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Abstract

Fluctuation dissipation theorems are derived for thermodynamic properties

like frequency dependent speci�c heat and compressibility. First the case

where a systems dynamics are restricted by constant volume and energy is

considered. The dynamic linear response to a heat pulse and a volume change

at time zero is calculated, under assumption of energy conservation. Then

the case of isothermal isobaric conditions are treated by a slight modi�cation

of ordinary linear response theory. In both cases the perturbation cannot be

stated through the Hamiltonian, but has to be imposed by variation of the ex-

ternal thermodynamic system parameters. In thermodynamic response the-

ory equivalence between ensembles is broken, but time correlation functions

sampled in di�erent ensembles are connected through the Maxwell relations

of thermodynamics generalized to the frequency domain. Di�erent applica-

tions of the theory in the �eld of supercooled liquids are showed. First the

full frequency dependent thermodynamic response matrix is extracted from

simulations of a binary Lennard Jones liquid. Secondly some simple stochas-

tic models of supercooled liquids are analysed in the framework of linear

thermodynamic response theory. In addition low temperature universality of

the speci�c heat is discussed.

Analysis of hydrogen bond dynamics in supercooled SPC/E model water

shows that there is a separation between a fast (local) time scale, and a slow

(collective) time scale in the supercooled regime. Time temperature scaling

of the hydrogen bond correlation function is discussed in terms of a di�usion

model.

Preface

This Ph.D. thesis is mainly based on articles in di�erent stages of publication

which I have produced during my study. These are listed below, and labeled

with Roman numbers, which are used as reference labels throughout the

thesis.

[I] Thermodynamic Response Functions from Computer Simulations, J. K.

Nielsen, J. Non-Cryst. Sol. 235 -237 346 (1998). Section (7.1).

[II] Linear Response Theory for Thermodynamic Properties, J. K. Nielsen.

Submitted to Phys. Rev E., August (1998). Section (7.2).

[III]Master Equation Models of The Glass Transition J. K. Nielsen, K. D.

Jensen and J. C. Dyre, in Non equilibrium phenomena in supercooled
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uids, glasses and amorphous materials, edited by M. Giordano, D.

Leporini and M. P. Tosi World Scienti�c Singapore (Conference Pro-

ceedings), 371 (1996). Section (7.3).

[IV]Fluctuation Dissipation Theorem for Frequency Dependent Speci�c Heat,

J. K. Nielsen and J. C. Dyre, Phys. Rev. B 54, 15754 (1996). Section

(7.4).

[V ] Fast and Slow Dynamics of Hydrogen Bonds in Liquid Water, Francis

W. Starr, Johannes K. Nielsen & H. Eugene Stanley, submitted to

Phys. Rev. Lett. Section (7.5).

The articles are printed in the last chapter of the thesis.

In 1995 I mainly worked on modelling liquids near the glass transition

by dynamic stochastic models. The main task was to �nd energy-landscape

models which can reproduce the time or frequency dependence of the so-

called �-relaxation for various susceptibilities, see introduction chapter (2).

The following problems were raised:

� Can the shape of the �-peak be understood from energy controlled

stochastic models?

� What are the fundamental relaxing entities (regions), how are they

interacting locally and how can the energy landscape of a relaxing entity

be described?

� Which kinds of local energy density of states reproduces linear response

experiments, and how can these be justi�ed theoretically?

It turned out that the frequency dependent speci�c heat is an indicator of

the soundness of energy landscape models, simply because it is derivable from

models which predicts time correlations of energy 
uctuations, and measur-

able for liquids near the glass transition. However it also turned out that

a prober microscopical understanding of frequency dependent speci�c heat

was absent in literature. So some work on this problem was necessary, and

it lead to publication [IV], which showed the connection between frequency

dependent speci�c heat of a system and the corresponding natural energy


uctuations under isothermal conditions.

At this point I became interested in molecular dynamics (MD) simulations

of supercooled liquids. On advise from Jeppe Dyre I decided to concentrate

on the problems of interpretation of MD simulations in terms of speci�c

heat, in order to make the concept of frequency dependent speci�c heat the

turning point of the present thesis. It was clear at that point, that MD
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and stochastic energy landscape modelling is not directly comparable, since

they are restricted to separate temperature regimes. But there is a general

motivating question in much of the work I have done, which can be phrased

in the following manner:

� What is the frequency dependent speci�c heat, how can it be derived

from microscopic theory, and how is it connected to other response

functions?

Simultaneously with starting the computer programming for MD simulations,

which I wanted to do on my own, I started to work intensive on the pure

theoretical problem:

� How are the thermodynamic response functions connected to the time

dependent 
uctuations in the isocoric-isoenergetic ensemble.

I derived a new 
uctuation dissipation theorem for this particular problem,

and within the framework of this theory it was natural to include the whole

thermodynamic repose matrix. The main results were published in publica-

tion [I], and a more thoroughly presentation was published in publication [II]

along with some simulations on a simple model system.

Within the \MD-period" I worked a half year at the Center of Polymer

Studies at Boston University. H. E. Stanley advised me to concentrate on

some of the problems in supercooled water. I decided to cooperate with a

Ph.D. student Francis Starr, which turned out to be a good decision. We

studied hydrogen bond dynamics of supercooled liquid water by MD simu-

lations. This part of my Ph.D. study is not exactly connected to the rest,

except that it deals with dynamic 
uctuations of a supercooled liquid. The

questions which was the motivation for the research was quite speci�c, and

addressed a certain debate in literature.

� What is the nature of the hydrogen bond time correlations in super-

cooled water?

� What is the connection between the bond life time distribution, and

the reactive 
ux derived from the autocorrelation function of the bond

indicator.

� How does the apparent dynamical behavior depend on the choice of

bond indicator.

Basically the work we did, was a clari�cation of some di�erences between

methods of analysis and between model potentials, plus an extension of pre-

vious work into a deeper temperature regime. But we also found some new

things which might be of signi�cance. The conclusions will probably be pub-

lished in [V].
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Outline

In chapter (2) a brief general introduction to supercooled liquids is given. I

have decided to break up the chronology, so chapter (3) deals with thermody-

namic response theory in general. Section (3.1) is focused on publication [I]

and [II]. In proceeding of this, section (3.2) deals with the general theory of,

publication [IV]. Chapter (3) ends with general remarks on linear response

theory, and a formal exercise, which establishes the foundation for discus-

sion, in chapter (4), of energy controlled stochastic models and the quasi

universality proposal of publication [III] and [IV]. Finally some comments

are added to [V], in chapter (5).

The text summarizes very brie
y the contents of the articles, but mostly

it adds some further generalizations or application of theory, and discusses

in greater detail some of the �ndings. Since the text does not include all

the contents of the articles, these should be read as a substantial part of the

thesis. Specially I recommend reading [II] and [IV].
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Chapter 1

Thesis

I propose the view that frequency dependent speci�c heat c(!) is a good

indicator of the soundness of energy landscape models of supercooled liquids,

since this property re
ects the energy time correlations of a system.

a. c. speci�c heat spectroscopy will probably be increasingly used as an

experimental tool, and its implications on theory needs to be investigated.

I demonstrate how cp(!), cv(!) and other response functions are derived

from classical theory of liquids and from stochastic models, and show how

they may be used to evaluate the validity of models in comparison with

experiments.

9
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Chapter 2

Introduction

This introduction is thought as a \initiation" of the topics which are in focus

in the thesis. It is not intended to be a complete presentation of all the

experimental and theoretical knowledge of supercooled liquids. The reader is

advised to look at references [1, 2, 3, 4, 5, 6] and references therein for more

detailed reviews.

2.1 Background

Relaxation in supercooled liquids has become a great and challenging topic,

in physics and chemistry at the end of this century [7]. The area is expanding

rapidly, which can be seen by the increasing number of publications on the

topic, and on the increasing number of participants in conferences. New ex-

perimental methods and new attempts to model and understand supercooled

liquids are constantly being developed. Besides that use of computer simu-

lations has become an increasingly used tool in works on theory and models.

Still there is not consensus on even the basic molecular mechanisms of re-

laxation and there is dispute about interpretation of almost all methods of

measurement. The experimental methods applied on supercooled liquids are

many, including amoung others speci�c heat measurements[8], dynamic en-

thalpy relaxation [9, 10, 11] viscosity measurements [12], frequency dependent

shear modulus measurements [13, 14], dielectric measurements [15, 16] and

dynamic compressibility [17]. Lately methods which probes the microscopic

structure and dynamics more directly, such as various sorts of scattering ex-

periments [18, 19, 20] and dynamic nuclear magnetic resonance spectroscopy

[21], have also been added to the frequently employed tools.

11
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2.2 Linear Thermodynamic Response Exper-

iments

Linear thermodynamic response experiments are performed in laboratory by

imposing a time dependent perturbation of some thermodynamical variable

(pressure P , volume V , temperature T or heat Q1), and monitoring the time

dependent response of some other thermodynamical variable. Suppose that

we perform an instant shift of some external parameter e.g. the temperature,

at time t = 0, and watch the proceeding time dependent equilibration of

another parameter, e.g. volume V . The normalized relaxation function �(t)

is then de�ned in the following way

�(t) =
V (t)� V (1)

V (0)� V (1)
(2.1)

Of course temperature is not exactly constant in this experiment, but one

can still think of the initial temperature T0 as a external parameter which

remains �xed while the system is perturbed by a small shift of temperature

�T . Basically two sorts of information are obtained from such experiments.

