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‘‘Cooling by Heating’’—Demonstrating the Significance of the Longitudinal Specific Heat

Jon J. Papini, Jeppe C. Dyre, and Tage Christensen*

DNRF Centre ‘‘Glass and Time,’’ IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
(Received 27 June 2012; published 29 November 2012)

Heating a solid sphere at its surface induces mechanical stresses inside the sphere. If a finite amount of

heat is supplied, the stresses gradually disappear as temperature becomes homogeneous throughout the

sphere. We show that before this happens, there is a temporary lowering of pressure and density in the

interior of the sphere, inducing a transient lowering of the temperature here. For ordinary solids this effect

is small because cp ffi cV . For fluent liquids the effect is negligible because their dynamic shear modulus

vanishes. For a liquid at its glass transition, however, the effect is generally considerably larger than in

solids. This paper presents analytical solutions of the relevant coupled thermoviscoelastic equations. In

general, there is a difference between the isobaric specific heat cp measured at constant isotropic pressure

and the longitudinal specific heat cl pertaining to mechanical boundary conditions that confine the

associated expansion to be longitudinal. In the exact treatment of heat propagation, the heat-diffusion

constant contains cl rather than cp. We show that the key parameter controlling the magnitude of the

‘‘cooling-by-heating‘‘ effect is the relative difference between these two specific heats. For a typical glass-

forming liquid, when the temperature at the surface is increased by 1 K, a lowering of the temperature at

the sphere center of the order of 5 mK is expected if the experiment is performed at the glass transition.

The cooling-by-heating effect is confirmed by measurements on a glucose sphere at the glass transition.

DOI: 10.1103/PhysRevX.2.041015 Subject Areas: Condensed Matter Physics, Soft Matter

I. INTRODUCTION

Most solids and liquids expand when heated. Heat dif-
fusion is a notoriously slow process, and heating a solid
sample at its surface induces stresses in the sample that
only disappear when temperature gradually becomes ho-
mogeneous again throughout. Heating a lightly fluent fluid
that has a free surface (i.e., is free to expand), on the other
hand, makes the entire sample expand on the time scale set
by the sound velocity and sample dimensions. In this case,
there are no transient stresses beyond the acoustic time
scale. A liquid close to its glass transition provides an
interesting case in between the solid and fluid behavior.
Such a liquid behaves like a solid on time scales shorter
than the Maxwell-relaxation time �M ¼ �=G1, where �
is the shear viscosity and G1 the instantaneous shear
modulus. The Maxwell-relaxation time becomes longer
than 1 s when a liquid approaches its calorimetric glass
transition, implying that induced stresses survive for sec-
onds or more.

This paper discusses the ‘‘cooling-by-heating’’ effect
that arises when a sample is heated at a free surface. We
show that this effect, which is present in all hard solids with
a nonzero thermal-expansion coefficient, is generally mag-
nified considerably for glass-forming liquids close to their
glass-transition temperature Tg. This is because close to Tg

the liquid is solidlike by having a large, nonzero dynamic
shear modulus on short time scales and, at the same time,
is liquidlike by having a fairly large thermal-expansion
coefficient.
Returning to the case of a solid, what happens when heat

is supplied at the (free) surface of a spherical sample? The
outermost layers attempt to expand, obviously, but a priori
one may imagine two different possibilities: (1) The ex-
pansion presses inwards, resulting in an increase of the
pressure at the center of the sphere; or (2) the expansion
turns outwards, thus transmitting a negative pressure into
the sphere. Which of the two possibilities applies is an-
swered by the application of standard thermoelasticity
theory to the problem of calculating the stresses induced
by the heating. This is done in the present paper. It turns out
that case 2 applies—the sphere expands and pressure
decreases in the interior of the sphere. This induces an
adiabatic cooling inside the sphere. The phenomenon of
cooling caused by heating at the surface is referred to
below as the cooling-by-heating effect. The situation is
not self-evident since if the shear modulus is small there
is no change in pressure although there is an expansion.
This is the case for a material like rubber.
The solution of the coupled thermomechanical equa-

tions detailed in Sec. III shows that the cooling-by-heating
effect is proportional to the difference between the recip-
rocals of the isobaric specific heat cp and the longitudinal

specific heat cl (all specific heats are per unit volume); the
latter quantity is the heat needed to increase temperature by
one unit if the associated expansion is confined to be
longitudinal instead of isotropic [1,2]. The longitudinal
specific heat is related to the isochoric specific heat cV by
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cl ¼ MS

MT

cV; (1)

where MS and MT are the adiabatic and isothermal longi-
tudinal moduli, respectively. This is analogous to the stan-
dard thermodynamic relation cp ¼ ðKS=KTÞcV relating the

isobaric specific heat to the isochoric specific heats in
terms of the adiabatic KS and isothermal KT bulk moduli.
Since MS ¼ KS þ ð4=3ÞG and MT ¼ KT þ ð4=3ÞG,
where G is the shear modulus, one readily finds that cl is
in between cV and cp. As we shall see, the relative differ-

ence al ¼ ðcp � clÞ=cp controls the strength of the

cooling-by-heating effect, and we thus term this quantity
the ‘‘longitudinal thermomechanical coupling constant.’’
Combining the equations above al is found to be the
product of two factors [1],

al �
cp � cl

cp
¼ 4

3

G

MT

cp � cV
cp

: (2)

The first factor shows that the cooling-by-heating effect is
suppressed if the shear modulus is small compared to the
longitudinal modulus. The other factor, ‘‘the thermome-
chanical coupling,’’ a ¼ ðcp � cVÞ=cp is a dimensionless

measure of the coupling between thermal and mechanical
perturbations. It can be expressed in terms of the expan-
sivity, �p � ð1=VÞð@V=@TÞp, as follows:

a � cp � cV
cp

¼ T0�
2
pKT

cp
; (3)

where T0 is the temperature. It follows that the cooling-
by-heating effect is quadratic in the thermal-expansion
coefficient �p.

Since solids typically expand significantly less upon
heating than do liquids, the cooling-by-heating effect is
generally small in solids. As an example, for solid glucose
the thermal-expansion coefficient [3] is 1:1� 10�4 K�1

close to the glass transition whereas for liquid glucose it is
3:7� 10�4 K�1 in the same temperature region. This po-
tentially enhances the cooling-by-heating effect by a factor
of 11 in the very viscous liquid compared to the solid glass.
However, the change in cp [3] from 1:91� 106 JK�1 m�3

to 3:05� 106 JK�1 m�3 and in KT [4] from 10:75�
109 Pa to 6:49� 109 Pa reduces this to a factor of 8.
Here we have used a density of 1:52� 103 kgm�3 to
convert specific-heat data from mass to volume. It is,
however, not unusual for liquid expansivities to be near
10�3 K�1 for which we would expect an enhancement of
the thermomechanical coupling a ¼ ðcp � cVÞ=cp by a

factor of 30. The shear modulus of glucose in the glassy
state is G1 ¼ 3:1� 109 Pa as deduced from the shear-
compliance data of Meyer and Ferry [5].

