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Abstract

In this study we develop a modeling framework for predicting baroreceptor firing rate as a function of blood pressure. We
test models within this framework both quantitatively and qualitatively using data from rats. The models describe three
components: arterial wall deformation, stimulation of mechanoreceptors located in the BR nerve-endings, and modulation
of the action potential frequency. The three sub-systems are modeled individually following well-established biological
principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs
circumferential strain. The mechanoreceptor stimulation model, uses circumferential strain as an input, predicting receptor
deformation as an output. Finally, the neural model takes receptor deformation as an input predicting the BR firing rate as
an output. Our results show that nonlinear dependence of firing rate on pressure can be accounted for by taking into
account the nonlinear elastic properties of the artery wall. This was observed when testing the models using multiple
experiments with a single set of parameters. We find that to model the response to a square pressure stimulus, giving rise to
post-excitatory depression, it is necessary to include an integrate-and-fire model, which allows the firing rate to cease when
the stimulus falls below a given threshold. We show that our modeling framework in combination with sensitivity analysis
and parameter estimation can be used to test and compare models. Finally, we demonstrate that our preferred model can
exhibit all known dynamics and that it is advantageous to combine qualitative and quantitative analysis methods.
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Introduction

The main role of the cardiovascular (CV) system is to provide

adequate oxygenation of all tissues, a function which is achieved by

maintaining homeostasis of blood flow and pressure. When a

mammal is subjected to an orthostatic maneuver (e.g., running,

jumping, etc.), its blood volume is redistributed, moving the system

state away from homeostasis [1]. To re-establish homeostasis a

number of control mechanisms are activated regulating vascular

resistance and compliance, and cardiac pumping efficiency and

frequency. An important contributor to this control system is the

baroreflex, which uses specialized neurons called baroreceptors (BR)

for signaling [2]. The BR neurons originate in the arterial wall and

terminate in the nucleus solitary tract (NTS), where sensory

information is integrated. These neurons are continuously stimu-

lated via activation/inhibition of mechanosensitive receptors

responding to changes in arterial wall stretch imposed by pulsating

blood pressure [3]. This stimulus modulates the formation of action

potentials propagating along the BR nerves terminating in the NTS,

where efferent signals are generated to regulate heart rate, cardiac

contractility, as well as vascular resistance and compliance. It is

known that the baroreflex system contributes to short-term blood

pressure regulation, operating on a time-scale of seconds to minutes

[4]. For example, upon head-up tilt, blood is pooled in the lower

extremities, increasing blood pressure in the lower body, while

decreasing it in the upper body, causing an imbalance, which

persists until the baroreflex system is activated. Figure 1 shows a

schematic representation of the baroreflex pathways. While the BR

pathways are generally well established, analysis of the complete

control system, including afferent and efferent signaling, is hindered

by the difficulty of measuring the activity of each component

without disrupting the feedback loop. For example, in vivo, only

macroscopic quantities can be measured non-invasively including

heart rate and blood pressure. From such measurements it is

difficult to examine how the individual components of the system

interact and consequently it is difficult to determine which sub-

systems are compromised in subjects experiencing baroreflex failure

[5] or decreased arterial baroreflex sensitivity [6]. These difficulties

limit the development of targeted diagnosis procedures and

treatment plans aiming to alleviate symptoms for patients.

Mathematical modeling is an eminent tool for gaining more

insight into this complex feedback loop, offering a stringent and

systematic way to identify underlying mechanisms of the system.

For example, the only way to estimate model parameters and

thereby suggest essential biomarkers, which may not be directly

measurable, is by using models in combination with direct

measurements. Modeling also offers a way to understand complex

systems, as it makes the inaccessible accessible, a concept denoted

the ‘‘mathematical microscope’’ [7].

This paper focuses solely on the afferent part of the baroreflex

system, while future studies will address efferent signaling and

integration of the two parts within a system level model. Since the
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1950s researchers have put forward numerous mathematical models

[8–19], which tried to integrate known dynamics with hypothesized

mechanisms in order to provide more understanding of the system as a

whole. Many insights have been gained, however, most of these

models were developed to describe BR response to a particular

stimulus, rather than to a range of stimuli eliciting all known responses.

Therefore they all lead to different hypotheses explaining the system

mechanisms. Inspired by shortcomings of previous studies, we

developed a modeling framework containing model components reflecting

physiological pathways. This framework splits the afferent signaling

into three parts describing vessel wall deformation, mechanoreceptor

stimulation, and the frequency of action potential generation. For each

component we propose multiple models, which we test both

qualitatively and quantitatively. This new approach allows us to

understand the contribution of each component model to the overall

signal. For example, if the objective is to build a BR model that can

reflect the response to a sinusoidal pressure stimulus observed

experimentally, the modeling framework can be used to identify

which combinations of components are sufficient to describe the

experimental outcome, and which component models may be

excluded from possible explanations of observed features. Moreover,

we show how our framework may be used to inform hypotheses, by

suggesting a particular component mechanism responsible for

generating a given pressure-response feature of BR firing.

Methods

Experimental data and its features
In this section we describe the main qualitative characteristics of

BR firing rate as well as the data used for quantitative model tests.

Qualitative features of the BR firing rate. Although BR

firing patterns depend on the type of BR, e.g., whether they are

connected to myelinated or unmyelinated axons [20], there are a

number of features nearly all BR neurons exhibit. We characterize

these according to observations obtained by stimulating isolated

rat aortic BR neurons with a range of pressure stimuli including:

Figure 1. Schematic representation of the BR feedback system.
Stretch sensitive BR neurons originate in the carotid sinuses and the
aortic arch. In these arteries, dynamic changes in blood pressure cause
vessel deformation, modulating stretch of mechanoreceptors channels
found in the BR nerve endings. Stimulation of these receptors
modulates frequency of action potential formation, a signal integrated
in the NTS. From the NTS, efferent sympathetic and parasympathetic
outputs are generated determining the concentrations of neurotrans-
mitters acetylcholine and noradrenaline, which stimulate or inhibit
heart rate, cardiac contractility, vascular resistance and compliance, the
latter via activation of smooth muscle cells constricting or dilating the
radius of arteriolar vessels.
doi:10.1371/journal.pcbi.1003384.g001

Author Summary

Many people have experienced lightheadedness when
standing up, yet the exact cause of this phenomenon
remains unknown. For some people, lightheadedness
occurs because of anomalies in the blood pressure control
system, which keeps blood flow and pressure at homeo-
stasis. One way to explore this system is via mathematical
modeling, which can offer valuable insights into the
complex dynamic processes. This study develops a
framework for modeling activity of the baroreceptor
neurons. The models consist of three components reflect-
ing three physiological mechanisms relating blood pres-
sure to the baroreceptor firing rate: modulation of arterial
blood pressure causes dilation of the arterial wall,
stimulating mechanoreceptors within the baroreceptor
nerve endings, emanating from the aortic arch and carotid
sinus, which in turn modulates the firing rate of the
baroreceptor neurons. This signal is integrated in the brain
stem, stimulating baroreflex efferents to counteract the
pressure increase. In this study, we review the main static
and dynamic features of the baroreceptor firing activity,
and show, using a combination of modeling techniques
and rat aortic baroreceptor data, how to build a
computationally efficient, yet biologically correct model.
These models are important components for describing
efferent responses, such as: heart rate, contractility or
stroke volume.

Modeling Baroreflex Regulation
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sinusoidal, step increases and decreases, and ramp increases and

decreases (Figure 2). The most commonly noted features of the BR

response to imposed pressure stimuli include: saturation and

threshold, adaptation and overshoot, as well as post-excitatory

depression and rectification. Below, we describe each of these

firing rate patterns in more detail.

Threshold. Observed in response to a step or ramp increase in

pressure. This phenomenon was first described by Bronk and

Stella [21,22] in the 1930s. They observed that a small step

increase from a given baseline blood pressure did not trigger BR

firing, but when the pressure was increased above a certain

threshold, the BR nerve began to fire continuously. The threshold

was later observed to increase with an increased baseline pressure

[23–26]. Moreover, Seagard et al. [27] observed that the type of

baroreceptor (myelinated or unmyelinated) strongly affects the

threshold pressure. The precise mechanisms underlying the

threshold phenomena remains unknown, but it is thought to be

attributed to the characteristics of ion channels associated with

generation of action potentials [28].

Saturation. Observed in response to a ramped increase of blood

pressure. As the pressure is increased linearly, the BR firing rate first

increases almost linearly (with pressure). Then, at a given frequency,

the firing rate approaches some limiting value (the saturation level)

[23]. This phenomenon was also observed by Bronk and Stella

[21,22]. They noted that for normotensive rabbits, the firing rate

saturates around 120–140 Hz. Later, Seagard et al. [27] studied

saturation by stimulating a single carotid BR nerve fiber, extracted

from a mongrel dog, with a slow linearly increasing pressure. This

experiment showed firing rate saturation at 46:5+2:5Hz. These

observations led to the separation of nerves as type I (large

myelinated aortic (A) nerve fibers) and type II (smaller aortic (A) and

unmyelinated carotid (C) nerve fibers). They observed type I BR

neurons displayed a discontinuous firing pattern, characterized by a

sudden onset of discharge at the average threshold pressure of

73:3+5:2mmHg, whereas type II neurons displayed a continuous,

sigmoidal firing pattern saturating at 19:2+2:1mmHg.

