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Tree Automata-Based Refinement

with Application to Horn Clause Verification

Bishoksan Kafle1,� and John P. Gallagher1,2,��

1 Roskilde University, Denmark
2 IMDEA Software Institute, Madrid, Spain

Abstract. In this paper we apply tree-automata techniques to refine-
ment of abstract interpretation in Horn clause verification. We go beyond
previous work on refining trace abstractions; firstly we handle tree au-
tomata rather than string automata and thereby can capture traces in
any Horn clause derivations rather than just transition systems; secondly,
we show how algorithms manipulating tree automata interact with ab-
stract interpretations, establishing progress in refinement and generating
refined clauses that eliminate causes of imprecision. We show how to de-
rive a refined set of Horn clauses in which given infeasible traces have
been eliminated, using a recent optimised algorithm for tree automata
determinisation. We also show how we can introduce disjunctive abstrac-
tions selectively by splitting states in the tree automaton. The approach
is independent of the abstract domain and constraint theory underly-
ing the Horn clauses. Experiments using linear constraint problems and
the abstract domain of convex polyhedra show that the refinement tech-
nique is practical and that iteration of abstract interpretation with tree
automata-based refinement solves many challenging Horn clause verifi-
cation problems. We compare the results with other state of the art Horn
clause verification tools.

1 Introduction

In this paper we apply tree-automata techniques to refinement of abstract inter-
pretation in Horn clause verification. We go beyond previous work on refining
trace abstractions [23]; firstly, we handle tree automata rather than word au-
tomata and thereby can capture traces in any Horn clause derivations rather
than just transition systems; secondly, we show how algorithms manipulating
tree automata interact with abstract interpretations, establishing progress in
refinement and generating refined clauses that eliminate causes of imprecision.

More specifically, we show how to construct tree automata capturing both
the traces (derivations) of a given set of Horn clauses and also one or more
infeasible traces discovered after abstract interpretation of the clauses. From
these we construct a refined automaton in which the infeasible trace(s) have been
eliminated and a new set of clauses is constructed from the refined automaton.
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This guarantees progress in that the same infeasible trace cannot be generated
(in any abstract interpretation). In addition, the clauses are restructured during
the elimination of the trace, leading to more precise abstractions which can
lead to better invariant generation in subsequent iterations. The refinement is
manifested in the refined clauses, rather than in an accumulated set of properties
as in the counterexample-guided abstraction refinement (CEGAR) [8] approach.
We rely on the abstract interpretation of the clauses to generate useful properties,
rather than hoping to find them during the refinement itself.

We also show how we can introduce disjunctive abstractions selectively by
splitting states in the tree automaton. The approach is independent of the ab-
stract domain and constraint theory underlying the Horn clauses. Experiments
using linear constraint problems and the abstract domain of convex polyhedra
show that the refinement technique is practical and that iteration of abstract in-
terpretation with tree automata-based refinement solves many challenging Horn
clause verification problems. We compare the results with other state of the art
Horn clause verification tools.

The main contributions of this paper are the following; (1) We construct a cor-
respondence between computations using Horn clauses and finite tree automata
(FTA) (Section 3). (2) We construct a refined set of clauses directly from a
tree automaton representation of the clauses and an infeasible trace; the trace
is eliminated from the refined clauses (Section 3.5) (3) We propose a “splitting”
operator on FTAs (Section 2) and describe its role in Horn clause verification
(Section 4.1). (4) We demonstrate the feasibility of our approach in practice
applying it to Horn clause verification problems (Section 5).

2 Finite Tree Automata

Finite tree automata (FTAs) are mathematical machines that define so-called
recognisable tree languages, which are possibly infinite sets of terms that have
desirable properties such as closure under Boolean set operations and decidability
of membership and emptiness.

Definition 1 (Finite tree automaton). An FTA A is a tuple (Q,Qf , Σ,Δ),
where Q is a finite set of states, Q ⊆ Qf is a set of final states, Σ is a set of
function symbols, and Δ is a set of transitions. We assume that Q and Σ are
disjoint.

Each function symbol f ∈ Σ has an arity n ≥ 0, written as ar(f) = n. The
function symbols with arity 0 are called constants. Term(Σ) is the set of ground
terms or trees constructed from Σ where t ∈ Term(Σ) iff t ∈ Σ is a constant
or t = f(t1, t2, ..., tn) where ar(f) = n and t1, t2, ..., tn ∈ Term(Σ). Similarly
Term(Σ ∪ Q) is the set of terms/trees constructed from Σ and Q, treating the
elements of Q as constants.