The above relations all generalize to deal with cases of
complex, frequency-dependent (dynamic) specific heats
and moduli and expansivity, which are the relevant
quantities when studying glass-forming liquids. Near the

glass transition, the cooling-by-heating effect may be
studied on time scales of seconds. Here, upon increasing
the frequency, the factor G=MT in Eq. (2) increases while
at the same time the factor ðcp � cVÞ=cp decreases. The

enhancement of the cooling-by-heating effect thus criti-
cally depends on the relative time scales of the different
relaxation processes at the glass transition. In the case that
the shear modulus relaxes on a much faster time scale than
the volume processes, the cooling-by-heating effect will be
less pronounced. This situation is illustrated in Fig. 1. The
model describing the relaxation behavior between high-
and low-frequency values is described in Sec. IV.
The present work discusses the basis of cooling by

heating by referring to the equations of standard linear
thermoviscoelasticity. Section II introduces the general
framework of thermoelasticity and thermoviscoelasticity.
It is shown that the heat-diffusion constant involves the
longitudinal specific heat. Section III discusses the case
when a finite amount of heat is fed into a sample at its
surface at t ¼ 0, as well as the experimentally more easily
realized case when temperature is suddenly increased at
the surface. That section also presents analytical calcula-
tions of the ordinary solid case for which the constitutive
properties do not undergo relaxation. Section IV gives
calculations of a model glass-forming liquid, i.e., the
case when the constitutive properties are frequency depen-
dent. We estimate the effect to be of the order of 5 mK at

log10(frequency Hz)

4G
3MT

a

al

al

log10(frequency Hz)
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FIG. 1. Sketch of overlapping relaxations (absolute values) of
4G=ð3MTÞ (green line) and the thermomechanical coupling
a ¼ T�2

pKT=cp (red line). The longitudinal coupling constant

al ¼ ðcl � cpÞ=cp (black line) is the product of those two

frequency-dependent functions. Near the crossing of the two
curves, the difference between cl and cp is generally largest.

This determines the time scale of experiments on glass-forming
liquids, where the cooling-by-heating effect is particularly large.
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the center of a sphere for a temperature increase at the
sphere surface of 1 K. Section V confirms this prediction
with measurements on a glucose sphere. Sections VI and
VII briefly discuss and summarize the paper.

II. THERMOELASTICITYAND HEAT DIFFUSION

Thermoelasticity [6–10] deals with problems where dis-
placement field uðr; tÞ and temperature field Tðr; tÞ in a
material couple. It is a linear theory of small deformations

given in terms of the strain tensor �ij¼1
2ð@ui@xj

þ@uj
@xi
Þ and

small temperature increments �T ¼ T � T0 relative to a
reference temperature T0. The material properties of a
thermoelastic medium are given by a set of linear constit-
utive relations that express stress �ij and increments in

entropy density �s in terms of �ij and �T. The hydrostatic

pressure is related to the trace of the stress tensor p ¼
�1=3

P
i�ii and the relative compression is the trace of the

strain tensor � ¼ P
i�ii ¼ r � u. The following constitu-

tive relations [11] define the shear modulus G, the isother-
mal bulk modulus KT , the isochoric specific heat cV , and
the isochoric pressure coefficient �V :

�ij þ p�ij ¼ 2Gð�ij � 1
3��ijÞ; (4)

p ¼ �KT�þ �V�T; (5)

�s ¼ �V�þ cV
T0

�T: (6)

We follow Biot [12] in assigning the symbol � to the
thermodynamic pressure coefficient,

�V ¼
�
@p

@T

�
V
¼
�
@S

@V

�
T
¼ �pKT: (7)

The material is furthermore characterized by its heat con-
ductivity �, which enters Fourier’s law for the entropy
current density js:

j s ¼ � �

T0

rT: (8)

The interest in thermoelastic problems has, since
Duhamel [13], mostly been focused on the calculation of
thermal stresses deriving from an evolving temperature
field. In the classical thermoelasticity theory the displace-
ment and temperature fields are partially decoupled [6,7].
This comes from assuming that the development of the
temperature can be found independently of the stresses by
the conventional heat-diffusion equation:

@�T

@t
¼ Dr2�T: (9)

Here D is a heat-diffusion constant. After solving this
equation the displacement field can be found from the
quasistatic stress equilibrium equation:

MTrðr � uÞ �Gr� ðr� uÞ � �Vr�T ¼ 0: (10)

This approximate theory is referred to as the theory
of thermal stresses [6]. According to many authors
[6,8–10], the correct treatment appeared remarkably
late in the development of thermoelastic theory with
Biot’s paper [12] in 1956. Lessen [14] considered similar
problems the same year. The heat-diffusion equation,
Eq. (9), is replaced by

cV
@�T

@t
þ T0�V

@r � u
@t

¼ �r2�T; (11)

which follows from entropy conservation,

@s
@t

¼ �r � js; (12)

when this is combined with Eqs. (6) and (8). Entropy
conservation may seem strange at first sight, but the en-
tropy production per volume associated with heat conduc-
tion is �js � 1

T0
rT ¼ �

T2
0

ðrTÞ2, i.e., a second-order effect

disappearing in a linearized theory.
In most cases the ordinary, decoupled heat-diffusion

equation is a good approximation in the manner it is used
in the theory of thermal stresses. However, this approxi-
mate theory is not able to describe the phenomenon of
cooling by heating, which is the theme of this paper. It
should be noted that the heat-diffusion equation, with the
diffusion constant containing the isobaric specific heat cp,

is exact for the nonviscous liquid state or soft matter with
G ¼ 0, if part of the boundary (with normal vector n) is
free to expand, i.e.,

P
j�ijnj ¼ 0. The proof runs as fol-

lows: The assumption G=MT ¼ 0 simplifies Eq. (10) to

rðKTr � u� �V�TÞ ¼ 0: (13)

However, the term under the gradient is according to
Eq. (5), nothing but minus the pressure increment. Thus,
we conclude that this pressure increment is uniform
in space and only depends on time. Moreover, Eq. (4)
ensures—when G ¼ 0—that all diagonal elements of the
stress tensor are identical and equal to minus this pressure
increment. If the normal component

P
j�ijnj is zero on

part of the boundary, it follows that the pressure is also zero
there, but then it is zero throughout the body. Equation (5)
then reduces tor � u ¼ �p�T. Inserting this in the entropy

equation, Eq. (11), one arrives at the ordinary decoupled
heat-diffusion equation with Dp ¼ �=cp,

@�T

@t
¼ Dpr2�T; (14)

when noticing that cp ¼ cV þ T0
�2
V

KT
¼ cV þ T0�

2
pKT .

As we have seen, the temperature field, in general, does
not exactly obey a diffusion equation. It does so when cp ¼
cV (, �V ¼ 0) or for certain boundary conditions when
G ¼ 0. However, as emphasized by Biot [12], the entropy
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density in fact does fulfill a diffusion equation and, more-
over, with a diffusion constant containing the ubiquitous
longitudinal specific heat: Applying the divergence opera-
tor to the inertia-free stress equilibrium equation, Eq. (10),
gives

r2� ¼ �V

MT

r2�T: (15)

Applying the Laplacian to the constitutive relation, (6),
yields

r2s ¼
�
�2

V

MT

þ cV
T0

�
r2�T: (16)

Fourier’s law and the entropy conservation equation, (12),
gives

@s
@t

¼ �

T0

r2�T; (17)

and thus

@s
@t

¼ �

cl
r2s; (18)

with cl ¼ cV þ T0
�2
V

MT
being the longitudinal specific heat

[1,2].
Note that this result is limited to the inertia-free cases. If

one wishes to study coupled mechanical and thermal

waves, the inertia-term 	 @2

@t2
u must be added on the right

side of Eq. (10). Solutions of the equations in this case have
been studied extensively [6] also in the spherically sym-
metric situation. Note, however, that acoustic wavelengths
are much longer than thermal wavelengths. Thus, for a
sample of a certain size there is an interesting time regime
where acoustic waves have settled, but thermal diffusion
has barely begun. Take as an example a sphere of radius
1 cm. For a typical sound velocity of 103 m=s and heat-
diffusion constant of 10�7 m2=s, the sound traveling time
is 10 
s while the diffusion time is 1 ks. It is within this
time regime that we will find the cooling-by-heating phe-
nomenon. Although the solution restricted to the inertia-
free case that we present below is, in principle, contained
in the coupled acoustic-thermal wave solutions including
inertia, the phenomenon is obscured by the complicated
structure of these solutions and seems not to have been
recognized.