Overshoot and adaptation. Observed in response to a step change in

pressure. The firing rate responds by immediately increasing the

rate of discharge, followed by a slow adaptation to a new lower

steady state value. Brown et al. [29, Figure 5] noted that the

relationship between the size of the overshoot and the level of the

pressure stimulus is almost linear. The adaptation level depends on

the magnitude of the pressure change. This phenomenon was first

observed by Landgren [8, p. 7], who discovered that 50% of

adaptation occurs within 0:1s following the the pressure stimulus,

95% is completed after 30s, whereas full adaptation requires a

very long time, more than 2 min. It was later confirmed by

Srinivasen and Nudelman [11] and Brown et al. [30], though from

these later studies it is not clear that adaptation requires three

distinct timescales. Moreover, Brown [30] noted that the

frequency of the adapted firing rate is the same whether the

baseline pressure level is reached from a higher or a lower pressure

Figure 2. Various types of BR input pressure. To test our models we applied a number of pressure stimuli: (A) sinusoidal, (B) step increases, (C)
square (step increase followed by a step decrease), (D) ramp and triangular. The above stimuli were used for testing the models’ responses both
qualitatively and quantitatively.
doi:10.1371/journal.pcbi.1003384.g002

Modeling Baroreflex Regulation
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level. Several studies have observed that the level of the steady-

discharge is proportional to the applied pressure [20,29]. No

mechanism has been established as the cause of adaptation;

however, Franz et al. [31, p. 823] propose viscoelastic relaxation

as the source of adaptation in the firing rate.

Post-excitatory depression (PED). Observed following a step-

decrease in pressure. In response to this stimulus the BR firing

ceases for a short period, after which it recovers to a rate

corresponding to the newly established pressure level. While the

term PED was put forward by Brown et al. [30,32], who studied

the phenomena extensively, it was first observed by Bronk and

Stella [21] when they noticed that BR firing ceased during

diastole. Later, Wan et al. [33] observed that the length of the

pause depends on the depth of the pressure drop. Brown [32,

p. 504], suggested that an electrogenic-sodium pump could be the

potential mechanism for this phenomena.

Asymmetry (or hysteresis). Observed following a sequential rise and fall of

blood pressure (see sinusoidal, square, and triangular stimulus shown in

Figure 2). This phenomenon was described by Katona and Barnett [34],

but have also been discussed by Coleridge, Angell, Pelletier et al. [23,35–

37]. These studies all observed that the BR firing rate exhibits

asymmetrical responses to rising and falling blood pressure. However,

asymmetry can be observed in response to any stimuli involving a

symmetric increase and decrease in pressure. Thus it may also be

observed in PED and in response to periodic sinusoidal forcing. In the

time-domain, it may not be easy to see that a sinusoidal stimulation leads

to asymmetry, but it can be observed by depicting BR firing as a function

of pressure, which gives rise to hysteresis loops. This phenomenon is

closely related to adaptation and overshoot, thus viscoelastic relaxation

exhibited by the arterial wall, could explain its origin.

Description of experimental data. So far we have focused

on describing the qualitative features of the BR firing rate.

However, if the objective is to understand how these responses are

modulated in disease or between species it may be important to

predict the BR firing rate quantitatively.

Below we describe the main features of data used for quantitative

predictions. Data were obtained by digitizing results reported by Brown

et al. [20] and Saum et al. [32]. From these studies we extracted data

from a total of six experiments, grouped with respect to the applied

pressure stimulus: sinusoidal, step increase with four different ampli-

tudes, and a square pulse. These stimuli are depicted in Figure 2A–C.

Sinusoidal pressure stimulus. To test the models’ abilities to mimic in

vivo dynamics, we used data reported by Brown et al. [20, Figure

2A]. They stimulated the stretch-sensitive receptors using a

sinusoidal pressure stimulus mimicking the natural blood pressure

rhythm and recorded the corresponding BR firing rate. Several

studies [9,17,38–40] have reported similar experiments. This type

of data allows us to evaluate whether the model can exhibit

asymmetry and rectification. The study [20] reports firing rate

responses recorded from 11 experiments using myelinated aortic

BR axons extracted from Wistar-Lewis strain normotensive rats

aged 4–6 months. For each experiment the neuron was stimulated

using sinusoidal pressure wave with a frequency of 20 Hz, an

amplitude of 5 mmHg, and a mean pressure of 127 mmHg.

Steadily oscillating pressures were recorded over a period of

5 seconds. More details about experimental preparation can be

found in [29,32]. To obtain a smooth input stimulus, we fit the

data to a sinusoidal function of the form

p(t)~p0z2:5 sin(p2{p1t), ð1Þ

where p0~127mmHg. We estimated parameters p1 and p2 using

the initial values p1~6:45 and p2~46:75 both radians/s.

Multistep pressure stimulus. To demonstrate overshoot followed by

adaptation, we digitized BR firing rate data reported in [20, Figure

5]. This study shows BR discharge in response to four pressure

step increases from a baseline pressure of 115 mmHg. The four

step-increase stimuli are: 13 (to 128), 19 (to 134), 22 (to 137), and

28 (to 143) mmHg (Figure 2B). Experiments were done over a

period of 12s, allowing the BR firing rate to adapt to a new steady

level of discharge. In this study we used data reported by Brown et

al. [20], though several experimental studies have reported similar

observations [29,41]. It should be noted, that no graph depicts the

pressure stimulus. Brown et al. [20] reported the baseline pressure

as well as the level of the pressure increase, but not the exact time

denoting the onset of the stimulus. We modeled the stimulus using

a smooth function of the form

p(t)~
pup(tkuzdku

u )

tkuz(pup=pdow)dku
u

, ð2Þ

where pdow, pup (mmHg) denote the baseline pressure and

the increased pressure, respectively; du (s) denotes the onset of

the pressure step increase, and ku denotes the steepness of the

increase. For the dataset under consideration the values

pdow~115mmHg, and pup~f128,134,137,143gmmHg were

taken from [20], while we estimated du and ku. Initial values for

these parameters were set to du~1:1s and ku~10s approximat-

ing the onset described in the experiment [20, Figure 5].

Square pressure pulse stimulus. To capture PED, we digitized data

reported in Saum et al. [32, Figure 1], which examined PED and

adaptation in slowly adapting aortic BR neurons extracted from

normotensive and spontaneously hypertensive rats. Though this

phenomenon has also been reported in several other studies

including [8,31–33,42]. The study by Saum et al. [32] stated that

PED could be elicited either mechanically by employing single or

double pressure steps, or electrically by stimulating myelinated

aortic BR axons extracted from normotensive Wistar-Lewis rats

aged 4–6 month. This data shows a steady state discharge was

elicited by stimulating the nerve with a baseline pressure of

140 mmHg. After 4 s the pressure was increased by 40 mmHg to

180 mmHg for a period of 4 s, after which it was reset to the

baseline pressure of 140mmHg. To allow the neuron to fully

recover following the pressure drop, data were recorded over a

period of 20s. In order to avoid the problem of non-differentiability

we modeled the pressure stimulus using the smooth function

p(t)~pbzpup tanh(k(t{du))=2{pdow tanh(k(t{dd ))=2, ð3Þ

where tanh is the hyperbolic tangent. For this stimulus we used

pb~140mmHg, pup~40mmHg, pdow~40mmHg, k~20s{1,

while du (s), dd (s) were estimated.

Models
To model the dynamics, which produce the BR firing rate in

response to given blood pressure stimuli, we include three

components separating distinct physiological pathways, and for

each component we develop a number of linear and nonlinear

models. The three components (Figure 3) include: arterial wall

deformation, mechanoreceptor stimulation, and action potential

generation. As a driving force for the models we use arterial

pressure, which determines arterial wall deformation quantified by

the wall strain. The wall deformation stimulates the stretch

sensitive mechanoreceptors found in the BR nerve endings within

the arterial wall. Thus changes in blood pressure modulate the

opening of these channels, and thereby the current flowing

Modeling Baroreflex Regulation
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through them, which determine the rate at which action

potentials are formed. The time between subsequent action

potentials determines the firing rate, and thus our models relate

the receptor strain to the frequency of action potentials, thereby

allowing us to predict the BR firing rate. For each model

component, described below, we review previous modeling

methodologies and use these to inform the design of the new

component models, collectively used to describe the firing rate of

afferent BR neurons in response to an applied blood pressure

stimulus.
Arterial wall deformation. BR nerves originate in the wall

of the the aortic arch and the carotid sinus and terminate in the

NTS [43]. Action potentials transmitted along these nerves are

generated by stimulation of mechanoreceptors found in the wall.

These nerves are stimulated by pressure pulses passing through the

vessel, and their firing patterns are modulated in response to

changes of the frequency and magnitude of the pressure stimulus.

It is well known [44] that the arterial wall deforms viscoelastically,

though little is known about how this deformation impacts

stimulation of the mechanoreceptors. This section describes

models predicting the vessel strain as a function of blood pressure,

while the next section describes characterization of mechanore-

ceptor stretch, which in turn modulates BR firing rate.

A detailed description of the arterial wall strain requires complex,

anisotropic, viscoelastic models, accounting for dynamics associated

with each layer of the wall as well as the interaction between the

layers [44]. While such models can provide detailed description of

wall deformation, without additional data they are not suitable for

integration in higher-level models determining the BR firing rate.

