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Associate Professor at Roskilde University, Denmark 
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Abstract 

Based on a variety of philosophical approaches and my own work for decades in pure 

and applied mathematics teaching and research, I explain my viewupon the basic 

difficulties of acquiring the “Mathematical Experience” in the sense of Davis and  

Hersh (1981) and submit a list of claims how these difficulties can and should be 

confronted. 

Keywords: Content vs. Process, Difficulty and Naturality of Abstractions, Experience 

and Life Forms, Modeling and Common Sense, Chomsky-Davis-Kierkegaard-Marx-

Peirce-Wittgenstein. 
 

SOBRE AS DIFICULDADES NA AQUISIÇÃO  

DA EXPERIÊNCIA MATEMÁTICA:Caso da educação rural 

Resumo 

Com base em diferentes abordagens teóricas e em meu próprio trabalho de ensino e 

pesquisa, que venho desenvolvendo por décadas, em Matemática Pura e Aplicada, 

explico meu ponto de vista sobre as dificuldades básicas de aquisição da “Experiência 

Matemática” no sentido atribuído por Davis e Hersh (1981) e apresento uma lista de 

afirmações sobre como essas dificuldades podem e devem ser confrontadas. 

Palavras-Chave: Conteúdo vs Processo, Dificuldade e Naturalidade das Abstrações, 

Experiência e Formas de Vida, Modelagem e Senso Comum, Chomsky-Davis-

Kierkegaard-Marx-Peirce-Wittgenstein.  
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INTRODUCTION – bitterness and seriousness of the topic “Rural Education and 

Mathematics”  

On the one side, the rural environment is the oldest form of lifeof human beings 

for Antonio Gramsci (1891-1937), in his Prison Notebooks Quaderni del carcere of 

1929-1935 in reference to Wittgenstein (GRAMSCI, 1971). Living in the countryside or 

in marginalized suburban regions is still the dominant form of life for a substantial and 

often underprivileged part of the world population, screaming for a humanist and 

libertarian pedagogy (FREIRE 1972, p. 40; MESQUITA; PAIS; FRANÇOIS, 2014). 

On the other side, numbers, calculations, geometry, mathematics have been the 

precursors of all sciences and technology (DAMEROW; LEFÈVRE, 1981); being 

visible - or hidden in black boxes and chipified (KEITEL; KOTZMANN; 

SKOVSMOSE, 1993), mathematics plays an ever greater role in designing products and 

production processes, formatting social relations, and puffing-up all modern research. It 

is by far the oldest teaching subject (HØYRUP, 2002) and the largest through history. 

In view of that, rural math teachers are confronted with the Kantian categorical 

imperative in Karl Marx’ reformulation(1844, p. 385): “alleVerhältnisseumzuwerfen, in 

denen der Mensch einerniedrigtes, eingeknechtetes, einverlassenes, 

einverächtlichesWesenist” (to overthrow all those conditions in which man is an abased, 

enslaved, abandoned, contemptible being). How can and must mathematics education 

contribute to that humanistic agenda of rural education and what are the greatest 

obstructions to be overcome on that path?  

 

APPROACH 1 – The simplicity of mathematical experience and its natural 

character.  

People from rural areas, pupils and their parents, deserve respect. They should 

no longer be addressed as the feeble, fail and shaky. Teachers must learn to appreciate 

and appraise the value of practical knowledge and to deal with the highly complex 

environment of rural society that fosters two contrary positions: Possibly, most students 

in a rural Brazilian school will agree with Pink Floyd’s “We don't need no education. 

We don't need no thought control. No dark sarcasm in the classroom. Teachers leave 

them kids alone”. These pupils will be blocked by poverty, extensive child labor and the 

foreignness of teacher and classroom set-up. Most probably, they will not believe in 
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schools. They will not care about contents because they know what is waiting for them 

at the end of schools: unemployment or labor exploitation. Other pupils with more 

resources will take another, more modern rejection position related to the ubiquity of 

the internet and proudness based on the competent daily handling of the technologically 

advanced machinery operated in the countryside. That can give pupils and parents the 

feeling that further school training is dispensable. 

Approach 1 example 

The world famous mathematician Izrail M. Gelfand (1913-2009) insisted on the 

basic simplicity of mathematics. Gelfand never thought that there was anything very 

difficult about math, regarding it as "a way of thinking in everyday life": "You can 

explain fractions even to heavy drinkers," he told an interviewer in 2003. "If you ask 

them, 'which is larger, 2/3 or 3/5?' it is likely they will not know. But if you ask, 'Which 

is better, two bottles of vodka for three people, or three bottles of vodka for five 

people?' they will answer you immediately. They will say two for three, of course." 

(SCIENCE OBITUARY, 2009).Heavy drinkers aside, from ethnomathematical studies 

there is ample evidence about the deep roots of arithmetic and geometry in people’s 

trade, craft and art and their remarkable achievements (D’AMBROSIO, 2006; 

GERDES, 2000; KNIJNIK; WANDERER, 2010). 

Approach 1 theoretical explanation 

One may rightly doubt Gelfand’s claim that the way of thinking in everyday life 

is the basis of scientific thinking. For me and many other mathematicians, his way of 

thinking remains a mystery and a treasure with its unlimited fecundity and its surprising 

revelations of exotic interconnections. Ordinary mathematicians, not to speak of 

ordinary people, will hardly recognize any traces of common sense and everyday life 

thinking in Gelfand’s work.  Below, I shall come back to the sharp distinction between 

everyday language and mathematical formalism. 

