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We point out that the instantaneous shear modulus G∞ of the shoving model for the non-Arrhenius
temperature dependence of viscous liquids’ relaxation time is the experimentally accessible high-
frequency plateau modulus, not the idealized instantaneous affine shear modulus that cannot be mea-
sured. Data for a large selection of metallic glasses are compared to three different versions of the
shoving model. The original shear-modulus based version shows a slight correlation to the Poisson
ratio, which is eliminated by the energy-landscape formulation of the model in which the bulk modu-
lus plays a minor role. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724102]

I. INTRODUCTION

In a recent communication1 Puosi and Leporini showed
from computer simulations that the relevant high-frequency
shear modulus controlling the relaxation is not the ideal-
ized shear modulus corresponding to affine deformations at
truly infinite frequency. Rather, it is the shear modulus re-
ferring to time scales that are on the one hand much shorter
than any relaxation time, but on the other hand much longer
than typical vibration times. This confirms findings by other
groups.2–4 Puosi and Leporini further proposed an extension
of the shoving model to allow for heterogeneities and showed
that the new model fits simulation data very well. This ex-
tension is consistent with previous works by Khronik et al.,
who introduced the idea of a distribution of local shear mod-
uli to explain sub Tg relaxations within the shoving-model
framework.5, 6

Commenting on the instantaneous shear modulus of the
shoving model Puosi and Leporini wrote: “It is quite appar-
ent that G∞, the central quantity of the standard elastic mod-
els, poorly correlates with the structural relaxation time.” This
conclusion derives from the understanding that the shoving
model and related elastic models are based on the idealized
affine infinite-frequency shear modulus, not the experimen-
tally measurable high-frequency plateau modulus, which was
traditionally used for comparing model to experiment. Unfor-
tunately, theorists and experimentalists have used for many
years the same symbol, G∞, for different physical properties.
In experiment the term “instantaneous shear modulus” always
meant the shear modulus at the highest obtainable frequencies
(typically MHz or GHz, or even high kHz, depending on the
technique used),7–12 where it generally becomes frequency in-
dependent and is usually—though not always—denoted by
G∞.7, 8 In his excellent text book The dynamic properties of
supercooled liquids from 1976 Harrison refers to this quan-
tity as “the high-frequency limiting shear modulus.”8 Like-
wise, whenever the Maxwell relaxation time τM = η/G∞ in
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the literature has been calculated for a liquid, G∞ was always
identified as the experimental limiting high-frequency shear
modulus of the plateau, much below phonon frequencies.

In liquid-state theory, G∞ was traditionally the idealized,
truly infinite-frequency limit of the fluctuation-dissipation
theorem expression,13, 14 proportional to the mean-square
shear-stress equilibrium fluctuation. Previously, there was no
reason to believe that these two quantities might differ in
any significant way. It now turns out that for some systems,
as temperature changes at constant density, one quantity in-
creases and the other decreases.1, 15 The purpose of the present
paper is to show that the shoving model derivation assumes
G∞ is the quantity, which Puosi and Leporini referred to as
the plateau modulus.1–4 We suggest a consistent notation for
the two instantaneous shear moduli, which can be used when-
ever there is a risk of confusing them.1, 16 Finally, we reana-
lyze data for a large selection of metallic glasses in order to
compare predictions of three versions of the shoving model.

Section II reviews the shoving model, Sec. III recalls
the model energy-barrier calculation and relates it to the
reversible-work theorem of statistical mechanics. Section IV
compares model predictions to data, and Sec. V gives a brief
summary.

II. THE SHOVING MODEL

The shoving model for the non-Arrhenius temper-
ature dependence of the main (alpha) relaxation time
τ of a glass-forming liquid predicts that τ (T ) = τ0

exp[G∞(T )Vc/(kBT )].17, 18 Here τ 0 is a prefactor of order
0.1 ps, G∞ is the “instantaneous” shear modulus, Vc is a
characteristic volume of order a molecular volume, kB is
Boltzmann’s constant, and T is the temperature. In order to
minimize the number of free parameters, the shoving model
assumes ad hoc that Vc is temperature independent. In this
way the model connects directly two experimentally measur-
able quantities, τ (T) and G∞(T). The model does not consider
what causes the unusually large temperature dependence of
glass-forming liquids’ instantaneous shear moduli. This prob-
lem was addressed recently in interesting papers by Brito and
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Wyart, who proposed that the increase of the instantaneous
shear modulus derives from a stiffening of the Boson peak as
temperature is lowered.19, 20