Each transition in Δ is of the form f(q1, q2, ..., qn) → q where ar(f) = n. Given
δ ∈ Δ we refer to its left- and right-hand-sides as lhs(δ) and rhs(δ) respectively.
Let ⇒ be a one-step rewrite in which t1 ⇒ t2 iff t2 is the result of replacing one
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subterm of t1 equal to lhs(δ) by rhs(δ), from some δ ∈ Δ. The reflexive, transitive
closure of ⇒ is ⇒∗. We say there is a run (resp. successful run) for t ∈ Term(Σ)
if t ⇒∗ q where q ∈ Q (resp. q ∈ Qf), and we say that t is accepted if t has a
successful run. An FTA A defines a set of terms, that is, a tree language, denoted
by L(A), as the set of all terms accepted by A.

Definition 2 (Deterministic FTA (DFTA)). An FTA (Q,Qf , Σ,Δ) is called
bottom-up deterministic iff Δ has no two transitions with the same left hand side.

We omit the adjective “bottom-up” in this paper and just refer to deterministic
FTAs. Runs of a DFTA are deterministic in the sense that for every t ∈ Term(Σ)
there is at most one q ∈ Q such that t ⇒∗ q.

2.1 Operations on FTAs

FTAs are closed under Boolean set operations, but for our purposes we mention
only union and difference of automata, where in addition we assume that the
signature Σ is fixed and that the states of FTAs are disjoint from each other
when applying operations (the states can be renamed apart).

Definition 3 (Union of FTAs). Let A1,A2 be FTAs (Q1, Q1
f , Σ,Δ1) and

(Q2, Q2
f , Σ,Δ2) respectively. Then A1 ∪ A2 = (Q1 ∪ Q2, Q1

f ∪ Q2
f , Σ,Δ1 ∪Δ2),

and we have L(A1 ∪A2) = L(A1) ∪ L(A2).

Determinisation plays a key role in the theory of FTAs. As far as expressive-
ness is concerned, we can limit our attention to DFTAs since for every FTA A
there exists a DFTA Ad such that L(A) = L(Ad) [9]. The standard construction
builds a DFTA Ad whose states are elements of the powerset of the states of
A. The textbook procedure for constructing Ad from A [9] is not viewed as a
practical procedure for manipulating tree automata, even fairly small ones. In
a recent work Gallagher et al. [14] developed an optimised algorithm for deter-
minisation, whose worst-case complexity remains unchanged, but which performs
dramatically better than existing algorithms in practice. A critical aspect of the
algorithm is that the transitions of the determinised automaton are generated
in a potentially very compact form called product form, which can often be used
directly when manipulating the determinised automaton.

Definition 4 (Product Transition). A product transition is of the form
f(Q1, . . . , Qn) → q where Qi are sets of states and q is a state. The product
transition represents a set of transitions {f(q1, . . . , qn) → q | qi ∈ Qi, i = 1..n}.
Thus Πn

i=1|Qi| transitions are represented by a single product transition.

Alternatively, we can regard a product transition as introducing ε-transitions.
An ε-transition has the form q1 → q2 where q1, q2 are states. ε-transitions can be
eliminated, if desired. Given a product transition f(Q1, . . . , Qn) → q, introduce
n new non-final states s1, . . . , sn corresponding to Q1, . . . , Qn respectively and
replace the product transition by the set of transitions {f(s1, . . . , sn) → q} ∪
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{q′ → si | q′ ∈ Qi, 1 = 1..n}. It can be shown that this transformation preserves
the language of the FTA.

Given FTAs A1 and A2 there exists an FTA A1 \A2 such that L(A1 \A2) =
L(A1)\L(A2). To construct the difference FTA we use union and determinisation
and exploit the following property of determinised states [14].

Property 1. Let Ad be the DFTA constructed from A. Let Q be the states of
A. Then there is a run t ⇒∗ q in A if and only if there is a run t ⇒∗ Q′ in Ad

where Q′ ∈ 2Q, such that q ∈ Q′.

Furthermore recall that a term is accepted by at most one state in a DFTA. This
gives rise to the following construction of the difference FTA A1 \ A2. We first
form the DFTA for the union of the two FTAs and then remove those of its final
states containing the final states of A2. In this way we remove the terms, and
only the terms (by Property 1), accepted by A2. The availability of a practical
algorithm for determinisation is what makes this construction of the difference
FTA feasible.

Definition 5 (Construction of difference of FTAs). Let A1,A2 be FTAs
(Q1, Q1

f , Σ,Δ1) and (Q2, Q2
f , Σ,Δ2) respectively. Let (Q′,Q′

f , Σ,Δ′) be the de-

terminisation of A1 ∪ A2. Let Q2 = {Q′ ∈ Q′ | Q′ ∩ Q2
f 	= ∅}. Then A1 \ A2 =

(Q′,Q′
f \ Q2, Σ,Δ′).