First, by performing the experiment at a given set of external parameters,

i.e. constant values of temperature T0 and pressure P0, the time dependence

of �(t) is achieved for the �xed set of parameters. As it is the case in

other linear response experiments, one observes a non-exponential (or \non-

Debye") decay of �(t) in supercooled liquids. The choice of temperature

as input parameter and volume as response variable is just an example. In

general the relaxation function �(t) is di�erent if another set of variables are

chosen.

Secondly, by varying the constant values of pressure and temperature,

the temperature and pressure dependence of the shape and time scale of

�(t), is obtained. ��, the primary relaxation time, may be de�ned as the

inverse loss peak frequency. The loss peak frequency is de�ned by the �rst

extremum of the imaginary part of the frequency dependent susceptibility

�(!) = �

R
1

0
dt e

�i!t d

dt
�(t). �(!) is called a frequency dependent response

function.

Thermodynamic response experiments have not yet been carried out in

really great detail. This is because thermodynamic response experiments in

general are more complicated to perform than e.g. dielectric response exper-

iments [10, 11, 17, 22]. For example in dynamic speci�c heat measurements

one has to either make sure that the sample is thermally and mechanically

1Since Q is not a state variable, a heat perturbation just refers to an experiment where

the heat 
ow into the system is controlled.
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equilibrated on a shorter time than the internal relaxation time ��, or to take

the internal stress and temperature inhomogeneities in to account. In fact

this circumstance is currently a matter of discussion among experimentalists

[22].

2.3 General Linear Response Scenario

In dielectric or shear mechanical linear response experiments, the following

scenario is often seen. The temperature dependence of the characteristic

relaxation time �� deviates from the Arrhenius law � = �0 exp(A=T ). The

Maxwell relaxation time �M = �

G1
is usually a good estimate of ��. � is the

shear viscosity and G1 is the shear modulus at 1 frequency, i.e. the shear

modulus observed if one tries to impose a shear strain on the liquid faster

than its internal degrees of freedom is able to relax. Since G1 is almost

constant compared to �, the latter is often used as an indication of ��. In the

very high temperature regime, �� obeys an Arrhenius law. This Arrhenius

law is broken deeper in the supercooled regime, where �� graduately starts to

increase rapidly, see �gure (2.1), and exceed the extrapolated Arrhenius law.

Eventually the liquid reaches the glass transition temperature Tg, which is

de�ned as the temperature where the viscosity � reaches 1012 Pa�s. Generally

�� is around 103 s at Tg. Note that neither the temperature Tg nor the time

103 s have any physical signi�cance. The de�nition of Tg is simply chosen so

that if a liquid is cooled below Tg, its internal relaxation time �� exceeds the

time scale of human patience. The melting temperature Tm, which usually

is located above Tg, is of course a physically de�ned property. But it has no

implications on a liquid whether it is above or below Tm, as long as it does

not crystallize. As a liquid is supercooled, the liquid passes Tm smoothly in

all respects.

How pronounced the non-Arrhenius behavior is, varies from liquid to liq-

uid, and liquids where it is very pronounced are referred to as \fragile" liquids,

in opposition to \strong" network forming liquids [3], see �gure (2.1). Below

the temperature interval where �� is non-Arrhenius, another phenomenon oc-

curs, namely the Johari Goldstein (JG)-� relaxation [16], which is seen as a

maximum in the imaginary part of the susceptibility, at higher frequency than

the �-relaxation peak. At high temperatures JG-� relaxation is not observed,

but as the liquid is cooled the JG-� peak separates from the �-peak at a cer-

tain merging temperature. JG-� relaxation is characterized by a a broader

peak in the imaginary part of the susceptibility than the �-relaxation, and a

weak temperature dependence of its characteristic time scale �JG�� [23], see

the schematic illustration in Fig. (2.2). Unlike � relaxation, JG-� relaxation
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������
���	
�
������
������
������
������

Figure 2.1: C. A. Angell, Science 267, 1927 (1995). The concept of \strong"

versus \fragile" liquids were introduced by C. A. Angell in 1985. As indicated

in the original �gure caption the fragile liquids are those with the most pro-

nounced deviation from the Arrhenius law (straight line). Strong liquids are

believed to be those where a relatively strong type of chemical bond of some

sort is present in the liquid phase, resulting in a more distinct activation en-

ergy, and a structure which do not depend so much on temperature. Fragile

liquids are associated with a structure which is not so stable against change

of temperature, and a more smeared distribution of activation energies.



2.4. TIME TEMPERATURE SCALING 15

is a individual phenomenon for each liquid, in the sense that JG-� relaxation

varies in amplitude and temperature dependence from liquid to liquid, while

� relaxation is more similar in di�erent substances. JG-� relaxation must

not be confused with the so called \mode-coupling �-relaxation", which oc-

curs at much shorter time scale than the JG-� relaxation,i.e below the nano

second scale. In fact the temperature interval where MCT breaks down, is

where the JG-�-relaxation separates from the �-relaxation in some liquids.

Another thing which is remarkable is that the \stretching" of the � relax-

ation is usually increasing as the intermediate temperature regime is crossed.

\Stretching" refers to the phenomenon, that the decay rate of ��(t) seems

to decrease as t approaches in�nity. This is not a non-linear phenomenon.

The stretching is conveniently expressed by the phenomenological Kohlrauch

Williams Watts (KWW) �tting form:

�KWW(t) = �0e
�( t

� )
�KWW

: (2.2)

while no models of supercooled liquids predicts exactly the KWW form,

it is usually a fairly good approximation of �(t). The parameter �KWW
measures the sharpness of the relaxation time distribution. Low values of

�KWW corresponds to broad spectra, which is also monitored as a broad peak

of the imaginary part of the susceptibility. In a typical liquid the \stretching"

goes from almost exponential relaxation �KWW = 1 at high temperature, to

�KWW = 0:4� 0:6 in the low temperature regime around Tg.

2.4 Time Temperature Scaling

In liquids where � and JG-� relaxation are well separated the �-peak of dielec-

tric and shear mechanical response functions stays invariant [25], when the

temperature is changed, except for a change in amplitude and in loss peak

frequency, see �gure (2.3). This phenomenon is referred to as \time tem-

perature super position" or \time temperature scaling", (TTS). It is seen to

really good accuracy well below the merging temperature where � and JG-�-

relaxation separates. Traditionally TTS is only considered as an approxima-

tion in the low temperature regime, but the suggestion here is actually that

TTS is exact well below the merging temperature, see also section (4.2.1).

In molecular dynamics computer simulations (see below) of relatively sim-

ple liquids [34, 75], evidence of a temperature region has been found where

�KWW appears to be constant. This temperature interval is located where

the relaxation time �� starts to deviate from Arrhenius behavior, and above

the merging temperature (if there is such a thing as JG-�-relaxation in clas-
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Figure 2.2: Schematic drawing

showing how the � and JG-� re-

laxation time departs in an Ar-

rhenius plot. Exactly where the

JG-� relaxation breaks of depends

on the substance. The nature of

JG-� relaxation remains to be un-

derstood. It occurs with di�erent

strength in di�erent liquids. Gen-

erally the temperature dependence

of the �JG�� is very weak, if not ab-

sent.

����
����
�	
�
Figure 2.3: From Behrens et al.

[26]. Imaginary part of dielectric

susceptibility "(!) at three di�er-

ent temperatures. of Dibutylph-

thalate (DBP). The frequency axis

is divided with the loss peak fre-

quency !l for each temperature,

and the response functions are di-

vided with their value at !l. The

increase of the susceptibility at

high frequency is JG-� relaxation.

This is an example of a liquid

where the � and the JG-� process

are separated at low temperatures,

thus time temperature scaling of

the �-relaxation is perfect.
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sical liquids), thus this TTS phenomenon may origin from a di�erent type of

process in this case.

Turning now again to linear thermodynamic response functions, it is not

obvious that the same pattern, with JG-�-relaxation and �-relaxation is seen,

as it is in for example dielectric and shear mechanical relaxation. However,

there is reason to belive that the overall pattern is the same, since variations

of the polarisation, is likely to be connected with variations of energy in a dis-

ordered material. In fact JG-�-relaxation has been observed calorimetrically

below Tg, in the fragile glass-former o-therpenyl [27], as an additional glass

transition far below the �-transition. So all sorts of relaxation is expected

to be seen in thermodynamical response functions, and the time scales of

the various sorts of relaxation is expected to be roughly the same as it is in

dielectric and shear mechanical relaxation.

2.5 Modeling

Roughly, the supercooled temperature region may be separated into a low

and a high temperature interval with di�erent dynamical behavior. The

high temperature regime is characteristic by a relatively low apparent acti-

vation energy (inclination of Arrhenius plot), and a weak stretching of the

relaxation function (�KWW ranging from 0.7 to 1), while in low temperature

regime higher activation energies and more pronounced stretching is typical.

The two regimes graduately takes over from each other in the intermediate

temperature interval, where the curvature of the Arrhenius plot is largest,

and where JG-� and � separates from each other in some liquids. It is

possible, that two di�erent theories are needed to explain the behavior of

supercooled liquids; one for the low temperature region and one for the high

temperature region, since the two temperature regimes after all are di�erent

in phenomenology. In spite of this I shall use the term �-process to denote

the basic relaxation mechanism.

