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Many-Valued Hybrid Logic
Jens Ulrik Hansen, Thomas Bolander, and Torben Braüner

abstract. In this paper we define a family of many-valued semantics for hybrid logic,

where each semantics is based on a finite Heyting algebra of truth-values. We provide sound

and complete tableau systems for these semantics. Moreover, we show how the tableau
systems can be made terminating and thereby give rise to decision procedures for the logics

in question. Our many-valued hybrid logics turn out to be “intermediate” logics between

intuitionistic hybrid logic and classical hybrid logic in a specific sense explained in the paper.
Our results show that many-valued hybrid logic is indeed a natural enterprise.

Keywords: Modal logic, hybrid logic, many-valued logic, intuitionistic hybrid logic,
tableau systems.

1 Introduction

Classical hybrid logic is obtained by adding further expressive procedureower to ordinary,
classical modal logic in the form of a second sort of propositional symbols called nominals,
and moreover, by adding so-called satisfaction operators. Each nominal is assumed to be
true at exactly one world (state), and consequently, nominals can be regarded as names of
worlds. If i is a nominal and ϕ is an arbitrary formula, then a new formula @iϕ called a
satisfaction statement can be formed (@i is called a satisfaction operator). The satisfaction
statement @iϕ expresses that the formula ϕ is true at the particular world at which i is
true. In this manner, hybrid logic enables references to particular worlds and reasoning
about what is true at such worlds.

Hybrid logic offers other advantages over classical modal logic than merely increased
expressivity. In contrast to classical modal logic, hybrid logic is proof-theoretically well-
behaved. Natural deduction systems satisfying normalisation, cut-free Gentzen systems,
and terminating tableau systems can all be given for a variety of hybrid logics in uniform
ways [7]. Moreover, the metalinguistic machinery introduced into proof systems to deal
with numerous modal logics can be completely internalised in hybrid logic [7, 6].

Despite the success and extensive studies of hybrid logic, existing hybrid logics are
almost exclusively two-valued. There might be several reasons for this. Maybe there
is no use for non-classical hybrid logics? This is hard to believe as non-classical modal
logics have found numerous applications. Maybe there are inherent technical difficulties in
achieving natural non-classical hybrid logics? The latter concern is our point of departure.
We will investigate a general class of many-valued hybrid logics and show that it can be
realised in a natural way and has an attractive proof-theory in form of a sound, complete
and terminating tableau calculus.

Classical hybrid logic can be viewed as a combination of two logics, namely classical,
two-valued logic (where the standard propositional connectives are interpreted in terms of
the truth-values true and false) and hybrid modal logic (where modal operators, nominals,
and satisfaction operators are interpreted in terms of a set of possible worlds equipped with
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an accessibility relation). The present paper concerns hybrid logic where the two-valued
logical basis has been replaced by a many-valued one, providing us with a many-valued
semantics for hybrid logic. There are numerous available many-valued logical bases to
choose from, and we can not consider all. We will make a simplifying assumption that the
set of truth-values is finite. Still, we aim at investigating the most general class of many-
valued hybrid logics possible. Therefore, we have chosen to hybridise the very general
many-valued semantics for modal logic introduced by Melvin Fitting in [14, 15, 16].

In Fitting’s many-valued modal logic, the set of truth-values is a finite Heyting algebra,
that is, a finite lattice with meets and joins (used to interpret conjunction and disjunction)
and with relative pseudo-complements (used to interpret implication). Since we need both
the diamond and the box modality, and since implication plays a key role in defining
the semantics of the box modality, Heyting algebras are a natural choice for the set of
truth-values. Moreover, the logic of Fitting has the general feature that it allows not
only formulas but also accessibility links to be assigned non-classical truth-values, which
is contrary to a number of many-valued modal logics, where acessibility links are only
assigned classical truth-values.

The motivation originally used by Fitting for his many-valued modal logic was multi-
expert systems [15]. These are systems where a group of experts have individual opinions
on the truth of modal issues, and where there is a relation of dominance between the
agents. The truth-values can then be taken to be subsets of experts and the truth-value
of a formula is the subset of experts who accepts the formula as true. This view is further
developed and described in [18]. This motivation can naturally be transferred to our case
as well, and would grant the experts increased expressive power. In addition to Fitting’s
multi-expert motivation, there are a number of applications of many-valued modal logics,
mostly in cases where fuzziness, uncertainty, or truth-likeness play a role. Many-valued
modal logic can, for instance, be used for fuzzy similarity-based reasoning [21] or for
reasoning about fuzzy beliefs [26].

Deciding on a many-valued modal logic to hybridise does not completely determine
what the many-valued hybrid logic will look like. There are several possible choices for
the semantics of both nominals and satisfaction operators. Nonetheless, it turns out that
if we want to retain as many of the useful properties of classical hybrid logic as possible,
then there is a unique best choice of many-valued semantics for the hybrid machinery. In
Section 2, we will present this many-valued semantics as well as discuss the alternative
choices and their limitations.

The number of existing papers on non-classical hybrid logic is quite limited. Most of
these focus on intuitionistic hybrid logic [9, 7, 10, 20]. As we will later see, there is a close
relationship between a version of intuitionistic hybrid logic and the many-valued hybrid
logics of the present paper. This relationship is fully elaborated in Section 3. Many-valued
hybrid logics appear to only previously have been investigated in an earlier version of this
paper [25] and by Didier Galmiche and Yakoub Salhi in [19].

In [19], Galmiche and Salhi introduce a sequence of finite-valued hybrid logics GH1,
GH2, . . . together with two infinite-valued hybrid logics GH∞ and WGH∞. For any
natural number n, the logic GHn is an n+1 valued logic where the truth-values are rational
numbers, including 0 and 1, taken from the real unit interval [0, 1]. The set of truth-
values is equipped with the usual order on the rational numbers and the interpretation
of the logical connectives is the standard generalisation of the interpretation in classical
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two-valued hybrid logic, which is equivalent to GH1. The interpretation of the modal
operators involves a many-valued interpretation of the accessibility relation together with
the relative pseudo-complement of the implicit Heyting algebra structure on the set of
truth-values. It follows that for any natural number n, the semantics of GHn is a special
case of the many-valued semantics considered in the present paper.1 A main contribution
of [19] is to prove that the logics GHn as well as the logic WGH∞ are decidable using a
proof-search procedure involving a set of sequent rules. Decidability of GH∞ is left open.
Note that since the logics GHn, where n is any natural number, are many-valued hybrid
logics in our sense, decidability of these logics also follows from our decidability result
(which was already published in [25]), though our method is quite different from theirs.

Tableau systems for hybrid logic is a well-established area of research within the proof-
theory of hybrid logic and includes a long line of work, such as [2, 1, 5, 4, 22, 3]. One of
the advantages of hybrid logic tableau systems is that metalinguistic machinery, such as
prefixes, can be completely internalised resulting in conceptually simpler systems. Con-
sequently, destructive tableau systems such as Fittings [16] can be avoided and general
methods for showing termination of tableau systems can be applied. In Section 4, we
provide a tableau system that is sound and complete with respect to the many-valued
semantics defined in Section 2. The tableau system is a natural (but non-trivial) gen-
eralisation of the existing tableau system for two-valued logic from [5]. In particular, if
our tableau system is restricted to a set with only two truth-values, then modulo minor
reformulations and the deletion of superfluous rules, the tableau system obtained is identi-
cal to the existing tableau system for two-valued hybrid logic. Moreover, to deal with the
Heyting algebra of truth-values, considerable inspiration is taken form Fittings tableau sys-
tem for many-valued modal logic [16], even though our tableau system is non-destructive.
Completeness of our tableau system is shown in Section 6.

As mentioned, in addition to being sound and complete, our tableau system is also
terminating, providing us with a decision procedure for the logic. Hence our many-valued
hybrid logic is decidable and has the finite model property. Since all formulas of Fitting’s
many-valued modal logic are also formulas of our many-valued hybrid logic, our tableau
calculus automatically provides a terminating, sound and complete calculus for Fitting’s
logic. From this we can conclude that also Fitting’s logic is decidable and has the final
model property. Fitting himself provides a sound and complete tableau calculus for his
logic in [16], but the question of termination, and thus decidability, is not addressed.

In Section 5, we will present a proof of termination of our tableau calculus inspired by
the general procedure used in [4]. Finally, we will end the paper with a conclusion and
some remarks on future work.

2 A Many-Valued Hybrid Logic

In this section a language for many-valued hybrid logic, denoted MVHL, is defined and a
semantics provided. The language includes the global modalities E (“somewhere”) and A
(“everywhere”). The global modalities will be used to motivate our choice of semantics
for nominals. However, they will be excluded from the logic for which we present a sound

1The logic GH∞ is obtained from GHn by replacing the n + 1 truth-values by the whole real unit
interval [0, 1]. The logic WGH∞ is obtained from GH∞ by restricting to models where all infima and
suprema needed in the interpretation of the modal operators are respectively minima and maxima (the
letter ‘W’ stands for ‘Witnessed’).
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and complete tableau calculus.

A finite Heyting algebra H is a finite lattice with meet u and join t, such that for all
a and b in H there is a greatest element x of H satisfying a u x ≤ b. The element x is
called the relative pseudo-complement of a with respect to b and is denoted by a⇒ b. The
largest and smallest elements of H are denoted > and ⊥, respectively. We will be using
finite Heyting algebras as the space of truth-values for our many-valued logic.2

2.1 Syntax for MVHL

Let a countable infinite set of propositional variables PROP and a countable infinite set of
nominals NOM be given.