As long as we do not exaggerate Gelfand’s claim, there is a theoretical 

explanation, though, for the basic mathematical giftedness of all human beings, at least 

if we are willing to follow Noam Chomsky’s lifelong investigation of the innate 

generative grammar underlying human language acquisition (PINKER, 1994). 

Consequently, we all have passed our hardest math test in our life at the age of 2 or 3, 
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when we became able to analyze and reproduce the complicated algebraic patterns of 

the native language. 

Approach 1 practical conclusion and claim 

Recall the apocryphal statement attributed to Napoléon Bonaparte (1769-1821): 

“Tout soldatfrançaisportedanssagiberne le bâton de maréchal de France” (Every French 

soldier carries in his knapsack the baton of a Marshal of France)! As the historians tell 

us, the key element in the Napoleonic reforms was a greater integration of the populace 

into the mechanisms of the state: at that time, its army, and its administration in general. 

This development let air into the stymied French social system. Mathematics and, 

equally well, technological education can and has to do a corresponding job under the 

present conditions, namely to encourage and integrate pupils in rural areas. 

 

APPROACH 2– The difficulty of mathematical experienceand its formal and 

abstract character. 

Mathematics is formal and abstract. Thatconstitutes the power of 

mathematics.Shortly put, abstract formulas serve efficiently as the memory of 

mathematically encoded human experiences. At the same time, mathematical formulas 

provide a field of imaginationand permit transfer, variation and adaption of experiences 

from one field of human activity to another. That’s the plus-side. On the negative side, 

math teachers, pupils and the general public all agree that mathematics is difficult to 

learn; new mathematical concepts are difficult to grasp; formulas and graphs are 

difficult to read; and abstract arguments are difficult to follow.  

Approach 2 example 

Normal human beings need time and concentration as long as we don’t 

understand the meaning of the abstract signs and arguments. We easily get confused and 

sometimes stressed. Later, however, when the penny has dropped, everything becomes 

incredibly easy and the power of abstractions and formulas may become evident. Then 

teacher and pupil will share the mathematicians’ ultimate joy: “There is no feeling quite 

like that which comes after you have proved a good theorem, or solved a problem that 

you have worked on for a long time. Driven by the heat of passion, the words burst forth 
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from your pen, the definitions get punched into shape, the proofs are built and bent and 

patched and shored up…” (KRANTZ, 1997, p. xi).Then we meet a new challenge, 

namely how to understand our now surpassed previous difficulty. The young rural math 

learner’s multifaceted submerging process mirrors the mixed feelings of even the most 

experienced and ingenious professional mathematician when reading and 

comprehending a new mathematical paper as referee for evaluation: Incomprehensible! 

–No, wrong! –No, trivial (I did itbefore)! I could quote mathematical heroes like Carl 

Friedrich Gauss (1777-1855) or Lars Hörmander (1931-2012). 

Approach 2 theoretical explanation 

Since Aristotle (384-322 BCE), logicians have been convinced that concepts and 

arguments can be clarified by wrapping them into formal abstract expressions. Many of 

them may agree with J. Barkley Rosser’s (1953, p. 7) famous – and to me a bit 

exaggerated - claim, that “once the proof is discovered, and stated in symbolic logic, it 

can be checked by a moron.” In social sciences it is even common praxis to attribute 

enhanced credibility to one’s own arguments by dressing them up with diagrams and 

abstract formulas. It seems to me that on the contrary most mathematicians would rather 

support Yuri Manin’s (2010, p. 36) laconic statement: “The human mind is not at all 

well suited for analyzing formal texts.” Note that Skovsmose (1994, p. 48) states no less 

laconically, when discussing the formatting power of mathematics upon society and 

what he calls the Vico paradox, that “we seem completely unable to establish such an 

understanding (sc. of our artefacts) in the case of technology. We seem to be without the 

capacity of grasping the limits and the full consequences of our technological 

enterprises… Although technology is a human construction, we do not seem to possess 

the capacity to comprehend what we have constructed.”  

Manin (2010, p. 33) explains his hypothesis on several levels: He compares 

logic and mathematical formalism with rigid stencils which we can impose on any 

artificial system like mathematics, electrical network designs or computer programs, but 

not on reality. As we know from physics, reality requires the application of a variety of 

partly overlapping and mutually not always consistent approaches. “The physicist’s 

descriptions do not have to form a consistent or coherent whole; his job is to describe 

nature effectively on certain levels. Natural languages and the spontaneous workings of 
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the mind are even less logical. In general, adherence to logical principles is only a 

condition for effectiveness in certain narrowly specialized spheres of human endeavor.” 

Manin elaborates seemingly parallels between expressions of mathematical logic and 

everyday language and shows how misleading such parallels are. He concedes, though, 

that formal mathematics, in which a single contradiction destroys the entire system, 

clearly has the features of poetic hyperbole. Similarly, but more generally, Hans 

Freudenthal (2002, p.2) saw "mathematics as an art, a mental art to be sure, which for 

most people will be closer to crafts than to sciences, a tool rather than an aim in itself, 

more relevant because it works than because it is certain. ...Although many people trust 

mathematics more than it deserves, it works only when it is rightly applied... Once one 

has admitted that mathematics is an art, one cannot shirk the responsibility of judging 

whether, in particular cases, it is being properly used or rather being abused." 