The thermoelastic theory that was originally developed
for elastic solids without relaxation is easily extended to a
thermoviscoelastic theory taking relaxation of all the con-
stitutive parameters into account, as it is necessary for
relaxing liquids near the glass transition. The most straight-
forward way of generalizing is to interpret the equations in
the frequency domain, allowing all the constitutive pa-
rameters to be complex functions of the angular frequency
!. The cases we study in the frequency domain cover thus
both solids and thermoviscoelastic liquids, but can only be
transformed analytically into the time domain for solids.

For relaxing liquids, one must do the transformation
numerically.

III. ANALYTICAL SOLUTIONS OF THE
SPHERE-HEATING PROBLEM

A. The case when the heat flow is controlled
at a mechanically free boundary

This subsection presents the analytical solution in the
frequency domain to the situation when a sphere of a
general viscoelastic material is subjected to a periodic
heat input at the surface. The solution shows the tempera-
ture at the center varying, at high frequencies, 180� out of
phase with the heat oscillation at the surface, indicating the
cooling-by-heating effect. In order to give a more lucid and
transparent understanding of the phenomenon, we translate
the solution to the time domain. This can be done analyti-
cally by an inverse Laplace transformation if there is no
frequency dependence of the constitutive properties. That
is, we calculate the temperature and stress profile through-
out the sphere following a stepped heat input at the surface
at time zero.
Consider the case when a periodically varying heat

�QðtÞ ¼ Ref�Qei!tg is supplied at the surface of a sphere
of radius R. The surface is assumed to be mechanically
non-clamped, i.e., the sphere is free to expand. We wish to
calculate how the periodically varying temperature and
displacement fields vary throughout the sphere, i.e., to
calculate the complex frequency-dependent amplitudes of
temperature, �Tðr;!Þ, and radial displacement field,
uðr;!Þ. From these quantities the stress components
�rrðr; !Þ, etc., may be calculated.
Denoting the position vector by r and the

complex frequency-dependent radial displacement field
by uðr;!Þ ¼ uðr;!Þr=r, the coupled thermoelastic equa-
tions, (10) and (11), become

@

@r

�
MTr

�2 @

@r
ðr2uÞ � �V�T

�
¼ 0; (19)

ði!ÞcV�T þ ði!ÞT0�Vr
�2 @

@r
ðr2uÞ ¼ �r�2 @

@r

�
r2

@

@r
�T

�
:

(20)

The four boundary conditions are
(1) no displacement at the center: uð0; !Þ ¼ 0;
(2) no temperature gradient at the center:

@�T
@r ð0; !Þ ¼ 0;

(3) free surface, i.e., no radial stresses at the surface:
�rrðR;!Þ ¼ 0;

(4) heat supply boundary condition at the surface:

� @�T
@r ðR;!Þ ¼ i! �Q

4�R2 .

Denote the volume of the sphere by V0 ¼ 4
3�R

3

and define the complex frequency-dependent thermal

wave vector by k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i!clð!Þ=�p

. Furthermore, define the
functions,
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f1ðr=R; k2R2Þ ¼ 1

3

sinhðkrÞ
kr

ðkRÞ3
kR coshðkRÞ � sinhðkRÞ ;

(21)

f2ðr=R; k2R2Þ ¼
�
R

r

�
3 ðkrÞ coshðkrÞ � sinhðkrÞ
ðkRÞ coshðkRÞ � sinhðkRÞ :

Introduce the characteristic heat-diffusion time

� ¼ clð!Þ
�

R2 (23)

so that k2R2 ¼ i!�. The solutions to Eqs. (19) and (20) are

�Tðr; !Þ ¼ 1

V0cl
f�al þ f1ðr=R; i!�Þg�Q; (24)

uðr;!Þ ¼ 1

3

�p

V0cp
r

�
4

3

G

MS

þ KS

MS

f2ðr=R; i!�Þ
�
�Q: (25)

These solutions were found by the transfer-matrix
approach (see Ref. [2] and Appendix A 1), and can
be verified by insertion, noticing that f1ð	; sÞ ¼
1

3	2
@
@	 ½	3f2ð	; sÞ�, @

@	 f1ð	; sÞ ¼ 1
3	sf2ð	; sÞ, and 1

	2 �
@
@	 	

2 @
@	 f1ð	; sÞ ¼ sf1ð	; sÞ.

Consider the low- and high-frequency limits of these
expressions. The functions f1 and f2 both have the limits, 1
for ! ! 0 and 0 for ! ! 1. Thus, as expected, �T !
�Q=ðV0cpÞ in the low-frequency limit when heat has

had time to distribute throughout the sphere. In the
high-frequency limit, ! ! 1, the temperature amplitude
becomes

�TðrÞ ! � 1

V0cl
al�Q ¼ � 1

V0

�
1

cl
� 1

cp

�
�Q: (26)

If we, for a moment, consider the no-relaxing case where
the specific heats are real, we see that the temperature
amplitude is in counterphase with the heat amplitude since
cl < cp. For a propagating thermal wave, it would not be

surprising that temperatures at points of some distance
apart—e.g., at a half wavelength—had opposite phases.
However, Eq. (26) holds throughout the sphere and is not
associated with the diffusive thermal wave. This will be
even more clear when we consider the response to a
stepped heat input later on.

We see that the longitudinal coupling constant al con-
trols the magnitude of the cooling-by-heating effect. The
ratio of the amplitudes of the temperature at the center and
the heat input at the surface is shown in Fig. 2. The
phenomenon, cooling by heating, is seen to occur at high
frequencies, albeit this is more conspicuous in the time
domain.

For the displacement field, we find in the low-frequency
limit the natural result,

uðrÞ ! 1

3
�p

�Q

V0cp
r for ! ! 0; (27)

determined by the final temperature rise �Q
V0cp

and the linear

thermal expansion 1
3�p. However, at high frequencies we

find

uðrÞ ! 1

3
�p

�Q

V0cp

4G

3MS

r for ! ! 1: (28)

Notice that this displacement, which is responsible for the
cooling-by-heating effect, is only present when G � 0.
In the spherically symmetric case there are only two

different components of the stress tensor, �rr and ��� ¼
�. It follows from Eqs. (4) and (5) and the fact that

�rr ¼ @u
@r and ��� ¼ � ¼ u

r that �rr ¼ ðKT þ 4
3GÞ�

@u
@r þ 2ðKT � 2

3GÞ ur � �V�T, which by Eqs. (24) and (25)

becomes

�rrðr; !Þ ¼ 4

3

G

MT

�V

V0cl
f1� f2ðr=R; i!�Þg�Q: (29)

Likewise, ��� ¼ ðKT � 2
3GÞ @u@r þ 2ðKT þ 1

3GÞ ur � �V�T,

which becomes

���ðr; !Þ ¼ 4

3

G

MT

�V

V0cl

�
1� 3

2
f1ðr=R; i!�Þ

þ 1

2
f2ðr=R; i!�Þ

�
�Q: (30)

Thus, at high frequencies there is an isotropic, uniform
tensile stress in the interior of the sphere of the magnitude:

�rr; ���; � ! 4

3

G

MT

�V

V0cl
�Q for ! ! 1: (31)

On the other hand, all stresses vanish for ! ! 0
(as expected).