Modeling of linear response of supercooled liquids can be categorized

into explanation of the non-Arrhenius behavior [28], and explanation of the

shape of the response functions (e.g. ref. [29]). One model which seeks to

in-cooperate both aspects is the so called mode coupling theory (MCT) [30]

which has taken a major role in the last decade. It describes some important

features of supercooled liquids in a fairly high temperature regime, but it

fails to include the lower temperature regime. MCT in its present form deals

with density correlations, and recently it has also been extended to include

rotational dynamics and current 
uctuations [31, 32].

The basic variable of the theory, a correlator �k(t), is the k- component
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of the intermediate scattering function [33]. MCT makes quantitative pre-

dictions of �k(t), with the static structure factor as model input, but does

not give any statements about e.g. thermodynamic response functions, and

relations between these. MCT can partially reproduce �k(t) in the high tem-

perature scenario, where �� begins to exceed the time scale of vibrational

modes. This has been con�rmed by molecular dynamics simulations [34, 35].

But the model breaks down in the low temperature regime, where it predicts

a divergence of �� at a certain �nite temperature Tc. This divergence is ab-

sent in real liquids. In the MCT picture non-Arrhenius behavior of fragile

liquids is associated with this divergence, which is never completed because

\hopping" processes.

It is generally believed that thermal activated processes, or \hopping"

processes plays an increasingly dominating role as T is lowered into the low

temperature region[6, 24].

Molecular Dynamics (MD) has showed very useful in tests of MCT, since

MCT is based on classical mechanics, and therefore may be examined on its

own premises by means of MD. In brief MD is simply stepwise integration of

the classical equations of motion, derived from a molecular model, performed

on computers. MD is a powerful tool for investigating supercooled liquids

somewhat above the glass transition in the nano-second regime, because it

enables one to sample particle correlations in time and space on a molecular

level. This is within the limitations of the molecular model of course. MD

represents a way of modeling which is closer to �rst principles than stochastic

modeling (see below). But while stochastic modeling is reasonable starting

point, if not the only one possible, for modeling dynamics at low tempera-

tures, MD is restricted to high temperatures where the equilibration time is

short.

Stochastic models which deals directly with the \jump processes" have

been tried as a way of understanding both the time and temperature depen-

dence of relaxation at low temperatures [45, 47, 53]. Of special interest are

the so called energy controlled models, which has been used to give quan-

titatively good �ts to the temperature dependence of relaxation times, and

in some cases all so the stretching of dielectric susceptibility [49]. The en-

ergy controlled models assumes a temperature independent potential energy-

landscape, and a certain energy dependence of the transition rate between

two states of a local \region" of space, including an unspeci�ed number of

molecules. The slow �-relaxation is assumed to origin from a process where

the local con�guration has to pass an energy barrier or transition state, re-

ferred to as \transition state dynamics". Thus the probability of a region to
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escape a state i, 
i, is assumed to be


i = 
0 exp
�

Et�Ei
kBT ; (2.3)

where 
0 is a free parameter, referred to as the attempt frequency, Et is the

energy of the transition state and kB is Boltzmanns constant. However, this

type of models is only weakly founded in microscopic theory, which is one of

the problems which will be discussed in the present thesis. I want to keep the

possibility open, that maybe the non-Arrhenius behavior cannot be explained

from an energy landscape point of view, unless the absolute energy of the

barriers changes with temperature. This view is a necessarily consequence of

the �ndings in publication [IV] (sec. 7.4), and it is partly motivated by a new

�nding of by Olsen, Dyre and Christensen [51, 50], namely that the activation

temperature of the �-relaxation is proportional to the shear modulus G1.

The focus in this thesis will mainly be on the shape of the relaxation

function for the �-process, rather than the temperature dependence of ��.

This naturally includes use of linear response theory. Linear response theory,

or to be more speci�c, the Fluctuation Dissipation (FD)-theorem, provides a

connection between microscopic models and measurements of linear response

functions. The FD-theorem establishes a connection between the measurable

relaxation phenomena, which could be provoked by external stimulation of a

system, and the 
uctuations of the unperturbed system. In a way the FD-

theorem simply says: A physical system which is in a state slightly displaced

from equilibrium, does not know whether it came to that state because of

an internal 
uctuation, or because some external [52] force pushed it there,

thus in both cases it relaxes towards equilibrium in the same way, governed

by the physical laws of the unperturbed system. Exactly how the physical

laws in
uence the relaxation has to be considered of course, and in fact this

is one of the main issues in the present thesis.
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Chapter 3

Thermodynamic Response

Theory

One of the important points of thermodynamic response theory is the ques-

tion about how the response functions are related to correlation functions

sampled in di�erent ensembles.

In usual linear response theory [71, 72, 33], the dynamical response is

related to 
uctuations of certain system variables, calculated under the as-

sumption that the system is evolving according to its own Hamiltonian. I.e.

iso-energetic conditions are assumed. The response under isothermal condi-

tions is then obtained by an averaging performed over an ensemble of indi-

vidual isolated systems, with di�erent energies, weighted with a Boltzmann

distribution. This may be thought of as an ensemble-equivalence assumption

in the sense that the 
uctuations of a phase variable is considered to be in-

dependent on whether there is some global constraint, e.g. a requirement of

constant energy, acting on the system or not.

The usual linear response procedure procedure is to naive to be employed

in calculation of thermodynamic response functions. For instance, frequency

dependent speci�c heat is related to the energy auto correlation function in

the canonic ensemble, a property which is exactly 0 in the microcanonical

ensemble.

The following chapter shows how thermodynamic response functions can

by derived from both microcanonical and isothermal conditions.

21
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3.1 Isoenergetic-Isocoric Constrained Dynam-

ics

3.1.1 Brief summary of I and II

Two main questions are raised in publication [I] and publication [II] (sec.

7.1 and sec. 7.2). The �rst question is how the thermodynamic response

functions are to be derived from MD simulations of supercooled liquids. The

second question is how these functions actually look.

Formulated in a more general way, the �rst question is how thermody-

namic response functions are connected to equilibrium 
uctuations in the

isocoric-isoenergetic ensemble. The answer is stated without any proof in

[I] as an FD theorem relating time correlations in the NEVP ensemble to

thermodynamic response functions. The proof of the FD-theorem is showed

in details in [II]. The basic assumption, which allows a convenient choice of

perturbation, is that the long time macroscopic response does not depend on

microscopic details of the heat or volume changes imposed on the system,

as long as it is done su�ciently smooth. The assumption is based on the

common sense argument, saying that in a laboratory experiment we would

not expect e.g. c(!) to depend on whether the system is heated by means

of an electrical resistor or by an laser, as long as the heating is spatially

homogeneous on time scale shorter than the Maxwell relaxation time �M .

Answering the second question involves simulations of di�erent models

at di�erent temperatures, thus it is only partially answered by the presented

simulations in [II], which is thought as an example. However, it has a unique

content, since it is the �rst complete set of frequency dependent thermody-

namic response functions in literature, obtained computationally as well as

experimentally.

In addition the characterization of the response functions of the binary

Lennard Jones 
uid gave some new insight which, might be of signi�cance.

For example the �nding that the equilibrium speci�c heat seems to be in-

creasing with decreasing temperature calls for an explanation. It actually

contradicts simulation results in reference [44], which indicates a constant

cp for all temperatures. I did not try to see if the di�erent response func-

tions can be scaled on a master-curve, since the data are to poor to make

such a discrimination. A comment on the quality of the data was also

made in [II]. The problem is that in order to calculate cv(!), only one vari-

able namely the kinetic energy K(t) is sampled. This leads to very poor

precision of the correlation function h�K(0)�K(t)iE;V . It was concluded

that it is not possible to decompose the system into smaller parts, calcu-
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late the local correlations, and add these in order to get better statistics.

The reason, namely that even distant particles are correlated in the micro-

canonical ensemble shows how careful one should be when assuming equiva-

lence between ensembles. For example it can be seen from �gure (3.1) that

h�K(0)�K(t)iE;V 6= h�K(0)�K(t)iT;V , by simply noting that for t = 0,

h�K(0)�K(t)i is the variance of the kinetic energy distribution which clearly
is di�erent in the two cases. Since h�K(0)�K(t)i =

P
ijh�ki(0)�kj(t)i in

both ensembles, some of the terms in this sum must be ensemble dependent,

even for N !1. Since h�ki(0)�ki(t)i cannot depend on the whether tem-

perature or energy are �xed, at least to 0'th order in 1
N
, it must be the sum

of cross correlation terms h�ki(0)�kj(t)i, which causes the ensemble depen-

dence. h�ki(0)�kj(t)i consists of two contributions; correlations origining

from interaction of close particles, and correlations origining from a possible

global constant energy constraint in the microcanonical ensemble. The �rst

contribution is ensemble independent, and of order 1
N
, since locally the liq-

uid can not feel whether the global energy is �xed or not. But the second

contribution is 0 in the canonical ensemble, while it is of order 1
N
in the mi-

crocanonical ensemble; if particle i has kinetic energy deviating from its mean

by �ki, all other degrees of freedom has energy deviating from their mean

energy by � �ki
#degees of freedom

on average, and so their kinetic energy are also

generally reduced by an amount proportional to 1
N
. Both contributions are

signi�cant, since the number of cross correlation terms scales as N2. In con-

clusion h�ki(0)�kj(t)ii6=j is of order
1
N
in both ensembles, but substantially

di�erent. I also mention this to emphasize, that the e�ects of isoenergetic as

well as isocoric constraints on the system has nothing to do with �nite size

e�ects, but are present even in the macroscopic limit.