DEFINITION 1 (MVHL-formulas). The set of MVHL-formulas over a finite Heyting alge-
bra H is given by:

ϕ ::= p | a | i | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | �ϕ | ♦ϕ | @iϕ | Eϕ | Aϕ ,

where p ∈ PROP, a ∈ H, and i ∈ NOM.

In general, we will use i, j, k, . . . for nominals and a, b, c, . . . for elements of H.

2.2 Semantics for MVHL

MVHL-formulas over H are interpreted in Kripke models in which the accessibility links
are allowed to take values in H. This is inspired by [16]. A model M over H is a tuple
M = 〈W,R,n, ν〉, where W is the set of worlds, and R a mapping R : W ×W → H called
the accessibility relation (by slight abuse of language, since it is not formally a relation).
n is a function interpreting the nominals, i.e., n : NOM → W . Finally the valuation
ν : W × PROP→ H assigns truth-values to the propositional variables at each world.

Given a modelM = 〈W,R,n, ν〉, we inductively extend the valuation ν to all formulas in
the way shown in Figure 1, where w ∈W . An MVHL-formula ϕ is said to be valid (relative
to H) if ϕ is a formula over H, and if ν(w,ϕ) = > for all modelsM = 〈W,R,n, ν〉 over H
and all w ∈W .3

The semantics chosen for the hybrid logical constructions is discussed in the following.
As in classical two-valued hybrid logic, nominals denote single worlds specified by n.
Furthermore, we have chosen to assign each nominal i the value > in the world it denotes
(n(i)), and ⊥ in all other worlds. This way nominals still denote single worlds. If we
had only required nominals to be > in exactly one world and different from > in all
others, nominals would still denote single worlds. However, then other problems would
arise, which will be discussed in the next subsection. The semantics for @iϕ is obvious,
its truth-value is simply the truth-value of ϕ at the world i denotes. This is motived
by the semantics of @iϕ in standard hybrid logic. The semantics chosen for the global

2In order to give reasonable semantics for ∧ and ∨, the set of truth-values H must be a lattice. A
complete lattice would be sufficient if the accessibility links were two-valued, but since we wish these to
take values in H, it has to be a Heyting algebra. For further discussions on the choice of a finite Heyting
algebra as the set of truth-values, see [15, 16].

3Note that by this definition we do not define a single logic (i.e. a set of valid formulas), but a family of
logics, namely one for each finite Heyting algebra H. However, we will sometime refer to MVHL as a logic
instead of a family of logics, in which case we think of the logic resulting from keeping a finite Heyting
algebra fixed. In most cases the fixed Heyting algebra will be arbitrary and thus, what we claim will be
true for all logics in the family MVHL.
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ν(w, a) := a for a ∈ H

ν(w, i) :=

{
> if n(i) = w
⊥ otherwise

ν(w,ϕ ∧ ψ) := ν(w,ϕ) u ν(w,ψ)

ν(w,ϕ ∨ ψ) := ν(w,ϕ) t ν(w,ψ)

ν(w,ϕ→ ψ) := ν(w,ϕ)⇒ ν(w,ψ)

ν(w,�ϕ) :=
l
{R(w, v)⇒ ν(v, ϕ) | v ∈W}

ν(w,♦ϕ) :=
⊔
{R(w, v) u ν(v, ϕ) | v ∈W}

ν(w,@iϕ) := ν(n(i), ϕ)

ν(w,Aϕ) :=
l
{ν(v, ϕ) | v ∈W}

ν(w,Eϕ) :=
⊔
{ν(v, ϕ) | v ∈W}

Figure 1. Valuation of MVHL-formulas in a Kripke model.

modalities A and E reflect the fact that these modalities are simply the global versions of
the modalities � and ♦.

Our choice of semantics for the nominals and the satisfaction operators allows us to
preserve the well-known logical equivalence @iϕ ↔ E(i ∧ ϕ) and @iϕ ↔ A(i → ϕ) from
classical (two-valued) hybrid logic, since the following hold in MVHL:4

ν(w,@iϕ) = ν(n(i), ϕ) =
⊔
{ν(v, i) u ν(v, ϕ) | v ∈W} = ν(w,E(i ∧ ϕ)) (1)

ν(w,@iϕ) = ν(n(i), ϕ) =
l
{ν(v, i)⇒ ν(v, ϕ) | v ∈W} = ν(w,A(i→ ϕ)). (2)

Another property of our semantics is the following:

ν(w,@i♦j) = ν(n(i),♦j) =
⊔
{R(n(i), v) u ν(v, j) | v ∈W} = R(n(i),n(j)).

This identity expresses that reachability of the world denoted by j from the world denoted
by i is correctly captured by the formula @i♦j. This also holds in classical (two-valued)
hybrid logic. Identity between worlds denoted by nominals can also be expressed as in
two-valued hybrid logic, since the following holds in MVHL:

ν(w,@ij) = > iff n(i) = n(j).

Finally, an additional nice property of the choice of semantics is that the logic collapses
to classical two-valued hybrid logic when H = {>,⊥}.

2.3 Alternative semantics for MVHL

Alternative semantics for hybrid logic are possible in the many-valued setting. We will not
consider alternative semantics for the basic modal logical connectives, since we decided to

4Using the fact that in a Heyting algebra: >ua = a, ⊥ua = ⊥, at⊥ = a, > ⇒ a = a and ⊥ ⇒ a = >.
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MVHL MVHL1 MVHL2 MVHL3 MVHL4 MVHL5

ν(w,@ij) = > iff ī = j̄? yes yes no yes
no

(⇒ holds)
no

(undef.)

ν(w,@i♦j) = R(̄i, j̄)? yes
no

(≥ holds)
no

(≥ holds)
no

(≥ holds)
no

no
(undef.)

ν(w,A(i→ϕ)) = ν(w,@iϕ)? yes
no

(≤ holds)
no

(≤ holds)
no

(≤ holds)
yes

(by def.)
no

ν(w,@iϕ) = ν(w,E(i ∧ ϕ))? yes
no

(≤ holds)
yes

(by def.)
yes

(by def.)
no

(≤ holds)
yes

Collapses to classical hybrid
logic when H = {>,⊥}? yes yes yes yes yes yes

Figure 2. Comparison between the logics MVHL, MVHL1, . . . , MVHL5

construct our logic as an extension of the many-valued logic introduced in [14]. We will not
consider alternative semantics for the global modalities either, as these are defined as the
global versions of the modalities � and ♦, as usual. Consequently, we will only consider
alternative semantics for the nominals and the satisfaction operator. We will consider
five alternative versions of the semantics, resulting in five different logics, named MVHL1-
MVHL5. The logics will be compared to MVHL based on the four properties mentioned in
the previous subsection, namely whether: 1) the formula @ij expresses equality between
the worlds denoted by i and j; 2) the formula @i♦j expresses the value of the accessibility
relation between the worlds denoted by i and j; 3) the formulas @iϕ, E(i∧ϕ) and A(i→ ϕ)
are logically equivalent ; 4) the logic collapses to classical hybrid logic when H = {>,⊥}.
Our findings are summarised in Figure 2 and show that MVHL is the only one among the
six logics that satisfy all the four properties of classical hybrid logic.5 The detailed proofs
of why the properties hold for some of the logics and fail for others, are omitted. The
detailed proofs can be found in [24, Ch. 3].

MVHL1

The first obvious alternative definition of the semantics would be to allow a nominal i to
take other values than ⊥ in the worlds that i does not denote. Formally, we replace n by
a mapping n : W × NOM→ H, where n is required to satisfy that for all i ∈ NOM there
is a unique world w ∈ W such that ν(w, i) = > (this unique world will be denoted by ī).

5Note that we only explored the five alternative logics we considered most obvious, but there might
still be other alternative ways of defining the semantics of nominals and satisfaction operators in a many-
valued settings, which retain the mentioned nice properties of classical hybrid logic. Contrarily, one could
argue that since we are searching for a many-valued hybrid logic it is not necessarily desirable to preserve
as many properties of classical hybrid logic as possible—we should be searching for a truly fuzzy version
of hybrid logic. This may be so, in which case the logic MVHL5 might be the best choice. However,
as suggested in the introduction, we have chosen to view two-valued hybrid logic as a combination of
two-valued logic and hybrid logic, and many-valued hybrid logic as a combination of many-valued logic
and hybrid logic. From this perspective, it makes sense to seek to preserve as many as possible of the core
hybrid-logical properties.



Many-Valued Hybrid Logic 7

The semantics of the nominals and satisfaction operators are then replaced by:

ν(w, i) := n(w, i) (3)

ν(w,@iϕ) := ν (̄i, ϕ) (4)

The logic that results from this alternative semantics will be called MVHL1. Note that
it collapses to classical hybrid logic when H = {>,⊥}. Furthermore, because nominals
receive the value > in exactly one world, identity between worlds can still be expressed.
More precisely:

ν(w,@ij) = > iff ī = j̄.

However, the logic MVHL1 is different from MVHL. Accessibility between worlds are no
longer expressible in the usual way, since ν(w,@i♦j) = R(̄i, j̄) no longer holds in gen-
eral. The inequality ν(w,@i♦j) ≤ R(̄i, j̄) does hold, though. With respect to the global
modalities we have the following inequalities:

ν(w,A(i→ ϕ)) ≤ ν(w,@iϕ) ≤ ν(w,E(i ∧ ϕ)).