Repeatedly, Manin (2010, p. 34) emphasizes that “the choice of the primitive 

modes of expression in the logic of predicates does not reflect psychological reality. 

Elementary logical operations, even one-step deductions, may require a highly trained 

intellect; yet, logically complicated operations can often be performed as a single 

elementary act of thought even by a damaged brain.” Perhaps most strikingly, Manin 

(l.c., p. 34-36) illustrates his view by presenting details of the study of a patient with 

brain injuries, carried out by the psychologist Luria (1972). 

I have no reason to doubt Chomsky’s findings that the capacity to make 

abstractions is deeply rooted in our genes, as explained above. That does not contradict 

Luria’s and Manin’s finding that abstractions typically are difficult to grasp and may 

even be conflicting with everyday perception. 

Approach 2 practical conclusion and claim 

In a particularly extreme way, people from rural areas are exposed to the cultural 

clash immanent in abstractions, formalism and symbol processing. Teachers must help 

them to experience that clash as a positive step like processes of adolescence and not as 

a series of defeats. However, it doesn’t help with well-intended lies or self-deception 

about easy access to mathematical abstractions. Acquiring mathematical experience is 

nothing that falls from heaven or comes from playing on the ground. It requires work, 

concentration, exercises, and endurance: Ὁ μὴ δαρεὶςἄνθρωπος οὐ παιδεύεται  (The 

https://owa.ruc.dk/owa/redir.aspx?C=HR046FJ09E-FiSNj_6VfBxxDVIyQmdAIzaLHxC7NTGdMbVRl_RwxvAQnXv44JDI2h23IpGn-ZkM.&URL=http%3a%2f%2fde.wikipedia.org%2fwiki%2fListe_griechischer_Phrasen%2fOmikron%23.E1.BD.89_.CE.BC.E1.BD.B4_.CE.B4.CE.B1.CF.81.CE.B5.E1.BD.B6.CF.82_.E1.BC.84.CE.BD.CE.B8.CF.81.CF.89.CF.80.CE.BF.CF.82_.CE.BF.E1.BD.90_.CF.80.CE.B1.CE.B9.CE.B4.CE.B5.CF.8D.CE.B5.CF.84.CE.B1.CE.B9.
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non-flayed human will not beeducated, Menander, c. 341/42– c. 290 BCE, disseminated 

by J.W. Goethe as motto over his autobiographyDichtung und Wahrheit), or 

lessdraconic, OhneFleisskeinPreis (Withouthardworkingnopraise, afterHesiod, thought 

by scholars to have beenactivebetween 750 and 650 BCE). 

 

APPROACH 3 – The semiotic and existentialist perspective:Mathematical 

experience as language and as notation and the teacher’s role.  

In Approach 1, I emphasized the intimate relation between mathematical 

concepts and everyday knowledge. A keyword was language: nursing perceptions of 

another human being by language games, like moving around in different old towns, so 

Wittgenstein (2009), in his lifelong endeavor, to correct the logicistic aberrations of his 

young days. In Approach 2, I emphasized the dual phenomenon, i.e., the distinct 

character of mathematical abstractions and the sharp difference between formal 

arguments, computer languages and programs on the one side and common language on 

the opposite side.Here the keywords were abstraction and notation. In the present 

section I aim to mediate between the two complementary concepts. 

Approach 3 example 

Again and again, clever people have tried to wipe out the distinction. Perhaps the 

most baroque try is related to the concept of Artificial Intelligence (AI).Rightly, Minsky 

(1967) may be considered as AI’s founding manifesto, in particular in its unconfined 

willingness to promise everything funding agencies may wish, quote: "within a 

generation ... the problem of creating 'artificial intelligence' will substantially be solved" 

(l.c., p. 2). That propaganda worked indeed for gathering substantial funding for years 

to come, mostly from the US Department of Defense. However, nothing of the early 

promises was delivered in the 50 years since then: no automatic language translation, as 

[Google translate] can witness, and no automatic pattern recognition as witnessed by the 

inverse Turing test Completely Automated Public Turing test to tell Computers and 

Humans Apart (CAPTCHA), widely applied to prevent hacking of internet pages. With 

hindsight we can see that AI’s total failure in its core promises can be explained by 

underestimating the differences between our approaches 1 and 2. As long as AI stays 

solely with symbol processing, as indicated in our Approach 2, impressive 
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achievements are attainable: data mining and the management of huge knowledge data 

bases; flexible programmable robots; programs that beat chess champions. Computers 

can even be programmed to pass the Turing test in Turing’s original and sarcastic 

meaning, namely simulating a British Lordship’s understanding and speaking so well 

that the Lordship himself would never guess that there is a machine and not another 

lordship at the other end of the line. For its naïve mix of our Aspects 1 and 2, for its lack 

of psychology and lack of neurological insight (not obtainable then and perhaps not 

available now), AI’s core program had to go down. 

