)	0.0372 (6)	0.0452 (6)	-0.0019 (4)	-0.0030 (5)	-0.0087 (5)
O2	0.0459 (7)	0.0586 (7)	0.0571 (7)	0.0166 (5)	-0.0053 (5)	-0.0069 (6)
N1	0.0528 (8)	0.0357 (7)	0.0404 (7)	-0.0048 (6)	-0.0031 (6)	-0.0018 (6)
O4	0.0428 (7)	0.0746 (9)	0.0544 (7)	0.0114 (6)	-0.0006 (6)	0.0086 (6)
N2	0.0503 (8)	0.0489 (8)	0.0377 (7)	-0.0043 (6)	-0.0115 (6)	0.0051 (6)
C18	0.0329 (7)	0.0321 (7)	0.0347 (7)	-0.0002 (6)	0.0017 (6)	-0.0043 (6)
C13	0.0315 (8)	0.0346 (8)	0.0324 (7)	-0.0005 (6)	-0.0002 (6)	-0.0042 (6)
C12	0.0311 (7)	0.0341 (8)	0.0343 (7)	-0.0009 (6)	0.0005 (6)	-0.0036 (6)

C17	0.0396 (8)	0.0348 (8)	0.0421 (8)	0.0004 (6)	0.0047 (7)	-0.0007 (7)
C3	0.0564 (10)	0.0392 (9)	0.0339 (8)	-0.0044 (7)	-0.0014 (7)	0.0047 (6)
C1	0.0372 (8)	0.0376 (8)	0.0331 (7)	-0.0024 (6)	-0.0001 (6)	-0.0020 (6)
C4	0.0482 (9)	0.0374 (8)	0.0336 (7)	-0.0064 (7)	0.0031 (7)	0.0016 (6)
C10	0.0358 (8)	0.0504 (9)	0.0367 (8)	-0.0091 (7)	-0.0033 (6)	-0.0035 (7)
C19	0.0349 (8)	0.0406 (8)	0.0431 (8)	0.0018 (6)	0.0023 (6)	0.0022 (7)
C11	0.0305 (7)	0.0377 (8)	0.0316 (7)	-0.0027 (6)	-0.0013 (6)	-0.0024 (6)
C23	0.0349 (8)	0.0412 (8)	0.0330 (7)	0.0003 (6)	0.0017 (6)	0.0004 (6)
C16	0.0464 (10)	0.0457 (9)	0.0454 (9)	0.0022 (7)	-0.0011 (7)	0.0107 (7)
C14	0.0317 (8)	0.0492 (9)	0.0434 (8)	-0.0022 (6)	0.0006 (6)	0.0042 (7)
C20	0.0327 (8)	0.0506 (10)	0.0677 (11)	0.0055 (7)	0.0058 (8)	0.0065 (8)
C2	0.0435 (9)	0.0415 (9)	0.0402 (8)	-0.0013 (7)	-0.0030 (7)	0.0068 (7)
C9	0.0492 (10)	0.0460 (9)	0.0461 (9)	-0.0123 (7)	-0.0028 (7)	-0.0066 (7)
C8	0.0876 (15)	0.0544 (11)	0.0328 (8)	-0.0036 (10)	-0.0018 (9)	0.0025 (8)
C21	0.0402 (10)	0.0541 (11)	0.0765 (12)	0.0031 (8)	0.0196 (9)	0.0147 (9)
C5	0.0477 (10)	0.0547 (10)	0.0447 (9)	-0.0037 (7)	0.0072 (7)	0.0012 (8)
C22	0.0493 (10)	0.0453 (10)	0.0553 (10)	0.0024 (7)	0.0137 (8)	0.0113 (8)
C27	0.0863 (15)	0.0439 (10)	0.0583 (11)	-0.0106 (9)	-0.0059 (10)	0.0068 (8)
C24	0.0749 (13)	0.0447 (10)	0.0621 (11)	-0.0021 (9)	-0.0012 (10)	-0.0205 (9)
C6	0.0653 (12)	0.0578 (11)	0.0553 (11)	0.0042 (9)	0.0214 (9)	0.0052 (9)
C25	0.0649 (12)	0.0647 (12)	0.0525 (10)	-0.0033 (9)	-0.0249 (9)	0.0088 (9)