The shoving model and related elastic models have been
confirmed for a number of organic, oxide, chalcogenide,
oxynitride, and metallic liquids,17, 21–27 as well as in some
computer simulations,1–4 but failures of the model have also
been reported.28, 29 Most experimental conformations relate
to a liquid’s temperature-dependent equilibrium relaxation
time, but there are also tests confirming the shoving and re-
lated elastic models for aging experiments.5, 6, 30, 31 More data
are certainly needed before it is clear whether the shoving
and related models account generally for the non-Arrhenius
temperature dependence of τ observed in supercooled liq-
uids. For reviews of elastic models the reader is referred to
Refs. 32 and 33.

The shoving model is based on the assumption that
the main contribution to the activation energy for a “flow
event”—a rearrangement from one potential-energy mini-
mum to another—is the work done in shoving aside the sur-
roundings in order to increase the volume available for rear-
ranging the molecules. The model assumptions are:17, 21, 32

� The main contribution to the activation free energy is
elastic energy.

� This elastic energy is located in the surroundings of the
rearranging molecules.

� The elastic energy is shear elastic energy, i.e., not as-
sociated with density changes.

To make things simple, the shoving model assumes spherical
symmetry of a flow event and calculates the activation free
energy as the work done in shoving aside the surroundings by
expanding a sphere in order to create room for a flow event.

Is it reasonable to assume that the main contribution to
the activation energy comes from the surroundings? What
about contributions from the rearranging molecules them-
selves? A simple argument shows that the former contribu-
tion dominates.30 Suppose that rearranging at constant vol-
ume is energetically very costly because the molecules are
forced into close contact during the rearrangement process;
this is the main physical idea of the shoving model. In this
case, allowing for just a slightly larger volume for the rear-
ranging molecules implies a considerable lowering of the en-
ergy cost. If the radius change is �r and the energy barrier
contribution from the rearranging molecules within the sphere
is f(�r), the total energy barrier involves a further quadratic
contribution from deforming elastically the surroundings: �E
= f(�r) + A(�r)2. The fact that the function f(�r) decreases
significantly when �r increases slightly above zero is ex-
pressed mathematically as |d ln f /d ln �r| � 1. Optimizing
�r in order to find the lowest barrier leads to f ′(�r) + 2A�r
= 0. Thus the ratio between the “shoving” work and the
“inner” contribution is A(�r)2/f(�r) = −f ′(�r)/[2�rf(�r)]
= |d ln f/dln �r|/2 � 1.

It is the high-frequency shear elastic constant that enters
into the shoving model prediction because the expansion of a
sphere in an elastic isotropic solid results in a radial displace-
ment in the surroundings, which varies with distance r to the
sphere center as r−2 (Ref. 34). This is a pure shear deforma-

tion, i.e., with zero divergence and thus no density changes
anywhere (compare to the Coulomb electric field of a point
charge ∝ r−2, which also has zero divergence). Less idealized
geometries would result in some density change and thus also
involve the bulk modulus, but it has been shown generally
that the bulk elastic energy of the far field of an elastic dipole
constitutes a most 10% of the total elastic energy.35 This
confirms the interesting phenomenon of “shear dominance”
noted some time ago in various contexts of condensed matter
physics and materials science (see Refs. 35 and 36 and their
references).

III. CALCULATING THE FREE ENERGY BARRIER
USING THE REVERSIBLE-WORK THEOREM OF
STATISTICAL MECHANICS

The idealized instantaneous affine shear modulus refers
to the hypothetical situation where one imposes an instanta-
neous, perfectly affine shear deformation on the system, cor-
responding to a time scale so fast that the atoms do not move,
i.e., on a femtosecond time scale. This quantity is not exper-
imentally accessible for the following reasons. It is difficult
to imagine imposing an affine shear deformation on a sys-
tem on a femtosecond time scale. Even if this were possible,
one would not observe a high-frequency limiting shear mod-
ulus above THz frequencies—inertial effects would set in and
cause the modulus to go to zero as frequency diverges with-
out limit. On the other hand, in a computer simulation an in-
stantaneous affine shear deformation is easily imposed on a
system.