3.1.2 Further comments

Returning to the �rst question, a few comments on the chosen point of view

is appropriate. One might ask why I do not simply perform the experiments

de�ned in section A of publication [II] as simulations, instead of going through

all the calculations to obtain the FD-theorem. First of all there would be

no computer time saved by this procedure, since one would have to either

perform a lot of experiments or to simulate an enormous sample to get good

statistics. The reason for this is that the 
uctuations of T and P exceeds

the limit of linear response in a small sample. In �gure (3.1) the size of the

temperature 
uctuations are illustrated by two histograms, sampled from

the canonical ensemble in one case, and from the microcanonical ensemble in

the other case. The relative temperature 
uctuation in the microcanonical
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Figure 3.1: The kinetic temperature distribution in the NEVP ensemble

and in the NTVP ensemble at T = 0:71, N = 256. The distribution in the

�rst ensemble is clearly sharper (
q
h(�T )2i = 2:7 � 10�2) than the distri-

bution in the latter(
q
h(�T )2i = 3:8� 10�2). The temperature distribution

in the NTVP ensemble is found from the Maxwell velocity distribution as

h(�T )2i = 2
3N
T
2. In both cases h(�T )2i scales as 1

N
. The �gure is just for

illustration, and based on only 20000 samples.
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ensemble is
q

h(�T )2i
T 2 = 0:038, at the given temperature and system size.q

h(�T )2i
T 2 scales as 1p

N
, both if we improve statistics by simulating one big

system, or by simulating a lot of small systems. Suppose we want to make

a perturbation which results in a temperature chance at 1 % of the absolute

temperature which is a rather big temperature shift for a linear response

experiment. To get an error of the response function at less than 10 %, the


uctuations has to be less than 1=1000 of the absolute temperature, i.e. 38

times better accuracy than the present. This would provide a sample size at

N = 38�38�256 = 369664 molecules. So performing computer experiments

directly its not a trivial thing to do.

Note that the fact that 
uctuations of T exceeds the linear response

amplitude �T , does not mean that linear response theory is not valid, since

linear response theory deals with the mean value of the variables T and P ,

which may perfectly well depend linearly on a perturbation even though the

response of a single trajectory does not [43].

A second reason for the derivation in [II] is that it has to be seen in connec-

tion to the FD-theorems derived for the isobaric-isoenergetic ensemble. The

general approach presented contributes to the completion of the exploration

of an previous unsolved problem, namely how to compare measurements of

thermodynamic response functions to any model which is able to predict time

correlations of thermodynamic variables in a speci�ed ensemble.

3.2 Isothermal Conditions

In Publication [IV] ( 7.4) the general 
uctuation dissipation (FD)-theorem for

the response of a phase variable B to a temperature perturbation is derived

for a system in an arbitrary isothermal ensemble from the assumption, that

the dynamical behavior of the system in interaction with a heat reservoir

is described by an unspeci�ed stochastic process. The response function

referring to an experiment where the temperature is oscillated with some

frequency ! is de�ned by the frequency dependent ratio � ~B=�T and found

to be
� ~B

�T
(!) =

�1

kBT
2

Z 1

0
e
�i!t d

dt
h�Y (0)�B(t)iT; � dt; (3.1)

where kB is Boltzmanns constant and Y = H = E+PV , the enthalpy, if the

pressure is �xed, and Y = E, the energy, if the volume is �xed, and h�iT; �
means averaging over the appropriate (isothermal) ensemble.

The isobaric speci�c heat is found to be

cP (!) =
�1

kBT
2

Z 1

0
e
�i!t d

dt
h�H(0)�H(t)iT;Pdt: (3.2)
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and the expansivity is found to

�P (!) =
�1

kBT
2

Z 1

0
e
�i!t d

dt
h�H(0)�V (t)iT;Pdt: (3.3)

In the following I want to make a comment about completion of these results

to also include a FD-theorem for the compressibility. This was left out of

[IV] because we felt that it was to trivial for publication.

3.2.1 Completion of the thermodynamic FD-theorems

Equation (3.1) is derived by considering the response of B upon a tempera-

ture perturbation. Also a perturbation of pressure may be considered in the

same manner: First expand the initial distribution in the perturbing �eld,

next turn of the �eld and calculate the relaxation of an arbitrary phase vari-

able B as a function of time after the �eld has been turned of. This approach

is inspired by Doi an Edwards [42]. In ([IV], equation 18) a general expres-

sion is given for the probability distribution in a isothermal ensemble. If one

considers the isothermal isobaric case, the equilibrium distribution reads

Peq;j =
e
��(Ej+PVj)

Z
(3.4)

where � = 1
kBT

. By expansion of equation (3.4) in a given arbitrary pressure

perturbation �P , one �nds to �rst order

Peq;j(T; P + �P ) = Peq;j(T; P )

 
1 +

�P

kBT
�Vj

!
; (3.5)

where �Vj = Vj � hVji by assuming that the dynamics are given by a condi-

tional probability density G0(i; tjj; 0), the relaxation of a phase variable B,

after the perturbation has been turned of at t = 0, is found to be

�B(t) =
X
i;j

G0(i; tjj; 0)Peq;j(T; P )

 
1 +

�P

kBT
�Vj

!
�Bi

=
�P

kBT
h�V (0)�B(t)iT;P : (3.6)

One can now identify the frequency dependent isothermal compressibility

�T (!), as

�T (!) =
�1

kBT

Z 1

0
e
�i!t d

dt
h�V (0)�V (t)iT;Pdt: (3.7)

This completes the derivation of thermodynamic FD-theorems, since we

now posses explicit formulas for three independent response functions e.g.
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cP (!),�P (!) and �T (!) in terms of 
uctuations in both the isoenergetic-

isocoric ensemble, and the isothermal-isobaric ensemble. In both cases the

derivation does not rely on any speci�c underlying dynamics, but only energy

conservation in the �rst case and \conservation of the canonical distribution"

in the second case; the dynamics just has to assure that a state i on average

is visited so often that the probability of �nding the system in state i at a

certain time is proportional to the Boltzmanns factor e
�Ei
kBT .

3.3 Comments to Linear Response Theory

It appears that the frequency dependent linear response functions are iden-

tical to the static response functions, except that the static correlations of

the type h�A�Bi are exchanged with correlation terms of the type

�
R1
0 e

�i!t
dt

d
dt
h�A(0)�B(t)i. Of course this makes the theorems trivial

in a sense. But on the other hand how should one trust this simple re-

lation without deriving it from reasonable assumptions? The 
uctuation-

dissipation theorems of the speci�c heat was in fact anticipated by other

authors [37, 38, 39, 40, 41, 76] before there was any theoretical derivation of

these.

An examination of the derivation in [II] shows that besides the already

mentioned assumption of the response being independent on the microscopic

details of the perturbation, it includes only an assumption of the dynamics

being driven by a stochastic process and on conservation of energy. This

means that the FD-theorems are general laws which does not rely on a speci�c

model, but rather relations which will always hold in any model. As an

example consider the FD- theorem for speci�c heat in [II]. In the derivation

it is mentioned that Newtonian dynamics are included as a special stochastic

process, thus justifying the use of the theorem in MD. But if we change the

dynamics to randomized jumps, which are constructed in a energy conserving

way, the 
uctuation dissipation theorem is still valid, since we would still be

able to describe the dynamics by a conditional probabilityG(�; tj�0; t0). Thus
the FD-theorem is a law that is more general than Newtons second law in

the sense that it does not rely on a speci�c sort of dynamics, but on the other

hand it is not of any signi�cance unless we have speci�ed the dynamics. So a

derivation of an FD-theorem is to start at a su�cient general level and derive

the connection between response and 
uctuations of a category of systems.

The framework of stochastic processes is a way of stating the dynam-

ics which is quite general, but it is not su�cient to include quantum me-

chanics. Looking from a theoretical point of view it would be nice to use

a framework su�cient general include also quantum mechanics. However
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there are some di�culties in derivation of a 
uctuation dissipation theorem

for frequency dependent speci�c heat of a quantum mechanical system in an

isoenergetic/isocoric ensemble, which I have not been able to overcome [36].

I also feel like adding a comment regarding the \van Kampen objection

to linear response theory" [43]. N. G. van Kampen noted correctly already

in 1971, that the whole idea of linear expansion of the single phase space

trajectories in an external perturbing �eld, as it is done in ordinary linear

response theory, is pure nonsense. Essentially the point is that the chaotic

nature of all realistic systems quickly moves the perturbed trajectory so far

from the unperturbed trajectory, that linearization is impossible.

In publication [II] an initial perturbation �� of the phase space coordi-

nates �, of a system in equilibrium at t = 0 is considered. The way lin-

earization is introduced is not by expansion of the single trajectories, but

by expansion of the distribution right after the perturbation, f0(�), in terms

of the equilibrium distribution fE+�E;V+�V (�), to �rst order in the perturba-

tion ��. The calculation of the response is performed in [II], by preparing

an ensemble, which is slightly o� equilibrium, according to f0(�) at t = 0

and then monitor the decay of the distribution towards equilibrium, led by

only the systems internal dynamics. In this way the van Kampen Objection

is avoided. The linearity assumption used here is, that the uncertainty in

f0(�), which is of second order in ��, is not developing into response terms

of �rst order in �� at any time during the decay towards equilibrium.