However, in MVHL1 these inequalities may be strict.6 Thus, the satisfaction operator
cannot be defined by the global modalities in the usual way.

MVHL2

If we want the formula @iϕ to be definable by the global modality E in the usual way, we
could change (4) to

ν(w,@iϕ) :=
⊔
{ν(v, i) u ν(v, ϕ) | v ∈W}, (5)

and obtain another alternative semantics. The logic resulting from this choice of semantics
will be called MVHL2. Note that the truth-values that the nominal i takes in other worlds
than ī now matters for the truth-value of @iϕ. Furthermore, @iϕ and E(i ∧ ϕ) become
equivalent by definition, but the inequality ν(w,A(i → ϕ)) ≤ ν(w,@iϕ)) may still be
strict in some cases.

The logic MVHL2 still collapses to classical hybrid logic when H = {>,⊥}. However, in
MVHL2, ν(w,@ij) = > no longer guarantees that ī = j̄ (but the opposite holds). Hence,
identity between worlds are no longer expressible in the usual way. As with MVHL1, the
inequality R(̄i, j̄) ≤ ν(w,@i♦j) may be strict and thus accessibility between worlds are
also not expressible in the standard way either.

MVHL3

Note that MVHL2 (as well as MVHL and MVHL1) is not a logic as such, but a family of
logics, namely one logic for each choice of H. It turns out that there is a subfamily of
MVHL2 where identity between worlds can be expressed by @ij. This family, which will
be denoted MVHL3, is obtained by only allowing certain kinds of Heyting algebras H,
namely those where > is join-irreducible. An element a 6= ⊥ of a Heyting algebra H is

6The fact that the formulas A(i → ϕ) and E(i ∧ ϕ) are not equivalent might seems strange, however,
if one considers a hybrid logic where nominals are true in at most one world and not exactly one world,
the formulas are not equivalent either [23].
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called join-irreducible if for all x, y ∈ H, a = x t y implies that either a = x or a = y. It
can then be showed that for all finite Heyting algebras H, > is join-irreducible (in H) if
and only the following property holds:

(∗) For all models M = 〈W,R, ν,n〉, for all w ∈ W , and for all nominals i
and j (with the semantics of MVHL2): ν(w,@ij) = > iff ī = j̄.

Thus, due to the requirement on H, equality between worlds is expressible in MVHL3

by formulas of the form @ij. The formula @i♦j also obtain the nice property that
ν(w,@i♦j) = > if and only if R(̄i, j̄) = >. Again the inequality R(̄i, j̄) ≤ ν(w,@i♦j)
holds in general. Nevertheless, it may be a strict inequality if R(̄i, j̄) < >.

Note that the class of Heyting algebras where > is join-irreducible is not a small and
insignificant class. For instance, whenever H is a linear order, > becomes irreducible.
Hence, the sets of truth-values for all the logics GHn of [19], mentioned in the introduction,
are Heyting algebras where > is joint-irreducible.

MVHL4

Instead of defining the semantics of @i from the formula E(i∧ϕ) as in MVHL2, one could
define it from the formula A(i→ ϕ). In other worlds, we could replace (4) in MVHL2 by

ν(w,@iϕ) :=
l
{ν(v, i)⇒ ν(v, ϕ) | v ∈W}.

The resulting (family of) logic(s) will be denoted MVHL4. Now, ν(w,@ij) = > does imply
that ī = j̄, however, ī = j̄ does not imply that ν(w,@ij) = >. In fact, in this logic
the formulas @ij and @ji are no longer equivalent. The formula @ij now expresses the
property that

ν(w, i) ≤ ν(w, j) , for all w ∈W.

Furthermore, in this logic the equalities ν(w,@i♦j) = R(̄i, j̄) and ν(w,A(i → ϕ)) =
ν(w,E(i ∧ ϕ)) do not hold in general. However, as for all the previously discussed logics,
it collapses to classical hybrid logic when H = {>,⊥}.

MVHL5

So far we have only considered logics in which nominals denote single worlds, by only
being > in exactly one world. An alternative option is to let nominals point out sets of
worlds whose truth-values assigned to the nominals “sums up to >”.7 With this semantics
for nominals, definition (4) is not well-defined (since ī is not well-defined). However, (5)
can still be used, resulting in the logic we call MVHL5. We will not delve into the details
of this logic (see [24] for details), just mention that it is a drastic change from classical
hybrid logic since nominals now point out sets of worlds. However, when H = {>,⊥} the
logic still collapses to classical hybrid logic.

7Formally, we assume that for each model and nominal i there is a unique finite set Wi ⊆W such that
∪w∈Wi

n(w, i) = > and there are no proper subset of Wi with this property. Again, the details are given
in [24, Ch. 3].
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3 The relation to intuitionistic hybrid logic

As pointed out in [15], there is a close relationship between the many-valued modal logic
presented there and intuitionistic modal logic. We will now consider the relation between
our many-valued hybrid logic and the intuitionistic hybrid logic from [9, 7] (which in turn is
a hybridisation of an intuitionistic modal logic introduced in a tense-logical version in [12]).
In the following, we will only consider those MVHL-formulas that belong to intuitionistic
hybrid logic, that is, the only atomic formulas we consider are ordinary propositional
symbols, nominals, and the symbol ⊥ (no truth-values except ⊥ are allowed). We first
define an appropriate notion of an intuitionistic model. Occasionally such models will be
called Kripke models to avoid confusion with other sorts of models for intuitionistic modal
and hybrid logic.

DEFINITION 2. A restricted model for intuitionistic hybrid logic is a tuple

(W,≤, D, {Rw}w∈W , {νw}w∈W )

where

1. W is a non-empty finite set partially ordered by ≤;

2. D is a non-empty set;

3. for each w, Rw is a binary relation on D such that w ≤ v implies Rw ⊆ Rv; and

4. for each w, νw is a function that to each ordinary propositional symbol p assigns a
subset of D such that w ≤ v implies νw(p) ⊆ νv(p).

This notion of model can be seen as a restricted variant of the notion of a model of
[9, 7].8 Note that the set D is to be understood as the set of possible worlds and is used
to interpret the modal and hybrid parts of the language (occasionally together with the
set W ). The elements of the set W are states of knowledge and for any such state w, the
relation Rw is the set of known relationships between possible worlds and the set νw(p)
is the set of possible worlds at which p is known to be true. Note that the definition
requires that the epistemic partial order ≤ preserves these kinds of knowledge, that is, if
an advance to a greater state of knowledge is made, then what is known is preserved.

Given a restricted model M = (W,≤, D, {Rw}w∈W , {νw}w∈W ), an assignment is a func-
tion n that to each nominal assigns an element of D. The semantic relation M,n, w, d |= ϕ
is defined by induction, where w is an element of W , n is an assignment, d is an element

8Compare to Definition 8.1, p. 172, of [7]. The differences are the following: i) In [7], the set W
need not be finite. ii) Instead of D there is a family {Dw}w∈W of non-empty sets such that w ≤ v
implies Dw ⊆ Dv , Rw is a binary relation on Dw, and νw(p) is a subset of Dw. iii) There is a family
{∼w}w∈W where ∼w is an equivalence relation on Dw such that w ≤ v implies ∼w⊆∼v and such that if
d ∼w d′, e ∼w e′, and dRwe, then d′Rwe′, and similarly, if d ∼w d′ and d ∈ νw(p), then d′ ∈ νw(p). The
equivalence relations are used for the interpretation of nominals. Such a model for intuitionistic hybrid
logic corresponds to a standard model for intuitionistic first-order logic with equality, where equality is
interpreted using the equivalence relations, cf. [28].
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of D, and ϕ is a formula.

M,n, w, d |= p iff d ∈ νw(p)
M,n, w, d |= i iff d = n(i)

M,n, w, d |= ϕ ∧ ψ iff M,n, w, d |= ϕ and M,n, w, d |= ψ
M,n, w, d |= ϕ ∨ ψ iff M,n, w, d |= ϕ or M,n, w, d |= ψ
M,n, w, d |= ϕ→ ψ iff for all v ≥ w,

M,n, v, d |= ϕ implies M,n, v, d |= ψ
M,n, w, d |= ⊥ iff falsum

M,n, w, d |= �ϕ iff for all v ≥ w, for all e ∈ D,
dRve implies M,n, v, e |= ϕ

M,n, w, d |= ♦ϕ iff for some e ∈ D, dRwe and M,n, w, e |= ϕ
M,n, w, d |= @iϕ iff M,n, w,n(i) |= ϕ
M,n, w, d |= Aϕ iff for all v ≥ w, for all e ∈ D, M,n, v, e |= ϕ
M,n, w, d |= Eϕ iff for some e ∈ D, M,n, w, e |= ϕ

A formula ϕ is said to be restricted intuitionistically valid if M,n, w, d |= ϕ holds for all
choices of M, n, w and d.

This semantics can be looked upon in two different ways: As indicated above, it can be
seen as a restricted variant of the semantics of [9, 7], but it can also be seen as a hybridised
version of a semantics from [15]. In the latter paper, the epistemic worlds are thought of
as experts and the epistemic partial order is thought of as a relation of dominance between
experts: One expert dominates another one if whatever the first expert says is true is also
said to be true by the second expert.

