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We show that for any liquid or solid with strong correlation between its NVT virial and potential-
energy equilibrium fluctuations, the temperature is a product of a function of excess entropy per
particle and a function of density, T = f(s)h(ρ). This implies that (1) the system’s isomorphs (curves
in the phase diagram of invariant structure and dynamics) are described by h(ρ)/T = Const., (2) the
density-scaling exponent is a function of density only, and (3) a Grüneisen-type equation of state
applies for the configurational degrees of freedom. For strongly correlating atomic systems one has
h(ρ) = ∑

nCnρ
n/3 in which the only non-zero terms are those appearing in the pair potential expanded

as v(r) = ∑
nvnr−n. Molecular dynamics simulations of Lennard-Jones type systems confirm the

theory. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3685804]

The class of strongly correlating liquids was introduced
in Refs. 1 and 2. These liquids are defined by having a
correlation coefficient above 0.9 of the constant-volume
equilibrium fluctuations of virial W and potential energy
U. The WU correlation coefficient varies with state point,
but we found from computer simulations that a system has
either poor WU correlations in the entire phase diagram or
is strongly correlating at most of its condensed-phase state
points.1–5 Van der Waals and metallic liquids are generally
strongly correlating, whereas hydrogen-bonded, ionic, and
covalently bonded liquids are generally not. The solid phase
is usually at least as strongly correlating as the liquid phase.
Theoretical arguments, numerical evidence, and experiments
show that strongly correlating liquids are simpler than liquids
in general.1–7

The simplicity of strongly correlating liquids compared
to liquids in general8 derives from the fact that the former
have “isomorphs” in their phase diagram, which are curves of
isomorphic state points. Two state points with particle density
and temperature (ρ1, T1) and (ρ2, T2) are termed isomorphic3

if all pairs of physically relevant microconfigurations of the
state points that trivially scale into one another (i.e., ρ

1/3
1 r(1)

i

= ρ
1/3
2 r(2)

i for all particles i) have proportional configurational
Boltzmann factors:

e−U (r(1)
1 ,...,r(1)

N )/kBT1 = C12 e−U (r(2)
1 ,...,r(2)

N )/kBT2 . (1)

Only inverse-power-law liquids9 have exact isomorphs (here
C12 = 1), but as shown in Appendix A of Ref. 3 a system is
strongly correlating if and only if it has isomorphs to a good
approximation.

The invariance of the canonical probabilities of scaled
microconfigurations along an isomorph has several implica-
tions, for instance:1–3 (1) the excess entropy and the isochoric
specific heat are isomorph invariants, (2) the reduced-unit dy-
namics is isomorph invariant for both Newtonian and stochas-

a)Electronic mail: dyre@ruc.dk.

tic dynamics, (3) all reduced-unit static correlation functions
are isomorph invariant, and (4) a jump between isomorphic
state points takes the system instantaneously to equilibrium.
Using reduced units means measuring length in terms of the
unit ρ−1/3 and time in units of ρ−1/3√m/kBT where m is
the average particle mass. Since isomorphs are generally ap-
proximate, isomorph properties are likewise rarely rigorously
obeyed.

All thermodynamic quantities considered below are ex-
cess quantities, i.e., in excess of those of an ideal gas at the
same density and temperature. Thus, S is the excess entropy
(S < 0), CV is the excess isochoric specific heat, p is the excess
pressure (i.e., p = W/V), etc.

Briefly, the reason that S and CV are isomorph invariants
is the following.3 The entropy is determined by the canoni-
cal probabilities, which are identical for scaled microconfig-
urations of two isomorphic state points. From Einstein’s for-
mula CV = 〈(�U)2〉/kBT2 the isomorph invariance of CV fol-
lows easily by taking the logarithm of Eq. (1) and making
use of the isomorph invariance of scaled microconfiguration
probabilities.