The response functions are expected to be the same no matter which

ensemble they are calculated in. I mean, in the macroscopic limit we can

perform an a.c. speci�c heat measurement by controlling temperature and

measure the heat 
ow, or control heat 
ow and measure temperature, but

cp(!) is expected to be the same in each case. Thus the complete set of

response functions may also be interpreted as relations between time de-

pendent 
uctuations in di�erent ensembles. As an example, comparison of

cv(!) calculated in the microcanonical ensemble [II, equation (45)] an cv(!)

calculated in the canonical ensemble:

kBN

2
3
+ N

hKi2
R1
0 dte�i!t d

dt
h�K(0)�K(t)iE;V

=
�1

kBT
2

Z 1

0
e
�i!t d

dt
h�E(0)�E(t)iT;V dt : (3.8)

This relation is of course only valid in the low frequency regime (long

time), to which the isoenergetic FD-derivation was restricted. But in this

regime it provides a rigid relation between the 
uctuations of kinetic en-

ergy under isoenergetic conditions, and 
uctuations of the total energy at

isothermal conditions.
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Generally the FD-theorems were derived for macroscopic variables, so e.g.

it is understood that the enthalpy occurring in equation (3.2) is the total

enthalpy of the system. But if the system can be divided into microscopical

subsystems labeled fig, we may separate the expression for cv(!) into the

sum:

cv(!) =
X
ij

�1

kBT
2

Z 1

0
dt

d

dt
h�Ei(0)�Ej(t)iT;V ; (3.9)

because the energy E is the sum of the energies Ei of the respective sub-

systems. h�iT;V means averaging over the isothermal isocoric ensemble of

the macroscopic system. Even if there was such a thing as a well de�ned

volume of a subsystem, this volume would of course not be conserved. On

the other hand, even though locally system i and system j are experiencing

a constant temperature and a constant pressure on average, the index T; V

cannot be omitted or changed to T; P since the dynamics are in
uenced by

the global constraint V = 0. Clearly a subsystem inside the bulk cannot

feel whether the total volume of the sample are �xed or not, neither can two

closely positioned subsystems, so the constraint results in an correction to the

cross-correlations h�Ei(0)�Ej(t), which is present also for in�nitely distant

subsystems i and j, and becomes signi�cant when the N2 � N cross-terms

are added up.

However, in the following chapters a more naive view is taken. The cross-

correlations are assumed to be zero, meaning that there is no interaction

between the subsystems, so the speci�c heat is the sum of the speci�c heat

of all the subsystems:

c(!) =
X
i

ci(!) =
X
i

�1

kBT
2

Z 1

0
dt

d

dt
h�Ei(0)�Ei(t)i: (3.10)

Since the isocoric or isobaric constraint would have to be embedded in the

cross correlation terms, this view is so primitive that it does not even have

the ability to distinguish between cv(!) and cp(!), though since cp(!) in-

cludes no global correlations, it is conceptually closer to cp(!) than cv(!).

For now I only want to note that this is not because I think it is a good ap-

proximation. The motivation for the view is just, that it the most primitive

way of modelling, and to see how good it works, and how far it can be taken

without breaking down seems like a natural thing to do for a start.
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3.4 Speci�c Heat from General Master Equa-

tion

For later reference I shall �nish this chapter by deriving the frequency de-

pendent speci�c heat, in a system under isothermal conditions described by

a general master equation.

_Px =
X
y

WxyPy (3.11)

x and y refers to di�erent states of the system, which may be macroscopic as

well as microscopic, and if one like E may be exchanged with H throughout

the calculation. First an algebraic expression for the speci�c heat, which is

not so well suited for computer calculations, is derived. The computability is

improved by symmetrization of the W -matrix. A diagonalisation of W leads

to a \spectral-form" of the speci�c heat, which is preferable in cases where

one has to compute the speci�c heat for a lot of di�erent frequencies, and

useful for the analysis and comparison of di�erent models.

Laplace transformation of equation (3.11) yields

s ~Px � P (t = 0)x =
X
y

Wxy
~Py (3.12)

It is desirable to isolate ~Py in equation (3.12). This is possible if the matrix

s�W is invertible, which it actually is: TheW -matrix spectrum has pure real

non-positive eigenvalues, including one special (unique) eigenvector, namely

the equilibrium distribution Peq;x, which corresponds to the eigenvalue �0 = 0

[74]. If the Laplace frequency is assumed pure imaginary and non-zero, all

the eigenvalues of s�W are at the form s� � i.e non-zero, and (s�W )�1

exists. Now ~Px may be isolated in equation (3.12):

~Px =
X
y

(s�W )�1xy P (t = 0)y; (3.13)

and ~Px may be interpreted as the Laplace transform of a solution to equation

(3.11) with the initial condition P (t = 0). As in the case of the energy mas-

ter equation it is of interest to evaluate the Laplace transformed transition

probability ~G(x; sjx0; 0), which is the property that enters the expression for

the speci�c heat. This is simply done by inserting P (t = 0)y = �(y � x
0) in

equation (3.13).
~G(x; sjx0; 0) = (s�W )�1xx0 (3.14)

According to [IV] the frequency dependent speci�c heat for the system may

be written on the form

c(!) =
1

kBT
2

�
h(�E)2i �

Z 1

0
e
�st

dth�E(0)�E(t)i
�

(3.15)
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By inserting (3.14) in equation (3.15), one arrives at an algebraic expres-

sion.

c(s) =
1

kBT
2

X
xx0

�Ex�E
0
x(W (W � s)�1)xx0Peq;x0 (3.16)

=
1

kBT
2

X
xx0

�Ex�E
0
x(�xx0 � s(s�W )�1xx0)Peq;x0 (3.17)

For large systems this expression is hard to evaluate. But a commonly used

normalization of Px makes W symmetric: According to principle of detailed

balance we have:

WyxPeq;x = WxyPeq;y (3.18)

or

P
� 1

2

eq;yWyxP

1

2

eq;x = P
� 1

2

eq;xWxyP

1

2

eq;y (3.19)

This means that the matrix Ŵ de�ned by

Ŵxy = P
� 1

2

eq;xWxyP

1

2

eq;y (3.20)

is symmetric. By de�ning a coordinate transformation, by P̂x = P
� 1

2

eq;xP (x),

we save some computational e�orts by writing the speci�c heat as:

c(s) =
1

kBT
2

X
xx0

�Ex�E
0
xP

1

2

eq;x(�̂ � ŝ(ŝ� Ŵ )�1)xx0P
1

2

eq;x0 (3.21)

Note that the matrices s and � transform into themselves: ŝ = s and �̂ = �.

One may go a step further and expand the speci�c heat at the normalized

eigenfunctions ��
x of Ŵ : Let us de�ne the diagonal matrix �W = S

�1
ŴS,

where S is a coordinate transformation de�ned by Sxy = �y
x, ful�lling S

T
S =

1. The speci�c heat can now be expressed in the following way:

c(s) =
1

kBT
2

X
xx0

�Ex�E
0
xP

1

2

eq;x(S �W ( �W � �s)�1S�1)xx0P
1

2

eq;x0 (3.22)

Using that �W is diagonal we can evaluate the matrix product.

( �W ( �W � �s)�1)�� =
��

�� � s
��� (3.23)

Inserting equation (3.23) in equation (3.22)we get

c(s) =
1

kBT
2

X
xx0

�Ex�E
0
xP

1

2

eq;x

X
��

Sx�
��

�� � s
���S

�1
�x0P

1

2

eq;x0 (3.24)

=
1

kBT
2

X
�

(
X
x

�ExP

1

2

x �
�
x)

2 ��

�� � s
(3.25)
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The last expression (3.25) will be named the spectral form of the frequency

dependent speci�c heat. It is a very useful equation, as shall be seen in

chapter (4.3), where it has been used for examination of di�erent models.

Note that c(s) ! h(�E)2i
kBT 2 in the limit s ! 0, - the equilibrium speci�c heat

is recovered.

I have made a program, which can calculate the exact c(s) for a given

master equation, through a diagonalisation of the master equation. The

program can deal with systems of about 2000 distinct states, and not much

more.

In the following discussions the program has been used to calculate c(!)

for di�erent models, instead of going into a complicated analytical solution

in each case. If one has to analyse a continuous model, e.g. a certain energy

master equation, the procedure is simply to split up the continuous (energy)

axis in a �nite number of small pieces, each of which are identi�ed with a

state x in equation (3.11), and then analyse the discrete master equation

numerically by means of equation (3.25).



Chapter 4

Stochastic Modelling

4.1 Canonical Ensemble

and Stochastic modelling

In the past decade di�erent models of dynamics supercooled liquids near the

glass transition based on energy controlled stochastic models [45, 46, 47, 48,

49, 53, 54, 55, 29] has been suggested. Typically these works focuses on a local

part (a \region") of the supercooled liquid, and assumes that the dynamics

of such a region can be described by randomized jumps in con�guration

space. The jump rate between two states depends on the energy of the

involved states. In the most simple cases it is assumed that energy is the only

controlling variable, i.e. there is no topological or spatial dependence of the

jump rates. Generally any model which predicts time correlation of energy


uctuations has an interesting aspect; it is directly falsi�cable by frequency

dependent speci�c heat measurements. Frequency dependent speci�c heat

measurements are increasingly used as an experimental tool in investigations

of supercooled liquids near the glass transition [61, 57, 11, 59]. I �nd this

particular experimental method interesting because it directly probes the

time correlations of the energy 
uctuations, and these may be of special

signi�cance since the local potential energy is likely to be strongly correlated

to the local relaxation time.