As pointed out in [15], the restricted intuitionistic semantics for modal logic is in a
certain sense equivalent to the many-valued semantics. This also holds in the hybrid-logical
case. To be precise: Given a restricted model M = (W,≤, D, {Rw}w∈W , {νw}w∈W ), cf.
Definition 2, and an assignment n, it can be shown that the ≤-closed subsets of W ordered
by ⊆ constitute a finite Heyting algebra H. Moreover, a many-valued model (D,R∗,n, ν∗)
over H can be defined by letting

• R∗(d, e) = {w ∈W | dRwe} and

• ν∗(d, p) = {w ∈W | d ∈ νw(p)}.

Given this machinery, the following theorem can be proved.

THEOREM 3. For any formula ϕ, it holds that ν∗(d, ϕ) = {w ∈W |M,n, w, d |= ϕ}.

Proof. A straightforward extension of the corresponding proof in [15]. �

Thus, the restricted intuitionistic semantics can be simulated by the many-valued seman-
tics. The above implies that if a formula is valid independently of the particular Heyting
algebra chosen, then it is restricted intuitionistically valid.

There is also a correspondence in the opposite direction, enabling the many-valued
semantics to be simulated by the restricted intuitionistic semantics. Given a finite Heyt-
ing algebra H and a many-valued model (D,R,n, ν) over H, a restricted model M =
(W,⊆,D, {R∗w}w∈W , {ν∗w}w∈W ) can be defined by letting

• W = {w | w is a proper prime filter in H},
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• dR∗we if and only if R(d, e) ∈ w, and

• d ∈ ν∗w(p) if and only if ν(d, p) ∈ w.

Details can be found in [15]. Given this, the following theorem can be proved.

THEOREM 4. For any formula ϕ, it holds that M,n, w, d |= ϕ if and only if ν(d, ϕ) ∈ w.

Proof. A straightforward extension of the proof in [15]. �

This theorem implies that if a formula is restricted intuitionistically valid, then it is also
valid in the many-valued semantics relative to any given finite Heyting algebra. This
follows from the observation that the set {>} is a proper prime filter in any Heyting
algebra.

Thus, in the above sense the restricted intuitionistic semantics for hybrid logic is equiv-
alent to the many-valued semantics. It is an interesting question whether there is such an
equivalence if instead of the restricted models one considers the more general models of
[9, 7].9 This question is left for future work.

Now, let us say that a hybrid-logical formula is intuitionistically valid if it is valid with
respect to the more general model notion of [7, p. 174].

THEOREM 5. Intuitionistic validity implies many-valued validity, and many-valued va-
lidity implies classical (two-valued) validity.

Proof. A restricted model can trivially can be considered a general model, so intuitionistic
validity implies restricted intuitionistic validity, and in the remark following THEOREM 4
we concluded that restricted intuitionistic validity implies many-valued validity. Moreover,
many-valued validity implies classical validity, which follows from the easily proven fact
that for any finite Heyting algebra H, if a formula is valid in the many-valued semantics
relative to H, then it is also valid in the many-valued semantics relative to {>,⊥}. �

So many-valued hybrid logics are logics between intuitionistic hybrid logic and classical
hybrid logic. A three-valued logic from [15] provides an example of a many-valued logic
strictly between intuitionistic and classical hybrid logic. In this logic, there is a truth-
value m distinct from ⊥ and > such that ⊥ ≤ m ≤ >. A classically valid formula
which is not valid in the three-valued logic is the formula ¬♦¬ϕ → �ϕ, where negation
¬ψ is an abbreviation of ψ → ⊥. A formula valid in the three-valued logic, but not
intuitionistically valid, is the formula �¬¬ϕ→ ¬¬�ϕ. This is a well-known example of a
modal-logical formula which is not intuitionistically valid, but which is only falsifiable by
a Kripke model having an infinite set of epistemic worlds.10 The formula is valid in the
three-valued semantics since the restricted intuitionistic semantics simulating the three-
valued semantics has a finite set of epistemic worlds (there are two proper prime filters in
the Heyting algebra {⊥,m,>} of truth-values).

Many-valued hybrid logics being “intermediate” logics between intuitionistic hybrid
logic and classical hybrid logic is similar to the fuzzy hybrid logics of [19] mentioned

9As indicated in the previous footnote, in the intuitionistic semantics of [9, 7], nominals are interpreted
using a family {∼w}w∈W of equivalence relations, not identity. This seems to imply that in an equivalent
many-valued semantics, nominals should be allowed to take on arbitrary truth-values, not just > and ⊥.

10The formula demonstrates that intuitionistic modal logic does not have the finite model property with
respect to Kripke models. The origin of the counterexample is [27].
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earlier. The logics of [19] actually constitute a linearly ordered set of logics between
intuitionistic hybrid logic and classical hybrid logic, that is, the sets of valid formulas in
the respective logics can be ordered as GH1 ⊃ GH2 ⊃ ... ⊃ WGH∞ ⊃ GH∞. The logic
GH1 is equivalent to classical two-valued hybrid logic, and the valid formulas of GH∞
includes intuitionistically valid formulas.

4 A tableau calculus for MVHL
In the following we will present a tableau calculus for MVHL. The calculus is parametrised
byH in the sense that for each choice of a finite Heyting algebraH, there is a corresponding
set of tableau rules for the MVHL-formulas over H. The basic notions for tableaus are
defined as usual (see, e.g., [13]). The formulas occurring in our tableaus will all be of the
form @i(a → ϕ) or @i(ϕ → a) prefixed either a T or an F , where i ∈ NOM and a ∈ H.
That is, the formulas occurring in our tableaus will be signed formulas of hybrid logic.
A signed formula of the form T@i(a → ϕ) is used to express that the formula a → ϕ is
true at i, that is, receives the value > at i. If ν(n(i), a → ϕ) = > then, by definition of
ν, a ⇒ ν(n(i), ϕ) = >. By definition of relative pseudo-complement, we then get that
> is the greatest element of H satisfying a ∧ > ≤ ν(n(i), ϕ). In other words, we simply
have a ≤ ν(n(i), ϕ). Thus, a formula T@i(a → ϕ) expressed that the truth-value of ϕ at
i is greater than or equal to a. Symmetrically, a signed formula of the form T@i(ϕ → a)
expresses that the truth-value of ϕ at i is less than or equal to a. Dually, a signed formula
of the form F@i(a → ϕ) (F@i(ϕ → a)) expresses that the truth-value of ϕ at i is not
greater than or equal to (less than or equal to) a.

The tableau rules are divided into four classes: Branch Closing Rules, Non-modal Rules,
Modal Rules and Hybrid Rules. The Branch Closing Rules and Non-modal Rules are direct
translations of Fitting’s corresponding rules for the pure modal case [16].

Branch Closing Rules

A tableau branch Θ is said to be closed if one of the following holds:

1. T@i(a→ b) ∈ Θ, for some a, b with a � b.

2. F@i(a→ b) ∈ Θ, for some a, b with a ≤ b, a 6= ⊥, and b 6= >.

3. F@i(⊥ → ϕ) ∈ Θ, for some formula ϕ.

4. F@i(ϕ→ >) ∈ Θ, for some formula ϕ.

5. T@i(b→ ϕ), F@i(a→ ϕ) ∈ Θ, for some a, b with a ≤ b.

6. T@j(a→ i), F@i(b→ j) ∈ Θ, for some a, b 6= ⊥.

7. T@i(i→ a) ∈ Θ, for some nominal i and truth-value a with a 6= >.

The last two conditions, 6 and 7, have no counterpart in Fitting’s system, but are
required in ours to deal with the semantics chosen for nominals. Note that if a formula
F@i(a → i) occurs on a branch then the branch can also be closed: In case a = ⊥,
condition 3 immediately implies closure. If a 6= ⊥, then using the reversal rule (F≥) (see
below), we can add a formula T@i(i → b) to the branch, where b is one of the maximal
members of H not above a (where b not above a means a 6≤ b). Because b is not above a,
b cannot be >. Thus condition 7 implies closure.
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T@i(a→ (ϕ ∧ ψ))
(T∧)1

T@i(a→ ϕ)
T@i(a→ ψ)

F@i(a→ (ϕ ∧ ψ))
(F∧)1

F@i(a→ ϕ) F@i(a→ ψ)

T@i((ϕ ∨ ψ)→ a)
(T∨)2

T@i(ϕ→ a)
T@i(ψ → a)

F@i((ϕ ∨ ψ)→ a)
(F∨)2

F@i(ϕ→ a) F@i(ψ → a)

F@i(a→ (ϕ→ ψ))
(F→)3

T@i(b1 → ϕ) · · · T@i(bn → ϕ)
F@i(b1 → ψ) · · · F@i(bn → ψ)

T@i(a→ (ϕ→ ψ))
(T→)4

F@i(b→ ϕ) T@i(b→ ψ)

1 Where a 6= ⊥.
2 Where a 6= >.
3 Where a 6= ⊥ and b1, ..., bn are all the members of H with bi ≤ a except ⊥.
4 Where a 6= ⊥ and b is any member of H with b ≤ a except ⊥.

Figure 3. Propositional Rules for MVHL.

Non-modal Rules

The tableau rules for the propositional connectives and the rules capturing the properties
of the Heyting algebra are given in Figure 3 and Figure 4, respectively. The rules of
Figure 4 are called reversal rules, as in [16].

Modal Rules

Our modal rules in Figure 5 differ from the ones of Fitting by heavily employing the hybrid
logical machinery.11 Some of the tableau rules contain formulas of the form T@i(a↔ ♦j).