Since S and CV are invariant along the same curves in
the phase diagram, CV is a function of S: CV = φ(S). Thus,
T(∂S/∂T)V = φ(S) or at constant volume: dS/φ(S) = dT/T.
Integrating this leads to an expression of the form ψ(S)
= ln (T) + k(V), which implies T = exp [ψ(S)]exp [−k(V)].
The generic version of this involves only intensive quantities
(s ≡ S/N):

T = f (s)h(ρ) . (2)

For inverse-power-law interactions (∝r−n) the entropy is well
known to be a function of ργ /T where γ = n/3: S = K(ργ /T).
Applying the inverse of the function K shows that these per-
fectly correlating systems obey Eq. (2) with h(ρ) = ργ .

The thermodynamic separation identity Eq. (2) is the
main result of this communication. We proceed to discuss
some consequences and numerical tests.
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Density scaling: Since entropy is an isomorph invariant,
it follows from Eq. (2) that the variable characterizing an
isomorph may be chosen as h(ρ)/T. In particular, the reduced
relaxation time τ̃ , which is also an isomorph invariant, may
be written for some function G:

τ̃ = G

(
h(ρ)

T

)
. (3)

This is the form of “density scaling” proposed by Alba-
Simionesco et al. in 2004 from different arguments;10 at the
same time Dreyfus et al., as well as Casalini and Roland, fa-
vored the more specific form τ̃ = G(ργ /T ).10 Isochrones for
many supercooled liquids and polymers follow to a good ap-
proximation the latter “power-law density scaling” relation.11

For large density changes, however, it was recently shown that
the density-scaling exponent varies significantly in both sim-
ulations and experiments;12 these cases conform to the more
general equation (3).

An expression for the density-scaling exponent: The gen-
eral, state-point dependent density-scaling exponent γ is
defined2, 3 by

γ ≡
(

∂ ln T

∂ ln ρ

)
S

=
(

∂ ln T

∂ ln ρ

)
τ̃

. (4)

The physical interpretation of Eq. (4) is the following. If
density is increased by 1%, temperature should be increased
by γ % for the system to have the same entropy and re-
duced relaxation time. Equation (2) implies d ln T = d ln f(s)
+ d ln h(ρ); thus along an isomorph one has d ln T = d ln h.
Via Eq. (4) this implies

γ = d ln h

d ln ρ
. (5)

In particular, γ depends only on density: γ = γ (ρ).3

Configurational Grüneisen equation of state: The
Grüneisen equation of state expresses that pressure equals
a density-dependent number times energy plus a term that
is a function of density only.13 This equation of state is
used routinely for describing condensed matter at high pres-
sures and temperatures. We proceed to show that strongly
correlating systems obey the configurational version of the
Grüneisen equation of state, which as suggested by Casalini
et al.14 has the density-scaling exponent as the proportionality
constant:3, 4

W = γ (ρ)U + 	(ρ) . (6)

To prove this, note first that (∂U/∂S)ρ = T = f(S)h(ρ) by in-
tegration implies U = F(S)h(ρ) + k(ρ) where F′(S) = f(S)
(S is the extensive entropy). Since W = (∂U/∂ln ρ)S (which
follows from the standard identity TdS = dU + pdV), we get
W = F(S)dh/d ln ρ + dk/d ln ρ. Substituting into the latter ex-
pression F(S) isolated from U = F(S)h(ρ) + k(ρ) leads to
Eq. (6), in which γ (ρ) is given by Eq. (5). It is straightforward
to show that, conversely, Eq. (6) implies the thermodynamic
separation identity Eq. (2).

The isomorphs of atomic systems: We consider now pre-
dictions for systems of “atomic” particles interacting via pair
potentials of the form15 (where r is the distance between two

particles)

v(r) =
∑

n

vnr
−n . (7)

For simplicity only the case of identical particles is consid-
ered, but the arguments generalize trivially to multicompo-
nent systems. Consider the thermal average 〈r−n〉. Switch-
ing to reduced units defined by r̃ ≡ ρ1/3r , we have 〈r−n〉
= 〈r̃−n〉ρn/3. Since structure is isomorph invariant in reduced
units, 〈r̃−n〉 is an isomorph invariant. Consequently, it is a
function of any other isomorph invariant, for instance the en-
tropy: 〈r̃−n〉 = Gn(S). Noting that the average potential en-
ergy is a sum of Eq. (7) over all particle pairs, we conclude
that (where Hn(S) ∝ vnGn(S))