Next we introduce a new operation over FTA called state splitting. which
consists of splitting a state q into a number of states, based on a partition of the
set of transitions whose rhs is q. We define this splitting as follows:

Definition 6 (Splitting a state in an FTA). Let A = (Q,Qf , Σ,Δ) be an
FTA. Let q ∈ Q and Δq = {t ∈ Δ | rhs(t) = q}. Let Φ = {Δ1

q, . . . , Δ
k
q} (k > 1) be

some partition of Δq. Introduce k new states q1, . . . , qk. Then the FTA splitΦ(A)
is (Qs, Qs

f , Σ,Δs) where:

– Qs = Q \ {q} ∪ {q1, . . . , qk};
– Qs

f = Qf \ {q} ∪ {q1, . . . , qk} if q ∈ Qf , otherwise Qs
f = Qf ;

– Δs = unfoldq(Δ \Δq ∪ {lhs(t) → qi | t ∈ Δi
q, i = 1..k}), where unfoldq(Δ

′)
is the result of repeatedly replacing a transition f(. . . , q, . . .) → s ∈ Δ′ by
the set of k transitions {f(. . . , q1, . . .) → s, . . . , f(. . . , qk, . . .) → s} until no
more such replacements can be made.

We have L(A) = L(splitΦ(A)).

3 Horn Clauses and Their Trace Automata

A constrained Horn clause (CHC) is a first order predicate logic formula of the
form ∀(φ ∧ p1(X1) ∧ . . . ∧ pk(Xk) → p(X)) (k ≥ 0), where φ is a conjunction of
constraints with respect to some background theory, Xi, X are (possibly empty)
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vectors of distinct variables, p1, . . . , pk, p are predicate symbols, p(X) is the head
of the clause and φ ∧ p1(X1) ∧ . . . ∧ pk(Xk) is the body.

There is a distinguished predicate symbol false which is interpreted as false.
In practice the predicate false only occurs in the head of clauses; we call clauses
whose head is false integrity constraints, following the terminology of deductive
databases. They are also sometimes referred to as negative clauses. We follow
the syntactic conventions of constraint logic programs and write a clause as
p(X) ← φ, p1(X1), . . . , pk(Xk).

3.1 Interpretations and Models

An interpretation of a set of CHCs is represented as a set of constrained facts of
the form A ← φ where A is an atomic formula p(Z1, . . . , Zn) where Z1, . . . , Zn

are distinct variables and φ is a constraint over Z1, . . . , Zn. The constrained fact
A ← φ is shorthand for the set of variable-free facts Aθ such that φθ holds in the
constraint theory, and an interpretation M denotes the set of all facts denoted
by its elements; M assigns true to exactly those facts. M1 ⊆ M2 if the set of
denoted facts of M1 is contained in the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation that satisfies each
clause. There exists a minimal model with respect to the subset ordering, denoted
M [[P ]] where P is the set of CHCs.M [[P ]] can be computed as the least fixed point
(lfp) of an immediate consequences operator (called SD

P in [25, Section 4]), which
is an extension of the standard TP operator from logic programming, extended
to handle the constraint domain D. Furthermore lfp(SD

P ) can be computed as
the limit of the ascending sequence of interpretations ∅, SD

P (∅), SD
P (SD

P (∅)), . . ..
This sequence provides a basis for abstract interpretation of CHC clauses. The
minimal model of P is equivalent to the set of atomic logic consequences of P .

3.2 The Constrained Horn Clause Verification Problem.

Given a set of CHCs P , the CHC verification problem is to check whether there
exists a model of P . Obviously any model of P assigns false to the bodies of
integrity constraints. We restate this property in terms of the derivability of the
predicate false. Let P |= F mean that F is a logical consequence of P , that is,
that every interpretation satisifying P also satisfies F .

Lemma 1. P has a model if and only if P 	|= false.

This lemma holds for arbitrary interpretations (only assuming that the predicate
false is interpreted as false), uses only the textbook definitions of “interpretation”
and “model” and does not depend on the constraint theory. Due to the equiva-
lence of the minimal model of P with the set of atomic logical consequences of
P , we have yet another equivalent formulation of the CHC verification problem.

Lemma 2. P has a model if and only if false 	∈ M [[P ]].
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c1. mc91(A,B) :- A > 100, B = A-10.

c2. mc91(A,B) :- A =< 100, C = A+11, mc91(C,D), mc91(D,B).

c3. false :- A =< 100, B > 91, mc91(A,B).

c4. false :- A =< 100, B =< 90, mc91(A,B).

Fig. 1. Example CHCs. The McCarthy 91-function.

It is this formulation that is most relevant to our method, since we compute
over-approximations of M [[P ]] by abstract interpretation. That is, if false 	∈ M ′

where M [[P ]] ⊆ M ′ then we have shown that P has a model.

3.3 Trace Automata for CHCs

Before constructing the trace automaton we introduce identifiers for each clause.
An identifier is a function symbol whose arity is the same as the number of
atoms in the clause body. For instance a clause p(X) ← φ, p1(X1), . . . , pk(Xk) is
assigned a function symbol with arity k. More than one clause can be assigned
the same function symbol, but all the clauses with the same identifier have the
same structure, including their constraints; that is, they differ only in one or
more predicate names. Given a set of CHCs and a set Σ of ranked function
symbols, let idP : P → Σ be the assignment of function symbols to clauses.