11In [16], the modal tableau rules are so-called destructive rules (see [17] for details) which replaces an
entire branch of a tableau with a new branch. The modal rules given here are standard rules that simply
add new formulas to the end of existing branches (after possibly splitting these branch first). The rules

F@i(a→ ϕ)
(F≥)1,2

T@i(ϕ→ b1) · · · T@i(ϕ→ bn)

T@i(a→ ϕ)
(T≥)1,3

F@i(ϕ→ b)

F@i(ϕ→ a)
(F≤)1,4

T@i(b1 → ϕ) · · · T@i(bn → ϕ)

T@i(ϕ→ a)
(T≤)1,5

F@i(b→ ϕ)

1 ϕ is a formula other than a propositional constant from H.
2 Where b1, ..., bn are all maximal members of H with a � bi and a 6= ⊥.
3 Where b is any maximal member of H with a � b and a 6= ⊥.
4 Where b1, ..., bn are all minimal members of H with bi � a and a 6= >.
5 Where b is any minimal member of H with b � a and a 6= >.

Figure 4. Reversal Rules for MVHL.
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F@i(a→ �ϕ)
(F�)1

T@i(b1 ↔ ♦j) · · · T@i(bn ↔ ♦j)
F@j((a u b1)→ ϕ) · · · F@j((a u bn)→ ϕ)

T@i(a→ �ϕ) T@i(b→ ♦j)
(T�)

T@j((a u b)→ ϕ)

F@i(♦ϕ→ a)
(F♦)1,2

T@i(b1 ↔ ♦j) · · · T@i(bn ↔ ♦j)
F@j(ϕ→ (b1 ⇒ a)) · · · F@j(ϕ→ (bn ⇒ a))

T@i(♦ϕ→ a) T@i(b→ ♦j)
(T♦)2

T@j(ϕ→ (b⇒ a))

F@i(Eϕ→ a)
(FE)3

F@j(ϕ→ a)

T@i(Eϕ→ a)
(TE)4

T@j(ϕ→ a)

T@i(a→ Aϕ)
(TA)4

T@j(a→ ϕ)

F@i(a→ Aϕ)
(FA)3

F@j(a→ ϕ)

1 Where b1, . . . , bn are all the members of H except ⊥, and j is a nominal new to the branch.
2 Where the principal premise is a quasi-subformula of the root formula.
3 Where j is a nominal new to the branch.
4 Where j is a nominal already occurring on the branch.

Figure 5. Modal Rules for MVHL.
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T@i(@jϕ→ a)
(@L)

T@j(ϕ→ a)

T@i(a→ @jϕ)
(@R)

T@j(a→ ϕ)

F@iϕ T@i(a→ j)
(F-NOM)1,2

F@jϕ

T@iϕ T@i(a→ j)
(T-NOM)1,2

T@jϕ

T@k(♦i→ b) T@i(a→ j)
(BRIDGEL)1

T@k(♦j → b)

T@k(b→ ♦i) T@i(a→ j)
(BRIDGER)1

T@k(b→ ♦j)

T@i(> → j) T@j(> → k)
(TRANS)

T@i(> → k)

T@i(a→ j)
(NOM EQ)1

T@i(> → j)

1 Where a 6= ⊥.
2 Where the principal premise is a quasi-subformula of the root formula.

Figure 6. Hybrid Rules for MVHL.

Such formulas are simply used as a shorthand for the occurrence of both T@i(a→ ♦j) and
T@i(♦j → a). In each of the rules, the leftmost premise is called the principal premise.
In a signed formula of the form T@i(a → ϕ), T@i(ϕ → a), F@i(a → ϕ) or F@i(ϕ → a),
we call ϕ the body and i theprefix. If α and β are two signed formulas such that the body
of α is a subformula of the body of β, then α is said to be a quasi-subformula of β.

Hybrid Rules

The hybrid rules of Figure 6 are inspired by the standard rules from classical hybrid logic
[2, 5, 4]. Note that two versions of the standard (NOM) rule are needed: (F-NOM) and (T-
NOM). A further “NOM-like” rule, (NOM EQ), is needed due to the many-valued setting.
It ensures that nominals are > in exactly one world.

A tableau proof of a formula ϕ is a closed tableau with root F@i(> → ϕ), where i is
an arbitrary nominal not occurring in ϕ. The intuition is that the formula F@i(> → ϕ)
asserts that ϕ does not have the value >, and if the tableau closes, this assertion is refuted.
If i is a nominal occurring in the root formula of a tableau then i is called a root nominal
of the tableau. Other nominals occurring on the tableau are called non-root nominals.

5 Termination

The tableau calculus presented above is non-terminating. This is due to the rules for the
global modalities. An example of a non-terminating tableau is given in Figure 7. It is a
tableau in the calculus determined by the Heyting algebra {>,⊥}. Since the root formula
is F@i(> → E�p), it represents an attempt to give a tableau proof of the invalid formula
E�p.

of Figure 5 are hence not easily comparable to the rules of [16].
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1 F@i(> → E�p) root
2 T@i(E�p→ ⊥) (F≥) on 1
3 T@i(�p→ ⊥) (TE) on 2
4 F@i(> → �p) (T≤) on 3

X


5 T@i(> ↔ ♦j) (F�) on 4
6 F@j(> → p) (F�) on 4
7 T@j(�p→ ⊥) (TE) on 2
8 F@j(> → �p) (T≤) on 7

X[j/i, k/j]


9 T@j(> ↔ ♦k) (F�) on 7
10 F@k(> → p) (F�) on 7
11 T@k(�p→ ⊥) (TE) on 2
12 F@k(> → �p) (T≤) on 11
...

...

Figure 7. Non-termination in the presence of global modalities.

By the basic calculus we will understand the calculus with the rules for the global
modalities removed, that is, without (FE), (TE), (TA) and (FA). This gives a calculus
for the global modality-free fragment of many-valued hybrid logic. In the following we
will prove that the basic calculus is sound, complete and terminating. The termination
proof closely resembles the termination proof for the tableau calculus of basic hybrid logic
provided in [4]. An important feature of both calculi is that they are terminating even
without applying any loop-checks.

If α and β are signed formulas on a tableau branch, then β is said to be produced by
α if β is one of the conclusions of a rule application with principal premise α. The signed
formula β is said to be indirectly produced by α if there exists a sequence of signed formulas
α, α1, α2, . . . , αn, β in which each formula is produced by its predecessor. We now have
the following result.

LEMMA 6 (Quasi-subformula property). Let T be a tableau in the basic calculus. For
any signed formula α occurring on T , one of the following holds:

1. α is a quasi-subformula of the root formula of T .

2. α is a formula of one of the forms T@i(a → ♦j), T@i(♦j → a), F@i(a → ♦j) or
F@i(♦j → a), for which one of the following holds:

(a) j is a root nominal.

(b) α is indirectly produced by (F�) or (F♦) by a number of applications of the
reversal rules.

Proof. The proof goes by induction on the construction of T . In the base case, α is just
the root formula, which of course is of type 1. For the induction step, assume α has been
introduced by applying one of the tableau rules to premises of type 1 or 2. We need to
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show that then α is also of type 1 or 2. Consider first the case where α was introduced
by applying one of the propositional rules. These rules only take premises of type 1, and
thus also only produce consequences of type 1. Thus, in this case, α will be of type 1.
Now consider the case where α was produced by applying one of the reversal rules. The
reversal rules produce type 1 conclusions from type 1 premises, and type 2 conclusions
from type 2 premises. Thus, in this case α will also be of type 1 or 2. Now assume α was
produced by a modal rule. If it was the rule (T�), then the principal premise of the rule
application must have been of type 1 (as the principal premise does not have the form of
a type 2 formula). This implies that α is also of type 1. In case of the rule (T♦), the side
condition ensures that the principal premise, and thus the conclusion, is of type 1. If α is
introduced by one of the rules (F�) or (F♦), again the premise must be of type 1. These
rules produce two formulas, the first one is by definition of type 2b and the second must be
of type 1, since the premise is. Thus in this case α is either of type 1 or type 2b. Consider
finally the case where α was produced by one of the hybrid rules. If it was one of the rules
(TRANS), (NOM EQ), (@L) or (@R), then the premise of the rule application must have
been of type 1 (as the premises do not have the form of a type 2 formula). Thus also α
will be of type 1. If it was instead one of the rules (T-NOM) or (F-NOM), then the side
condition insures that the principal premise, and thus the conclusion α, is of type 1. If it
was either (BRIDGEL) or (BRIDGER), then the non-principal premise must have been of
type 1, implying that j is a root nominal. From this we can conclude that the conclusion
α must be of type 2a. This completes the proof. �

Note that in the basic calculus the only rules that can introduce new nominals to a tableau
are (F�) and (F♦).

DEFINITION 7. Let Θ be a branch of a tableau in the basic calculus. If a nominal j has
been introduced to the branch by applying either (F�) or (F♦) to a premise with prefix i,
then we say that j is generated by i on Θ, and write i ≺Θ j.

LEMMA 8. Let Θ be a branch of a tableau in the basic calculus. The graph G = (NΘ,≺Θ),
where NΘ is the set of nominals occurring on Θ, is a finite set of wellfounded, finitely
branching trees.