Another class of models are those assuming that the arterial wall is

isotropic. These models represent the wall as a thin shell, and since

arteries are tethered in the longitudinal direction, viscoelastic

deformation is dominantly in the circumferential direction (cf. [45]).

Such models determine the cross-sectional strain of the arterial wall

in response to induced changes in applied stress, corresponding to

the blood pressure [46]. Again, depending on the fidelity needed,

these ‘‘stress-strain’’ models can be simplified. The simplest stress-

strain models ignore viscous deformation and treat the wall as

purely elastic. The stress-strain relationship may be either linear or

nonlinear. In this study we consider three wall models, of which one

is linear and elastic (We, subscript e for elastic), one is linear and

viscoelastic (Wve, subscript ve for viscoelastic), and one is nonlinear

and elastic (Wne, subscript n for nonlinear and e for elastic).

Linear elastic wall model (We). For a thin walled elastic vessel with

an isotropic wall, neglecting the axial deformation, the wall strain

w can be computed using Laplace’s law,

w~
r{r0

r
~kwall p, kwall~

r0

Eh
, ð4Þ

where E (mmHg) denotes Young’s modulus, r (mm) the vessel

radius, r0 (mm) the unstressed radius at zero transmural pressure,

and h (mm) the wall thickness.

Nonlinear elastic wall model (Wne). It is well known that the area-

pressure response curve is nonlinear and can be modeled using a

sigmoidal function, accounting for saturation of the vessel wall

deformation at both high and low pressures. Following [46,47] the

pressure-area relationship can be modeled as

A(p)~(Am{A0)
pk

akzpk
zA0,

where A0 and Am (mm2) are the unstressed and maximum cross-

sectional area; a (mmHg) is the characteristic pressure at which the

vessel starts to saturate; and k determines the steepness of rise of

the sigmoidal curve, representing the stiffness in the lumen

distention due to changes in pressure. Using (4) as a definition of

wall strain w, we obtain

w~1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0(akzpk)

A0akzAmpk

s
: ð5Þ

Viscoelastic wall models (Wve). While the main contribution to arterial

wall deformation is elastic, as mentioned above, the arterial wall is

composed of tissue that has viscoelastic properties. Viscoelastic models

encompass both elastic deformation and viscoelastic creep, and thus

can be described using either linear or nonlinear elastic responses.

Linear viscoelastic response of the arterial wall is typically,

although not solely, described using a number of springs (elastic

elements) and dashpots (viscous elements) in various configura-

tions. The so-called standard linear solid (SLS), is one of the most

commonly used examples of such configurations. It involves a

Maxwell element (a spring E1(mmHg) and dashpot g1 (mmHg:s)

in series) in parallel with a spring E0(mmHg). It is easy to establish

that the total stress-strain relationship is given by

zta
d

dt
~

1

E0
(sztb

ds

dt
), ta~

g1

E0
(1z

E0

E1
), tb~

g1

E1
: ð6Þ

To apply the SLS model to the arterial wall, we think of as vessel

distention ew and the stress as the blood pressure p(mmHg).
Moreover, assuming the arterial wall is a thin-walled elastic tube

we can substitute E0~Eh=r0(mmHg) and obtain

wzta
d w

dt
~kwall(pztb

dp

dt
), kwall~

r0

Eh
:

In order to avoid numerical differentiation of the data, following

[46] we apply the integrating factor and transform this equation to

Figure 3. Block diagram used to describe the BR firing in response to an applied blood pressure stimulus. Applied changes in blood
pressure induce changes in the arterial wall strain, which induce changes sensed by stretch sensitive mechanoreceptors found in BR within the
arterial wall. This stimulus modulates frequency of action potential formation, which can be used to determine the BR firing rate.
doi:10.1371/journal.pcbi.1003384.g003

Modeling Baroreflex Regulation
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w~ w(t0){
kwall tb

ta

p(t0)

� �
e{

t{t0
ta

z
kwall tb

ta

p(t)zkwall
ta{tb

t2
b

ðt

t0

e{
t{c
ta p(c)dc:

ð7Þ

QLV framework. Formulated as linear elements in series and

parallel, the above model cannot directly be extended to account for

nonlinear elastic response; moreover, it is limited to models

described using a finite number of components. It was noted by

Fung [45], that biological tissues are not elastic and that strain

history affects the stress. These tissues also exhibit a difference in the

stress response between loading and unloading. Generalizing linear

viscoelastic theory, Fung [45], introduced the so-called quasi-linear

viscoelastic theory (QLV), which has been used successfully to

model stress-strain relationships involving living tissues [48,49]. The

QLV theory is a flexible framework that includes linear viscoelastic

theory and provides a more accurate description of the pressure-

strain curve, especially in living tissues. We proceed with the

assumption that the arterial wall can be modeled as homogeneous

and isotropic thin walled cylindrical vessel [50]. Therefore the wall

strain as a function of pressure can be determined as

w~

ðt

?
K(t{c)

Lse½p(c)�
Lc

dc, ð8Þ

where K(t) is a creep function, and se½p(c)� is the elastic response

[45,46]. Finally, it should be noted that all the linear and nonlinear

arterial wall models described above can be expressed within the

unified framework of the QLV theory, see Table 1.

Mechanoreceptor stimulation. The BR nerves emanating

in the adventitial layer of the aortic arch and carotid arteries form

a complex branching network [51]. In rats electron microscopy

studies have revealed that BR aortic nerve fibers form bundles,

usually containing one myelinated and five unmyelinated fibers of

different sizes [51, p. 401]. Each bundle is surrounded by a

protective sheath, perineurium. Both unmyelinated and myelin-

ated fibers are sheathed in Schwann cells and are embedded in

collagen, see [51, p. 404] and [52,53]. Because these nerve

endings are embedded in the arterial wall, deformations of the

arterial wall also deform the nerve endings. This stimulates

stretch sensitive, non-selective cation channels that serve to

transduce the changes in the nerve ending structure into an

electrical signal, which is encoded into the firing pattern of the

BR neuron [2].

We propose a model specifying the strain effected specifically at

the nerve endings as a result of a given arterial wall strain. Thus our

model seeks to capture the stimulation of the mechanoreceptive

nerve endings by capturing the stretching dynamics of the nerve

endings as the arterial wall expands or contracts in response to

changes in pressure. We propose models with the assumption that

viscoelastic properties of BR nerve ending connective tissue are the

key factor in the transduction process [54,55]. Following the ideas

used in previous BR modeling studies [13,56]; and before in the

modeling of the muscle spindle dynamics [57,58] we describe the

coupling of the strain sensed by the mechanoreceptors to the wall

deformation using n Voigt bodies in series with a spring (Figure 4).

Following this idea, the strain sensed by the mechanoreceptors in

response to the arterial wall deformation is given by

ne~ w{ 1, ð9Þ

where w denotes the strain of the wall, and e1 denotes the strain of

the first Voigt body. Choosing the parameters aij and b1, . . . ,bn,

determined by the spring, E, and dashpot, g, constants, the model

given in Figure 4 can be described using the dynamical system

d j

dt
~aj1 1z . . . zajn nzbj w j~1,2, . . . ,n

where j ,(j~1, . . . ,n) is the relative displacement within each

Voigt body. Consequently, our model assumes a declining

afferent sensory activity during constant intensity stimulation, a

fundamental property of mechanoreceptors that can be described

in terms of viscoelastic relaxation processes in the vessel wall

[31,59]. Below we describe, in more detail, the computational

aspects of this element of the BR model, analyzing model

components including one, two, and three Voigt bodies. Since the

strain is calculated using Voigt bodies, we have denoted this

model component as Vi where i~1,2,3 indicates the number of

Voigt bodies included.

One Voigt body model (V1). We start with the simplest model,

consisting of one Voigt body in series with a spring (Figure 4 for

n~1). The governing equation used for determining the nerve

ending deformation is given by

d 1

dt
~{(a1zb1) 1za1 w, ð10Þ

where b1 and a1 depend on the spring constants E0, E1 and viscous

Table 1. Elastic and viscoelastic models of arterial wall strain.

Model Elastic response se½:� Creep K(:) Type

We
r0

Eh
p 1 elastic

Wve
r0

Eh
p 1{A1e{t=b1 viscoelastic

Wne 1{ A0(akzpk )
A0 akzAmpk

1 nonlinear
elastic

The unified QLV formulation in (8) encompasses all models studied here. The
first column lists the model, the second the elastic response, the third the creep,
and the fourth states if the model is linear or nonlinear.
doi:10.1371/journal.pcbi.1003384.t001