C15	0.0379 (9)	0.0528 (10)	0.0507 (9)	0.0029 (7)	-0.0083 (7)	0.0086 (8)
C7	0.0926 (16)	0.0620 (12)	0.0394 (9)	0.0073 (11)	0.0194 (10)	0.0017 (8)
C26	0.0750 (15)	0.0904 (17)	0.0959 (17)	-0.0253 (12)	-0.0234 (13)	-0.0054 (14)

Geometric parameters (Å, °)

O1—C12	1.4224 (17)	C11—C23	1.518 (2)
O1—H1	0.8200	C16—C15	1.353 (2)
O3—C23	1.3418 (17)	C16—H16	0.9300
O3—C24	1.4392 (19)	C14—C15	1.401 (2)
O2—C23	1.1965 (17)	C14—H14	0.9300
N1—C27	1.457 (2)	C20—C21	1.399 (2)
N1—C9	1.458 (2)	C20—H20	0.9300
N1—C1	1.4652 (19)	С9—Н9А	0.9700
O4—C2	1.2185 (19)	С9—Н9В	0.9700
N2—C2	1.355 (2)	C8—C7	1.382 (3)
N2—C3	1.400 (2)	C8—H8	0.9300
N2—C25	1.456 (2)	C21—C22	1.355 (2)
C18—C19	1.415 (2)	C21—H21	0.9300
C18—C17	1.422 (2)	C5—C6	1.391 (2)
C18—C13	1.4339 (19)	С5—Н5	0.9300
C13—C14	1.368 (2)	C22—H22	0.9300
C13—C12	1.514 (2)	C27—H27A	0.9600
C12—C11	1.5570 (19)	С27—Н27В	0.9600
C12—H12	0.9800	С27—Н27С	0.9600
C17—C22	1.410 (2)	C24—H24A	0.9600
C17—C16	1.416 (2)	C24—H24B	0.9600
C3—C8	1.380 (2)	C24—H24C	0.9600
C3—C4	1.389 (2)	C6—C7	1.368 (3)

C1—C4	1.523 (2)	С6—Н6	0.9300
C1—C2	1.542 (2)	C25—C26	1.490 (3)
C1—C11	1.581 (2)	С25—Н25А	0.9700
C4—C5	1.378 (2)	С25—Н25В	0.9700
С10—С9	1.519 (2)	С15—Н15	0.9300
C10—C11	1.5501 (19)	С7—Н7	0.9300
C10—H10A	0.9700	C26—H26A	0.9600
C10—H10B	0.9700	C26—H26B	0.9600
C19—C20	1.358 (2)	C26—H26C	0.9600
C19—H19	0.9300		
С12—О1—Н1	109.5	C15—C14—H14	118.9
C23—O3—C24	116.77 (12)	C19—C20—C21	120.76 (15)
C27—N1—C9	114.27 (13)	С19—С20—Н20	119.6
C27—N1—C1	115.31 (12)	C21—C20—H20	119.6
C9—N1—C1	105.46 (12)	O4—C2—N2	125.39 (15)
C2—N2—C3	111.49 (13)	O4—C2—C1	126.01 (14)
C2—N2—C25	123.11 (15)	N2-C2-C1	108.53 (13)
C3—N2—C25	125.40 (14)	N1-C9-C10	104.79 (12)
C19—C18—C17	117.71 (13)	N1—C9—H9A	110.8
C19—C18—C13	123.22 (13)	С10—С9—Н9А	110.8
C17—C18—C13	119.05 (13)	N1—C9—H9B	110.8
C14—C13—C18	118.43 (13)	С10—С9—Н9В	110.8
C14—C13—C12	123.76 (13)	H9A—C9—H9B	108.9
C18—C13—C12	117.77 (12)	C3—C8—C7	117.37 (17)
O1—C12—C13	106.51 (11)	С3—С8—Н8	121.3
O1—C12—C11	110.86 (11)	С7—С8—Н8	121.3
C13—C12—C11	116.59 (11)	C22—C21—C20	120.08 (15)
O1—C12—H12	107.5	C22—C21—H21	120.0
C13—C12—H12	107.5	C20—C21—H21	120.0