4.2 Quasi universality

In the following I will discuss some applications of thermodynamic linear re-

sponse theory by starting from the proposed universality in low temperature

speci�c heat and then characterising the frequency dependent speci�c heat

33
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origining from di�erent types of models. The universality will be discussed

in connection to other experiments than those referred in [IV], and a few

comments will be made on the use of transition state models in general. I

shall now turn to the following questions:

� What is the signi�cance of the proposed \quasi universality" of [IV],-

can it be responsible for the nearly identical �-peak observed in di�erent

liquids?

� Can the proposed \cut-o� models", of [IV] be justi�ed from a micro-

scopical point of view?

From experiments it is known that the imaginary part of various sus-

ceptibilities shows an �-peak which imaginary part is not symmetric on the

logarithmic frequency axis, but instead shows a steep inclination at the low

frequency side. and a more gradual declination at the high frequency side,

In speci�c heat measurements this asymmetric peak is also seen, and it

has some consequences on the range of possible energy controlled models of

the glass transition. In general the susceptibilities are di�erent for di�erent

substances, but they are not that di�erent though, and therefore it is tempt-

ing to look for some common explanation of the shape of the �-peak for all

liquids.

Resent dielectric an shear mechanical results from the glass transition lab-

oratory at IMFUFA indicates [26, 25] that in at least 6 organic liquids, where

the alpha-peak is well separated from the JG-�-peak above the glass tran-

sition, the �-peak shows perfect time temperature scaling in a temperature

range corresponding to a four decade shift of frequency in some cases.

In [III] and [IV], a rather radical proposal is presented, namely that the

skew shape of the �-peak is due to essentially a local region density of poten-

tial energy states (DOS), with a low energy cut of. Two di�erent models, the

energy master equation (EME) and collection of two level systems, both with

a single absolute barrier energy are proposed. (Sometimes EME with single

barrier energy, and a DOS which is a Heaviside step-function is referred to

as \EME with step DOS"). They both gives time temperature scaling, and

the speci�c heat of these models matches experiments good. We named this

observation \quasi universality" because the low temperature limit of the

�-peak, printed in [IV, �gure (1)], is the same of all models where the DOS

has �nite values down to a ground state with energy E0, below which, it

suddenly drops to zero, and where the absolute energy barrier is the same

for all transitions. The word \quasi" refers to the fact, that c(!) of a system

where the states are only connected pairwise, is almost identical to c(!) of a

system where all states are are connected through the same barrier.
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Figure 4.1: A transition state model with Gaussian DOS (variance = �
2 is

far to symmetric to be the right model of supercooled liquids. It also su�ers

from the 
aw of not obeying TTS.

Even though the EME with constant barrier energy and step DOS, is a

simple model the found universality is non-trivial in several ways.

It is a zero-parameter model which is quite close to the experimental

speci�c heat. Moreover it obeys time temperature scaling which is not an in-

herent property of EME models. If for example a Gaussian DOS is assumed,

TTS is not obeyed (see �gure (4.1).

Besides pure Debye relaxation all EME models where DOS is of the form

n(E) = E
a, a � 0 obeys TTS. EME with DOS may be considered as a

limiting case a = 0 of the family of \power law DOS models" see �gure (4.2).

4.2.1 Evidence of quasi universality

Besides the measurements of T.E. Christensen, reported in [IV], one �nds

cP (!) measurements of glycerol [61, 11, 58], propylene glycol [58], o-terpenyl

/o-phenylphenol mixtures [59], salol [60] and [(Ca(NO3))2]0:4(KNO3)0:6 (CKN)

[62] in literature. A fairly good way to represent the shape of the experimen-
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family of models with power law DOS. (n(E) / E
a). However there is a

qualitative di�erence between a > 0 and a = 0, namely that n(E = 0) is

non-vanishing for the latter.
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Figure 4.3: Comparison of the KWW form and the EME with cut-o� in

DOS.

tal data, is by the KWW form (2.2).

The KWW form looks like a power low in the high frequency limit, which

is seen as an asymptotic straight line in the left bottom of a Cole-Cole plot.

See �gure (4.3). But the prediction of EME with the cut-o� in DOS yields

c
00 = ln3(!)=!, where c00 is the imaginary part of the frequency dependent

speci�c heat, i.e. no power law. Apparently the imaginary part of c in

the model bends o� a little too quick compared with the KWW form. But

the KWW-form with �KWW = 0:58 seems to be roughly consistent with

the model, thus it serves as a tool for comparison with experiments in the

following. In table (4.1) �KWW is showed for several liquids. �KWW is only

close to 0:58 in the �rst 4 liquids. In 1.2.6 hexanetriol �KWW is totally o�

and in glycerol, di-n-buthyltalate and CKN it decreases from values above

0:58 to values below, as temperature is decreased. In the o-therpenyl mixture

�KWW also decreases with deceasing temperature, but fails to cross 0:58 in

the measured temperature range.

Can these measured values be consistent with universality at all? The

answer is yes, they may be consistent with universality in the low temperature
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Substance �KWW T-range Reference

1.2 propanediol (propylene glycol) 0.61 174.1 K [14],[58]

2 methyl-2,4-pentanediol 0.58 191 K [14]

1.2 butanediol 0.57 182 K [14]

1.3 butanediol 0.55 180 K [14]

glycerol � 0.53 183 K [10]

glycerol 0.65 203-219 K [11]

1.2.6-hexanetriol � 0.2 206 K [14]

o-therpenyl0:91-o-tepenylphenol0:09
! 0.60-0.75 242-268 K [59]

salol (phenylsalisylate)! 0.62-0.71 226-237 K [60]

di-n-butylphtalate�! 0.53-0.58 177-194 K [61]

(Ca(NO3)2)0:4(KNO3)0:6
! 0.53-0.67 344-358 K [62]

Table 4.1: �KWW of cp(!) for several liquids. In general cp(!) is determined

with less acuracy than the electric susceptibility. Moreover there is still a

dispute about the validity of the various methods of measuring cp(! [22]. !)

The measured value of �KWW is increasing with temperature, i.e. the �-peak

is getting more narrow. *)�KWW was estimated by comparing the ratio
c00(!)

c0(1)

at the loss peak to the same property of the KWW form, with uncertainty

on �KWW at around 0:02. The lowest temperature meassured in reference

[61] is remarkably narrow, with �KWW = 0:58.
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limit, but to see that one has to adobt a certain view on JG-� relaxation: As

discussed in the introduction (2), there exists some 
uids, where the �-and

JG-� relaxation is well separated at Tg. In these substances an observable low

temperature regime exists, where time temperature scaling of the � peak is

obeyed. What might be the case is that this actually true for all liquids, but

not observable in most liquids, because � and � relaxation is not separated

properly above the glass transition. Remember as it was discussed in the

introduction, that Tg is not really a physical signi�cant temperature, since

it only sets a human timescale, thus it is coincidental whether � and JG-�

relaxation is well separated at the glass transition for a given liquid.

As the two relaxation peaks are separating, the �-peak shrinks towards

an assymtotic invariant shape. This is seen as a decraese of the � width,

when temperature is decreased further below the region where the two peaks

separates. In �gure (4.4) this narrowing phenomenon is seen very clearly for

some liquids. Note that in DBP the �-relaxation is so well separated from the

� relaxation, that TTS works to excelent degree. It was also seen in �gure

(2.3), where the dielectric susceptibility of DBP was shown. In �gure (4.5)

speci�c heat measurements of DBP are shown. It is remarkable that in the

speci�c heat measurements of DBP, the �-peak [61] is broadening down to the

temperature range where TTS is observed in other response functions. This

apparent broadening is consistent with the departure of a JG-�-relaxation in

the right part of the spectrum, resulting in two separated peaks at 176:5K.

It is noteable that cp(!) is remarkably narrow ( �KWW = 0:58) at T = 176:5

Returning to �gure (4.4), it is noted that in salol the separation is only

about to start at Tg, that is salol is still close the merging temperature (see

introduction (2.3)). This is consistent with the very narrow loss peak in cp(!)

measured at higher temperatures see table (4.1), since in general the �-peak

is more narrow at temperatures above the merging temperature than below.

"(!) of 1.3-butanediol is measured just below the merging temperature,

but the JG-� relaxation is rather weak, so the �-peak is showing TTS, except

for a slight disturbanse of the high frequency tail. This is consistent with

beeing in the universality regime in the speci�c heat measurement, refered

in table (4.1).

1.2.6-hexanetriol is very atypical liquid. In this substance one actually

sees an extra peak which is partly separated from the �-peak in the speci�c

heat [IV]. This is consistent with the apparently very broad �-peak, which

I interpret as the result of a very pronounsed JG-� relaxation merging with

the �-peak just in the measured temperature interval.

Several meassurements have been preformed on glycerole, and they all

seem to con�rm that glycerole is somewhat atypical in the sence that the

�-peak seems to be broader, than in other liquids. In the interpretation
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Figure 4.4: The imaginary part of the dieltric susceptibility "
00(!) of 1.3-

butanediol and salol, and the imaginary part of the shear modulus G00(!)

of 1.2.6-hexanetriol and di-n-butylphtalate (DPB) in a log-log plot. In all

�gures the response functions have been devided with their values at the loss

peak (lp) frequency !lp and ! has been devided with !lp so that the top

points of the �-peaks collapses. The separation of � and JG-� relaxation is

therefore observed as a JG-�-peak that moves to the right as temperature is

decreased. I must emphasize that these measurements, which I have no part

in, are made by N. B. Olsen and Tage E. Christensen, who has kindly given

permission [25] print them. In DBP TTS is seen very clearly, since the � and

JG-� peaks are well separated. In 1.3-butanediol the peaks are separating

at the measured temperatures, but the JG-�-relaxation is so weak that it

does not spoil the shape of the alpha peak too much, and TTS is obeyed in

the measured regime. In salol we are only in the begining of the separation,

and what is observed is an �-peak where the �-peak is begining to come

out at the right hand side. In 1.2.6-hexanetriol the JG-�- relaxation has

very high amplitude in the measured temperature regime. So it interferes so

much with the �-relaxation that the high frequency tail of the �-peak can not

be observed at all, and the time temperature scaling is aparrantly broken.