Figure 4. A schematic illustration of the strain sensed by the
mechanoreceptors. The spring and n Voigt bodies (a parallel spring
and dashpot) in series shown here describes the strain sensed by the
mechanoreceptors relative to the deformation of the arterial wall. The
spring E0 represents the elasticity of the BR nerve endings, whereas the
n Voigt bodies reflect the viscoelastic properties of the surrounding
connective tissue. Each element n provides a timescale adaptation of
BRs firing rate in response to a step increase in pressure observed in
experiments. This study compares the cases n~1,2,3.
doi:10.1371/journal.pcbi.1003384.g004
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element g1 as stated in Table 2. Since equation (10) is a first-order

linear ODE, the total strain sensed by the mechanoreceptor is

equivalent to the strain on the Voigt body, thus this model

component only exhibit one time-scale tv1
(s{1) associated with the

strain ew. This time-scale is given by

tv1
~a1zb1: ð11Þ

Two Voigt body model (V2). The model with two Voigt bodies and

a spring in series (Figure 4 for n~2) can be described by the

following system of equations

d 1
dt

~{(a1za2zb1) 1z(b1{b2) 2z(a1za2) w

d 2
dt

~{a2 1{b2 2za2 w,
ð12Þ

where a1,a2, b1 and b2 are defined in Table 2. There are two

timescales ta
v2

and tb
v2

associated with the nerve ending relaxation,

thus one expects the BR firing rate to observe adaptation more

closely. For this model represented by two Voigt bodies (Ej ,gj),

j~1,2, in series with a spring E0, those two time-scales can be

computed as follows. The total strain-stress relationship is given by

a2 ’’wza1 ’wza0 w~b2s’’zb1s’zb0s, ð13Þ

where the coefficients are

a0~E0E1E2 b0~E0E1zE0E2zE1E2

a1~E0(E1g2zE2g1) b1~E0g1zE0g2zE1g2zE2g1

a2~E0 g1g2 b2~g1g2:

For the step-increase in pressure (and thus wall stain w) we obtain

’w~ ’’w~0. Therefore the two timescales ta
v2

(s{1) and tb
v2

(s{1)

are given by the roots of

jV2
(x)~½a2b1za1b2zb1b2�z½a1za2zb1zb2�xzx2: ð14Þ

Three Voigt body model (V3). For model with three Voigt bodies in

series with a spring (Figure 4 for n~3) we obtain the following

system of equations

d 1

dt
~{(a1za2za3zb1) 1z(b1{b2) 2

z(b2{b3) 3z(a1za2za3) w

d 2

dt
~{(a2za3) 1{b2 2z(b2{b3) 3z(a2za3) w

d 3

dt
~{a3 1{b3 3za3 w,

ð15Þ

where as in the previous case the coefficients aj ,bj , j~1,2,3 are

provided in Table 2. This model has three time-scales ta
v3

(s{1),

tb
v3

(s{1), and tc
v3

(s{1) associated with the nerve ending relaxation.

Again, the total strain-stress relationship for our model is given by

a3
(3)
w za2 ’’wza1 ’wza0 w~b3s(3)zb2s’’zb1s’zb0s, ð16Þ

where the coefficients are given by

a0~E0E1E2E3 b0~E0E1E2zE0E1E3

zE0E2E3zE1E2E3

a1~E0(E2E3g1zE1E3g2zE1E2g3) b1~E0E2g1zE0E3g1

zE2E3g1zE0E1g2

zE0E3g2zE1E3g2

zE0E1g3zE0E2g3

zE1E2g3

a2~E0(E3g1g2zE2g1g3zE1g2g3) b2~E3g1g2zE0g1g2

zE0g1g3zE2g1g3

zE0g2g3zE1g2g3

a3~E0 g1g2g3 b3~g1g2g3:

For the step-increase in pressure (and thus wall stain w) w obtain

’w~ ’’w~ (3)
w ~0. Thus the timescales are the roots of

jV3
(x)~A0zA1xzA2x2zx3, ð17Þ

where

A0~a1b2b3za2b1b3za3b1b2zb1b2b3,

A1~a1(b2zb3)za2(b1zb3)za3(b1zb2)

zb1b2zb1b3zb2b3,

A2~a1za2za3zb1zb2zb3,

where again aj , bj (j~1,3) are given in Table 2.

BR firing rate. The final model component requires a

description of the generation of action potentials in response to

stimulation of the mechanoreceptors. The generation of action

potentials is often described using the Hodgkin-Huxley (HH)

model representing the biophysical characteristic of cell mem-

branes, including a lipid bilayer represented by a capacitance and

membrane channel proteins represented as nonlinear resistors.

Action potentials are initiated when the neuron receives sufficient

electrical current stimulus, in case of BRs, this stimulus is typically

via pressure dependent stimulation of stretch sensitive ion

channels. These detailed models are fairly complex and contain

numerous parameters; moreover, they describe the dynamics of

membrane voltage instead of directly modeling firing rate. In this

study, we proceed by considering two models: a simple model,

that predicts firing rate linearly from the mechanoreceptor

stimulation, and using a leaky integrate-and-fire model. The

linear model simply amplifying the strain is denoted by Na, and

the integrate-and-fire model is denoted by NIF .

Simple amplifier (Na). For the simplest possible model, we assume

that action potential generation, and thus nerve firing rate, can be

obtained by considering a simple linear amplifier described by

f ~s1 ne{s2, ð18Þ

where s1 is the gain, and s2 is the shift. The underlying assumption

of this model is that the change in firing is proportional to the

mechanical stimulation, ne, of the nerve ending.

Leaky integrate-and-fire model (NIF). A more realistic description

can be obtained using a leaky integrate-and-fire model, which
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considers the BR neuron as a simple electrically excitable

membrane stimulated by a current generated by the mechanore-

ceptors. We assume that the generated current is proportional to

the strain sensed by the nerve endings ene. The leaky integrate-

and-fire model originally proposed by Lapicque [60], but also

discussed in [61,62], describes the excitation of the voltage across

the BR membrane as equivalent to the capacitor voltage in an RC

circuit (Figure 5). The circuit consists of a stimulus current source

(given as a function of ene), an Ohmic leakage conductance, gleak,

and a capacitor, Cm, all three elements in parallel.

The change in voltage generated by a leaky integrate-and-fire

model is given by

Table 2. The state variables and parameters of the BR models.

Variable Definition Units

p aortic blood pressure mmHg

w aortic wall strain unitless

1 nerve ending coupling strain 1 unitless

2 nerve ending coupling strain 2 unitless

3 nerve ending coupling strain 3 unitless

ne nerve ending strain unitless

f firing rate Hz

Parameter Definition Value Units Reference

r0 zero pressure radius 1.13 mm [76]

h wall thickness 0.17 mm [76]

E elastic modulus 1050 mmHg [75]

kwall aortic distensibility r0/(Eh) mmHg21 [26]

ta viscous relaxation constant 0.03 s [46]

tb viscous relaxation constant 0.01 s [46]

A0 unstressed aortic area 3.1414 mm2 [46]

Am maximal aortic area 15.708 mm2 [46]

a saturation pressure 145 mmHg [46]

k steepness const 5 unitless [46]

E0 elastic nerve const 1 mmHg [56]

E1 elastic nerve const 1 mmHg [56]

E2 elastic nerve const 5 mmHg [56]

E3 elastic nerve const 10 mmHg [56]

g1 viscous nerve coupling const 2 mmHg?s [56]

g2 viscous nerve coupling const 2.5 mmHg?s [56]

g3 viscous nerve coupling const 1 mmHg?s [56]

a1 nerve ending const E0/g1 s21 [80]

a2 nerve ending const E0/g2 s21 [80]

a3 nerve ending const E0/g3 s21 [80]

b1 nerve ending relaxation rate E1/g1 s21 [80]

b2 nerve ending relaxation rate E2/g2 s21 [80]

b3 nerve ending relaxation rate E3/g3 s21 [80]

s1 firing constant 480 s21

s2 firing constant 100 s21

�ss1 firing constant 7.2386 pA

�ss2 firing constant 1559.7 pA

gleak membrane conductance 0.04 mS [64]

Cm membrane capacitance 37.5 nF [64]

Vth voltage threshold 12.5 mV [64]

tref refractory period 0.01 s [63,64]

The models considered in this work and defined in Table 3 contain between three and six state variables listed here. Additionally, the parameters for the whole family of
BR models together with their nominal values, units and literature references are provided.
doi:10.1371/journal.pcbi.1003384.t002
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Cm

dVm

dt
~Ine{gleakVm, ð19Þ

where Ine(pA) denotes the current stimulus, gleak (mS) is a leakage

conductance, and Cm (nF) denotes the membrane capacitance. In

the equation above, the voltage Vm(mV) is relative to the

equilibrium potential. To model the firing rate of the neuron we

assume that to form an action potential, the BR neuron has to

charge the membrane voltage above a given voltage threshold,

which we denote Vth(mV). Applying this assumption to (19),

allows calculation of T (s), i.e., time required for the voltage to

increase from equilibrium to the threshold, for a given stimulus

current, Ine. We can calculate T integrating (19) giving

ðVth

0

dVm

Ine{gleakVm

~

ðT
0

dt

Cm

: ð20Þ

For constant Ine this equation can be solved analytically, yielding

T~
Cm

gleak

½ln Ine{gleakVthð Þ{ln Ineð Þ�,

where, as stated above, T represents the time required to generate

an action potential given a constant current stimulus Ine. We

propose to model Ine as a linear function of ene

Ine~�ss1 nez�ss2, ð21Þ

where �ss1 and �ss2, both of units (s), are the gain and shift of the stimulus

current. Finally, the absolute refractory period, tref (s), denotes the

time following an action potential, during which a subsequent

action potential cannot be generated [63]. We account for this by

letting the rate (frequency) f ~(Tztref ){1 Hz. With these simpli-

fying assumptions the BR firing rate can be computed as a function

of the instantaneous strain of the nerve ending sensed by the BR as

f ~
Cm

gleak
ln

Ine{gleakVth
Ine

� �h i
ztref

h i{1

InewgleakVth

0 otherwise:

8<: ð22Þ

We propose to interpret the BR firing rate as that given by (22) for

Ine at a given instant. The piecewise definition of the frequency is

necessary as (20) does not have a solution when the stimulus current

is less than the leak current at threshold voltage. This is a consistent

interpretation of the instantaneous frequency as we do not expect any

firing events to occur for a sub-threshold stimulus (less than the base

current). In general, for a sub-threshold current stimulus the firing

rate, f , is expected to cease until Ine is increased above the threshold

level. The parameters Cm, gleak, tref , and Vth of this model are

expected to approximately correspond to the electrophysiologically

observable characteristics of the BR neuron, membrane capacitance,

leakage conductance, refractory period and threshold, respectively.