C11—C12—H12	107.5	C4—C5—C6	118.98 (17)
C22—C17—C16	120.97 (14)	C4—C5—H5	120.5
C22—C17—C18	119.38 (14)	С6—С5—Н5	120.5
C16—C17—C18	119.64 (13)	C21—C22—C17	120.94 (15)
C8—C3—C4	122.11 (17)	С21—С22—Н22	119.5
C8—C3—N2	127.79 (16)	С17—С22—Н22	119.5
C4—C3—N2	110.09 (13)	N1—C27—H27A	109.5
N1—C1—C4	116.80 (12)	N1—C27—H27B	109.5
N1—C1—C2	108.27 (12)	H27A—C27—H27B	109.5
C4—C1—C2	101.51 (12)	N1—C27—H27C	109.5
N1—C1—C11	101.56 (11)	H27A—C27—H27C	109.5
C4—C1—C11	112.59 (12)	H27B—C27—H27C	109.5
C2—C1—C11	116.72 (12)	O3—C24—H24A	109.5
C5—C4—C3	119.39 (14)	O3—C24—H24B	109.5
C5—C4—C1	132.19 (14)	H24A—C24—H24B	109.5
C3—C4—C1	108.37 (13)	O3—C24—H24C	109.5
C9—C10—C11	106.51 (12)	H24A—C24—H24C	109.5
C9—C10—H10A	110.4	H24B—C24—H24C	109.5
C11—C10—H10A	110.4	C7—C6—C5	120.56 (18)

C9-C10-H10B	110.4	С7—С6—Н6	119.7
C11—C10—H10B	110.4	С5—С6—Н6	119.7
H10A—C10—H10B	108.6	N2-C25-C26	113.18 (16)
C20—C19—C18	121.12 (14)	N2—C25—H25A	108.9
С20—С19—Н19	119.4	С26—С25—Н25А	108.9
С18—С19—Н19	119.4	N2—C25—H25B	108.9
C23—C11—C10	113.72 (12)	С26—С25—Н25В	108.9
C23—C11—C12	108.73 (11)	H25A—C25—H25B	107.8
C10—C11—C12	112.50 (11)	C16—C15—C14	120.62 (15)
C23—C11—C1	107.70 (11)	C16—C15—H15	119.7
C10—C11—C1	101.67 (11)	C14—C15—H15	119.7
C12—C11—C1	112.35 (11)	C6—C7—C8	121.59 (17)
O2—C23—O3	123.65 (14)	С6—С7—Н7	119.2
O2—C23—C11	126.86 (14)	С8—С7—Н7	119.2
O3—C23—C11	109.47 (12)	С25—С26—Н26А	109.5
C15—C16—C17	120.09 (14)	C25—C26—H26B	109.5
С15—С16—Н16	120.0	H26A—C26—H26B	109.5
C17—C16—H16	120.0	C25—C26—H26C	109.5
C13 - C14 - C15	122.18 (14)	H26A—C26—H26C	109.5
C13—C14—H14	118.9	H26B—C26—H26C	109.5
	110.9		109.0
C19—C18—C13—C14	-177.76(14)	C4—C1—C11—C10	-91.23 (14)
C17—C18—C13—C14	0.7 (2)	C2-C1-C11-C10	151.93 (12)
C19—C18—C13—C12	-0.1(2)	N1—C1—C11—C12	-86.02(13)
C17—C18—C13—C12	178.35 (12)	C4—C1—C11—C12	148.28 (12)
C14—C13—C12—O1	106.00 (15)	$C_2 - C_1 - C_{11} - C_{12}$	31.45 (17)
C18 - C13 - C12 - O1	-71.55(15)	$C_{24} = 0_{3} = C_{23} = 0_{2}$	12.4 (2)
C14—C13—C12—C11	-18.3(2)	$C_{24} = 0_{3} = C_{23} = C_{11}$	-165.93(13)
C18 - C13 - C12 - C11	164.14 (12)	C10-C11-C23-O2	-5.6 (2)
C19—C18—C17—C22	-0.3(2)	C12—C11—C23—O2	120.61 (16)