Approach 3 theoretical explanation 

What then could be a more viable reconciliation between our two Aspects, and 

hopefully a productive one for teaching mathematical experiences in the countryside? In 

this Note, I shall argue for the semiotic view due to the US-American logician, 

mathematician and philosopher Charles Sanders Peirce (1839-1914). In his huge work, 

Peirce summarizes classical European philosophy with special interest for scholastic 

philosophers, Scottish realism and Kant. For a quick view browse (HOUSER; 

KLOESEL 1992/1998).Peirce (1877),in my free edition, may give a taste of his way of 

arguing. 

Roughly speaking, Peirce considers both reality and our thinking, speaking, and 

writing as sign systems. The two sign systems are extremely different. It needs an 

observer to relate the sign systems of reality (our senses’ impressions and 

measurements) with the formal sign systems of our pre-knowledge. The quality of the 

relation cannot be determined by maximal coincidence. On the contrary, only the 

distance of the formal signs from the observed signs makes formal signs valuable for 

practical goals. So, the usefulness for practical goals of a specific observer or thinker is 

the only valuable criterion for the adequacy and fecundity of any relation between 

formal and real signs.That puts the observer, i.e., the mediator between the sign 

systems, after all the teacher and the learner, in the center of any epistemological and 

learning process.  

Here the next philosopher comes into play, the Danish existentialist and 

theologian Søren Kierkegaard (1813-1855). We may adapt his analysis of Mozart’s Don 

Giovanni in Either/or to the classroom situation (KIERKEGAARD, 1959, p. 62, 93, 
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114). Equally well as, according to Kierkegaard, the Christian God is depicted in the 

seducer Don Juan, we may also identify the teacher’s role with Don Juan’s seductive 

artstowards Zerlina, as soon as he was alone with her in the Duet: "Là ci darem la 

mano" – "There we will entwine our hands". Contrary to that, the two other main male 

figures of the opera, Don Juan’s servant Leporello and Donna Anna’s lover Don Ottavio 

don’t show that seducing quality and interpersonal intensity necessary for successful  

teaching. Leporello is good in recalling and summarizing all of Don Juan’s adventures: 

"Madamina, ilcatalogo è questo" – "My dear lady, this is the catalogue". He offers 

numbers instead of passion. Don Ottavio is great in swearing love and revenge: "Ah, 

vendicar, se ilpuoi, giuraquelsangueognor!" – "Ah, swear to avenge that blood if you 

can!" But then nothing happens. Only Don Juan’s existential full presence and his 

acceptance of the risk of rejection can provide a role model for the teacher in combining 

language games and formalism for and with the pupils. 

An important and enormously inspiring modern follower of Peirce (via the 

pragmatist philosophers William James and Harald Høffding and the physicist Niels 

Bohr) is the Danish multimath, astronomer, computer scientist and psychologist Peter 

Naur. Like Wittgenstein, Naur combines our listed two aspects in his own person, 

biography and work: On one side, his last name is the N in the BNF notation (Backus-

Naur form), used in the description of the syntax for most programming languages and 

of some similarity with Chomsky’s generative grammar. He was among the creators of 

ALGOL which became the model for many modern computer programming notations. 

On the other side, the same Naur (1992) used his last 30-40 years to address the 

psychological aspects of software design; the interplay with the users;the programmers’ 

prejudices and the underlying perception of the treated reality. 

Within the math education community, it seems to me that Otte(1994; 1997) 

comes close to the Peircean view, while Radford (2006) provides an interesting (yet to 

me not fully convincing) critical  re-examination of Peirce’s  and Husserl’s (1970) 

attempts at reconciling the subjective dimension of knowing with the alleged 

transcendental nature of mathematical objects.  

 

 

 

http://en.wikipedia.org/wiki/Backus-Naur_form
http://en.wikipedia.org/wiki/John_Backus
http://en.wikipedia.org/wiki/Programming_language
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Approach 3 practical conclusion and claim 

The teacher’s intensity must become felt and visible in the classroom for a 

credible combination of language game and formalism. Pupils and parents get many bits 

of information from radio and TV which will be forgotten immediately. The teacher’s 

role is to say something the pupils will remember for the rest of their lives. Mathematics 

must, via the teacher’s personality, appeal to the feelings of the pupils. The surrounding 

society must support the teacher by conferring the corresponding required authority and 

trust. I quote the Finnish example (SAHLBERG, 2011, p. 130): “The culture of trust 

meant that education authorities and political leaders believe that teachers, together with 

principals, parents, and their communities, know how to provide the best possible 

education for their children and youth. Trust can only flourish in an environment that is 

built upon honesty, confidence, professionalism, and good governance” (after years of 

terrible civil war and stagnation, we may add).In the Finnish example only students with 

top grades can enter the teacher education; the teachers’ professional autonomy in 

schools and their classrooms is respected; and their career choice not questioned. 

Outside inspectors are barred from judging the quality of their work, and no merit-based 

compensation policy influenced by external measures is imposed (SAHLBERG, 2011, 

p. 93-95). 

Moreover, it seems to me that the semiotic challenges and the existentialist role 

of the math teacher define serious limitations to the replacement of expensive teachers 

by cheap machines for online interaction with the pupils. Though, admittedly, there are 

numerous well-documented positive experiences with preserving and even enhancing 

(mathematics teachers’) reflections in online (teacher) training (SÁNCHEZ,2010). 