The membrane capacitance can be measured using electrophysio-

logical techniques [64]. Leakage conductance can be approximated

as the net inward conductance near equilibrium potential. The true

refractory period and threshold voltage of a neuron are not absolute

and are typically somewhat dynamic and thus difficult to measure.

One may roughly estimate these values for BRs from the results of

experimental studies of the membrane excitability of nodose neurons,

a neuron family including BRs [64]. The observation of BR firing

rates up to 140 Hz leads to a refectory period of tref &7ms [21,22].

Composite BR models. In the previous sections we devel-

oped a framework to model the three main components involved

with description of the BR firing. To develop a composite model,

one component must be chosen from each category. There are

various options one may select from in order to construct a BR

model. The choice depends on a number of factors including the

type of species (e.g., rats, dogs, sheep, humans, etc.) and the type of

data (e.g., steady, step-change, dynamic, in vivo, etc.). We propose a

total of six linear and nonlinear models, summarized in Table 3,

which we will carefully analyze and test using aortic baroreceptor

rat data. These models can be formulated as a system of algebraic

and differential equations of the form

w~g1(p,t; h)

dx

dt
~g2(x, w,t; h)

f (x,t; h)~g3(x,t; h),

ð23Þ

where p (mmHg) is the blood pressure (model input); ew denotes

the vessel strain; x~(e1,e2,:::,en); t time (s); h the model

parameters; and f (Hz) the BR firing rate. Models can be

classified as one of two basic types: linear and nonlinear models. It

should be noted that differential equations only enter via the

model component describing mechanoreceptor strain. To ensure

that model simulation began from a relaxed state, we computed

the initial conditions by solving g2(x,g1(p,t; h),t; h)~0. To be

more precise for the four linear BR models WeV1Na, WeV2Na,

WeV3Na, and WveV3Na the initial conditions are respectively

x�V1~{a1kwpM=(a1zb1)

x�V2~
kwpM

a2b1z(a1zb1)b2

½a2b1za1b2, a2b1�T

x�V3~
kwpM

a3b1b2z(a2b1z(a1zb1)b2)b3

½a3b1b2za2b1b3za1b2b3,

b1(a3b2za2b3), a3b1b2�T

x�ve~
kw(pMztb pD)

a2b1z(a1zb1)b2

½a2b1za1b2, a2b1�T

where pM and pD (mmHg) are the initial values of the pressure

stimulus and its derivative, respectively, and tb (s), aj (mmHg),

bj s{1, for j~1,2,3 are given in Table 2. For the nonlinear model

Figure 5. Diagram for leaky integrate-and-fire model. The circuit
diagram (left) represents the schematic layout of the integrate-and-fire
components. The graph (right) depicts voltage vs time for a neuron
stimulated by a constant current.
doi:10.1371/journal.pcbi.1003384.g005

Modeling Baroreflex Regulation

PLOS Computational Biology | www.ploscompbiol.org 9 December 2013 | Volume 9 | Issue 12 | e1003384



WneV2Na we used the following initial condition

x�ne~
In

a2b1z(a1zb1)b2

½a2b1za1b2, a2b1�T ,

In~1{½A0(akzpk
M )=(A0akzAmpk

M )�:

Results

In this section we present results obtained with the models

introduced in the Method section and summarized in Table 3.

First, we test the models’ abilities to quantitatively fit experimental

data with sinusoidal and step-increase stimuli. Second, we discuss

the models ability to show qualitative features not encompassed by

the quantitative data. Quantitative simulations allow us to identify

the components necessary to fit observed data, whereas qualitative

simulations allows us to test the model further in response to

stimuli not detailed by experimental measurements.

Quantitative results
Models will be tested quantitatively using three types of pressure

stimuli: sinusoidal at a fixed frequency, a step-increase, and a step-

increase followed by a step decrease (Figure 2A–C). We

investigated six linear and nonlinear models summarized in

Table 3. For the wall strain three models were investigated, the

simplest assumes the wall strain ew has a spring-like response

(denoted We). The second model (denoted Wne) accounts

sigmoidally for increased stiffening with increased pressure, and

finally we investigate a viscoelastic model (Wve). The mechano-

receptor strain ene, is modeled using one, two, and three Voigt

bodies, respectively, in series with the spring (V1,V2,V3). Finally,

two models were used for determining the BR firing rate, a linear

model (Na) and an integrate-and-fire model (NIF ). As mentioned

above, these models can all be described as a system of algebraic

and differential equations. For all models the model input is

pressure p and the model output is BR firing rate f , initial

conditions were computed to ensure that model solutions start at

steady state. The objective was to estimate model parameters

minimizing the least squares error between the model and data.

This is calculated from the point wise residual error between

model and data

Ri~
fdata(ti){fmodel(ti,h)

�ff data

,

where �ffdata is the average firing rate of the specific data set

considered and h denotes the parameter vector. To estimate the

parameters we minimize the sum of squares cost function (referred

to as RMSE in Tables 4, 5, and 6)

J(h)~
RT R

N
~

PN
i~1 fdata(ti){fmodel(ti,h))=�ff data

� �2
N

:

Since data is only available for the BR firing rate and the pressure

stimuli, for most models not all parameters are identifiable. We

denote as identifiable parameters, those that are sensitive and not

correlated, given the model output and the associated available data

[65]. In this study, identifiability of parameters was determined

using sensitivity based methods [66]. Subsequently, for models

completely characterized by smooth functions, the Levenberg-

Marquardt method was used to estimate model parameters, while

for models not fulfilling this requirement (the integrate-and-fire

models), parameters were estimated using the Nelder-Mead

method. Both used optimization algorithms from Kelley [67].

Below we first describe the methodology used for sensitivity

analysis and parameter identification and subsequently we discuss

results obtained using nonlinear optimization, the latter is

separated according to the input stimulus.

Sensitivity analysis: For any smooth model of the form (23),

the sensitivities [68–70] can be computed as

Sk~
Lf

Lhk

:

Following Pope et al. [71], we use a finite difference approxima-

tion to compute Sk

Sk~
f (t,hzhek){f (t,h)

h
, ek~ 0 . . . 0 b11k 0 . . . 0

" #T

,

where ek is the unit vector in the kth component direction and h is

a small number. The BR firing rate f is obtained computationally,

with an integration tolerance of x~10{6 imposed on solution of

the differential equations, thus h is bounded by
ffiffiffi
x
p

. To satisfy this

requirement we let h~0:01.

Sensitivities are ranked by averaging time-varying functions

using the two-norm. For each model, this ranking was used to

separate parameters into two groups: one group consisted of

Table 3. Summary of the BR models.

Model Wall Nerve ending Neuron Parameters

WeV1Na Eq (4) Eq (10) & (9) Eq (18) kwall ,a1,b1,s1,s2

WeV2Na Eq (4) Eq (12) & (9) Eq (18) kwall ,a1,a2,b1,b2,s1,s2

WeV3Na Eq (4) Eq (15) & (9) Eq (18) kwall ,a1,a2,a3,b1,b2,b3,s1,s2

WveV2Na Eq (7) Eq (15) & (9) Eq (18) kwall ,ta,tb,a1,a2,b1,b2,s1,s2

WneV2Na Eq (5) Eq (15) & (9) Eq (18) A0,Am,a,k,a1,a2,b1,b2,s1,s2

WneV2NIF Eq (5) Eq (15) & (9) Eq (22) A0,Am,a,k,a1,a2,b1,b2,�ss1,�ss2,Cm,grec,Vth,tref

The table defines six BR models that are tested against previously recorded BR data from rats [29]. Each model is denoted by a three-element name referring to a
corresponding part of its component (arterial wall W , mechanoreceptor stimulation V , neuron N). The cross-reference indicates what equation is included in a given
model.
doi:10.1371/journal.pcbi.1003384.t003
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parameters to which the model output was sensitive, and the other

group consisted of parameters to which the model output was

insensitive. Estimating only sensitive parameters allows more

reliable estimation of parameters [72].

Not all sensitive parameters are practically identifiable [65,66].

To identify parameter correlations, we used the QR-SVD subset

selection method [71,73,74]. We also used a method based on

covariance analysis to identify pairs of correlated parameters [66].

For each pair of correlated parameters the least sensitive parameter

was kept fixed at its nominal value while the other was included in

the subset. Parameter correlations were computed from

ci,j~
Ci,jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ci,iCj,j

p , C~s(ST S){1,

where s is the variance of the assumed noise in the data, C is the
covariance matrix, and is ci,j the correlation coefficient. Parameters
for which Dci,j Dwc are labeled as correlated. For the models studied in
this work we let c~0:8. Once a set of uncorrelated sensitive

parameters were identified, we used either the Levenberg-Marquardt

or the Nelder-Mead method to estimate the subset of practically

identifiable model parameters [67]. The Levenberg-Marquardt

Table 4. Optimized values of parameters for the linear models of BR response.