Definition 7 (Trace FTA for a set of CHCs). Let P be a set of CHCs.
Define the trace FTA for P as AP = (Q,Qf , Σ,Δ) where

– Q is the set of predicate symbols of P ;
– Qf ⊆ Q is the set of predicate symbols occurring in the heads of clauses of

P ;
– Σ is a set of function symbols;
– Δ = {c(p1, . . . , pk) → p | where c ∈ Σ, c = idP (cl),where cl = p(X) ←

φ, p1(X1), . . . , pk(Xk)}.
The elements of L(AP ) are called trace terms for P . In Section 4 we will see
that several clauses differing only in their predicate names are assigned the same
function symbol.

To motivate readers, we present an example set of CHCs P in Figure 1 which
will be used throughout this paper. This is an interesting problem in which the
computations are trees rather than linear sequences.

Example 1. Let P be the set of CHCs in Figure 1. Let idP map the clauses to
c1, . . . , c4 respectively. Then AP = (Q,Qf , Σ,Δ) where:

Q = {mc91, false} Δ = {c1 → mc91,
Qf = {mc91, false} c2(mc91, mc91) → mc91,
Σ = {c1, c2, c3, c4} c3(mc91) → false, c4(mc91) → false}

For each trace term there exists a corresponding derivation tree called an
AND-tree, which is unique up to variable renaming. The concept of an AND-
tree is derived from [33] and [16].
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Definition 8 (AND-tree for a trace term). Let P be a set of CHCs and
let t ∈ L(AP ). Denote by AND(t) the following labelled tree, where each node of
AND(t) is labelled by a clause and an atomic formula.

1. For each subterm cj(t1, . . . , tk) of t there is a corresponding node in AND(t)
labelled by an atom p(X) and (a renamed variant of) some clause p(X) ←
φ, p1(X1), . . . , pk(Xk) such that cj = idP (p(X) ← φ, p1(X1), . . . , pk(Xk));
the node’s children (if k > 0) are the nodes corresponding to t1, . . . , tk and
are labelled by p1(X1), . . . , pk(Xk).

2. The variables in the labels are chosen such that if a node n is labelled by a
clause, the local variables in the clause body do not occur outside the subtree
rooted at n.

Definition 9 (Trace constraints). Let P be a set of CHCs. The set of con-
straints of a trace t ∈ L(AP ), represented as constr(t) is the set of all constraints
in the clause labels of AND(t).

Definition 10 (Feasible trace). We say that a trace term t is feasible if
constr(t) is satisfiable.

Definition 11 (FTA for a trace term). Let P be a set of CHCs and t ∈
L(AP ). The FTA At (whose construction is trivial) such that L(At) = {t} is
called the FTA for t. The states of At are chosen to be disjoint from those of
AP .

Example 2 (Trace FTA). Consider the FTA in Example 1. Let t = c3(c2(c1, c1)).
Each nodei represents a label in the trace. Then At = (Q,Qf , Σ,Δ) is defined
as:

Q = {node1, node2, node3, node4}
Qf = {node1}
Σ = {c1, c2, c3, c4}
Δ = {c1 → node3, c1 → node4, c2(node3, node4) → node2,

c3(node2) → node1}
and Σ is the same as in AP . The trace t is not feasible since constr(t) =
{A ≤ 100, B > 91, A ≤ 100, C = A+ 11, C > 100, D = C− 10, D > 100, B = D− 10}
and this is not satisfiable.

Definition 12 (Constrained trace atom). Let P be a set of CHCs and t ∈
L(AP ). Let p(X) be the atom labelling the root of AND(t). Then the constrained
trace atom of t is ∀X.(∃Z̄.constr(t) → p(X)), where Z̄ = vars(constr(t)) \X.

We now restate a standard result from constraint logic programming [25] in
terms of the concepts defined above.

Proposition 1. Let P be a set of CHCs.

1. Then for all t ∈ L(AP ) the constrained trace atom for t is a logical conse-
quence of P . (Note that if t is not feasible this is trivially true).
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2. If p(a) is in the minimal model of P , there exists a feasible trace t ∈ L(AP )
whose constrained trace atom is of the form ∀X.φ → p(X) where the con-
straint φ[X/a] is true.

Assuming that the constraint theory has a complete satisfiability procedure, part
1 of Proposition 1 corresponds to the standard soundness result for resolution-
based proof systems, and part 2 corresponds to completeness.

3.4 Model-Preserving Transformation of Trace Automata

Proposition 1 implies that the constrained trace atoms for the feasible traces
describe exactly the elements of the minimal model, which is equivalent to the
set of atomic logical consequences of P . As a consequence the set of feasible
traces in L(AP ) can be regarded as a representation of the minimal model of P .