How � and JG-� interferes as they are merging cannot be known unless one

assumes a model. It can not be considered as a simple superposition for,

since JG-� has never been observed below �-peak at high temperatures.
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Figure 4.5: From N. Menon, J. Chem. Phys 105, 5246 (1996). Speci�c

heat of DBP. The relative broad spectra, is presumeably due to a JG-� peak

separating from the �-peak in the observed temperature region, as it is seen

in both dielectric and shear mechanical relaxation. The values of
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given here the reason is that the �-peak and JG-�-peak are be overlapping

in this substance, so that the slow declining high frequency tail of c00 in

glycerole, which appears to be increasingly pronounced at lower temperature,

is actually due to JG-�-relaxation which begins to separate out, in the same

manner as in 1.2.6-hexanetriol. This is seen very clearly in the �gure of [IV].

The experimental �ndings of cp(!) may be be interpreted in the light of

this: There exists a low temperature limit where the �-peak of cp(!) has a

temperature invariant shape, with �KWW � 0:58, as it also are the case for

G1(!) and "(!).

In the �rst four liquids of table (4.1), the JG-� peak is either so weak or so

well separated from the �-peak, that this low temperature limit is actually

reached at Tg. In the rest of the liquids the � and JG-� relaxations are

beginning to separate at the meassured region, leading to a broadening of

the spectra as temperature is decreased. Note that this interpretation implies

that the increasing width of the spectra is only apparant, and caused by the

�-peak, which is located in the tail of the �-peak, but does not move along

with the alpha peak as temperature is decreased.

It is not my objective to show that the universality of publications [III]

and [IV] are found exactly in real liquids, and I dont want to get to ex-

ited about it, since the models where universality occurs relies on a several

doubious assumtions including that the liquid can be separated into non-

interacting regions. I just want to note that its a fairly good approximation

which may give a hint about the nature of the glass transition, and that the

universallity in connection with the dielectric measurements gives a picture

which includes time temperature scaling, and are consistent with measure-

ments of all substances where both cp(!) and other responsefunctions has

been measured.

4.3 Quasiuniversality and Energy Controlled

Dynamics

In spite of the after all limited evidence for TTS, I shall now follow a line

where time temperature scaling of the �-peak is considered valid, and thus

a criterion for selection of models.

As far as I am concerned, there are no other zero parameter models

which are that close to the experimental cp(!). To mention an example that

does not work, consider a model with step DOS, but \metropolis" dynam-

ics. Metropolis dynamcs is an computational tool used for sampling phase

space points in montecarlo simulations. Metropolis dymamics only physical
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Figure 4.6: Speci�c heat of a model, in which Metropolis dynamics on

step DOS is assumed. c(!) is not close to experiments, thus the model

is not of physical interest. However it shows time temperature scaling.

c(!) may be found analytically, and written on a simple form: c(s) =

�
R
1

0 dt e�st d
dt

e
�t

t+1
= 1 � ses+1E1(s + 1); where E1(s + 1) is the exponen-

tial integral E1(z) =
R
1

z
dx e

�x

x
. For comparison the speci�c heat of a system

with a single relaxation time is shown.

justi�cation is that it obeys principle of detailed balance. The transition

probabilities are de�ned as

�i!j = �0

(
e��(Ej�Ei); if Ej > Ei

1; if Ej � Ei

(4.1)

This speci�c heat of this model is shown in �gure (4.6)

Other types of collections of two level systems with zero parameters leads

also to absurd or trivial results which are far from observations.

It is remarkable that also a Gaussian density of states cannot reproduce

the shape of the �-peak, since a Gaussian DOS is often assumed. For exam-

ple in [53]. The reason is that energy landscape models are used as a way

to model the non-Arrhenius behavior [46]. The step DOS results in a pure
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Arrhenius law for the loss peak frequency, and is therefore not able to repro-

duce non-Arrhenius behavior (see the Appendix of IV). So one is lead to the

conclusion that an energy master equation with transition state dynamics

cannot explain both non-Arrhenius behavior and the shape of the �-peak.

An important result so far is, that if one insists on an energy controlled model

with transition state dynamics, one is led to a DOS with a low energy cut

o�, if the shape of c(!) has to be in the neighborhood of experimental data.

Roughly speaking, in the transition state picture, the shape of the �-peak

is caused by a low energy cut o� in DOS, combined with the Boltzmann

distribution.

Again, all these conclusions are based on an assumption of transition state

dynamics, which of course may be wrong. And also the fact that regions

interact with each other is left out of consideration. The thing is, that there

is not enough information in the experimental data to justify introduction of

a more sophisticated form of the transition probabilities than that of equation

(2.3), unless there is some physical reason for it. There are several unphysical

one parameter models such as the KWW-form without physical explanation

which can reproduce most response functions to excellent degree.

As an example consider a macroscopic system in contact, with a heat

reservoir. In the macroscopic limit, the energy distribution is approximated

by Gaussian with variance �2. The most simple way to assure principle of

detailed balance is by assuming


i!j / e
�

1

4�2
(E2

j
�E2

i
)+a(Ei+Ej); (4.2)

where an (unmotivated) linear term has been introduced in the exponent.

It is actually a one parameter model, since the energy axis may be rescaled

without changing the shape of c(!). The dynamic speci�c heat of this model

is compared to the universal form in �gure (4.7). The point is that this

\model", which is totally di�erent from transition state dynamics and step

DOS can reproduce the quasi-universal curve with only 1 parameter. The

physical interpretation of the \macroscopic master equation" is problematic.

Clearly the parameter �2 must depend on temperature, since the zero fre-

quency speci�c heat is c(0) = �2

kBT 2 , and the speci�c heats of supercooled

liquids do not follow a T�2 law. In order to maintain time temperature scal-

ing, the parameter a has to change as well (a / ��1). Since the variance

�2 scales as N if we change the system size, it can also be concluded that

a / N�1=2 which makes it di�cult to interpret the linear term as a Boltz-

mann factor of some sort. So one should not be to exited about this \model",

unless a physical interpretation of a is found.

In connection to this I should mention, that the zero frequency speci�c
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Figure 4.7: Speci�c heat of a \macroscopic" master equation, with Gaussian

energy distribution, and transition rates chosen as 
i!j / e�E
2

j
+E2

i
+a(Ei+Ej):

The model is compared to the universal heat capacity, derived from the

energy master equation with transition state dynamics, and step DOS. The

parameter a = 3:0, is �tted with the eye.
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heat c(0) of the transition state model with step DOS, has a trivial tem-

perature dependence, namely c(0) = kB. This points towards a very small

region size. If Gaussian DOS is chosen c /
1

T 2 , but since the speci�c heat

of a region is still related to the width of the relaxation time distribution,

one lead to conclude that the region size is on the order of magnitude of

a molecule [63] also in this model. Generally supercooled liquids shows a

declining overall speci�c heat, and an increasing (in few cases constant) re-

laxational part of the speci�c heat, as the temperature is lowered [8, 10, 14].

In order to justify the transition state model with step DOS, one has to put

in an additional assumption, such as a total number of regions which are

declining with temperature.

4.3.1 Consequences of universality

Even if the universality is only approximately obeyed of real liquids, the

models may still carry some hint about what is going on in real liquids.

If we take the transition state models seriously, what may then be learned

from these �ndings? First the relaxing unit, formerly named a \region", has a

constant DOS n(E) down to the ground state in both models. Since the mod-

els are considered as low temperature limits of real liquids, this implies, that

in real liquids the DOS of a region near the ground state is almost constant

within an energy interval at least as broad as the equilibrium distribution

Peq(E) = n(E)e��E, i.e. an energy interval of at least same magnitude as

�
�1. That n(E) is constant means, that it varies little compared to the Boltz-

mann factor e��E. Further more, a nearly constant DOS must be interpreted

as a system with very few degrees of freedom. A one dimensional harmonic

oscillator for instance has constant DOS, and an N dimensional harmonic

oscillator has n(E) / E
N�1 . So if the model is interpreted naively, the

\region" must be some simple entity in the liquid, e.g. a molecule or a bond.

Alternatively the molecules motion may be restricted by surroundings in a

way, so that even though a jump of a local region involves several molecules,

the collective motion of all the molecules is con�ned to a certain region of

phase space, which is the same as saying that the DOS is only apparent, and

in reality it is actually due to interaction between regions.

Then there is a third possibility, namely that there is local inhomo-

geneities in the liquid, so that there actually exists such a thing like isolated

regions. This is a topic which is very much discussed in literature at the

present (see e.g. [64]), but still unsettled though. The idea is that a liquid

at low temperatures may be heterogenous in a dynamical sense, so that the

particles which are relaxing fast is clustered in space, a phenomenon which

is very hard to measure experimentally, since it cannot be monitored in the
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static structure factor. However, if this is the case, it can help to justify

the disregard of region-region interaction, which is the main 
aw of the re-

gion picture in general; the energy 
uctuations of di�erent dynamic clusters

may be considered as uncorrelated, and thus the cross correlation terms in

equation (3.9) are equal to zero. On the other hand this leaves one with a

paradox, i.e. that the regions still has to be on the size of a molecule.