Data kwall a1 a2 a3 b1 b2 b3 S1 S2 p1 p2 h R2 RMSE

WeV1Na IC sine 0.0063 0.5 0.5 480 100 6.45 46.75

WeV1Na opt sine 0.0063 0.5 0.5 1076 375 6.44 46.84 0.949 2.522

WeV2Na IC sine 0.0063 0.5 0.4 0.5 2 480 100 6.45 46.75

WeV2Na opt sine 0.0063 0.5 0.4 0.5 2 1105 346 6.44 46.89 0.950 2.507

WeV3Na IC sine 0.0063 0.5 0.4 1 0.5 2 10 480 100 6.45 46.75

WeV3Na opt sine 0.0063 0.5 0.4 1 0.5 2 10 1221 333 6.44 46.95 0.951 2.495

WeV1Na IC 0.0063 0.5 0.5 480 100

WeV1Na opt step 1 0.0063 0.522 0.395 360 104 1.090 0.899 1.860

WeV1Na opt step 2 0.0063 0.273 0.407 340 140 1.025 0.919 2.677

WeV1Na opt step 3 0.0063 0.241 0.438 378 169 1.025 0.969 2.420

WeV1Na opt step 4 0.0063 0.273 0.865 398 201 1.055 0.983 1.832

WeV2Na IC 0.0063 0.5 0.4 0.5 2 480 100 1

WeV2Na opt step 1 0.0063 0.398 0.4 0.310 2 376 102 1.097 0.905 1.800

WeV2Na opt step 2 0.0063 0.188 0.4 0.304 2 365 137 1.027 0.917 2.702

WeV2Na opt step 3 0.0063 0.132 0.4 0.271 2 480 163 1.099 0.970 2.390

WeV2Na opt step 4 0.0063 0.101 0.4 0.552 2 480 201 1.057 0.983 1.823

WeV3Na IC 0.0063 0.5 0.4 1 0.5 2 10 480 100 1

WeV3Na opt step 1 0.0063 0.415 0.4 1 0.303 2 10 404 102 1.100 0.908 1.779

WeV3Na opt step 2 0.0063 0.208 0.4 1 0.305 2 10 397 138 1.030 0.917 2.719

WeV3Na opt step 3 0.0063 0.135 0.4 1 0.257 2 10 429 163 1.103 0.970 2.426

WeV3Na opt step 4 0.0063 0.101 0.4 1 0.523 2 10 429 201 1.060 0.984 1.810

For the three linear models WeV1Na , WeV2Na and WeV3Na of BR response we present the initial and optimized values of their parameters. We used the BR firing data
published by Brown [20] for two different stimuli: the sinusoidal-like pressure profile, and step pressure increase with different magnitude.
doi:10.1371/journal.pcbi.1003384.t004

Table 5. Optimized nonlinear models of BR response: wall strain models.

kwall A0 Am a k a1 a2 b1 b2 s1 s2 ta tb p1 p2 R2 RMSE

WeV2Na IC 0.0063 0.5 0.4 0.5 2 480 100 6.46 46.75

WeV2Na opt 0.0063 0.5 0.4 0.5 2 1105 346 6.44 46.89 0.950 2.507

WveV2Na IC 0.0063 0.5 0.4 0.5 2 480 100 0.030 0.01 6.46 46.75

WveV2Na opt 0.0063 0.5 0.4 0.5 2 1112 349 0.028 0.01 6.44 46.77 0.950 2.517

WneV2Na IC 1 3 150 10 0.5 0.5 480 100 6.46 46.75

WneV2Na opt 1 32.6 150 10 0.5 0.5 619 109 6.44 46.89 0.952 2.458

For the three models, WeV2Na , WveV2Na , and WneV2Na , of BR response, we present the initial and optimized values of their parameters. We used the BR firing data
published by Brown [20] for a sinusoidal-like pressure profile.
doi:10.1371/journal.pcbi.1003384.t005
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method was used for models that can be described using smooth

functions, while the Nelder-Mead method was used for models

including the leaky integrate-and-fire component. Since this model

contains a discontinuity the gradient based Levenberg-Marquardt

method is not applicable.

Sinusoidal stimulus: Now we present results obtained using

sinusoidal forcing allowing us investigate asymmetry of the model

response. Results (Figure 6) show BR firing rate as a function of

time and BR firing rate as a function of stimulus. For both graphs

model results are marked with red lines and data with black. The

associated pressure stimulus is depicted in Figure 2A. For this

stimulus we analyzed five models. We first describe results

obtained with the three linear models, analyzing the impact of

including one, two, or three Voigt bodies. Second we discuss

results obtained with the nonlinear models analyzing the impact of

including more advanced description of the wall strain. For this

stimulus we did not analyze the integrate-and-fire model, since we

did not anticipate any added effect of this model because of the

input rage of the pressure stimulus.

The three linear models include a component determining the

wall strain, described using a linear elastic function of pressure, a

component representing mechanoreceptor stimulation, described

using one, two, and three Voigt bodies, and a component

predicting the BR firing rate. The three models have 5, 7, and 9

parameters, respectively, as well as two additional parameters p1

and p2 associated with the sinusoidal stimulus. In [20, p. 695] the

authors indicated that phase measurements are less accurate than

amplitude measurements due to the inaccuracies associated with

assigning interspike intervals to bins. Thus, the parameters p1 and

p2 were added to the parameter set. Sensitivity analysis together

with subset selection allowed us to identify four uncorrelated

parameters including s1,s2,p1, and p2, which were estimated for all

three models.

The nominal values for the model parameters (listed in Table 4)

were computed as follows. The parameter kwall~r0=Eh

(mmHg{1), where E is Young’s modulus (mmHg), h (mm) is the

wall thickness, and r0(mm) is the zero pressure radius as described

in the Methods section (see also Table 2). We use E~1050mmHg
approximating a lower bound to values observed in a previous

study [75]. In [76, Figure 1] Feng et al. provide detailed

measurements of the external diameter D and thickness h for

the rat aortic arch, measured in adult male Sprague-Dawley rats.

They found that in the region with aortic BR endings the average

values of D~2:27+0:17(mm) and h~0:17+0:02(mm). Using

these values we compute kwall~0:0063 (mmHg{1). We note this

parameter and s1 were highly correlated indicating equivalent fits

could be achieved through adjustment of either parameter. No

direct experiments exist allowing estimation of nominal values for

Table 6. Optimized linear and nonlinear models of BR response: Post-excitatory depression.

kwall a1 a2 b1 b2 s1 s2 du dd RR
2 RMSE

WeV2Na IC 0.0063 0.5 0.4 0.5 2 480 100 4.60 8.70

WeV2Na opt 0.0063 0.5 0.4 0.5 2 1076 375 4.59 8.59 0.862 7.384

WneV2Na IC 0.0063 0.5 0.4 0.5 2 480 100 4.60 8.70

WneV2Na opt 0.0063 0.5 0.4 0.5 2 1076 375 4.59 8.59 0.883 6.795

A0 Am a1 a2 b1 b2 �ss1 �ss2 C G Vth tref R
2 RMSE

WneV2NIF IC 3.14 15.71 0.4 0.5 0.5 2 3.40e-10 5.0 e-12 37.5e-11 2.60 e-8 0.00110 0.0070

WneV2NIF opt 3.13 15.71 0.4 0.5 0.5 2 2.947e-10 3.473e-12 37.5e-11 5.019 e-8 0.00116 0.0062 0.969 3.598

For the three models WeV2Na , WneV2Na and WneV2NIF of BR response we present the initial and optimized values of their parameters. We used the BR firing data
published by Brown [20] for a square pressure profile. For WneV2NIF values for du,dd ,a,k were 4:663,8:788,145 and 5 respectively. These are not listed as they were not
part of the optimization process for this model.
doi:10.1371/journal.pcbi.1003384.t006

Figure 6. The optimized response of linear BR models (left), and the corresponding hysteresis loop (right). We present the fits for three
linear BR models WeV1Na , WeV2Na and WeV3Na (denoted in the legend as V1, V2, and V3, respectively), listed in Table 3. The optimized parameter
values, the R2 and the RMSE errors are reported in Table 4.
doi:10.1371/journal.pcbi.1003384.g006
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the elastic E1,E2,E3 and viscous constants g1,g2,g3 associated with

mechanoreceptor strain. These parameters appear only in the

dynamic part of the model and determine the adaptation time-

scales. To ensure that the three models are distinct, it is essential

that parameters representing time-scales are separated, otherwise

the models would essentially reduce to one. This knowledge, along

with values chosen in the study by Bugenhagen et al. [56]

motivated our choice for nominal parameter values. To avoid the

problem of structural nonidentifiability [65] we rescaled the

parameters as follows aj~E0=gj and bj~Ej=gj for j~1,2,3. The

full list of the model parameters together with their initial

conditions, units and literature reference is provided in Table 2.

As for the stimulus, the average pressure (127 mmHg) and the

amplitude (5 mmHg) was provided in [20]. To compute the

frequency p1 and the shift p2 of the pressure, we digitized the

stimulus provided in [20], Figure 2A, and then fitted to a

sinusoidal function p(t)~{2:5 sin({p1tzp2)z127, obtaining

p1~6:45 and p2~46:75(Hz). As noted in Figure 6, results of

parameter estimation with each of the three models were

indistinguishable, though estimated parameter values varied

significantly, the latter is due to added complexity associated with

adding more Voigt bodies. The fact that graphs were almost

identical was also reflected by the least squares cost RMSE (and

the coefficient of determination R2) for models WeV1Na, WeV2Na

and WeV3Na we obtained 2.522 (0.949), 2.507 (0.950), and 2.495

(0.951), respectively, see Table 4.