If we transform AP to another FTA while preserving the set of traces, we also
preserve the feasible traces. More generally, we can transform AP to another
FTA A′ so long as L(A′) ⊆ L(AP ) and the elements of L(AP ) \ L(A′) are all
infeasible. In this case the feasible traces of L(A′) are still a representation of
the minimal model of P . We will exploit this in our refinement procedure (see
Section 4).

3.5 Generation of CHCs from a Trace FTA

Now we describe a procedure (Algorithm 1) for generating a set of clauses P ′

from an FTA A = (Q,Qf , Σ,Δ) and a set of clauses P . We assume that Σ is the
same as that of AP ; so Σ is the range of the function idP mapping clauses of P to
function symbols. The transitions Δ are not in product form; a modification of
the algorithm and its correctness proposition is possible for product form but we
omit that here. We first introduce an injective function for renaming the states
of A since we need predicate names for the generated clauses.

ρ : Q → Predicates

The function ρ maps each FTA state to a distinct predicate name. The algorithm
simply generates a clause for each transition, applying the renaming function
from states to predicates, and introducing variables arguments according to the
pattern obtained from any clause with the corresponding identifier (all clauses
with the same identifier having the same variable pattern).

Apart from generating a set of clauses P ′, Algorithm 1 also generates the
clause identification mapping idP ′ , preserving the function symbols from the
FTA. In this way the set of traces is preserved from P to P ′. The correctness of
Algorithm 1 is expressed by the following proposition.

Proposition 2. Let P be a set of CHCs and let A be an FTA whose signature
is the same as that of AP . Let P

′ be the set of clauses generated from A and
P by Algorithm 1. Then L(AP ′ ) = L(A). Furthermore if L(AP ′ ) includes all
the feasible traces of L(AP ) then the minimal model of P ′ is the same as the
minimal model of P , modulo predicate renaming.
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Input: An FTA A = (Q,Qf , Σ,Δ) and a set of Horn clauses P
Output: A set of Horn clauses P ′

P ′ ← ∅;
for each ci(q1, . . . , qn) → q (where n ≥ 0) ∈ Δ do

let c = p(X) ← φ, p1(X1), . . . , pn(Xn) be any clause in P where idP (c) = ci;
cnew = ρ(q)(X) ← φ, ρ(q1)(X1), . . . , ρ(qn)(Xn) ;
idP ′(cnew) = ci;
P ′ ← P ′ ∪ {cnew};

end
return P ′;

Algorithm 1. Algorithm for generating a set of clauses from an FTA

Example 3 (Generation of clauses from an FTA). Consider the following tran-
sitions, relating to the signature for the program in Figure 1. The set of states is
{[false],[mc91],[e,false],[mc91,e1]}. (These are elements of the powerset
of the set of states {false,mc91,e,e1}, which were generated by the determin-
isation algorithm).

c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

c2([mc91],[mc91]) -> [mc91].

c2([mc91, e1],[mc91]) -> [mc91].

c2([mc91],[mc91, e1]) -> [mc91].

c3([mc91]) -> [false].

c4([mc91, e1]) -> [false].

c4([mc91]) -> [false].

c3([mc91, e1]) -> [e, false].

The clauses generated by Algorithm 1 are the following, with the renaming func-
tion ρ = {[false] �→ false, [mc91] �→ mc91, [e, false] �→ false 1, [mc91, e1] �→
mc91 1}. Below we also show the clause identifiers (the id function for the gen-
erated clauses) showing that several clauses can have the same identifier, thus
preserving traces.

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91_1(D,B).

c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91_1(A,B).

c3: false_1 :- A =< 100, B > 91, mc91_1(A,B).
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3.6 Abstract Interpretation of Constrained Horn Clauses

Abstract interpretation [10] is a static program analysis techniques which de-
rives sound over-approximations by computing abstract fixed points. Convex
polyhedron analysis (CPA) [11] is a program analysis technique based on ab-
stract interpretation [10]. When applied to a set of CHCs P it constructs an
over-approximation M ′ of the minimal model of P , where M ′ contains at most
one constrained fact p(X) ← φ for each predicate p. The constraint φ is a
conjunction of linear inequalities, representing a convex polyhedron. The first
application of convex polyhedron analysis to CHCs was by Benoy and King [4].

We summarise briefly the elements of convex polyhedron analysis for CHC;
further details (with application to CHC) can be found in [11,4]. The abstract
interpretation consists of the computation of an increasing sequence of elements
of the abstract domain of tuples of convex polyhedra (one for each predicate)
Dn. We construct a monotonic abstract semantic function FP : Dn → Dn for the
set of Horn clauses P , approximating the concrete semantic “immediate conse-
quences” operator. Since Dn contains infinite increasing chains, a widening op-
erator for convex polyhedra [11] is needed to ensure convergence of the sequence.
The sequence computed is Z0 = ⊥n, Zn+1 = Zn∇FP (Zn) where ∇ is a widening
operator for convex polyhedra and the empty polyhedron is denoted ⊥. The con-
ditions on ∇ ensure that the sequence stabilises; thus for some finite j, Zi = Zj

for all i > j and furthermore the value Zj represents an over-approximation of
the least model of P . Much research has been done on improving the precision of
widening operators. One technique is known as widening-upto, or widening with
thresholds [22]. A threshold is an assertion that is combined with a widening
operator to improve its precision.