c p
V

0
(

T
Q

)

log10(ωτ )

al = 0

al = 0.091

0 1 2 3

-0.5

0

0.5

1

FIG. 2. The real part of the ratio between the complex ampli-
tudes of temperature at the center and the heat supplied at the
surface scaled with the isobaric heat capacity. At high frequen-
cies the limit becomes the negative value �al=ð1� alÞ ¼
1� cp=cl.
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In order to gain insight into the cooling-by-heating effect
and show the significance of the longitudinal coupling
constant al, we transform Eqs. (24), (29), and (30) into
the time domain, but only for a solid, i.e., in the case when
all constitutive properties are frequency independent.
If a delta-function heat flux is applied at t ¼ 0, the heat
supplied at the surface is a Heaviside step function,
�QðR; tÞ ¼ �Q0HðtÞ; in this case, calculating the inverse
Laplace-Stieltjes transform leads to the following expres-
sions for the temperature and stresses as functions of time
after t ¼ 0 (see Appendix A 2):

�Tðr; tÞ ¼ 1

clV0

f�al þ F1ðr=R; t=�Þg�Q0;

�rrðr; tÞ ¼ 4

3

G

MT

�V

V0cl
f1� F2ðr=R; t=�Þg�Q0;

���ðr; tÞ ¼ 4

3

G

MT

�V

V0cl

�
1� 3

2
F1ðr=R; t=�Þ

þ 1

2
F2ðr=R; t=�Þ

�
�Q0; (34)

where

F1ðr=R; t=�Þ ¼ 1þ 2

3

R

r

X1
n¼1

sinðrR xnÞ
sinðxnÞ e�x2nt=�; (35)

F2ðr=R; t=�Þ ¼ 1þ 2

�
R

r

�
3

� X1
n¼1

sinðrR xnÞ � r
R xn cosðrR xnÞ

x2n sinðxnÞ
e�x2nt=�:

(36)

Here x1 < x2 < . . . are the positive roots of the tran-
scendental equation x ¼ tanðxÞ. Note that F1 and F2 ! 0
for t ! 0 and F1 and F2 ! 1 for t ! 1. When al ¼ 0,
there is no cooling-by-heating effect according to Eq. (32).
Furthermore, al ¼ 0 implies either G ¼ 0 or �V ¼ 0, and
there is no immediate expansion and no induced stresses.

When al � 0, the situation is quite different.
In Fig. 3 we plot the scaled temperature change
ðcpV0=�QÞ�Tðt=�; r=RÞ for several radii r=R as given in

Eq. (32). The longitudinal coupling constant is here fixed
to al ¼ 0:091 and time is given in units of the character-
istic heat-diffusion time �. The figure clearly shows the
cooling-by-heating effect. Since a finite amount of heat
was added at the surface at t ¼ 0, the surface temperature
initially diverges. The interior of the sphere, even close to
the surface, instantaneously cools to a uniform tempera-
ture. The expansion of the surface is immediately felt in the
interior, and since no heat has yet arrived by diffusion, it
cools adiabatically. This initial response is followed by an
evolution in time where the temperatures of the different
parts of the sphere converge and eventually equilibrate.

In order to understand better the physics of cooling by
heating, we consider the components of the stresses given
by Eqs. (33) and (34), respectively. In Fig. 4 the �rr

component of the stress tensor is plotted scaled with the

initial uniform interior stress �0 ¼ 4
3

G
MT

�V

V0cl
�Q0. First, we

note that the boundary condition �rrðR; tÞ ¼ 0 is fulfilled.
As the surface receives heat and expands, an immediate
traction is felt in the interior of the sphere. �rr is positive,
seeking to stretch a volume element in the radial direction
under the entire evolution to thermal equilibrium.
The scaled stress component ���ðr; tÞ is shown in Fig. 5.

One notices an immediate, uniform increase of this stress
component throughout the sphere of the same size as �rr.
The initial stress is thus isotropic. Note that ��� shifts sign
during the thermal equilibration process, in contrast to �rr.
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FIG. 3. The temperature of the sphere as a function of time for
different radii normalized to the final temperature �Teq ¼
�Q0=ðV0cpÞ. After the addition of heat at the surface, the

temperature drops instantaneously throughout the sphere, show-
ing adiabatic cooling. The time scale is given by the character-
istic heat-diffusion time, � ¼ R2cl=�. The longitudinal coupling
constant is chosen to be al ¼ 0:091.
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FIG. 4. The rr component of the stress tensor, 1� F2, as a
function of time for a number of radii scaled with the initial
stress, �0 ¼ 4

3
G
MT

�V

V0cl
�Q0. After the addition of heat at the

surface, �rr immediately increases throughout the sphere. The
stress is released as heat diffuses toward the center from the
surface.
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This can be understood in a physical picture: Consider the
outer region that has been reached by the inflowing heat at
a certain point in time. If that region were free it would
expand, but it is kept in place by the inner unheated region
that has not expanded thermally yet. This creates a negative
stress on surfaces with a normal vector at right angles to the
radius vector.

We conclude this section by a simple result. If one
compares the instantaneous temperature drop, Eq. (26),
and the instantaneous stress increase, Eq. (31), one finds
that the ratio is given by the adiabatic temperature-pressure
coefficient:

�Tðr < R; t ¼ 0Þ
�pðr < R; t ¼ 0Þ ¼ 1=�S ¼

�
@T

@p

�
S
: (37)

B. The case when temperature is controlled
at a mechanically free boundary

The above studied case with heat-input control showed a
rather simple cooling-by-heating behavior at short times or
high frequencies. We now consider the case of controlling
the temperature on the outer surface instead. There is still
an effect, but it is not instantaneous. We only calculate the
temperature at the center of the sphere. The surface is
again mechanically free. Again, using the transfer-matrix
technique in the frequency domain, one finds that the
temperature amplitude �Tð0; sÞ at the center is related to
the temperature amplitude �TðR; sÞ at the surface by
�Tð0; sÞ ¼ �ðsÞ�TðR; sÞ, where

�ðsÞ ¼
�
1� x3 � x2 sinhðxÞ

3al½x coshðxÞ � sinhðxÞ� � x2 sinhðxÞ
�
:

(38)

Here x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s�ð!Þp

, s ¼ i!. The characteristic diffusion
time �ð!Þ [Eq. (23)] and thermomechanical coupling con-
stant alð!Þ [Eq. (2)] are, in the general thermoviscoelastic
case, complex and frequency dependent and the tempera-
ture response can only be converted to the time domain
numerically.
In order to calculate the temperature signal as a function

of time, we again limit ourselves to the purely thermoelas-
tic case, i.e., the case of a solid where � and al are real and
frequency independent. For a Heaviside temperature step
at the surface of the sphere, �TðR; tÞ ¼ �THðtÞ, the tem-
perature at the sphere center is calculated via an inverse
Laplace-Stieltjes transform of �ðsÞ,

�Tð0; tÞ ¼ �T

�
1� X1

k¼0

Rk exp

�
�y2k

t

�

��
; (39)

where the residues are given by

Rk ¼ 2ð1� cosykÞ þ yk sinyk=ð3alÞ
ð1� 3alÞ cosyk þ ykð2� 3alÞ sinyk : (40)

Here the yk’s denote the positive roots of the transcendental
equation:

cotðyÞ ¼ 1

y
� y

3al
: (41)

In Fig. 6 we plot the solution, Eq. (39), for various values
for the coupling constant al. Time is given in units of the
characteristic diffusion time and �T ¼ 1 K. We see that
the cooling-by-heating effect is present also when a step in
temperature (instead of heat) is applied to the surface.
However, now the effect is not instantaneous but evolves
gradually, reflecting the gradual heat diffusion at the sur-
face mediated to the center by the stress field. Figure 6
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FIG. 5. The �� component of the stress tensor, 1� 3
2F2 þ

1
2F1, as a function of time scaled with the initial stress �0.