 

APPROACH 4 – The mathematical experience and the pragmatics of curriculum 

discussions.  

Talking to math teachers of any age and on any level, most people will be at 

once impressed by their passion for their job and the richness of the individual teacher’s 

experience: their special secrets how to move their pupils forward. To facilitate 

communicating teaching concepts and experiences among teachers and to pupils and 

students at the new founded Roskilde University, in 1972 three maxims for the learning 



11 
 

EM TEIA – Revista de Educação Matemática e Tecnológica Iberoamericana – vol. 5 - número 1 – 2014 
Edição Temática: Educação do Campo: contribuições da Educação Matemática e da Tecnológica 

of mathematics and sciences were suggested: in, with, about. See also (SKOVSMOSE, 

1994) for a professional philosophical definition of the three maxims. 

Approach 4 example 

When learning about plane figures, triangles, squares, angles and lengths, the in-

maxim might emphasize the simplicity of basic concepts, the difference between 

symmetry and general position and the invariant validity of the Pythagorean Theorem 

which is trivial for isosceles rectangular triangles, as the philosopher Arthur 

Schopenhauer noticed (1788-1860) and erroneously perceived that as the content of the 

theorem. Here the topic is the joy of pure mathematical thinking, i.e., the joy of 

exploring the capacity of one’s own brain in almost pure laboratory-type environment.  

The with-maxim might emphasize the determination of unknown distances and 

heights in the landscape and other applications to experience the power of calculating 

with letters and geometric figures instead of numbers.  

The about-maxim might invite reflection about past history when triangle 

geometry was a key tool for military and civilian terrain measurements and the 

scientific, technological and societal changes that accompany their replacement by 

ready-to-use GPS and laser tools. 

Approach 4 theoretical explanation 

For centuries, even millennia, math teachers could teach in peace without being 

exposed to changing didactics commands and fashions every few years. For pupils of 

the upper classes, the in-maxim was dominant: The future administrator had to learn and 

internalize the feeling of superiority that can be acquired from the knowledge of 

methods of solution for complicated mathematical exercises. That can be read from the 

Old Babylonian clay tablets (HØYRUP, 2002) and is confirmed by math teaching in 

Greek antiquity. Math belonged to the pentagonal unity of possibility games, jointly 

with philosophy, travelling, theater and democracy. The with-maxim of the performance 

of practical calculations, e.g., for land property evaluation, military supplies or 

commerce was separated and left to the practitioner’s schools. 

Roughly speaking, the predominance of the in-maxim lasted up to the end of the 

last century, though supplemented by punctual with-maxims regarding single topics like 

the introduction of stereometry and the discussion of differentiable curves with their 
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minima and maxima and systematic about-maxim insisting on half-religious platonic 

adoration of the beauty and mysteries of math. 

It should be noted that socialist writers repeatedly expressed their distrust in the 

predominance of the in-maxim (LENIN, 1909). They perceived the in-maxim as socially 

elitist. Reactionary governments, on the other hand, were suspicious when math 

teachers opened the class room to real world problems (SCHUBRING, 2007). 

Special attentions deserve the intricate paths to form new mathematical concepts 

in the brain of the pupils, foremost the reification (SFARD, 1991). Consider, e.g., the 

formation of the concept of a “function”: In their rural environment, pupils have seen 

various tables, graphs and formulas regarding crops, energy consumption, prices, 

wages, time, movements of a thrown stone or of the moon. Working with these different 

representations; adding or subtracting two graphs with the same independent variable 

and a comparable depending variable; scaling curves up and down; linearizing one and 

smoothing another to an exponential law, all these activities will make it natural for the 

student to give the class of objects a name – function; then to lift their work to a higher 

level; and then to slough the bindings to the various contexts. Working further will 

support inducing additional and for the pupils new concepts along the same path of 

reification. Such considerations, concepts and content may appear as an academic 

matter. They are not. They help students to discover new aspects of their own brain and 

their form of life. 

For the last 100 years, math teachers, more than teachers of any other subject, 

have been exposed to radically changing educational maxims: In addition to the 

wrangling between the in- and with-maxim, there were the repeated attempts to balance 

geometry vs. the function concept; discrete vs. continuous math.; the conduct of a fixed 

syllabus vs. a pupil-oriented learning; the training of skills vs. the acquisition of 

competences. 

I shall only comment on one controversy, the balance between structural 

foundations and mathematical substance. After the Sputnik shock in 1957 and the 

impressive reconstruction of the war-devastated Soviet Union and its allies without help 

from abroad there was a need felt in the West to catch up in mathematics and 

technology education with the Soviet Union in the shortest possible time and in the 

most effective way. In hindsight, it was natural to focus on generalities and structures 
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when one felt under time pressure and confronted with immense challenges. While that 

orientation was controversial within the math community and shook the wider public of 

helpless parents, it may have been the best to do in those early years of computerizing 

and symbol processing. We will never know: The reform was halted before it could 

show possible merits (MOON, 1986). 

Approach 4 practical conclusion and claim 

In everyday teaching and learning, the categories of in, with and about may not 

always be clearly distinguishable. A clear declaration of the game played may help the 

pupils to find out whether capacities of their brain are discussed - or properties and 

design of technical and social inventions and constructions - or preconditions and 

consequences of mathematical procedures for humans and in society. 