The energy barrier is calculated as the work done in shov-
ing aside the surroundings. According to a fundamental the-
orem of statistical mechanics, the difference in free energy
between two states can be calculated as the reversible isother-
mal work done to bring the system from one to the other
state. Thus, in calculating the energy barrier, the expansion
of the sphere must take place so slowly that there is equilib-
rium in the surroundings throughout the expansion process.
On the other hand, since the activation (free) energy refers to
the thermally activated creation of extra volume in the fixed,
glassy structure of the surrounding molecules, the expansion
must be fast enough that no relaxations take place in the sur-
rounding liquid. This means that the time of expansion must
be much smaller than the alpha relaxation time. In conclu-
sion, the relevant elastic constants of elastic models refer to
high frequencies, still much below phonon frequencies. In this
frequency range the bulk and shear elastic constants are usu-
ally frequency independent for highly viscous liquids (ignor-
ing possible secondary relaxations).

Over the years we have occasionally met the misunder-
standing that the “shoving” process is the work done dur-
ing the actual barrier transition of the rearranging molecules,
which takes place over a few picoseconds. This is not correct;
the (free) energy barrier is a difference in free energy between
two states—the starting state and the transition state—and as
detailed above, this quantity is calculated by reference to sta-
tistical mechanics and the reversible-work theorem.

Both the experimentally measurable high-frequency
plateau shear modulus—referring to frequencies much below
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phonon frequencies—and the experimentally non-accessible
truly instantaneous affine shear modulus have traditionally
been denoted by G∞. This would not present a serious prob-
lem if the two moduli were more or less identical or, from
the shoving model perspective, if they were proportional in
their temperature variation throughout the phase diagram. It
now appears that neither is the case.1, 15 This calls for intro-
ducing an unambiguous notation. We suggest denoting the
experimental “instantaneous” shear modulus by G∞, p (“p”
for plateau) and the idealized, affine truly instantaneous shear
modulus by G∞, af (“af” for affine). In this notation, which
need only to be used whenever there is a risk of confusion,
the shoving model prediction is

τ (T ) = τ0 exp

[
G∞,p(T )Vc

kBT

]
. (1)

Before proceeding we note the fluctuation-dissipation
(FD) theorem expressions for the two instantaneous shear
moduli. Recall that if one defines Sxy ≡ ∑

ixiFy, i, where xi

is the x component of the position vector of particle i and Fy, i

is the y component on the force on this particle, the FD the-
orem expression for the frequency-dependent shear viscosity
η(ω) is (where V is the system volume)

η(ω) =
∫ ∞

0 〈Sxy(0)Sxy(t)〉e−iωtdt

kBT V
. (2)

Since the frequency-dependent shear modulus is related to the
viscosity by G(ω) = iωη(ω), letting frequency go to infinity
in Eq. (2) gives the well-known expression for the idealized
affine infinite-frequency shear modulus G∞, af,14

G∞,af =
〈
S2

xy

〉
kBT V

. (3)

As mentioned, this quantity cannot be measured in experi-
ment. The quantity that can be measured, the plateau modulus
G∞, p, is given by the analogous expression where Sxy is aver-
aged over a few molecular vibration periods (i.e., over some
picoseconds):

G∞,p =
〈
S

2
xy

〉
kBT V

. (4)

We finally note that G∞, af/(ρT) and G∞, p/(ρT) are both
isomorph invariants. The invariance of the first expression
was shown in Ref. 37, that of the latter follows by analogous
arguments. This shows that the shoving model survives the
“isomorph filter” according to which any generally applica-
ble model for the non-Arrhenius temperature dependence of a
supercooled liquid’s relaxation time must give this as a func-
tion of an isomorph invariant.37