C13—C18—C17—C22	-178.76(14)	C1-C11-C23-O2	-117.41 (16)
C19—C18—C17—C16	178.06 (14)	C10-C11-C23-O3	172.73 (11)
C13—C18—C17—C16	-0.4(2)	C12—C11—C23—O3	-61.09(14)
$C_{2}-N_{2}-C_{3}-C_{8}$	-177.79(16)	C1 - C11 - C23 - O3	60.89 (14)
$C_{25} = N_{2} = C_{3} = C_{8}$	3.1 (3)	C_{22} C_{17} C_{16} C_{15}	178.16 (16)
$C_2 - N_2 - C_3 - C_4$	0.98 (18)	C18 - C17 - C16 - C15	-0.1(2)
$C_{25} - N_{2} - C_{3} - C_{4}$	-178.11(14)	C18—C13—C14—C15	-0.3(2)
C27 - N1 - C1 - C4	-49.96 (19)	C12—C13—C14—C15	-177.87(14)
C9—N1—C1—C4	77.10 (15)	C18—C19—C20—C21	0.3 (3)
C27—N1—C1—C2	63.76 (17)	C3—N2—C2—O4	-177.41 (15)
C9—N1—C1—C2	-169.18(12)	C25—N2—C2—O4	1.7 (3)
$C_{27} - N_{1} - C_{1} - C_{11}$	-172.81(14)	$C_{3}-N_{2}-C_{2}-C_{1}$	-0.36(17)
C9—N1—C1—C11	-45.76 (14)	C25 - N2 - C2 - C1	178.75 (14)
C8-C3-C4-C5	0.2 (2)	N1-C1-C2-O4	53.2 (2)
N2-C3-C4-C5	-178.66(14)	C4-C1-C2-O4	176.71 (16)
C8—C3—C4—C1	177.69 (15)	C11—C1—C2—O4	-60.5 (2)
N2-C3-C4-C1	-1.16 (17)	N1-C1-C2-N2	-123.80(13)
N1-C1-C4-C5	-64.6 (2)	C4—C1—C2—N2	-0.32 (15)
C2-C1-C4-C5	177.95 (17)	C11—C1—C2—N2	122.47 (13)

C11—C1—C4—C5	52.4 (2)	C27—N1—C9—C10	165.99 (14)
N1-C1-C4-C3	118.35 (14)	C1—N1—C9—C10	38.31 (15)
C2-C1-C4-C3	0.88 (15)	C11—C10—C9—N1	-14.51 (16)
C11—C1—C4—C3	-124.70 (13)	C4—C3—C8—C7	0.0 (3)
C17—C18—C19—C20	-0.2 (2)	N2—C3—C8—C7	178.67 (16)
C13—C18—C19—C20	178.25 (15)	C19—C20—C21—C22	0.0 (3)
C9—C10—C11—C23	-127.72 (13)	C3—C4—C5—C6	-0.3 (2)
C9—C10—C11—C12	108.12 (13)	C1—C4—C5—C6	-177.12 (16)
C9—C10—C11—C1	-12.26 (15)	C20—C21—C22—C17	-0.4 (3)
O1—C12—C11—C23	-177.09 (11)	C16—C17—C22—C21	-177.74 (17)
C13—C12—C11—C23	-55.04 (15)	C18—C17—C22—C21	0.6 (3)
O1—C12—C11—C10	-50.22 (15)	C4—C5—C6—C7	0.2 (3)
C13—C12—C11—C10	71.84 (16)	C2—N2—C25—C26	92.5 (2)
O1—C12—C11—C1	63.80 (14)	C3—N2—C25—C26	-88.5 (2)
C13—C12—C11—C1	-174.14 (11)	C17—C16—C15—C14	0.5 (3)
N1-C1-C11-C23	154.27 (11)	C13—C14—C15—C16	-0.2 (3)
C4—C1—C11—C23	28.58 (15)	C5—C6—C7—C8	0.0 (3)
C2-C1-C11-C23	-88.26 (14)	C3—C8—C7—C6	-0.1 (3)
<u>N1-C1-C11-C10</u>	34.47 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O4	0.82	2.37	2.9121 (16)	124
01—H1…N1	0.82	2.39	2.9439 (17)	126