Our tool for convex polyhedral abstract interpretation, called CPA in the rest
of this paper, uses the Parma Polyhedra Library [2] to implement the operations
on convex polyhedra, and incorporates a threshold generation phase based on
the method described by Lakhdar-Chaouch et al. [27], as well as a constraint
strengthening pre-processing which propagates constraints both forwards and
backwards in the clauses of P . Space does not permit a detailed explanation.

4 Refinement of Horn Clauses Using Trace Automata

If an over-approximation of the clauses derived by polyhedral abstraction does
not contain false, the clauses are safe. However if false is contained in the ap-
proximation, we do not know whether the clauses are unsafe or whether the
approximation was too imprecise. In such cases we can produce a trace term
using the clauses in P which justifies the abstract derivation of false. The feasi-
bility of this trace can be checked by a constraint satisfiability check. If the trace
is feasible, then it corresponds to a proof of unsafety. Otherwise, refinement is
considered based on this trace. In some approaches, a more precise abstract do-
main is derived from the trace. In our refinement approach, which is described
next, we aim to generate a modified set of clauses that could yield a better
approximation. This is achieved through the steps shown in Algorithm 2.
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Input: A set of Horn clauses P and an infeasible trace t
Output: A set of Horn clauses P ′

1. construct the trace FTA AP (Definition 7);
2. construct an FTA At such that L(At) = {t} (Definition 11);
3. compute the difference FTA AP \ At (Definition 5);
4. generate P ′ from AP \ At and P (Algorithm 1) ;
return P ′;

Algorithm 2. Algorithm for clause refinement

Both AP and At in Algorithm 2 are deterministic by construction, however
their union is not. Determinisation is used to generate the difference FTA (step
3) and its result is in product form. The program P ′ has the same model (modulo
predicate renaming) as P , since the steps result in the removal of an infeasible
trace but all other traces are preserved.

Removal of one trace from the clauses might not seem much of a refinement.
However, the restructuring of the clauses required to remove a trace can split the
predicates. This restructuring is the effect of determinisation, which isolates the
infeasible trace. This in turn can induce a more precise abstract interpretation,
with less precision loss due to convex hull operations and widening.

The correctness of this refinement follows from Proposition 2. In particular
false ∈ M [[P ]] if and only if false ∈ M [[P ′]] (assuming that the predicate renaming
at least preserves the predicate name false).

Example 4. Consider again the FTA shown in Example 3. This is in fact the
determinisation of AP ∪ At where P is the set of clauses in Figure 1 and At

where t is the infeasible trace c3(c1). The only accepting state of At is e; thus
to construct the difference AP \At we need only to remove from the automaton
the states containing e, namely [mc91,e]. We can also remove any transitions
containing this state in the right hand side. This leaves the following FTA and
refined program, using the same renaming function as in Example 3. In this
program, the infeasible trace corresponding to c3(c1) cannot be constructed.

c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

c2([mc91],[mc91]) -> [mc91].

c2([mc91, e1],[mc91]) -> [mc91].

c2([mc91],[mc91, e1]) -> [mc91].

c3([mc91]) -> [false].

c4([mc91]) -> [false].

c4([mc91, e1]) -> [false].

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91_1(D,B).
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c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91_1(A,B).

It can be seen that although the infeasible trace was very simple, its removal led
to a considerably restructured set of clauses. We have not shown the product
form here, which is in fact somewhat more compact.

The refinement process guarantees progress; that is, the infeasible computa-
tion once eliminated never arises again. Due to the construction of the idmapping
for P ′ the traces in the languages of the FTAs of P and P ′ are preserved, apart
from the eliminated trace.

Proposition 3 (Progress). Let P be a set of CHCs, and t be a trace in P .
Let P ′ be a refined set of CHCs obtained from P after the removal of t. Then t
cannot be generated in any approximation of P ′.

After the removal of the trace t (step 3 of Algorithm 2) the language of AP \At

does not contain t. Then using Algorithm 1 to generate P ′, t will not be a possible
trace in P ′. It is physically impossible to construct t, in any abstract domain.

4.1 Further Refinement: Splitting a State in the Trace FTA

We also apply a tree-automata-based transformation to split states represent-
ing predicates where convex hull operations have lost precision. A typical case
is where a number of clauses with the same head predicate contain disjoint
constraints, such as a predicate representing an if-then-else statement in an im-
perative program. The clauses defining the statement will have a clause for the
then branch and a clause for the else branch. The respective constraints in these
clauses are disjoint since one is the negation of the other. The convex hull will
thus contain the whole space for the variables involved in these constraints.