Next, we investigated the impact of including more complex

wall models. Additionally, we incorporated a nonlinear response

wall model Wne, and a viscous wall model Wve. To be more

precise we compare the BR response of the following three models

WeV2Na, WveV2Na and WneV2Na described using 7, 8, 9

parameters plus the two parameters associated with the stimulus.

We examined the ability of each of these models to fit the

sinusoidal stimulus. Sensitivity analysis and subset selection

allowed us to estimate 4–6 parameters. All models allowed us to

estimate s1, s2, p1, and p2. In addition, for the nonlinear elastic

model Am was added to the subset and for the viscoelastic model

ta and tb were added to the subset. Given that the more complex

nonlinear models allows estimation of more parameters, one

should anticipate better results. But due to the limited dynamics

embedded within the pressure stimulus, adding more complex wall

models did not improve results as reflected by the least squares cost

RMSE (and the coefficient of determination R2), which for

WeV2Na, WveV2Na and WneV2Na gave 2.507 (0.950), 2.517

(0.950), and 2.458 (0.952), respectively; see Table 5.

Step-increase stimulus: This section presents results with the same

five models previously used for prediction of the BR response with

the sinusoidal pressure stimulus. As with the sinusoidal stimulus we

do not test the integrate-and-fire model, due to the nature of the

input stimulus. Again, we first discuss results obtained with the

three linear models WeV1Na, WeV2Na and WeV3Na followed by

results obtained using the more complex nonlinear and viscoelastic

wall models.

Studies were done to capture the effect of overshoot and

adaptation in response to four input stimuli varying in the

magnitude of the pressure step. All stimuli start at the same

baseline pressure, and the step-increase was imposed at the same

time t0. As before the three models have 5, 7, and 9 parameters,

respectively, but functions describing the ‘‘smooth’’ step pressure

increase (2) only involve one additional parameter du, representing

the onset of the step-increase. This parameter was not provided in

[20]. Subset selection together with efforts to make model

comparison possible resulted in hstep~fa1,b1,s1,s2,dug. As report-

ed in [20, Figure 5] the baseline pressure associated with the

step-increase stimulus was set to 115 mmHg, and the step-

increases (from the baseline) to 128, 134, 137, 143 mmHg,

respectively. Figure 7(A–D) shows the ability of the three linear BR

models to reflect observed overshoot and adaptation. Each panel

shows the optimized firing rate. The least squares cost RMSE (and

the coefficient of determination R2) of model WeV1Na for the

optimized values of its parameters with respect to the four step-

increases 128, 134, 137, and 143 mmHg were: 1.860 (0.899),

2.677 (0.919), 2.420 (0.969), and 1.832 (0.983). Marginal

improvements were obtained with WeV2Na, which gave: 1.800

(0.905), 2.702 (0.917), 2.390 (0.970), and 1.823 (0.983), and finally,

for WeV3Na the values were: 1.764 (0.909), 2.700 (0.918), 2.390

(0.970), and 1.809 (0.983), see Table 4. Similar to the sigmoidal

stimulus, no improvements (results not shown) were obtained with

the more advanced nonlinear and viscoelsatic wall models.

Square stimulus: The square stimulus is characterized by a

constant pressure input followed by a step-increase after which the

pressure is decreased to its baseline value. This type of stimulus

primarily tested the models’ ability to reflect PED followed by

recovery, although other features including adaptation and

overshoot are also shown. Similar to previous studies we first

investigated the simpler linear models including one, two and

three Voigt bodies. For the square input stimulus, in Figure 8A, we

plot BR firing rate data extracted from Saum et al. [32] (circles)

and the corresponding optimized fit using WeV2Na (solid line),

changing the number of Voigt bodies did not improve the model

response. This model has 7 parameters and additional two du and

dd related with the input stimulus (3). Subset selection together

with our effort to make model comparisons possible made us

estimate the parameters hsquare~fs1,s2,du,ddg. The least squares

cost RMSE (and the coefficient R2) with optimized parameters

was 7.384 (0.862 for R2), see Table 6. While the model, as

anticipated, was able to produce overshoot and adaptation, this

model was not able to capture PED accurately.

We hypothesize that the inability to show PED is due to the

simple linear firing rate model, which does not allow the BR firing

rate to cease for sub-threshold stimuli. Thus, we first investigated

the impact of exchanging the linear BR firing rate model with the

integrate-and-fire model. Including the integrate-and-fire model

clearly improved results (not shown) though with the linear wall

model it was difficult to accurately fit the data both during

adaptation and recovery. Subsequently, we analyzed the impact of

exchanging the linear wall model with the nonlinear wall model,

keeping the integrate-and-fire model. Results with this model

(WneV2NIF ) is shown in Figure 8B. This figure shows the recorded

BR firing rate (circles) and the model fit (solid line) in response to

the square pulse stimulus. Model parameters estimated include

A0,�ss1,�ss2,gleak,Vth,tref ,pu,pd . Optimized parameter values and

units are given in Table 6 together with the R2 and RMSE

errors. Finally, we investigated the impact of adding a viscoelastic

wall model, which did not provide any additional improvements.

Simultaneous fits: Figure 7 showed that linear models can exhibit

overshoot, adaptation, and can fit the firing rate data for all four

step-increases, though as reported in Table 4, each step-increase

resulted in significantly different parameter estimates. However,

data are extracted from experiments done within the same fiber,

thus we expected only small variation in parameter values. We

performed additional optimizations to investigate if the observed

differences in the parameter estimates, were simply a result of

performing optimizations for one stimulus at the time. To remedy

this problem, we estimated one set of parameters for all four step-

increases. Results of this simulation are shown in Figure 9A

(computed with the model WeV2Na). This simulation confirms

that the simple linear model cannot estimate one set of parameters

Modeling Baroreflex Regulation
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that allows simultaneous fit of the response to all four pressure

stimuli. Similar results were obtained with the other models. In

particular, it should be noted that the overshoot is diminished for

the smaller step-increases, and that the model was unable to

capture the correct baseline firing rate. In contrast, when including

a nonlinear elastic wall WneV2Na we were able to estimate one set

of parameters that allowed us to simultaneous fit the response to all

four pressure stimuli. This model accurately reproduced the

baseline firing rate as well as the overshoot and adaptation

observed in response to the step-increase (Figure 9B). We

hypothesize that this difference is due to larger range of pressure

within the applied stimuli, where the known nonlinear behavior of

the arterial wall deformation plays an important role. It is known

that arteries appear stiffer at higher pressures than at lower

pressure. Thus the nonlinear wall model significantly improves the

fit.

Qualitative results
In the previous section we showed the ability of our proposed

linear and nonlinear BR models to fit the firing rate data measured

from rats. It is well known (see section Methods) that the BR firing

rate can exhibit a number of qualitative characteristics including

saturation, threshold, adaptation, overshoot, PED and rectifica-

tion. The quantitative data used to test the model in the previous

section showed adaptation, overshoot, and PED, in response to a

sinusoidal (with fixed amplitude) and step changes (increase/

decrease) in blood pressure. However, these stimuli did not test

saturation, threshold, or rectification. Although the models show

adaptation, no clear conclusion could be drawn to determine how

many Voigt elements (time-scales) were needed to reflect known

BR firing rate observations.

Now we show our preferred model WneV2NIF with estimated

parameters, including nonlinear deformation of the elastic wall,

two Voigt bodies for computing nerve ending stimulation, and a

leaky integrate-and-fire model for predicting firing rate, exhibits

the features not yet studied experimentally. This was done using

ramp and sinusoidal (with varied amplitude and frequency)

pressure stimuli.

Rectification: Figure 10A presents the model’s response to a

sinusoidal wave pressure stimulus with various amplitude. This

simulation is motivated by the observation of Brown et al. [20,

Figure 6] that a 2.5 increase in amplitude of the sinusoidal stimulus

resulted in an increased amplitude of the firing rate, with a lower

mean firing rate. Moreover, it was noted that for large amplitude

stimulation the firing rate ceases during the trough of the pressure

wave. These two observations are referred to as rectification. One

could question if the simpler linear model is able to display this

phenomena. The linear wall model would certainly be able to

Figure 7. The optimized response of linear BR models. We show the ability of three linear models WeV1Na , WeV2Na and WeV3Na (denoted in
the legend as V1, V2, and V3, respectively) to reproduce four types of increases in pressure: ((A) 128 mmHg, (B) 134 mmHg, (C) 137 mmHg, and (D)
143 mmHg) published by Brown [20]. The parameters of each model have been optimized for each data set individually and are listed in Table 4
together with the R2 and the RMSE errors.
doi:10.1371/journal.pcbi.1003384.g007
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reproduce the increased amplitude for a single stimulus, but again,

if multiple stimuli were tested, correct predictions require the

nonlinear wall model. Moreover, the ability of the firing rate to

cease requires the threshold built into the integrate-and-fire model.

With the simple linear neuron model, the firing rate would become

negative, which does not represent what happens physiologically.

Threshold and saturation: Two other prominent firing character-

istics are threshold and saturation. In [27, Figure 5] Seagard et al.

noted that BRs with a higher threshold pressure were less sensitive,

had lower discharge rates, and had higher values for saturation.