There is an initial adiabatic positive step up in ��� throughout
the sphere. The regions that have been reached by the incoming
diffusive heat at a certain point in time experience a negative
��-stress component since the inner unheated regions pull the
outer heated regions inwards.
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FIG. 6. The temperature at the center of the sphere as a
function of time. After the temperature at the surface is raised,
the temperature at the center of the sphere initially decreases.
This only happens when cl � cp, i.e., when the longitudinal

coupling al is not negligible. The temperature step at the
boundary is �T ¼ 1 K, and the time scale is given by the
characteristic diffusion time, � ¼ R2cl=�.
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furthermore shows that it is not enough to have a thermo-
mechanical coupling (�p � 0) for the phenomenon to be

present—only when cl � cp is there a cooling-by-heating

effect. The next section studies the general, thermoviscoe-
lastic case of the frequency dependence of the response
functions, which describes supercooled liquids.

IV. THE THERMOVISCOELASTIC CASE

The above time-domain results apply for a thermoelastic
solid only, whereas the frequency-domain results are gen-
eral. The thermoelastic examples handled so far only in-
volved frequency-independent constitutive parameters,
corresponding to the high-frequency (low-temperature)
limiting values of the curves sketched in Fig. 1.
However, Fig. 1 indicates that the value of the coupling
constant al is larger at lower frequencies (higher tempera-
ture), thus suggesting that the effect of cooling by heating
may be even larger in the very viscous liquid or simply at
the glass transition. We investigate this issue in the time
domain in this section. In the thermoelastic case the in-
version of the problem to the time domain could be made
analytically. This is not possible in the thermoviscoelastic
case where the constitutive parameters are complex
frequency-dependent functions.

In order to investigate the effect of going from solid to
liquid we resort to numerical methods. Specifically, we
transform �ðsÞ of Eq. (38) into the time domain, account-
ing for the frequency dependence of the constitutive pa-
rameters via � and al. To do this we have to introduce a
model of the constitutive parameters that enters via � and
al. It is common in rheology to illustrate models like the
Maxwell model by rheological networks or even their
electrical analogue. We use this approach to model the
thermoviscoelastic behavior. The purpose of the model is
to interpolate between the thermodynamic coefficients at
high frequencies, �T;1,cp;1, �p;1, and at low frequencies

�T;0, cp;0, �p;0. Network modeling assures internal consis-

tency and agreement with the rules of linear irreversible
thermodynamics. A one-parameter relaxation model im-
plies that the Prigogine-Defay ratio is unity, which is
not the case for glucose. Rather, with Tg ¼ 300 K and

�cp ¼ 1:14� 106 JK�1 m�3, ��T ¼ 6:1� 10�11 Pa�1

and ��p ¼ 2:6� 10�4 K�1 one finds

� ¼ �cp��T

Tgð��pÞ2
¼ 3:4: (42)

We are thus forced to consider a model with two relaxation
elements that cannot be lumped into one. The model of
Fig. 7 is suited for this purpose. In order to still make
it simple, the two relaxation elements are taken to be
Debye-like. The model has a simple mathematical formu-
lation in the frequency domain. We change the independent
variables compared to Eqs. (5) and (6) and consider the
complex amplitudes �T and �p to be the controlled stimuli

creating a linear response in the amplitudes �S and �� of
the entropy density and dilation:

�S

��

 !
¼ �pð!Þ �pð!Þ

�pð!Þ �Tð!Þ

 !
� �T

��p

 !
: (43)

Here �p ¼ cp=T0, �p ¼ �V=KT , �p ¼ �V þ �2
V=KT , and

�T ¼ 1=KT . In the model, the three measurable quantities,
the isobaric specific heat, the isobaric expansivity, and the
isothermal compressibility are related to the elements D,
C, JAð!Þ, and JBð!Þ by

�p ¼ D2JAð!Þ þ C; (44)

�p ¼ �DJAð!Þ; (45)

�T ¼ JAð!Þ þ JBð!Þ: (46)

The relaxation element JA is determined by three parame-
ters JA;1, �JA ¼ JA;0 � JA;1, and RA:

JA ¼ JA;1 þ 1
1

�JA
þ i!RA

; (47)

and likewise for JB.
The parameters of the model can be established from

the high- and low-frequency limits of �p, �T , and �p.

One finds D ¼ ���p=��p, JA;0 ¼ ��p;0=D, JA;1 ¼
��p;1=D, JB;0 ¼ �T;0 � JA;0, and JB;1 ¼ �T;1 � JA;1.
The Prigogine-Defay ratio of the model is given by

� ¼ ��p��T

ð��pÞ2
¼ 1þ �JB

�JA
; (48)

and the dynamic (frequency-dependent) Prigogine-Defay
ratio [15] is given by

� ¼ � 00p�00
T

ð�00
pÞ2

¼ 1þ J00B
J00A

: (49)

RA RB∆JB∆JA

J∞
A J∞

B

JA = JB =

JAδS D δV

CδT − δpJB

FIG. 7. Electrical equivalent diagram of the interaction of a
volume element with its surroundings through two gates. The
thermal gate where entropy displacement �S or temperature �T
can be controlled, and the mechanical gate where volume
displacement �V or pressure �p can be controlled. �S and �V
are generalized charge displacements and �T and ��p are
generalized voltages. The relaxational elements JA and JB are
simple single-relaxation-time elements.
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As expected, the Prigogine-Defay ratio is larger than
unity, but becomes one if the element JB is nonrelaxing, in
which case the model reduces to a single-parameter model.
In the case of JA being non-relaxing there is no relaxation
of �p and �p and a Prigine-Defay ratio cannot be defined.

For glucose at 300 K, we calculate the parameters
of the model to be D ¼ �1:46� 107 PaK�1, C¼4:76�
103 JK�1m�3, JA;1 ¼ 7:53� 10�12 Pa�1, �JA ¼ 1:78�
10�11 Pa�1, JB;1¼8:55�10�11 Pa�1, and �JB ¼
4:33� 10�11 Pa�1.

The heat conductivity of glucose—needed to calculate
the heat-diffusion time—is � ¼ 0:35 WK�1 m�1 at 303 K
according to Greene and Parks [16]. The shear relaxation
of glucose is modeled by a Maxwell model

Gð!Þ ¼ 1
1
G1

þ 1
i!�

: (50)

Here the high-frequency shear modulus can be taken
to be G1 ¼ 3:1� 109 Pa [5]. The values of the thermody-
namic parameters used to parametrize the model are
given in Table I. The temperature dependence of the
shear viscosity causes the shift in the loss peaks of the
relaxations. Parks et al. [17] measured the viscosity of
glucose in a wide temperature range from 295 to 418 K.
We fitted their tabulated data by the expression �ðTÞ ¼
0:0125 exp½ð512:9 K=TÞ6:42� Pa s. This holds within 20%
over the entire temperature range except for the highest
viscosity point of 9:1� 1012 Pa s, which, however, is well
beyond the glass transition and may be hard to measure
reliably. AVogel-Fulcher law is not as good a fit, deviating
more than 40% in the measured temperature range. The
rate parameters RA ¼ RAðTÞ and RB ¼ RBðTÞ are assumed
to follow the temperature dependence of the viscosity [18].
It is found numerically that one should choose RAðTÞ ¼
RBðTÞ ¼ 30�ðTÞ in order to get the loss-peak frequency of
the shear modulus Gð!Þ and isothermal bulk modulus
KTð!Þ to coincide. The relaxation of the different response
functions described by the model implies a frequency

dependence of the longitudinal thermomechanical cou-
pling via

alð!Þ ¼
4
3Gð!ÞT0�

2
pð!Þ

½1þ 4
3Gð!Þ�Tð!Þ�cpð!Þ : (51)