 

APPROACH 5 – The necessity of reflection and contextual discourse for acquiring 

some mathematical experience. 

Here I shall address a deep contradiction in all math teaching: the basically 

context-free character of mathematical formalisms and the necessity to embed them into 

concrete contexts for the purpose of learning and understanding their meaning. For a 

moment I shall leave the old controversy aside where mathematical concepts come 

from; to what extent they are abstractions from real world experiences and to what 

extent they are free inventions of the human mind, possibly guided by dreams of a 

platonic world. The basic contradiction is much more serious. As emphasized above, the 

power of mathematics comes from its versatility, from the potential of transfer of 

experiences from one human field to another one by abstractions, symbols, formalism. 

Thus, freeing mathematical formalisms from contexts is mandatory for making them 

applicable in new spheres of human activity. In this aspect, my position is orthogonal to 

some recent approaches in math education (sketched, e.g., in MIGUEL; MENDES, 

2010): Inspired by the French philosophers J. Derrida and M. Foucault, the authors 

emphasize the essential difference between the various language games and contexts. 

Addressing contexts and differences between contexts should make the main parts of 

the math teaching. Of course they are right in many concrete teaching situations.  
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However, once again I shall emphasize that math is distinguished by imposing 

the same or similar rules to often very different looking contexts. For the 

mathematician, the equations for planetary motion and a ball rolling down a skew plane 

are the same; the ups and downs of the spread of a contagious disease are analyzed by 

models derived from the pendulum oscillations; chaotic behavior is generated by simple 

3d degree complex polynomial; the basic mode for medical tests are casts of a dice. 

Where postmodernists emphasize differences of contexts, the mathematician sees basic 

similarities. In so far, math is similar to religion, the other reality oriented and unity 

creating or claiming ideology. Compared to religion, math has, however, the advantage 

that its application in real situations after all coincides with our experiences, while I, 

personally, cannot confirm the coincidence of religious experience with reality. As 

Philip Davis and I explained at another place recently, one should, however, not 

exaggerate the claim of unity of and via mathematics (BOOß-BAVNBEK; DAVIS, 

2013). 

Clearly, and in full concordance with (MIGUEL; MENDES, 2010; RADFORD, 

2006), the meaning of abstractions will become accessible, though, only through 

contexts, and finally through action in specific contexts. That was what Karl Marx 

(1818-1883), the greatest philosopher of pragmatism according to B. Russell, wrote in 

the famous 11th Feuerbach thesis (MARX, 1845, p. 7): “Die Philosophen haben die 

Welt nur verschieden interpretiert; es kommt darauf an, sie zu verändern.” 

(Philosophers have hitherto only interpreted the world in various ways; the point is to 

change it.) By the way, it is easy to read from Marx’ iconic, often reproduced 

handwriting of the thesis, that in the German original there is no “aber” (no “though”) 

after “kommt”, contrary to the faked and false quote on 

<http://en.wikipedia.org/wiki/Theses_on_Feuerbach>, Footnote 5. In teaching 

mathematical experiences (as well as in political praxis), we should not place the second 

part of Marx’ Feuerbach thesis over its first part. We should discard all well-intended 

but uninformed actionism and contextualization. We have to insist that there is no 

meaning without content and method (like in the beautiful title and content of 

ALEXANDROV; KOLMOGOROV; LAVRENTʹEV, 1963) and no meaningful action 

without thorough investigation and understanding in a broader setting beyond an acute 

context. 

http://en.wikipedia.org/wiki/Theses_on_Feuerbach
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Approach 5 example 1 

Math teachers handle this contradiction in different ways. They may neglect 

relevant contexts like weather prediction, industrial design, telecommunication, 

computer architecture, construction and civil engineering and other fields that have their 

own subject tradition and often are too complex for treatment in class. Instead of that, 

typically less representative contexts are chosen that can have the advantage of easier 

accessibility. A teacher may, e.g., judge that treating the gravitational laws of planetary 

movement is mathematically too demanding for a class, and prefer to discuss 

mathematically similar relations in respect to the attractiveness of urban shopping 

centers. Indeed, some of the math applied can be similar. However, the pupils’ 

impression of the character of mathematical modeling will be blurred by such 

pedagogically well-intended compromises: the decisive difference between ad-hoc 

assumptions and models based on first principles will be wiped out.  

Approach 5 example 2 

Teachers also go astray when they identify themselves too much with a 

mathematically nicely formulated modeling task from faked real world which lacks 

realism. Attentive pupils will feel fooled. Such an unlucky teaching situation was 

uncritically reproduced in (BLOMHØJ; KJELDSEN, 2006): A boy is brought to a 

hospital with an acute asthmatic attack. There is a drug that can help, if a critical upper 

concentration in the blood is not surpassed and the concentration doesn’t fall below a 

lower critical level of ineffectiveness.Given the weight of the boy, a dosage scheme 

might be immediately derived from tables. However, the blood content of two children 

with the same weight may strongly vary. So the doctor gives one injection and follows 

the decay of the concentration with 10 measurements in 2-hours intervals over 18 hours. 

The data table distributed to the pupils shows that the critical lower level is reached 

already at the third measurement after 6 hours. Certainly with most attentive pupils, I 

wonder why the teacher’s doctor needs 10 measurements to estimate the decay rate of 

an exponential function when 3 measurements suffice – and let the boy suffer in a 

perhaps critical state for additional 12 hours.  