As defined in Definition 6, the FTA state corresponding to such a predicate
can be split. We partition the transitions corresponding to the clauses according
to the disjoint groups of constraints and apply the procedure in Definition 6, pre-
serving the set of traces. Thus the feasible traces and the model of the resulting
clauses is preserved. This enhances precision of polyhedral analysis [15].

Splitting has to be carried out in a controlled manner to prevent blow up in
the size of FTA and hence on the size of the clauses generated. With this in
mind we split only those states appearing in a counterexample trace.

5 Experiments on CHC Benchmark Problems

Our tool consists of an implementation of a convex polyhedra analyser for CLP
written in Ciao Prolog1 interfaced to the Parma Polyhedra Library [2] as well as
an implementation of an FTA determiniser written in Java. It takes as input a

1 http://ciao-lang.org/

http://ciao-lang.org/
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FTAM – Finite tree automata manipulation

AI –Abstract interpretation

CG – Clauses generation

Abstraction Refinement

CHC P
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Approximation

set of traces

safe

no

unsafe

yes and feasible

set of traces

error traces
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CHC P

error traces? FTAM

traces

CG

Fig. 2. Abstraction-refinement scheme in Horn clause verification

CLP program and returns “safe”, “unsafe” or “unknown” (after timeout). The
benchmark set contains 216 CHCs verification problems (179 safe and 37 unsafe
problems), taken mainly from the repositories of several state-of-the-art soft-
ware verification tools such as DAGGER [19] (21 problems), TRACER [26] (66
problems), InvGen [21] (68 problems), and also from the TACAS 2013 Software
Verification Competition [5] (52 problems). Most of these problems are avail-
able in C and they were first translated to CLP form2. The chosen problems are
representatives of different categories of the Software Verification Competition
(loops, control flow and integer, SystemC etc.) as well as specific problems used
to demonstrate the strength of different verification tools. The benchmarks are
available from http://akira.ruc.dk/~kafle/VMCAI15-Benchmarks.zip. The
experiments were carried out on an Intel(R) quad-core computer with a 2.66GHz
processor running Debian 5 in 6 GB memory.

5.1 Summary of Results

The results of our experiments are summarised in Table 3. Column CPA sum-
marises the results using our own convex polyhedra analyser (Section 3.6) with
no refinement step. Column CPA+R shows the results obtained by iterating the
CPA algorithm with the refinement step described in Section 4, Algorithm 2.
Column CPA+R+Split incorporates the FTA-based state splitting into the re-
finement step (Section 4.1). Column QARMC shows the results obtained on the
same problems using the QARMC tool [31].

5.2 Discussion of Results

The results show that CPA is reasonably effective on its own, solving 74%
(160/216) of the problems, though it times out for seven problems. When com-
bined with a refinement phase we can solve 22 further problems. Although only

2 Thanks to Emanuele De Angelis for the translation.

http://akira.ruc.dk/~ kafle/VMCAI15-Benchmarks.zip
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CPA CPA+R CPA+R+Split QARMC

solved (safe/unsafe) 160 (142/18) 182 (160/22) 195 (164/31) 178 (141/37)

unknown/ timeout 49/7 -/34 -/22 -/38

average time (secs.) 5.98 51.66 50.08 59.1

% solved 74 84.25 90.27 82.4

Fig. 3. Experimental results on 216 (179 safe / 37 unsafe) CHC verification problems
with a timeout of five minutes

one infeasible trace is eliminated in each refinement step, the refined program
splits some of the predicates appearing in the trace, which we noted to be a
crucial point of precision for polyhedral analysis [15]. When adding the state
splitting refinement we solve an additional 13 problems. Further splitting would
solve more problems but we are unwilling to introduce uncontrolled splitting
due to the blow up in program size that could result. The maximum number
of iterations required to solve a problem was 8. Although the timeout limit was
five minutes, only 5% of the solved problems required more than one minute.
QARMC tends to perform more (but faster) iterations.

Our implementation uses the product form for DFTAs produced by the deter-
minisation algorithm, although the formalisation of refinement in Section 4 uses
only standard FTA transitions. Although the traces for clauses with predicates
produced from product states differ from the original clauses, they can be re-
garded as representing the original traces, by unfolding the clauses resulting from
ε-transitions. Product form adds to the scalability of the approach, especially for
Horn clauses with more than one body atom.

5.3 Comparison with Other Tools

Our results improve on QARMC both in average time and the number of in-
stances solved. Out of 216 problems QARMC solves 178 problems with an aver-
age time of 59 seconds whereas we can solve 195 problems with an average time
of 50 seconds. However, all unsafe programs in the benchmark set are solved
by QARMC in contrast to ours. Convex polyhedral analysis is good at finding
the required invariants to prove a program safe and due to this we solved more
safe problems than QARMC. QARMC seems to be more effective at finding
bugs. Most of the problems challenging to us come from particular categories
e.g. SystemC (modelled over fixed size integers) and Control Flow and Integer
Variables of [5] which requires some specific techniques to solve. Safe problems
challenging to us are also challenging to QARMC though this is not the case for
unsafe problems.