The modulus of this complex function was shown in Fig. 1.
Also, the heat-diffusion time,

�ð!Þ ¼ R2½1� alð!Þ�cpð!Þ=�; (52)

now becomes complex. This makes the inversion to the
time domain nontrivial and thus Eq. (38) was inverted
numerically. The algorithm for the inverse Laplace trans-
form is an improved version of de Hoog’s quotient differ-
ence method [19] developed and implemented in Matlab
by Hollenbeck [20].
The calculated temperature response at the center of the

sphere to a step of 1 K at the surface is shown in Fig. 8.
Time is now scaled by the fixed real-valued diffusion time
�0 in the liquid regime,

�0 ¼ R2cp;0=�: (53)

The figure shows that the effect of the thermomechanical
coupling is absent at high temperatures. But as temperature
is decreased and the liquid gets more and more viscous,
a dip in temperature emerges. Going further down in
temperature, the phenomenon of cooling by heating be-
comes most pronounced slightly above Tg. Even further

down in temperature, in the glassy state, the effect is still
present, but small. One may ask what happens if the
expansivity �p;1 vanishes, so that the phenomenon is

TABLE I. Literature data for glucose (at 300 K) used to
parametrize the model depicted in the electrical equivalent
diagram in Fig. 7. We have used a density of 1:52�
103 kgm�3 to convert specific-heat data from mass to volume.

Quantity Value Reference

! ! 0
�T;0 15:4� 10�11 Pa�1 [4]

cp;0 3:05� 106 JK�1 m�3 [3]

�p;0 3:7� 10�4 K�1 [3]

� (at 303 K) 0:35 WK�1 m�1 [16]

! ! 1
�T;1 9:30� 10�11 Pa�1 [4]

cp;1 15:4� 10�11 JK�1 m�3 [3]

�p;1 1:1� 10�4 K�1 [3]

G1 3:1� 109 Pa [5]
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FIG. 8. The change in temperature �T at the center of a sphere,
after a temperature step of �T ¼ 1K has been applied at the
surface. A model of the thermoviscoelastic relaxation of glucose
with realistic limiting thermodynamic parameters has been in-
voked. Time is scaled by the characteristic diffusion time �0,
which is 800 s for a glucose ball of radius 9.5 mm. The minimum
of approximately �5 mK occurs for the 309 K curve just above
Tg at 0:017�0, corresponding to 14 s. Notice that although the

cooling-by-heating phenomenon is present in the glassy solid
state, it becomes more pronounced at the glass transition. The
squares marking the minima at each temperature are plotted
against temperature in Fig. 10.
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absent in the glassy state: Will it still be present at the glass
transition? The simulations shown in Fig. 9 confirm this
expectation. Putting �p;1 ¼ 0, but otherwise keeping the

values of the rest of the parameters, we get a succession of
temperature evolutions. Going down in temperature we see
the cooling-by-heating phenomenon appearing at Tg and

afterward disappearing in the glassy state. Figure 10 shows
the minimum temperature �TMIN reached when �p;1 � 0

as a function of temperature T0, emphasizing the phenome-
non as characteristic of the glass transition.

V. EXPERIMENTALVERIFICATION OF THE
COOLING-BY-HEATING EFFECT

To prove the existence of cooling by heating, we mold
glucose [�-DðþÞ glucose, 98%, Sigma-Aldrich] into

spherical samples with a thermistor placed at the center.
Via the large negative-temperature coefficient (NTC) ther-
mistor, we measure the temperature in the middle of the
sphere. During measurements, the glucose sphere is placed
in a cryostat, which makes it possible to change the tem-
perature at the surface of the sphere quickly compared to
the characteristic heat-diffusion time. A sketch of the setup
together with a photo of one of the samples is shown in
Fig. 11. The photo shows the wires that lead into the
sphere, connecting the thermistor to the terminals on the
peek plate shown in the photo. When mounted on a holder,
the terminals get connected to the multimeter that does the
resistance measurement.
The procedure in the experiments is the following. First,

we bring down the temperature to the desired starting level.
Then we wait for the temperature to equilibrate. This is
monitored by measuring the resistance every fifth minute.
Typical waiting time is 18 h. After the initial waiting time,
we increase the sampling rate of the multimeter to about
five data points per minute over a period of 1 h to get a
baseline like the one shown in Fig. 12. Then we impose a
5-K temperature step and continue sampling data for an-
other ten minutes with a sampling rate of 15 data points per
minute. Figure 12 shows the temperature measured by the
NTC thermistor during a measurement with a step from
298 to 303 K of the cryostat temperature. The baseline
extends for about 20 min, and then a characteristic
temperature dip appears. The magnitude of the dip is
7:3� 0:2 mK, which was reached 40 s after the tempera-
ture step was imposed.
The experiment has been repeated on three different

samples; the inset in Fig. 12 shows the results of the first
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FIG. 9. A simulation similar to the one shown in Fig. 8 except
that �p;1 has been set to 0, forcing cooling by heating to be

absent in the glassy solid phase. It is seen that the cooling-by-
heating effect still appears as a dynamic phenomenon at the glass
transition.

0.4mm

19mm

FIG. 11. Sketch of the experimental setup. The liquid is
molded into a sphere, in which a small NTC-thermistor bead
is placed at the center, connected to wires that lead to a
multimeter that performs resistance measurements. The sphere
is inserted into the cylindrical chamber of a cryostat. The photo
shows one of the samples; at the time of the photo shoot (1 month
after molding) the sample is no longer transparent because it
crystallized.
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FIG. 10. The minima from Fig. 8 as a function of temperature.
At high temperatures, the phenomenon of cooling by heating is
absent. Going down in temperature, the liquid becomes more
viscous and a dip in temperature emerges. Close to the glass
transition, the cooling-by-heating phenomenon gets most pro-
nounced. As temperature is decreased further and the liquid
enters the glassy state, the effect is still present, but is reduced
in strength.
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measurement done on each sample, at the same tempera-
ture. Each marker represents the lowest temperature
reached in one measurement. They are plotted against
time after the temperature step is initiated. It has not
been possible to reproduce the phenomenon on the same
sample by recycling the temperature. We ascribe this to
crystallization since the opacity of the spheres appeared to
change as the experiment was lengthened. Although the
cooling-by-heating effect should be present also in the
solid state, it is here considerably smaller and not observ-
able with our temperature resolution. Nevertheless, the
phenomenon has been seen every time we repeat the
experiment with a fresh supercooled sample. The sphere
does not flow or deform to any appreciable degree even
somewhat above the glass transition. This is supported by
the following estimate. The characteristic flow time �flow is
proportional to the viscosity and inversely proportional to
the gravitational force mg. By a dimensional argument, it
follows that

�flow / �

	gr
¼ G1

	gr
�M; (54)

which means that �flow 	 107�M. Thus, even at 310 K,
where viscosity becomes 1010 Pa and thereby the
Maxwell time, 3 s, the flow time is 1 yr.

VI. DISCUSSION

The concept of a longitudinal specific heat has been
identified in Ref. [1] as the relevant quantity within
AC-calorimetric methods that utilizes heat effusion. The
principle of the simplest of these techniques [21] is to
measure the complex temperature response T! at a planar
surface to a heat-current density jQ;! generated at the

same surface. The effusivity e ¼ ffiffiffiffiffiffi
�c

p
is found from the

measured specific thermal impedance Z � T!=jQ;! ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
i!�c

p
, and from the effusivity the specific heat can

be calculated. A thorough analysis of the thermomechan-
ical equations of this problem shows that the specific heat
that comes into play in this situation is cl rather than cp.