IV. COMPARING THE ENERGY-LANDSCAPE VERSION
OF THE SHOVING MODEL TO METALLIC GLASS DATA

The energy-landscape justification of the shoving
model38 is based on a classical argument, which estimates the
barrier height for a jump between two (free) energy minima
from the curvature at the minima, leading to ln τ ∝ 1/〈u2〉,

where 〈u2〉 is the vibrational mean-square displacement.39–42

If the high-frequency shear and bulk plateau moduli, G∞, p

and K∞, p, differ from the ideal, affine moduli G∞, af and
K∞, af, the former are the relevant ones for the phonon spec-
tra. In fact, one way to probe plateau moduli is to mea-
sure the linear (i.e., low-wavevector) parts of the phonon
spectra or, equivalently, the shear and longitudinal high-
frequency sound velocities. This is also how Ribero et al.
probed G∞ in computer simulations.3, 4 In this section the
term “instantaneous” moduli implies the plateau moduli.

In a simple, isotropic elastic model the vibrational mean-
square displacement may be estimated from the instantaneous
moduli by using the fact that for a given wavevector, there
are two transverse and one longitudinal phonon. If M = K
+ (4/3)G is the longitudinal modulus, this leads38 to 〈u2〉/T
∝ 1/M∞, p + 2/G∞, p. For the temperature dependence of the
relaxation time this implies via ln τ ∝ 1/〈u2〉

τ (T ) = τ0 exp

[
V ′

c

kBT

(
1

M∞,p(T )
+ 2

G∞,p(T )

)−1
]

, (5)

where V ′
c is a molecular-sized volume. As shown in Ref. 38,

this expression implies shear dominance for the tempera-
ture dependence of τ . This was shown by first defining for
any quantity Q that increases as T decreases, the temper-
ature index as IQ ≡ −d ln Q/d ln T. Equation (5) implies
that the temperature index of τ ’s activation energy can be
written (1 − α)IG∞,p + αIK∞,p , where 0 < α < 0.08 is obeyed
no matter what is the ratio G∞, p/K∞, p.38 In other words, at
least 92% of the non-Arrhenius temperature dependence of
the relaxation time derives from G∞, p’s temperature depen-
dence. The instantaneous bulk modulus K∞, p plays only a
minor role for three reasons:

� Two phonons are transversal for each one that is longi-
tudinal.

� The instantaneous shear modulus G∞, p affects also the
longitudinal phonons.

� Longitudinal phonons are harder than transverse and
therefore contribute less than one third to the vibra-
tional mean-square displacement.

It follows from Eq. (5) that the temperature-dependent activa-
tion (free) energy �E(T) is given by

�E(T ) ∝ G∞,p(T )V ′
c

K∞,p(T ) + 4G∞,p(T )/3

2K∞,p(T ) + 11G∞,p(T )/3
. (6)

Traditionally the shoving model is compared to ex-
periment by plotting the logarithm of the relaxation
time (or, equivalently, the viscosity) as a function of
G∞, p(T)/T.17, 18, 21–24, 29 Such a plot checks whether the pre-
dicted linear relationship between ln τ and G∞, p(T)/T is ob-
served with a physically reasonable prefactor. A convenient
way of making this plot is via a generalized Angell plot
in which the x coordinate is normalized to unity at the
glass transition by defining X ≡ [G∞, p(T)Tg]/[G∞, p(Tg)T].
Unfortunately, measuring the high-frequency plateau shear
modulus of the equilibrium metastable supercooled liquid is
difficult and few data are available even today. An alterna-
tive way of testing the shoving model is by making use of
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FIG. 1. Shear and bulk moduli for a range of metallic glasses (open and full
symbols, respectively, left axis) and the glass transition temperatures Tg (half-
full symbols, right axis). These data are used in Fig. 2 for testing different
versions of the shoving model.

the facts that (1) for a fixed cooling rate the relaxation time
has a certain value at Tg, (2) the (DC) shear modulus of
the glass, G, is almost temperature independent and equal
to the instantaneous shear modulus of the liquid at Tg: G
∼= G∞, p(Tg). The glass shear modulus is easy to measure, and
the prediction of the model is that GVc/kBTg

∼= Const. For
the range of metallic glasses compared below to model pre-
dictions we further assume that the characteristic volume Vc is
proportional to the molar volume Vm with a universal propor-
tionality constant. These simplifying assumptions are made in
order to eliminate all non-trivial free parameters.