Proof. That G is wellfounded follows from the observation that if i ≺Θ j, then the first
occurrence of i on Θ is before the first occurrence of j. ThatG is finitely branching is shown
as follows. For any given nominal i the number of nominals j satisfying i ≺Θ j is bounded
by the number of applications of (F�) and (F♦) to premises of the form F@i(a → �ϕ)
and F@i(♦ϕ → a). So to prove that G is finitely branching, we only need to prove that
for any given i the number of such premises is finite. However, this follows immediately
from the fact that all such premises must be quasi-subformulas of the root formula (cf.
Lemma 6 and the condition on applications of (F♦)). What is left is to prove that G is a
finite set of trees. This follows from the fact that each nominal in NΘ can be generated
by at most one other nominal, and the fact that each nominal in NΘ must have one of
the finitely many root nominals of Θ as an ancestor. �

LEMMA 9. Let Θ be a branch of a basic tableau. Then Θ is infinite if and only if there
exists an infinite chain of nominals

i1 ≺Θ i2 ≺Θ i3 ≺Θ · · · .
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Proof. The ‘if’ direction is trivial. To prove the ‘only if’ direction, let Θ be any infinite
tableau branch. Θ must contain infinitely many distinct nominals, since it follows imme-
diately from Lemma 6 that a tableau with finitely many nominals can only contain finitely
many distinct formulas. This implies that the graph G = (NΘ,≺Θ) defined as in Lemma 8
must be infinite. Since by Lemma 8, G is a finite set of wellfounded, finitely branching
trees, G must then contain an infinite path (i1, i2, i3, . . . ). Thus we get an infinite chain
i1 ≺Θ i2 ≺Θ i3 ≺Θ · · · . �

DEFINITION 10. Let Θ be a branch of a tableau in the basic calculus, and let i be a
nominal occurring on Θ. We define mΘ(i) to be the maximal length of any formula with
prefix i occurring on Θ.

LEMMA 11 (Decreasing length). Let Θ be a branch of a basic tableau. If i ≺Θ j then
mΘ(i) > mΘ(j).

Proof. For any signed formula α, we will use |α| to denote the length of α. Assume i ≺Θ j.
Let α be a signed formula satisfying: 1) α has maximal length among the formulas on
Θ with prefix j; 2) α is the earliest occurring formula on Θ with this property. We need
to prove mΘ(i) > |α|. The formula α cannot have been introduced on Θ by applying
any of the propositional rules (Figure 3), since this would contradict maximality of α. It
cannot have been directly produced by any of the reversal rules (Figure 4) either, since
this would contradict the choice of α as the earliest possible on Θ of maximal length with
prefix j. By the same argument, α cannot have been directly produced by any of the rules
(BRIDGEL), (BRIDGER), (TRANS) or (NOM EQ). Assume now α has been introduced by
applying (@L) or (@R) to a premise of the form T@k(@jϕ → a) or T@k(a → @jϕ). By
Lemma 6, the premise must be a quasi-subformula of the root formula. Thus j must be a
root nominal. However, this is a contradiction, since by assumption j is generated by i,
and can thus not be a root nominal. Thus neither (@L) nor (@R) can have been the rule
producing α. Now assume that α has been produced by an application of either (F-NOM)
or (T-NOM). Since α has index j, the non-principal premise used in this rule application
must have the form T@i(a→ j). By Lemma 6, this premise must be a quasi-subformula
of the root formula, and thus j is again a root nominal, which is a contradiction. Thus
α can not have been produced by (F-NOM) or (T-NOM) either. Thus α must have been
introduced by one of the modal rules (F�), (T�), (F♦) or (T♦). Consider first the case
of the (F�) and (F♦) rules. If an instance of one of these produced α, then this instance
must have been applied to a premise β with prefix i, since we have assumed i ≺Θ j and
by Lemma 8 there cannot be an i′ 6= i satisfying i′ ≺Θ j. (Note that if α is of the form
T@j(b → ♦k) or T@j(♦k → b) produced by a formula F@j(a → �ϕ) or F@j(♦ϕ → a),
this would lead to a contradiction with the assumption that α has maximal length with
prefix j and is the earliest occurring formula with this property.) Since the rules in question
always produce conclusions that are shorter than their premises, β must be longer than
α. Since β is a formula with prefix i we then get:

mΘ(i) ≥ |β| > |α| , (6)

as required. Finally, consider the case where α has been produced by either (T�) or (T♦).
Then α has been produced by a rule instance with non-principal premise of the form
T@k(b→ ♦j). Since j is not a root nominal, this premise cannot be a quasi-subformula of
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the root formula. Neither can it be of the type 2a mentioned in Lemma 6. It must thus be
of type 2b, that is, it must be indirectly produced by formulas of the form T@k(bm → ♦j′)
or T@k(♦j′ → bm) obtained as conclusion by applications of (F�) or (F♦). Since only
reversal rules have been applied in the indirect production from these conclusions, we must
have j = j′ and thus k ≺Θ j. Since we already have i ≺Θ j we get k = i, using Lemma 8.
We can conclude that the non-principal premise of the rule instance producing α must
have the form T@i(b → ♦j), and thus the principal premise must be a formula β with
index i. Since the rules in question always produce conclusions that are shorter than their
premises, β must be longer than α. Since β is a formula with prefix i we then again get
the sequence of inequalities (6), as required. �

We can now finally prove termination of the basic calculus.

THEOREM 12 (Termination of the basic calculus). Any tableau in the basic calculus
is finite.

Proof. Assume there exists an infinite basic tableau. Then it must have an infinite branch
Θ. By Lemma 9, there exists an infinite chain

i1 ≺Θ i2 ≺Θ i3 ≺Θ · · · .

Now by Lemma 11 we have

mΘ(i1) > mΘ(i2) > mΘ(i3) > · · ·

which is a contradiction, since mΘ(i) is a non-negative number for any nominal i. �

In Figure 7, we provided an example of a non-terminating tableau construction in the
calculus including the global modalities. Call the branch of this figure Θ. From the
figure it is seen that we have j ≺Θ k and mΘ(j) = mΘ(k). This shows that the part
of the termination proof above that would fail in the presence of the global modalities
is Lemma 11. Using loop-checks, it would be possible to regain termination even in the
presence of the global modalities. This is fairly straightforward, using the method of
[4]. However, if we decided to include the global modalities and use loop-checks, the
completeness proof would become somewhat more involved.

6 Completeness of the basic calculus

In this section we prove completeness of the basic calculus. We will leave the proof of
soundness to the reader, as it is fairly straightforward and done in the standard way by
checking that each rule preserves satisfiability.

For completeness, let Θ be an open, saturated branch in the basic calculus (a saturated
branch is one to which no further rules apply). We will use this branch to construct a
model MΘ = 〈WΘ, RΘ,nΘ, νΘ〉. The set of worlds, WΘ is simply defined to be the set of
nominals occurring on Θ. The definition of the other elements of the model requires a bit
more work. First, fix a choice function σ that to any given set of nominals on Θ assigns
one of these nominals (that is, σ(N) ∈ N for any set N of nominals on Θ). We now define
the mapping nΘ in the following way:

nΘ(i) =

{
σ{j | T@i(> → j) ∈ Θ} if {j | T@i(> → j) ∈ Θ} 6= ∅
i otherwise.
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LEMMA 13. Let Θ be a saturated tableau branch. Then we have the following properties:

1. If T@iϕ ∈ Θ is a quasi-subformula of the root formula then T@nΘ(i)ϕ ∈ Θ. Similarly,
if F@iϕ ∈ Θ is a quasi-subformula of the root formula then F@nΘ(i)ϕ ∈ Θ.

2. If T@i(> → j) ∈ Θ then nΘ(i) = nΘ(j).

Proof. First we prove (i). Assume T@iϕ ∈ Θ is a quasi-subformula of the root formula.
If nΘ(i) = i then there is nothing to prove. So assume nΘ(i) = σ{j | T@i(> → j) ∈ Θ}.
Then T@i(> → nΘ(i)) ∈ Θ, and by applying (T-NOM) to premises T@iϕ and T@i(> →
nΘ(i)) we get T@nΘ(i)ϕ, as needed. The case of F@iϕ ∈ Θ is proved similarly, using
(F-NOM) instead of (T-NOM). We now prove (ii). Assume T@i(> → j) ∈ Θ. To prove
nΘ(i) = nΘ(j) it suffices to prove that for all nominals k, T@i(> → k) ∈ Θ⇔ T@j(> →
k) ∈ Θ. So let k be an arbitrary nominal. If T@i(> → k) ∈ Θ then we can apply (T-NOM)
(since T@i(> → k) is a quasi-subformula of the root formula by Lemma 6) to premises
T@i(> → k) and T@i(> → j) to obtain the conclusion T@j(> → k), as required. If
conversely T@j(> → k) ∈ Θ then we can apply (TRANS) to premises T@i(> → j) and
T@j(> → k) to obtain the conclusion T@i(> → k), as required. �

We now turn to the definition of νΘ. As in [16], we will not define a particular valuation
ν of the propositional variables occuring on the branch, but only show that any valuation
assigning values between a certain lower and upper bound (both given by the branch Θ)
will do. Let us first define these bounds.

DEFINITION 14. For a formula ϕ in the language of MVHL and a nominal i, define:

boundΘ,i(ϕ) =
l
{a | T@i(ϕ→ a) ∈ Θ}

boundΘ,i(ϕ) =
⊔
{a | T@i(a→ ϕ) ∈ Θ}

The intuition is that boundΘ,i(ϕ) is an upper bound for the truth-value of ϕ at the
world i decided by the branch Θ and boundΘ,i(ϕ) is a lower bound for this truth-value.
The following lemma corresponds to Lemma 6.4 of [16] and can be proved in the same
way. It ensures that we can actually always choose a value between the lower and the
upper bounds.