Effusivity measurements in spherical geometry have been
shown also to involve the longitudinal specific heat [2,22].
The longitudinal specific heat is not a very well-known
property, but it does appear in the textbook on elasticity by
Landau and Lifshitz [23]. They show that the coupled
thermoelastic equations decouple for certain boundary
conditions of an infinite solid, namely, when temperature
at infinity is constant and deformation there is zero.
They showed further that the heat-diffusion equation is
valid with a diffusion constant containing the effective
specific heat ½ð1þ �Þcp þ 2ð1� 2�ÞcV�=½3ð1� �Þ�,
where � is the isothermal Poisson ratio. Inserting � ¼
ð3KT � 2GÞ=ð6KT þ 2GÞ, one readily finds that the effec-
tive specific heat is cl. The longitudinal specific heat also
appeared in Biot’s 1956 paper [12] in his diffusion equa-
tion for the entropy density. Although not very different
from cp, there is a fundamental difference, and cl appears

in many thermoelastic problems when they are treated
exactly. In particular, as we have seen in this paper, there
is only a cooling-by-heating effect if cl � cp. We origi-

nally proposed the name longitudinal specific heat because
this is the heat needed to increase the temperature by 1 K if
the associated expansion is confined to be longitudinal
instead of isotropic.
Thermal relaxation and mechanical relaxation of super-

cooled liquids are mostly treated separately although they
obviously are connected appearing as they are at more or
less the same time scale. Recently, theory and simulation
[24–26] have revealed a class of liquids, ‘‘the strongly
correlating liquids,’’ that have strong correlations between
equilibrium fluctuations of energy and pressure. The re-
laxation of thermal and mechanical properties of these
liquids can be described in terms of a single relaxing
parameter. This means that certain triples [15] of response
functions as, e.g., �Tð!Þ, cpð!Þ, and �pð!Þ, are linearly

related. This can also be formulated as whether the so-
called Prigogine-Defay ratio is 1 or larger than 1. It has
been conjectured that van-der-Waals-bonded liquids be-
long to this class but hydrogen bonded liquids do not.
The temperature and density dependence of the relaxation
time for many liquids can be described in terms of the
single scaling variable 	�=T. A striking prediction for
strongly correlating liquids is that the density-scaling ex-
ponent � can be calculated from the relaxation strengths of
the response functions [27]. These developments call for
accurate measurements of thermoviscoelastic response
functions and a thorough treatment of the influence of
mechanical boundary conditions in thermal experiments
and thermal boundary conditions in mechanical experi-
ments. The cooling-by-heating phenomenon evidently
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FIG. 12. The temperature at the center of a sphere of glucose,
with diameter 19 mm. At time t ¼ 0 s a step in temperature from
298 to 303 K is applied with the cryostat (see the setup in
Fig. 11). The temperature drops initially by 7.3 mK as result of
cooling by heating. The inset shows the minimum temperature
�TMIN reached in three measurements, on three different
samples, at the same temperature.
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exemplifies this point. For convenience, we have chosen
glucose to show the effect experimentally. This liquid has a
Prigogine-Defay ratio significantly greater than one and
thus we have had to describe its relaxation by a two-
parameter model. However the cooling-by-heating phe-
nomenon will also be present in a single parameter liquid
so this is not a distinguishing feature between single pa-
rameter liquids and more complex liquids. More important
is the issue of the relative time scales [18] of the shear-
modulus relaxation compared to those of the scalar ther-
moelastic response functions that make up the thermoelas-
tic coupling a of Eq. (3). If G relaxes on a shorter time
scale than a—that is, if the green curve of Fig. 1 is moved
to the right—then the maximum of the longitudinal ther-
momechanical coupling al (black curve) becomes smaller,
reducing the magnitude of the cooling-by-heating effect.

Transient thermal stresses induced by surface heating of
a sphere have been considered theoretically by Cheung
et al. [28]. Their interest was fragmentation of brittle solids
by surface heating. A heat current was applied uniformly
within the polar angle regime 0 
 � 
 �0 and the tem-
perature and stress distributions calculated in time and
space. This is a problem very similar to the one considered
in this paper, although not generalized to situations with
relaxation. However, the cooling-by-heating phenomenon
was not seen since the standard decoupled heat-diffusion
equation was used. The phenomenon thus seems appar-
ently not to have been recognized in the literature, even
though it belongs to classical continuum physics.

VII. SUMMARY

We have shown that cooling by heating occurs at the
center of a solid spherical sample if it is heated at a
mechanically free surface, reflecting a nontrivial thermo-
mechanical coupling where the temperature initially de-
creases in the interior of the sphere. What happens is that,
as heat diffuses into the outermost parts of the sphere, these
parts expand and build up a negative pressure at the center
of the sphere. This negative pressure couples to the tem-
perature via the adiabatic pressure coefficient ð@T@pÞS. The
opposite effect also applies, of course: If the temperature of
the surface is lowered, heating by cooling will be observed.
In ordinary solids, the cooling-by-heating effect is almost
negligible because their thermal expansion is generally
small. The effect is particularly large for liquids close to
their glass transition. The cooling-by-heating phenomenon
establishes the difference between the longitudinal and
isobaric specific heat, since the effect is only present
when these two quantities differ. This is the case when
the shear modulus is not vanishingly small compared to the
bulk modulus and, simultaneously, the isobaric and iso-
choric specific heats differ significantly. Analytical results
show that the phenomenon occurs in the elastic case (the
solid), and numerical results based on a model of the glass
transition with parameters determined by glucose data

show that the effect is present dynamically also in the
very viscous liquid. Even in the hypothetical case when
the glassy state is assumed to have zero expansivity, the
phenomenon will still appear at the glass transition.
The numerical results based on glucose data indicate

that the drop in temperature at the center of the sphere is of
the order of 5 mK with a duration of approximately 15 s
when the temperature is increased by 1 K on the surface of
a sphere of radius r ¼ 10 mm. This prediction has been
confirmed experimentally.
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APPENDIX A

1. Solution from Sec. III: The transfer-matrix method

The solution to the problem given in Sec. III is based on
the transfer-matrix formulation [1,2,29] of the general
solution of the thermoviscoelastic problem in a spherically
symmetric case. Including the radial stress field and the
time-integrated heat-current density that relate to the tem-
perature and displacement fields, the authors of Refs. [1,2]
end up with four coupled equations to solve. Laplace trans-
forming the equations relating the four fields and solving
the resulting inhomogeneous system of four ordinary dif-
ferential equations, the result is in the general form of a

transfer matrix ~Tðj; iÞ that links the dimensionless complex
amplitudes of the fields at the boundary ri with those at rj:

�~pr

� ~T

� ~V

�~S

0
BBBBB@

1
CCCCCA

j

¼ ~Tðj; iÞ

�~pr

� ~T

� ~V

�~S

0
BBBBB@

1
CCCCCA

i

: (A1)

Here �~S, � ~V, � ~T, and �~pr are the complex amplitudes of
entropy, volume, temperature, and the radial component of
pressure (�~pr ¼ �~�rr), respectively. The elements of the
transfer matrix are given in Ref. [2]. From this general
solution, one can work out different cases, like the ones in
Sec. III. The boundary condition at ~r1 ¼ 0 is no net flux of

heat through the center of the sphere, i.e., �~S1 ¼ 0 and no
volume displacement � ~V1 ¼ 0. At the mechanically free

outer boundary ~r3 the entropy supplied �~S3 is given and
�~pr;3 ¼ 0. Letting ~r ¼ ~r2 be an intermediate variable ra-

dius between ~r1 and ~r3 one has

�~pr

� ~T

� ~V

�~S

0
BBBBB@

1
CCCCCA

2

¼ ~Tð2; 1Þ

�~pr

� ~T

0

0

0
BBBBB@

1
CCCCCA

1

: (A2)
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Also

0

� ~T

� ~V

�~S

0
BBBBB@

1
CCCCCA

3

¼ ~Tð3; 1Þ

�~pr

� ~T

0

0

0
BBBBB@

1
CCCCCA

1

: (A3)