48 CHAPTER 4. STOCHASTIC MODELLING



Chapter 5

Hydrogen Bond Dynamics in

Supercooled Water

5.1 Brief introduction

The research in pure water is major topic itself. The great interest in this

particular liquid is partly motivated by pure physical interest, and partly mo-

tivated by the fact that understanding of water is important for biochemistry

and biophysics, because of its presence in all biological processes. [1, 84, 85].

Of course the anomalous thermodynamic behaviors are the most striking

features of water. There is not yet consensus about the reason for the negative

expansion coe�cient �(T ) below 4�C and the compressibility minimum at 46�

C, which are very rarely found in other liquids. These phenomena has been

tried correlated with an apparent power law divergence of susceptibilities, as

well as relaxation times at a low temperature about TA � �45� [86].

Unfortunately water crystallizes at around �35�. This limits the evidence

of power law divergence to a narrow region pretty far from Tc, thus this

evidence is not out ruling the possibility that the apparent divergence in

relaxation times is just the non-Arrhenius behavior, seen in other liquids.

An interesting explanation scheme proposed by H. E. Stanley [87], views

supercooled water as a heterogeneous liquid: Locally water can pack in two

di�erent con�gurations. 1) A low density tetrahedral structure , with low

entropy and low enthalpy, and 2) a high density structure with high entropy.

The low density con�guration is associated with a high degree of hydrogen

bonding. The idea is that this structure which looks very much as normal ice

(ice VI) becomes more and more dominant as water is cooled along an isobar

P = 0, and causes an expansion of the supercooled liquid. The apparent

divergence in relaxation times is explained by the existence of a high density

49
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Nucleation line.

Figure 5.1: Schematic phase diagram of liquid water. LDA and HDA refers

to Low / High Density Amourphous water. TMD refers to \Temperature of

Maximum Density".

liquid - low density liquid phase transition, terminating in a critical point c0

located at T = 220K and P = 100 MPa. The 
uctuations origining from c
0

can also account for the increase of �T as T is decreased. See the schematic

drawing in �gure (5.1). The hydrogen bonds are believed to be of great

importance for the scenario sketched above. This may be the reason for

a discussion in literature [88, 89] about the time correlation of hydrogen

bonds in supercooled water. It is this particular topic which is addressed in

publication [V].

5.1.1 Summary of V

The initial motivation for the work presented in publication [V] sec (7.5), was

that there has been some discussion [88, 89] about how to de�ne hydrogen

bonds, and the way of analysing their time correlation as well. In [V] we
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cleared out the di�erences between the life time distribution method of [89]

and the reactive 
ux method described by [88]. The reactive 
ux de�ned as

k(t) = �
d

dt
c(t); (5.1)

where

c(t) =
1

hhi
hh(0)h(t)i: (5.2)

Here h is a "bond indicator" (see [V] and [88]) of an arbitrary pair of

molecules. k(t) turned out to be independent on the bond de�nition at

long times. In opposition to this, the bond life time distribution P (�) turned

out to be very sensitive to the bond de�nition. We found that in the SPC/E

model c(t) showed qualitatively the same time dependence as the intermedi-

ate scattering function reported in [91], with a relaxation time �R departing

from the Arrhenius law. The non-Arrhenius behavior was equally well/bad

�tted with a power law or an Vogel Fulcher law, which both diverges too fast

at low temperature. Which is also the case for normal fragile liquids. On

the other hand the characteristic time of P (�) �HB showed Arrhenius behav-

ior. The results matches simulations on saturated square-well models of R.

Speedy et al. [90], who actually did the same analysis as we did, on an other

potential. We did not �nd a power law with exponent 0:5 in P (�), as it is the

case for the more structured model ST2 [89]. Since the P (�) analysis counts

a bond as broken as soon as it has been exited in to a broken state for even a

very short time, it seems reasonable that this function is thermally activated

(the most obvious interpretation of the found Arrhenius law). To brake a

bond for good requires that the liquid is reorganised in a more collective way

locally, an therefore �R is related to the viscous relaxation. It remains to be

seen whether the power law found by [89] is persistent at lower temperature.

5.2 Time Temperature Scaling

I shall just add a few further comments to the simulation results of [V]. It

appears that the long time behavior of c(t) shows time temperature scaling

to quite good agreement. In �gure (5.2) c(t) has been plotted for 5 di�erent

temperatures each with two bond de�nitions. The curves clearly collapses in

the long time limit.

In order to model this interesting behavior I propose the following simple

model. Consider the decay of c(t) as the probability of two molecules being

bonded, given that they where bonded at t = 0.
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Figure 5.2: c(t) calculated both from geometric and energetic bond de�nition

for 5 separate temperatures 210-300 K. The time has been divided with t0,

found by monitoring t times the logarithmic derivative, t d
dt
ln[c(t)], which is

invariant to a possible scaling of c(t) and c(t) has been devided by its value

at t0.
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If one describes the position of particle 2 relative to particle 1, the prob-

lem is reduced to di�usion of one particle in 3 dimensions. Now, the particle

is not di�using by simple random walk, since its surroundings are structured.

As a �rst attempt to overcome this problem I propose to consider the parti-

cles movement as random walk in a non-homogeneous DOS, and that DOS is

proportional to the pair correlation function g(r). In equilibrium the proba-

bility distribution f(r) has to be equal to g(r). The most simple dynamical

equation one can make on these premises is one where the jump probability

between two neighboring sites is

pi!j = 
0g(rj): (5.3)

In the continuous limit this leads to the following modi�ed di�usion equation:

@f

@t
= D(gr2

f � fr
2
g) (5.4)

This model was simulated with the initial distribution

f0 =

(
g(r); r < 3:5�A

0; r > 3:5�A
; (5.5)

and c(t) was calculated as the probability of still being inside the 3.5 �A shell

at time t. In �gure (5.3) t d
dt
ln[c(t)] derived from this model at T = 225 K is

shown together with the result from the simulations. The agreement at long

time scale is good, as it is forced to by the construction of the model, while the

short time behavior is not that well reproduced by the model, as the c(t) of

the model has a knee which is sharper than that of the simulation. The model

is not expected to depedent to much on the relatively small changes of g(r)

as function of temperature, though I have not analysed this carefully. This

is a zero parameter model, and in the light of this it works good. It con�rms,

what should be expected, that the long time tail of c(t) is determined by

di�usional motion.
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Figure 5.3: t times the logarithmic derivative of c(t), t d
dt
ln[c(t)] calculated

from a modi�ed di�usion model, with g(r) as input, compared to the same

property calculated from MD simualtion at 225 K



Chapter 6

Conclusions

The frequency dependent speci�c heat cp(!) re
ects macroscopic energy 
uc-

tuations of a system, expressed through 
uctuation dissipation theorems,

speci�c for a given ensemble. The 
uctuation dissipation theorems includes

other thermodynamic response functions as well.

If external constraints like constant volume or energy is acting on a sys-

tem, the macroscopic energy correlations cannot be separated into sums of

local microscopic correlations, since global particle-particle correlations con-

tributes signi�cantly to the macroscopic response functions. cp(!) re
ects

only microscopic local correlations, but these include correlations between

regions located close in space.

Because of the global correlations thermodynamic response functions are

di�cult to sample from computer simulations. By means of very long runs,

the full response matrix of a 256 molecule binary Lennard Jones system was

found. All response functions had a relaxational part, but the relaxation

strength of the adiabatic compressibility was rather weak. Generally the

susceptibilities was increasing with decreasing temperature.

The shape of the �-peak of cp(!) in the low temperature limit is well

described by an energy master equation with a cut of in the density of states

at the ground state, and a common absolute barrier energy for all states.

The model shows time temperature scaling, which is in consistence with

experiments of cp(!), provided that an interpretation of the high frequency

tail of cp(!) as associated with JG-� relaxation, is adopted.

The interpretation of microscopic energy master equation models in terms

of macroscopic speci�c heat, relies on an assumption of essentially non-

interacting regions, which can only really be true if there is some physical

separation of such entities, i.e. an inhomogeneous liquid at microscopic level,

or if the regions are so large that their interaction may be ignored. The last
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possibility seems to be in contradiction with an almost constant DOS near the

ground level, which implies a very small region size. But if the assumption

of non-interacting regions is taken literary, one is led to the conclusion, that

transition state dynamics implies constant DOS with a low energy cuto�.

Since there are other energy controlled models, with more poor physical

foundation, which also reproduce cp(!), it can not be out ruled, that the

striking agreement between the quasi-universal c(!) and measurements of

cp(!), may be coincidental.

MD simulations of supercooled SPC/E water shows that the bond corre-

lation function c(t) is quite independent on the bond de�nition, and have the

same qualitative behaviour as the intermediate scattering function. c(t) are

connected to the glassy behavior of SPC/E, and c(t) shows time temperature

scaling at long times. The shape of c(t) at long times can be rationalized by

a simple zero-parameter modi�ed di�usion model.

On the other hand the bond lifetime distribution depends on the bond

de�nition. The glassy behavior of SPC/E is not re
ected in the mean bond

lifetime, which continues to grow as an Arrhenius law deep in the supercooled

regime.
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Publications

7.1 PUBLICATION I
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