LEMMA 15. For all i on Θ and all formulas ϕ of MVHL,

boundΘ,i(ϕ) ≤ boundΘ,i(ϕ).

Later we will show that any valuation assigning a value to p between boundΘ,nΘ(i)(p)

and boundΘ,nΘ(i)(p) at the world nΘ(i) will do for the truth-value of p at this world. The
following lemma corresponds to Proposition 6.5 in [16] and is proven in the same way.

LEMMA 16. Let ϕ be any formula in MVHL over H other than a propositional constant
from H, and let a ∈ H. Then the following holds:

1. If T@i(a→ ϕ) ∈ Θ, then a ≤ boundΘ,i(ϕ).
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2. If T@i(ϕ→ a) ∈ Θ, then boundΘ,i(ϕ) ≤ a.

3. If F@i(a→ ϕ) ∈ Θ, then a � boundΘ,i(ϕ).

4. If F@i(ϕ→ a) ∈ Θ, then boundΘ,i(ϕ) � a.

The accessibility relation RΘ is defined as follows:

RΘ(i, j) =
⊔
{b | T@i(b→ ♦k) ∈ Θ,nΘ(k) = j}.

We have the following result, which we are going to use when proving completeness.

LEMMA 17. If T@i(c↔ ♦j) ∈ Θ then RΘ(i,nΘ(j)) = c.

Proof. We will proveRΘ(i,nΘ(j)) ≥ c andRΘ(i,nΘ(j)) ≤ c. First we proveRΘ(i,nΘ(j)) ≥
c. Since T@i(c↔ ♦j) ∈ Θ we have T@i(c→ ♦j) ∈ Θ, and thus

RΘ(i,nΘ(j)) =
⊔
{b | T@i(b→ ♦k) ∈ Θ,nΘ(k) = nΘ(j)}

≥
⊔
{b | T@i(b→ ♦j) ∈ Θ}

≥ c.

We now prove RΘ(i,nΘ(j)) ≤ c. By definition of nΘ we have either nΘ(j) = j or T@j(> →
nΘ(j)) ∈ Θ. If T@j(> → nΘ(j)) ∈ Θ then since T@i(♦j → c) ∈ Θ we get T@i(♦nΘ(j)→
c) ∈ Θ, using (BRIDGEL). If nΘ(j) = j we obviously also have T@i(♦nΘ(j) → c) ∈ Θ.
Applying item 2 of Lemma 16 we then get boundΘ,i(♦nΘ(j)) ≤ c. Thus

RΘ(i,nΘ(j)) =
⊔
{b | T@i(b→ ♦k) ∈ Θ,nΘ(k) = nΘ(j)}

≤
⊔
{b | T@i(b→ ♦nΘ(j)) ∈ Θ} (using (BRIDGER))

= boundΘ,i(♦nΘ(j))

≤ boundΘ,i(♦nΘ(j)) (using Lemma 15)

≤ c,

as required. �

The theorem we need for completeness may now be stated in the following way:

THEOREM 18. Let ν be a valuation such that for all propositional variables p and all
nominals i:

boundΘ,nΘ(i)(p) ≤ ν(nΘ(i), p) ≤ boundΘ,nΘ(i)(p).

Then for all quasi-subformulas ϕ of the root formula:

boundΘ,nΘ(i)(ϕ) ≤ ν(nΘ(i), ϕ) ≤ boundΘ,nΘ(i)(ϕ).
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Proof. By induction on ϕ. The base cases are where ϕ is a propositional variable p, a
value c ∈ H or a nominal j. The case where ϕ is p follows directly by the assumption. The
case where ϕ is c is easy: First note that for any truth-values a, b, if T@nΘ(i)(a→ b) ∈ Θ
then a ≤ b. This follows from closure rule 1 presented in Section 4. Thus we get:

boundΘ,nΘ(i)(c) =
⊔
{a | T@nΘ(i)(a→ c) ∈ Θ} ≤ c ≤

l
{a | T@nΘ(i)(c→ a) ∈ Θ}

= boundΘ,nΘ(i)(c).

Now assume ϕ is a nominal j. By definition of ν, ν(nΘ(i), j) is > if nΘ(j) = nΘ(i) and
⊥ otherwise. Assume first nΘ(j) = nΘ(i). Then ν(nΘ(i), j) is >, so trivially we have
boundΘ,nΘ(i)(j) ≤ ν(nΘ(i), j). We thus only need to prove ν(nΘ(i), j) ≤ boundΘ,nΘ(i)(j),

that is, we need to prove > = boundΘ,nΘ(i)(j) =
d
{a | T@nΘ(i)(j → a) ∈ Θ}. This

amounts to show that, for all a ∈ H, T@nΘ(i)(j → a) ∈ Θ implies a = >. Assume towards
a contradiction that, for some a, T@nΘ(i)(j → a) ∈ Θ and a 6= >. Since we have assumed
nΘ(j) = nΘ(i), by definition of nΘ we get that either j = nΘ(i) or T@j(> → nΘ(i)) ∈ Θ.
If j = nΘ(i) then we have that Θ contains a formula of the form T@nΘ(i)(nΘ(i) → a)
where a 6= >. This immediately contradicts closure rule 7. Assume instead T@j(> →
nΘ(i)) ∈ Θ. Since we also have T@nΘ(i)(j → a) ∈ Θ where a 6= >, we can apply (T≤)
to conclude that that Θ must contain a formula of the form F@nΘ(i)(t → j) where t is
some truth-value different from ⊥. Since Θ then contains both T@j(> → nΘ(i)) and
F@nΘ(i)(t → j) where t 6= ⊥, we get a contradiction by closure rule 6. Assume now

nΘ(j) 6= nΘ(i). Then ν(nΘ(i), j) = ⊥, and the inequality ν(nΘ(i), j) ≤ boundΘ,nΘ(i)(j)
thus holds trivially. To prove the other inequality, boundΘ,nΘ(i)(j) ≤ ν(nΘ(i), j), we need
to show that if T@nΘ(i)(a → j) ∈ Θ then a = ⊥. Thus assume toward a contradiction
that T@nΘ(i)(a→ j) ∈ Θ and a 6= ⊥. Then rule (NOM EQ) implies T@nΘ(i)(> → j) ∈ Θ.
Thus, by item 2 of Lemma 13, we get nΘ(i) = nΘ(j), contradicting the assumption.

Now for the induction step. The propositional cases, that is, where ϕ is a conjunction,
disjunction or implication, are all simple and thus omitted. Now consider the case where
ϕ is @jψ. Note that ν(nΘ(i),@jψ) = ν(nΘ(j), ψ) and by induction hypothesis,

boundΘ,nΘ(j)(ψ) ≤ ν(nΘ(j), ψ) ≤ boundΘ,nΘ(j)(ψ).

Now by the rule (@R), if T@nΘ(i)(a → @jψ) ∈ Θ then T@j(a → ψ) ∈ Θ, for all a ∈ H.
Thus we get that

boundΘ,nΘ(i)(@jψ) =
⊔
{a | T@nΘ(i)(a→ @jψ) ∈ Θ}

≤
⊔
{a | T@j(a→ ψ) ∈ Θ}

≤
⊔
{a | T@nΘ(j)(a→ ψ) ∈ Θ} (using 1 of Lemma 13)

= boundΘ,nΘ(j)(ψ)

≤ ν(nΘ(j), ψ)

= ν(nΘ(i),@jψ).

By a completely symmetric argument, using the rule (@L) instead of (@R), it can shown
that

ν(nΘ(i),@jψ) ≤ boundΘ,nΘ(i)(@jψ).
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This completes the @-case.
In case ϕ is ♦ψ, we need to prove that

boundΘ,nΘ(i)(♦ψ) ≤ ν(nΘ(i),♦ψ) ≤ boundΘ,nΘ(i)(♦ψ),

which by definition amounts to showing that⊔
{a | T@nΘ(i)(a→ ♦ψ) ∈ Θ} ≤

⊔
{RΘ(nΘ(i), j) u ν(j, ψ) | j ∈ Θ}

≤
l
{a | T@nΘ(i)(♦ψ → a) ∈ Θ}.

Proving the first inequality amounts to showing that if T@nΘ(i)(a→ ♦ψ) ∈ Θ then

a ≤
⊔
{RΘ(nΘ(i), j) u ν(j, ψ) | j ∈ Θ}.