Figure 1 gives bulk and shear modulus data for a range of
metallic glasses, as well as their glass transition temperatures
ranging from 317 K for some of the Ca-based glasses to 930
K for some Fe-based ones. Most of these data were discussed
and compared to elastic model predictions in Refs. 25 and 27,
but the cupper-based glasses have been replaced.

Figure 2 compares data to different versions of the shov-
ing model [Eq. (1)]. Since the glass transition takes place
when the relaxation time upon cooling reaches a certain value,
the standard shoving model prediction is

Tg ∝ �E(Tg) ∝ GVm (7)

with a universal proportionality constant. Figure 2(a) tests
this prediction based on the data of Fig. 1, where the metal-
lic glasses are sorted according to their Poisson ratio (R
is the gas constant). Given the diversity of the glasses, the
model’s simplicity, and the simplifying assumption that Vc

∝ Vm with a universal proportionality constant, the data show
good agreement with the shoving model. There is, as noted in
Refs. 25 and 27, some correlation with Poisson’s ratio.43 Be-
fore addressing whether the energy-landscape version of the
shoving model rectifies this, we show in Fig. 2(b) how data
compare to the elastic model in which G is replaced by K.
Here the correlation with Poisson’s ratio is much stronger. Al-
together, Figs. 2(a) and 2(b) show that if an elastic model is to
work for metallic glasses with a universal value of the charac-
teristic volume Vc relative to the molar volume Vm, the bulk
modulus can play only a minor role. This constitutes an ex-
perimental demonstration of shear dominance.
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FIG. 2. Comparing shoving model predictions to data for a range of metal-
lic glasses (Fig. 1). In order to reduce the number of free parameters as
much as possible it is assumed that the characteristic volumes Vc and V ′

c via
Eqs. (1) and (6) are proportional to the molar volume Vm with the same con-
stant of proportionality for all compositions. (a) Test of the standard shoving
model (Eq. (1)), according to which the quantity GVm/Tg is the same for
all systems, where G is the glass shear modulus. This is obeyed to a fairly
good approximation, but there is a slight correlation with the Poisson ratio
(Ref. 27). (b) This correlation is opposite and considerably stronger for the
bulk modulus controlled elastic model. The energy-landscape analogue of the
shoving model [Eq. (6)], which is tested in (c), does not show correlation with
the Poisson ratio.

For the energy-landscape version of the shoving model
Eq. (6) translates into the prediction

Tg ∝ �E(Tg) ∝ GVm

K + 4G/3

2K + 11G/3
. (8)

This is compared to data in Fig. 2(c). The fit is good and there
is no correlation to the Poisson ratio.

The three “zero-parameter” elastic models of Fig. 2 have
standard deviations of, respectively, 8% for the standard shov-
ing model [Fig. 2(a)], 22% for the bulk-modulus elastic model
[Fig. 2(b)], and 8% for the energy-landscape version of the
shoving model [Fig. 2(c)]. The latter gives no better fit to the
data than the original shoving model (the standard deviation
of it is 0.6% lower, which is hardly significant), but it has the
advantage of eliminating the correlation to the Poisson ratio.

A pragmatic one-parameter version of the elastic models
is to allow for a linear combination of G and K by assum-
ing that Tg is controlled by αG + (1 − α)K. Due to shear
dominance one expects α to be close to unity. Indeed, Ref. 27
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showed that for α = 10/11 a very good fit to data is obtained
for metallic glasses, a fit which like the energy-landscape
shoving model eliminates the correlation to the Poisson ratio.
For this one-parameter model the standard deviation is 6%,
i.e., somewhat better than the standard shoving model and its
landscape-equivalent.

V. SUMMARY

The instantaneous shear modulus of the shoving model
refers to the plateau modulus that is traditionally in experi-
ment denoted by G∞. This quantity is measurable, in con-
trast to the idealized affine instantaneous shear modulus of
liquid-state theory, which was also traditionally denoted by
G∞. A consistent notation has been suggested for distin-
guishing between these two quantities whenever there is a
risk of confusing them. Data for a range of metallic glasses
have been shown to be consistent with shoving model predic-
tions; in particular the energy-landscape version of the model
eliminates the correlation of model predictions to Poisson’s
ratio.
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