Personally, I have argued against uninformed naïve modeling patriotism for 

decades (BOOß-BAVNBEK, 1991; BOOß-BAVNBEK; PATE, 1989a, 1989b). In 
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concrete situations where school administration and teacher qualification only permit 

the choice between the pure mathematics-oriented and the context-oriented position, 

one should hesitate to follow too readily the pragmatics of the context-oriented or to 

blame too much the pure mathematics-oriented as elitist, outdated and even dead. As in 

general technology assessment, the conservative approach may be the more humanistic 

and more soundly futuristic approach also in mathematics education. 

Approach 5 example 3 

Unfortunately, the same (otherwise worthwhile) article displays a 

somewhatdisorienting ideal scheme of a so-called mathematical modeling cycle. By that 

these authors and thousands of similar articles mean an iterative process of 

approximating a model to the studied segment of reality in increasing similarity. 

Contrary to Peirce’s realistic quality criterion of modeling as seen from an observer, its 

goals and its practical success with the model, they lure the reader on a wrong track 

leading nowhere.    

Approach 5 example 4 

Math teachers from all corners of the world have documented their experiences 

with the contextualization of math teaching. Promising contexts are elements of public 

health, epidemiology, and capacities of the human brain, exemplified by solutions of 

mathematical problems or insight in harmonies of numbers, rhythms and accords in 

music. Other suitable contexts are breeding and crops, harvesting machines, weed and 

pest control, fertilizers, and the size and value of land property. However, don’t let the 

vitality of chosen contexts take over and remove the abstract concepts to be learned and 

practiced! And be aware that complex contexts will make ability differences in the 

student population visible! To address ability differences is not bad but good, but may 

require additional support in differentiated learning environments.   

Often, humanistic and socially engaged teachers select contexts apt for the 

wanted empowerment of a critical citizenship (FREIRE, 1972;SKOVSMOSE,1994), 

and rightly so. However, there are three fallacies: Firstly, educators should free 

themselves from the prejudices of the social sciences regarding mathematical contents. 

The British Prime Minister Benjamin Disraeli (1804-1881) confirmed that there were 

two cultures, of the wealthy and the poor in his country, and they still are separated. 
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Later, C.P. Snow(1905-1980) showed that there are similar high fences between 

sciences and mathematics on one side and the social sciences and humanities on the 

other. But it is a failure to proliferate that wall between two cultures and deny the 

natural and intimate relation between class room demands for teaching mathematical 

content (under the pejorative heading of numeracy) vs. class room demands of teaching 

mathematical meaning (heralded as mathemacy).Secondly, educators should minimize 

their arrogance! Education alone will scarcely transfer power to the underprivileged. 

Thousands of shy and frightened teachers in the countryside can learn quite a lot from 

the determination of the landless and not vice versa. Thirdly, educators should think 

constantly about possible optimistic contexts of their teaching instead of silencing your 

pupils by dwelling too long with negative contexts how realistic they may be. In doubt, 

teachers will do better when they are perceived of as dreamers rather than as pessimists! 

Approach 5 theoretical explanation 

Math teachers have a saying “Don’t overestimate the pupils’ prior knowledge 

and don’t underestimate their intelligence!” In many places, however, this maxim is 

double erroneous. Firstly, teachers including relevant contexts will be surprised again 

and again by the wit and competence of their pupils in their judgments in situations 

which are familiar to them but remote for the teacher because of their different 

background. Secondly, it must be repeated once more that our brain is not well suited to 

handle abstract and formal signs. Humans are not as intelligent as we believe. In the rich 

kingdom of animals, e.g., only humans – in all historical and ethnological formations - 

have to be taught the fundamentals of sexual reproduction. Hence, the first criterion for 

good teaching should be whether the teacher can confirm at the end of an hour that the 

pupils have a better understanding in some aspects than the teacher had before and that 

some of the pupils got the possibility to show that they were more clever than their 

teacher – and not vice versa. 

Approach 5 practical conclusion and claim 

Teachers in rural areas have to make the pupils aware of the role of contexts in 

understanding the content, meaning and value of mathematical concepts, techniques and 

methods. Contrary to urban life forms (with their specific anonymity, perceived 
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mobility and typical exchangeability of relations), rural life forms provide a rich frame 

for contextualization of the teaching and learning. 

APPROACH 6 – Of course, at the end only results count. To achieve them the 

process gains importance. Promises of sample-based tests of learning mathematical 

experiences. 

Addressing the role of tests is a good entrance for discussing goals, methods and 

experiences in teaching mathematical experiences. There are many reservations against 

tests. E.g., tests may measure something easily measurable but not very relevant and so 

become irrelevant. Tests may steer teaching and so become pernicious. That much said, 

tests remind the teacher, the pupils, and the parents that there should be a positive result 

of the teaching act, comparable to putting money in a savings bank. Freire (1972) 

ridiculed that banking pedagogy, and certainly rightly so regarding many classroom 

situations. However, his imperative to replace result-oriented teaching by process-

oriented teaching may be valuable for large domains of humanities and social sciences 

but misses the point of math and science education, where reliable results count. My 

reservations against the well-intended pupil activity- and inquiry-oriented education are 

in line with the carefully researched and accommodatinglyworded analysis of the 

necessary balance between product and process orientation in (SJØBERG, 2009; 2005, 

p. 430-439).  