6 Related Work

The work by Heizmann et al. [23,24] uses word automata to construct a frame-
work for abstraction refinement. Our work could certainly be regarded as
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extending that framework to tree-structured computations, using tree automata
instead of (nested) word automata. However our aim is rather different. We
use automata techniques to perform the refinement whereas in [23] automata
notation is only used to re-express the verification problem, shifting the verifica-
tion problem to the construction of “interpolant automata”, without providing
any automata-based algorithms to do this. On the other hand we discuss the
practicality of the automata-based approach on a set of challenging problems.

While we eliminate only one trace at a time in the described procedure,
the FTA difference algorithm extends naturally to eliminating (infinite) sets
of traces. However in our setting that does not seem a useful goal – to find an
automaton describing an infinite set of infeasible traces often amounts to solving
the original problem.

Verification of CLP programs using abstract interpretation and specialisation
has been studied for some time. The use of an over-approximation of the se-
mantics of a program can be used to establish safety properties – if a state or
property does not appear in an over-approximation, it certainly does not ap-
pear in the actual program behaviour. A general framework for logic program
verification through abstraction was described by Levi [29]. Peralta et al. [30] in-
troduced the idea of using a Horn clause representation of imperative languages
and a convex polyhedral analyser to discover invariants of a program. Another
approach is taken in the work of De Angelis et al. [12,13] on applying program
specialisation to achieve verification. Unfolding and folding operations play a
vital role in that approach, and hence the program structure is changed much
more fundamentally than in our approach.

CEGAR [8] has been successfully used in verification to automatically refine
(predicate) abstractions [7,28] to reduce false alarms but not much has been ex-
plored in refining abstractions in the convex polyhedral domain. Some work on
this (with progress guarantee) has been done in [1] and [19]. [1] uses the powerset
domain, while [19] uses a Hint DAG to gain precision lost during the convex hull
operation. Both make use of interpolation. The use of interpolation in refinement
in verification of Horn clauses is explored in [6,20]. In our approach we guarantee
elimination of only one trace and elimination of others depends on properties of
the abstract interpretation techniques. By contrast in interpolation-based tech-
niques the refinement introduces new properties which guarantee progress and
the elimination of all counterexamples covered by those properties. However
the effectiveness of interpolation-based refinement depends on the generation of
“good” interpolants, which is a matter of continuing research, for example by
Rümmer et al. [32]. A number of tools implementing predicate abstraction and
refinement are available, such as HSF [18] and BLAST [3]. TRACER [17] is a
verification tool based on CLP that uses symbolic execution.

A point of contrast is that in our approach, the refinements are embedded
in the clauses whereas in CEGAR they are accumulated in the set of proper-
ties used for property-based abstraction. Also we rely on the abstraction us-
ing convex polyhedral analysis to discover invariants whereas CEGAR-based
approaches rely on interpolation in the refinement stage to discover relevant
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properties. Polyhedral analysis is more expensive, yet seems (along with the
threshold assertions, see Section 3.6) to be very effective at finding invariants
even on the first iteration. A weakness of invariant generation using interpola-
tion is that the interpolants must share variables with the unsatisfiable part of
the constraints, typically those in the integrity constraints, which can be insuffi-
cient for finding invariants of inner recursive predicates. Informally one can say
that approaches differ in where the “hard work” is performed. In the CEGAR
approaches and in [23] the refinement step is crucial, and interpolation plays a
central role. In our approach, by contrast, most of the hard work is done by the
abstract interpretation, which finds useful invariants. Finding the most effective
balance between abstraction and refinement techniques is a matter of ongoing
research.

7 Conclusion and Future work

In this paper we presented a procedure for abstraction refinement in Horn clause
verification based on tree automata. This was achieved through a combination
of abstraction (using abstraction interpretation) followed by a trace refinement
(using finite tree automata). The refinement is independent of the abstract do-
main used. The practicality of our approach was demonstrated on a set of Horn
clause verification problems.

In the future, we will investigate the elimination of a larger set of infeasible
traces in each refinement step, possibly by generalising a trace using interpolation
or by discovering a set of infeasible traces. The optimisation of our tool chain is
also an important topic for future work as it is clear that our prototype, built
by chaining together tools using shell scripts, contains much redundancy.

Acknowledgements. We thank the anonymous referees for useful comments.
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D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007),
http://www.grappa.univ-lille3.fr/tata (release October 12, 2007)

10. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) POPL, pp. 238–252. ACM (1977)

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th Annual ACM Symposium on Principles
of Programming Languages, pp. 84–96 (1978)

12. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying programs via
iterated specialization. In: Albert, E., Mu, S.-C. (eds.) PEPM, pp. 43–52. ACM
(2013)

13. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: A tool for
verifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.)
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