Assume towards a contradiction that

T@nΘ(i)(a→ ♦ψ) ∈ Θ and a �
⊔
{RΘ(nΘ(i), j) u ν(j, ψ) | j ∈ Θ},

for some a ∈ H. Then choose a b ∈ H such that b ≥
⊔
{RΘ(nΘ(i), j) u ν(j, ψ) | j ∈

Θ} and b is a maximal member of H with a � b. Then by the reversal rule (T≥),
F@nΘ(i)(♦ψ → b) ∈ Θ. Then using the (F♦) rule there is a c ∈ H and a k ∈ Θ such
that T@nΘ(i)(c ↔ ♦k) ∈ Θ and F@k(ϕ → (c ⇒ b)) ∈ Θ. Since T@nΘ(i)(c ↔ ♦k) ∈
Θ, Lemma 17 implies RΘ(nΘ(i),nΘ(k)) = c. Applying 1 of Lemma 13 to the formula
F@k(ϕ → (c ⇒ b)) ∈ Θ we get F@nΘ(k)(ϕ → (c ⇒ b)) ∈ Θ. Now item 4 of Lemma 16
implies boundΘ,nΘ(k)(ψ) � c ⇒ b. This further implies that (boundΘ,nΘ(k)(ψ) u c) � b.
But by the induction hypothesis boundΘ,nΘ(k)(ψ) ≤ ν(nΘ(k), ψ) and thus

boundΘ,nΘ(k)(ψ) u c = boundΘ,nΘ(k)(ψ) uRΘ(nΘ(i),nΘ(k))

≤ ν(nΘ(k), ψ) uRΘ(nΘ(i),nΘ(k))

≤
⊔
{RΘ(nΘ(i),nΘ(j)) u ν(nΘ(j), ψ) | j ∈ Θ}

≤
⊔
{RΘ(nΘ(i), j) u ν(j, ψ) | j ∈ Θ} ≤ b,

which of course is a contradiction.
In order to prove that⊔

{RΘ(nΘ(i), j) u ν(j, ψ) | j ∈ Θ} ≤
l
{a | T@nΘ(i)(♦ψ → a) ∈ Θ},

we must show that if T@nΘ(i)(♦ψ → a) ∈ Θ, then RΘ(nΘ(i), j)uν(j, ψ) ≤ a for all j ∈ Θ.
Thus assume that T@nΘ(i)(♦ψ → a) ∈ Θ and that RΘ(nΘ(i), j) 6= ⊥ (or else it’s trivial)
for an arbitrary j ∈ Θ. By definition,

RΘ(nΘ(i), j) =
⊔
{b | T@nΘ(i)(b→ ♦k) ∈ Θ,nΘ(k) = j}.

Since R(nΘ(i), j) 6= ⊥, there exists b and k such that T@nΘ(i)(b→ ♦k) ∈ Θ and nΘ(k) = j.
Let such b and k be chosen arbitrarily. Then by the (T♦) rule, T@k(ψ → (b ⇒ a)) ∈ Θ.
Using 1 of Lemma 13 we get T@nΘ(k)(ψ → (b⇒ a)) ∈ Θ Now, by induction hypothesis,

ν(j, ψ) = ν(nΘ(k), ψ) ≤ boundΘ,nΘ(k)(ψ) ≤ b⇒ a.
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Since k and b were chosen arbitrarily with T@nΘ(i)(b→ ♦k) ∈ Θ and nΘ(k) = j, we get

ν(j, ψ) ≤
l
{b⇒ a | T@nΘ(i)(b→ ♦k) ∈ Θ,nΘ(k) = j}.

We now get

RΘ(nΘ(i), j) u ν(j, ψ) ≤
⊔
{b | T@nΘ(i)(b→ ♦k) ∈ Θ,nΘ(k) = j}

u
l
{b⇒ a | T@nΘ(i)(b→ ♦k) ∈ Θ,nΘ(k) = j}

≤
⊔
{b u (b⇒ a) | T@nΘ(i)(b→ ♦k) ∈ Θ,nΘ(k) = j}

≤
⊔
{a | T@nΘ(i)(b→ ♦k) ∈ Θ,nΘ(k) = j}

≤ a.

Because j ∈ Θ was arbitrary it follows that it holds for all j ∈ Θ and the proof of this
case is completed.

In case ϕ is �ψ, we need to prove that⊔
{a | T@nΘ(i)(a→ �ψ) ∈ Θ} ≤

l
{RΘ(nΘ(i), j)⇒ ν(j, ψ) | j ∈ Θ}

≤
l
{a | T@nΘ(i)(�ψ → a) ∈ Θ}.

To prove the first inequality we need to prove that if j ∈ Θ, then

a ≤ RΘ(nΘ(i), j)⇒ ν(j, ψ), (7)

for all a ∈ H with T@nΘ(i)(a → �ψ) ∈ Θ. So let a ∈ H be given arbitrarily such that
T@nΘ(i)(a→ �ψ) ∈ Θ. Note that (7) is equivalent to

a uRΘ(nΘ(i), j) ≤ ν(j, ψ).

By definition of RΘ we have

RΘ(nΘ(i), j) =
⊔
{b | T@nΘ(i)(b→ ♦k) ∈ Θ,nΘ(k) = j}.

Let b and k be chosen arbitrarily such that T@nΘ(i)(b → ♦k) ∈ Θ and nΘ(k) = j. Then
by the (T�)-rule it follows that T@k((a u b) → ψ) ∈ Θ. By 1 of Lemma 13 this implies
T@nΘ(k)((a u b) → ψ) ∈ Θ. Thus we get boundΘ,nΘ(k)(ψ) ≥ (a u b). Since nΘ(k) = j we
then get, using the induction hypothesis,

ν(j, ψ) = ν(nΘ(k), ψ) ≥ boundΘ,nΘ(k)(ψ) ≥ (a u b).

Since b and k were chosen arbitrarily with the properties T@nΘ(i)(b → ♦k) ∈ Θ and
nΘ(k) = j this implies

ν(j, ψ) ≥
⊔
{a u b | T@nΘ(i)(b→ ♦k) ∈ Θ,nΘ(k) = j}

= a u
⊔
{b | T@nΘ(i)(b→ ♦k) ∈ Θ,nΘ(k) = j}

= a uRΘ(nΘ(i), j).
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Since a was arbitrary this holds for all a ∈ H and the inequality have been proven.
To show the other inequality we need to show that

if T@nΘ(i)(�ψ → a) ∈ Θ then
l
{RΘ(nΘ(i), j)⇒ ν(j, ψ) | j ∈ Θ} ≤ a.

If a = > then this is trivial. Thus assume towards a contradiction that there is an a 6= >
with T@nΘ(i)(�ψ → a) ∈ Θ and

d
{RΘ(nΘ(i), j) ⇒ ν(j, ψ) | j ∈ Θ} � a. Now let

b ≤
d
{RΘ(nΘ(i), j) ⇒ ν(j, ψ) | j ∈ Θ} be a minimal member of H such that b � a.

Then by the reversal rule (T≤), F@nΘ(i)(b→ �ψ) ∈ Θ. Hence by the (F�)-rule there is a
nominal k ∈ Θ and a c ∈ H such that T@nΘ(i)(c↔ ♦k) ∈ Θ and F@k((b u c)→ ψ) ∈ Θ.
From the first it follows that RΘ(nΘ(i),nΘ(k)) = c, using Lemma 17. From the second
it follows that F@nΘ(k)((b u c) → ψ) ∈ Θ, using 1 of Lemma 13, and thus, by item 3 of

Lemma 16, b u c � boundΘ,nΘ(k)(ψ). But then from the induction hypothesis it follows
that

b u c � ν(nΘ(k), ψ) ≤ boundΘ,nΘ(k)(ψ).

Hence

b � c⇒ ν(nΘ(k), ψ) = RΘ(nΘ(i),nΘ(k))⇒ ν(nΘ(k), ψ).

But by the assumption on b we also have that

b ≤
l
{RΘ(nΘ(i), j)⇒ ν(j, ψ) | j ∈ Θ} ≤ RΘ(nΘ(i),nΘ(k))⇒ ν(nΘ(k), ψ),

and a contradiction have been reached. This concludes the �-case and thus the entire
proof of the theorem. �

Now completeness can easily be proven, in the following sense.

THEOREM 19. If there is no tableau proof of the formula ϕ, then there is a model M =
〈W,R,n, ν〉 and a w ∈W such that ν(w,ϕ) 6= >.

Proof. Assume that there is no tableau proof of the formula ϕ. Then there is a saturated
tableau with an open branch Θ starting with the formula F@i(> → ϕ) for a nominal i
not in ϕ. By item 1 of Lemma 13 it follows that also F@nΘ(i)(> → ϕ) ∈ Θ.

The model MΘ = 〈WΘ, RΘ,nΘ, νΘ〉 can now be constructed such that νΘ satisfies the
assumption of Theorem 18. Since F@nΘ(i)(> → ϕ) ∈ Θ it follows by item 3 Lemma 16

that > � boundΘ,nΘ(i)(ϕ). But by Theorem 18, since ϕ is a subformula of the body of
the root formula, we know that νΘ(nΘ(i), ϕ) ≤ boundΘ,nΘ(i)(ϕ), and it thus follows that
> � νΘ(nΘ(i), ϕ) and the proof is completed. �

7 Conclusion and future work

We have presented a many-valued semantics for hybrid logic, being a hybrid version of a
many-valued semantics for modal logic provided in [14, 15, 16]. We discussed alternative
definitions of the semantics for nominals and satisfaction operators in Section 2.3, and
concluded that the chosen semantics is the one that resemble classical hybrid logic most.
The exact relationship between our chosen logic and the five alternative logics of Section
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2.3, and whether they are truly different logics (i.e. whether they constitute different sets
of validities), is left to future work. To answer this question a notion of bisimulation would
be useful. In fact, bisimulation for the modal logic part of MVHL is discussed in the paper
[11] and could thus serve as a starting point for future research.

We presented a sound, complete, and terminating tableau system for the basic logic
without the global modalities, which gives rise to a decision procedure for the logic. Fur-
thermore, since our tableau calculus is terminating and provides finite counter models, it
also shows that the logic has the finite model property, by which we mean that for every
formula which is not valid, there is a finite model in which the formula does not have the
truth-value > in some world.

As mentioned in section 5, termination of the tableau system including the rules for
the global modalities can be obtained by using loop-checks, however this complicates the
completeness proof. Without loop-checks, the completeness proof is a simple extension of
the proof in section 6.
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