This leads to �~pr;1 ¼ � ~T12ð3;1Þ
~T11ð3;1Þ�

~T1 or � ~T1 ¼
� ~T11ð3;1Þ

~T12ð3;1Þ�~pr;1, whereby

�~S3 ¼
�
~T42ð3; 1Þ �

~T41ð3; 1Þ ~T12ð3; 1Þ
~T11ð3; 1Þ

�
� ~T1

or

�~S3 ¼
�
~T41ð3; 1Þ �

~T42ð3; 1Þ ~T11ð3; 1Þ
~T12ð3; 1Þ

�
�~pr;1:

This implies

� ~T1 ¼
� � ~T11ð3; 1Þ
~T41ð3; 1Þ ~T12ð3; 1Þ � ~T42ð3; 1Þ ~T11ð3; 1Þ

�
�~S3;

(A4)

�~pr;1 ¼
� ~T12ð3; 1Þ
~T41ð3; 1Þ ~T12ð3; 1Þ � ~T42ð3; 1Þ ~T11ð3; 1Þ

�
�~S3:

(A5)

Inserting this into Eq. (A2), one has

�~prð~rÞ ¼ �~pr;2

¼
� ~T11ð2; 1Þ ~T12ð3; 1Þ � ~T12ð2; 1Þ ~T11ð3; 1Þ
~T41ð3; 1Þ ~T12ð3; 1Þ � ~T42ð3; 1Þ ~T11ð3; 1Þ

�
�~S3;

(A6)

� ~Tð~rÞ ¼ � ~T2

¼
� ~T21ð2; 1Þ ~T12ð3; 1Þ � ~T22ð2; 1Þ ~T11ð3; 1Þ
~T41ð3; 1Þ ~T12ð3; 1Þ � ~T42ð3; 1Þ ~T11ð3; 1Þ

�
�~S3;

(A7)

� ~Vð~rÞ ¼ � ~V2

¼
� ~T31ð2; 1Þ ~T12ð3; 1Þ � ~T32ð2; 1Þ ~T11ð3; 1Þ
~T41ð3; 1Þ ~T12ð3; 1Þ � ~T42ð3; 1Þ ~T11ð3; 1Þ

�
�~S3;

(A8)

�~Sð~rÞ ¼ �~S2

¼
� ~T41ð2; 1Þ ~T12ð3; 1Þ � ~T42ð2; 1Þ ~T11ð3; 1Þ
~T41ð3; 1Þ ~T12ð3; 1Þ � ~T42ð3; 1Þ ~T11ð3; 1Þ

�
�~S3:

(A9)

Inserting the actual explicit values of the transfer-matrix
elements from Ref. [2] and evaluating them in the limit of
~r1 ! 0, putting ~r ¼ ~r2 and ~R ¼ ~r3, yields

�~prð~rÞ ¼ 3~� ~g

~cð1þ ~gÞ
�
1
~R3

� ~r coshð~rÞ � sinhð~rÞ
~r3½ ~R coshð ~RÞ � sinhð ~RÞ�

�
�~Sð ~RÞ;

(A10)

� ~Tð~rÞ ¼ 1

~c

�
1
~R3

3~�2~g

~�2~gþ ~cð1þ ~gÞ
� sinhð~rÞ

~r½ ~R coshð ~RÞ � sinhð ~RÞ�
�
�~Sð ~RÞ; (A11)

� ~Vð~rÞ ¼ ~�

~cð1þ ~gÞ
��

~r
~R

�
3 ~g½~�2 � ~cð1þ ~gÞ�

~�2~gþ ~cð1þ ~gÞ
� ~r coshð~rÞ � sinhð~rÞ

~R coshð ~RÞ � sinhð ~RÞ
�
�~Sð ~RÞ; (A12)

�~Sð~rÞ ¼ ~r coshð~rÞ � sinhð~rÞ
~R coshð ~RÞ � sinhð ~RÞ�

~Sð ~RÞ: (A13)

The transformation back to dimensionalized physical
quantities is performed by noticing that ~r ¼ kr, ~R ¼ kR,

~u ¼ ku, where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
scl=�

p
. Furthermore ~c ¼ T0cl=KT ,

~� ¼ T0�p, ~g ¼ 4G=ð3KTÞ, ~�rr ¼ �rr=KT , � ~V ¼
�Vk3=ð4�Þ, �S ¼ �~Sk3=ð4�KTÞ, and ~�T ¼ �T=T0.
Since the entropy displacement is positive in the direction
of r, it is related to the heat input at the outer surface by
�Q ¼ �T0�S, opposite of the convention in Ref. [2].
Recalling that ~u ¼ ~r2 ~V, one now easily derives Eqs. (24)
and (25) from Eqs. (A11) and (A12).

2. Inverse Laplace-Stieltjes transforms

If a stimulus se
stðs ¼ i!Þ on a linear system gives rise

to a response �se
st, where �s ¼ fðsÞs, the response to a

Heaviside input 0HðtÞ will be �ðtÞ ¼ FðtÞ0, where FðtÞ
is the inverse Laplace transform of fðsÞ=s [or the inverse
Laplace-Stieltjes transform of fðsÞ]. We perform the in-
verse Laplace transform via the calculus of residues as

FðtÞ ¼ X
polessn

Res

�
fðsÞ
s

; sn

�
esnt: (A14)

We put 	 ¼ r=R and � ¼ ðcl=�ÞR2. Then kr ¼ ffiffiffiffiffi
s�

p
	. We

initially choose, furthermore, time units such that � ¼ 1.
Then the two expressions of Eqs. (21) and (22), when
divided by s, become

f1ðsÞ
s

¼ sinhð	 ffiffiffi
s

p Þ
3	

ffiffiffi
s

p
ffiffiffi
s

p
ffiffiffi
s

p
coshð ffiffiffi

s
p Þ � sinhð ffiffiffi

s
p Þ ; (A15)

f2ðsÞ
s

¼ 1

	3s

	
ffiffiffi
s

p
coshð	 ffiffiffi

s
p Þ � sinhð	 ffiffiffi

s
p Þffiffiffi

s
p

coshð ffiffiffi
s

p Þ � sinhð ffiffiffi
s

p Þ : (A16)

Both expressions have simple poles at s ¼ 0 with
residue 1. The other poles are on the negative real axis
sn ¼ �x2n, where xn are the positive roots of the tran-
scendental equation tanðxÞ ¼ x. x1 � 4:493 409 457 and
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x2 � 7:725 251 836, and xn � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�=2þ n�Þ2 � 2
p

, which
is better than 1 ppm for n � 3. The residues now become,
respectively,

Res

�
f1ðsÞ
s

;�x2n

�
¼ 2 sinð	xnÞ

3	 sinðxnÞ ; (A17)

Res

�
f2ðsÞ
s

;�x2n

�
¼ 2 sinð	xnÞ � 	xn cosð	xnÞ

	3x2n sinðxnÞ
; (A18)

and the corresponding time-domain functions

F1ð	; tÞ ¼ 1þ 2

3

1

	

X1
n¼1

sinð	xnÞ
sinðxnÞ e�x2nt; (A19)

F2ð	; tÞ ¼ 1þ 2

�
1

	

�
3 X1
n¼1

sinð	xnÞ � 	xn cosð	xnÞ
x2n sinðxnÞ

e�x2nt:

(A20)

Using these expressions and reintroducing the character-
istic heat-diffusion time �, one derives Eqs. (32)–(34).
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