Receptors with higher discharge rates were also more sensitive and

were found to have afferent fibers with greater conduction

velocities. In Figure 10 B we show that our model WneV2NIF is

able to reproduce qualitatively similar saturation features.

Adaptation: Even though our quantitative models were able to

capture adaptation, it was noted that results with one, two, or

three Voigt bodies were similar, in other words, the models could

not clearly distinguish if the adaptation process included one or

three time-scales. Yet, several authors (e.g., [11,12,30,77]) have

hypothesized that adaptation occurs with more then one time

constant. It is also known that the muscle spindle can produce a

response of this kind to a clipped-off ramp stretch [78]. Figure 10

C shows that the studied model WneV2NIF admits the fast

adaptation and the slow adaptation in agreement with experi-

ments. We also plot an exponential fit and show that a similar

adaptation is not possible by only one exponential function. This

qualitative feature made us include two Voigt bodies in our

preferred model, a conclusion that could not have been made

strictly from quantitative simulations presented in the previous

section.

Asymmetry: In Figure 10 D we show that our preferred model

WneV2NIF clearly exhibits asymmetry when exposed to a ramp-up

followed by a ramp-down pressure stimulus, which agrees with

experiments (see e.g., [23]).

Discussion

The objective of this study was to develop a mathematical

framework for constructing computationally efficient and accurate

BR models, which in contrast to the existent models, are able to

Figure 8. The optimized response of (A) WeV2Na, and (B) WeV3NIF to a PED profile of BR firing rate. The parameters of each model have
been optimized for each data set individually and are given in Table 4 together with the R2 and the RMSE errors.
doi:10.1371/journal.pcbi.1003384.g008

Figure 9. Simultaneous response with a linear and a nonlinear BR model. (A) Predictions obtained estimating one parameter set for all four
pressure step-increases using the linear model with two Voigt bodies WeV2Na . Note, that the overshoot is diminished for responses to smaller step-
increases in pressure, and that the baseline firing rate is not reproduced accurately. (B) Predictions obtained with the nonlinear model WneV2Na

accounting for nonlinear stiffening with increased pressure allowed us to accurately fit all four responses using one set of parameter values.
doi:10.1371/journal.pcbi.1003384.g009

Modeling Baroreflex Regulation

PLOS Computational Biology | www.ploscompbiol.org 15 December 2013 | Volume 9 | Issue 12 | e1003384



reflect all known qualitative BR firing features as well as fit

quantitative data. Our overall aim was not to focus on a concrete

experimental species but rather to formulate a family of BR

models, which could potentially be included in a more compre-

hensive model of CV system. Quantitative computations were

done comparing our models to experimental measurements by

Brown et al. [20] and Saum et al. [32]; while qualitative studies

were performed to show that our preferred generic model

WneV2NIF is able to exhibit all known firing rate responses. All

models used blood pressure as an input and computed the BR

firing rate as an output. Although our procedure was designed to

be generically applicable to various species and multiple types of

baroreceptors, we tested our models using only quantitative data

from experiments preformed using aortic baroreceptors from rats.

We believe that this is the first work that offers a systematic

approach to building and evaluating BR models with the objective

to provide the simplest possible family of generic models. Our

modeling framework first analyzed the known physiology and

common features of the firing rate observed in the BRs of various

species. Second we generated submodels describing each stage of

the physiological response: arterial wall deformation, stimulation

of mechanosensitive channels found in the BR nerve endings, and

generation of action potentials. Finally we modeled the BR system

by combining the submodels in various configurations (summa-

rized in Table 3). Each of these configurations was tested in order

to determine the contributions of each component to the

transduction of the BR signal. This process allowed identification

of the importance of nonlinear effects of two critical sub-systems in

the BR response, the arterial wall and the neuron itself. This

framework advanced the state of BR modeling by first evaluating

models comparatively with respect to the same data and features,

second by generating a model which fits all known characteristics

of BR firing qualitatively, and third by developing a model which

is capable of fitting multiple data sets of BR firing rates

quantitatively.

A particular insight was revealed by consideration of BR models

with various descriptions of the arterial wall. Applying our

framework demonstrated the insufficiency of linear wall models’

Figure 10. Qualitative responses. We present a qualitative response of the two Voigt body BR model WneV2NIF to various pressure stimuli
including sinusoidal (A), ramp up (B), step-increase (C), and trianglular (D) showing the model’s ability to reflect rectification (A), saturation (B), two
time-scale adaptation (C), and asymmetry (D).
doi:10.1371/journal.pcbi.1003384.g010
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representations of the response of a single BR neuron to multiple

step-pressure inputs (see Figure 9A). A nonlinear elastic wall model

was required to implement a model capable of accurately fitting

the BR response to multiple pressure levels with one set of

parameter values (see Figure 9B). The choice of this model is

further motivated by the well known fact that arteries exhibit

nonlinear deformation with saturation at both high and low

pressures [23,27]. Additionally by applying our framework and

considering the effects of including the viscoelastic wall model, we

found that the additional complexity did not contribute to better

definition of BR dynamics, despite previous studies having shown

wall deformation does have viscous components [45,79]. This is

likely due to our modeling choice for nerve ending stimulation.

This portion was modeled using two Voigt bodies in series to allow

adaptation at multiple time-scales. Data is not available to separate

the viscoelastic part of the wall-deformation with the viscoelastic

deformation associated with stimulation of the mechanosensitive

channels, thus indirectly our model exhibits both features. One

explanation would consider the first Voigt body to be associated

with wall deformation while the second is associated with nerve

ending deformation. Moreover, it should be emphasized qualita-

tive simulations were needed to show that the two Voigt bodies

allow multiple time-scales, a feature we were not able to extract

from simulations alone. These considerations, and our studies,

affirm the importance of viscoelastic effects; however, in terms of

simplicity it is advantageous to isolate the viscoelastic components

within the model, and further we note linear viscoelastic effects are

sufficient to capture the dynamics of BR firing when coupled with

a nonlinear elastic total deformation of the arterial wall.

To our knowledge, this study provides the first direct measure of

the importance of incorporating various time-scales in BR models.

It is believed that various time-scales in the adaptation process are

due to the viscoelastic coupling of the nerve ending to the arterial

wall. We chose to emphasize this in our modeling process by

considering different numbers of Voigt bodies in series with a

spring. In Table 4 we show the results of testing three models

WeV1Na, WeV2Na, and WeV3Na differing only with respect to

their nerve ending models V1, V2, and V3, respectively. Our

findings indicate that no more then two timescales in the

adaptation process are needed in order to achieve a very precise

fit to the data. This conclusion is closely related to the fact that we

tested our models using rat data with fairly limited pressure-

stimulus response as only this type of experiments are currently

available. To test this component more carefully, it is essential to

analyze data recorded over longer time-scales.

Another insight afforded by this investigation highlights the

importance of nonlinearities in the neural response to mechanoreceptor

strain. As hypothesized previously [30], our study affirms the

nonlinearities of action potential generation, even for the leaky

integrate-and-fire model NIF are sufficient to produce the hysteretic

phenomenon of PED. In contrast the simple linear model Na of firing in

response to mechanoreceptor strain does not allow for the asymmetric

responses seen in PED as well as in the response to sinusoidal stimulus

with high amplitude. The nonlinear-elastic wall in combination with

two Voigt bodies modeling mechanoreceptor stimulation responds in

an equal but opposite manner to rising and falling pressure, thus the

change in firing rate with the linear model is symmetric to step-increase

and step-decrease, which is not reflective of the data. We affirm the

hypothesis that the neuron itself is responsible for generating PED, as

this feature was robustly represented by the leaky integrate-and-fire

model regardless of the mathematical description for arterial wall strain.

This would provide a good explanation for the observation of PED in

multiple species, many of which have a high degree of variability in the

viscoelasticity in their respective arterial walls.

The results and insights generated through application of our

proposed modeling framework are not limited to those presented

in this study. In addition it provides a means to identify which

features and what level of detail of the underlying physiological

systems are of greatest significance in generating BR dynamics.

This ability is useful in developing experiments which may be able

to isolate physiology responsible for a given phenomenon, such as

the responsibility of the neuron in generating PED. Further this

approach provides evaluative power to make design decisions

when developing a model for a specific data interpretation or

simulation task. An example of this follows from our insights into

the role of the arterial wall in BR signal transduction. Although the

arterial wall may best be modeled using viscoelastic theory, our

framework allows a modeling decision to be made in favor of

simplicity if only the output dynamics are of interested.

This investigation further suggests a methodology for integrat-

ing a model generated in this manner into a model of larger scope.

Suppose a mathematical representation of an overall baroreflex

system (see Figure 1) is desired to reflect only normal physiological

conditions, then it may be sufficient to use only simplified

description of the BR signal. For example a simple linear firing

rate model may be adequate for simulations operating in the range

above the firing rate threshold. However, to reflect heart rate at

various abnormal physiological conditions a more complex model

combining nonlinear deformation with the leaky integrate-and-fire

model may be necessary. Additionally, application of our modeling

approach to a larger CV model might reveal features of the BR

subsystem with importance in maintaining homeostasis. We

hypothesize that overshoot, adaptation and recovery, features of

the BR firing in response the extremes of pressure waves, are

critical for regulation of blood pressure during stressful situations,

such as a head-up-tilt experiment.
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