Approach 6 example 1 

The global educational reform thinking includes an assumption that competition, 

choice, and more-frequent external testing are prerequisites to improve the quality of 

education. The PISA database shows that those education systems where competition, 

choice, and test-based accountability have been the main drivers of educational change 

have not shown progress in international comparisons. Finland has. 

The Finns say test less, learn more: “Education policies in Finland (in recent 

years) emphasized teacher professionalism, school-based curriculum, trust-based 

educational leadership, and school collaboration through networking. Finland has, 

unlike any other nation, improved its average performance from its already high level in 

2000. Although this does not constitute evidence of the failure of test-driven educational 
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reform policies per se, it suggests that frequent standardized student testing is not a 

necessary condition for improving the quality of education.” (SAHLBERG, 2011, p. 66) 

Approach 6 example 2 

I share the Finnish idea that testing itself is not a bad thing. I am not an anti-

assessment person. Statistically well-designed tests are wonderful means to make 

teachers attentive to the greater or minor effectiveness of different teaching methods, 

also relative to different strata of pupils. An in any aspect excellent and professional 

example is given in (HANSEN, 2013). Problems arise when the tests become higher in 

stakes and include sanctions to teachers or schools as a consequence of poor 

performance. “There are alarming reports from many parts of the world where high-

stakes tests have been employed as part of accountability policies in education. This 

evidence suggests that teachers tend to redesign their teaching according to these tests, 

give higher priority to those subjects that are tested, and adjust teaching methods to 

drilling and memorizing information rather than understanding knowledge.” 

(SAHLBERG, 2011, p. 67) 

Approach 6 theoretical explanation 

With other subjects like sciences, medicine, and languages, math is a teaching 

subject where results matter more than process. Process is good, discourse is good. 

However, when moving forward, pupils will instantly meet abysses where continuation 

along a desired path is blocked to the uninitiated and untrained. Progress, entering new 

fields, and climbing to higher levels require a certain security in the delicacies of the 

mathematical concepts and methods applied. As mentioned before, (SJØBERG, 2009, 

p. 430-439) elaborates profoundly on these objections against the well-intended, but 

unfounded dominance of process orientation in science (and math) teaching. 

It is true; there is no royal route in mathematics: Gauss gave four radically 

different proofs for the fundamental theorem of algebra. He excessively used his 

freedom of inventing fruitful mathematical concepts and to arrange mathematical 

arguments in a new, surprising, productive and meaningful order. But the goal was 

always the same: to provide intelligible, convincing, and reliable arguments for the 

claimed existence of the roots, respectively, possibility of factorization. We as learners 

and his readers have also plenty of freedom. We can choose the problems, methods and 
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proofs we want. However, in one aspect neither Gauss nor we have any freedom; we 

have not the choice to believe a little more in the one proof and a bit less in another one; 

if we doubt one proof, we must check it and either point to a gap or error in the chain of 

arguments – or confirm the reliability of the arguments. A mathematical argument is 

valuable, only if it is reliable. Errors can be inspiring, but must be refuted in the very 

end. There is no place for relativism. Futile arguments definitely have a lesser status 

than reliable arguments. There is no chance for equality, discourse, and compromise 

when reliability or unreliability has been tested. 

How can we be so sure about mathematical results? Aren’t there some logical 

cracks in the foundations of mathematics, as pointed out in Gödel’s Incompleteness 

Theorem (MANIN, 2010) What about the many unsolved mathematical problems? 

Could they be candidates for true statements that can never be proven? What about the 

logical status of simple concepts like the set of all subsets of the integers; the real 

numbers; compact sets; Zorn’s lemma? These are interesting questions for the logician. 

Most mathematicians, however, don’t need foundations for their work. They need 

reliability of their arguments; they need and provide trust in the correctness of results 

and convince their peers. That is only in seldom cases something a machine can do. The 

professionalism of mathematicians is that they can say stop – now the result is reliable. 

Also that has to be learned in math classes. 

Approach 6 practical conclusion and claim 

The result orientation is mandatory for all math learning. It requires a sharp 

distinction between the strictly limited periods of the laborious, demanding, sometimes 

painful acquisition of new mathematical knowledge (depicted in Escher’s front cover of 

BLEECKER; BOOß-BAVNBEK, 2013) and the feel-good periods of spare time and 

leisure. As the Finns say, teaching less is more.  

Hopefully, in rural environment, the inherent conflict between process- and 

result-orientation in math education has better chances of a productive solution than in 

most urban environments. Following the Finnish lessons, it may be easier to implement 

such a deliberately confined education in the countryside with pupils and parents being 

more down to earth, than in urban environment with too large an abundance of choices. 
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Pupils will be strengthened by quick response to their advances and failures. All failures 

should be recognized as intermediate and provisional.  

On the basis of such a clear agenda, namely that the main goal of the math 

classes is learning of contents, of concepts, methods and meaning, not of discourses, the 

teacher can set the scene for context-oriented math education and pupil participation as 

the precondition for continued and comprehensive understanding, thought-liberation, 

intellectual dignity, practical usefulness, and political emancipation. 
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