U =
∑

n

Hn(S)ρn/3 . (8)

Taking the derivative of this equation with respect to temper-
ature at constant volume leads to(

∂U

∂T

)
V

=
∑

n

H ′
n(S)

(
∂S

∂T

)
V

ρn/3 . (9)

The left-hand side is T(∂S/∂T)V, so Eq. (9) implies

T =
∑

n

H ′
n(S)ρn/3 . (10)

This is consistent with the thermodynamic separation identity
Eq. (2) only if all the functions H ′

n(S) are proportional to some
function, i.e., if one can write H ′

n(S) = Cnφ(S). We identify
φ(S) as the function f(s) of Eq. (2), which means that

h(ρ) =
∑

n

Cnρ
n/3 . (11)

Thus, for strongly correlating atomic liquids, the thermody-
namic function h(ρ) has an analytical structure, which is in-
herited from v(r) in the sense that the only non-zero terms of
h(ρ) are those corresponding to non-zero terms of v(r). Note
that not all systems with potentials of Eq. (7) are strongly cor-
relating and that the derivation applies only if this is the case.

As an illustration we present results from NVT simula-
tions of the Kob-Andersen binary Lennard-Jones (KABLJ)
liquid,16 which is strongly correlating at its condensed-phase
state points.1–3 The application of the above to LJ systems
predicts that H ′

12(S) ∝ H ′
6(S), where H12(S) is the reduced co-

ordinate average of the r−12 term of U. Integrating this leads
to H12(S) = αH6(S) + β, implying that if the repulsive term
in U is plotted against the attractive term in reduced units,
all points are predicted to fall onto a common line. Figure 1
presents data where density was changed by a factor of eight
and temperature by a factor of 40 000. The data collapse is
good but not exact, which reminds us that the relations de-
rived are approximate.

The theory implies a simple mathematical description of
the isomorphs in the (ρ, T) phase diagram. From the fact that
the potential energy contains only r−12 and r−6 terms, it fol-
lows that h(ρ) = Aρ4 − Bρ2. Consequently, LJ isomorphs are
given by

Aρ4 − Bρ2

T
= Const. (12)
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FIG. 1. The thermal average of r−12 versus that of −r−6 in reduced units for
a large range of state points of the Kob-Andersen binary Lennard-Jones liquid
simulated with 1000 particles (εAA = σAA = 1). These quantities correspond
to H12(S) and H6(S) in Eq. (8). The theory predicts that H ′

12(S) ∝ H ′
6(S),

implying that all data points should fall onto a common line according to
H12(S) = αH6(S) + β.

The invariance of the Boltzmann statistical weights of scaled
microconfigurations implies that an isomorph cannot cross the
liquid-solid coexistence curve. In particular, the coexistence
curve is itself predicted to be an isomorph,3 which was re-
cently confirmed by simulations of generalized LJ liquids.4, 17

Consequently, the coexistence line is given by Eq. (12). This
validates a recent conjecture of Khrapak and Morfill.18

Predictions for the repulsive Lennard-Jones fluid: As a fi-
nal illustration we consider the “repulsive” single-component
LJ fluid defined by the pair potential v(r) = (r−12 + r−6)/2,
a system with WU correlation coefficient above 99.9% in its
entire phase diagram. At low densities (ρ � 1) the repulsive
LJ fluid behaves as an r−6 fluid, whereas it for ρ 	 1 is effec-
tively an r−12 fluid. Thus, the density-scaling exponent γ (ρ)
varies from 2 to 4 as density increases, a much larger variation
than that of previously studied strongly correlating systems.

Since h(ρ) is only defined within an overall multiplicative
constant, one can write for the repulsive LJ fluid h(ρ) = αρ4

+ (1−α)ρ2. This leads via Eq. (5) to γ 0 = 2 + 2α, where
γ 0 is the density-scaling exponent at reference density unity,
implying that

h(ρ) = (γ0/2 − 1)ρ4 + (2 − γ0/2)ρ2 . (13)

Our simulations identified from the expression γ 0

= 〈�W�U〉/〈(�U)2〉 (Ref. 3) the exponent γ 0 = 3.56 at the
state point (ρ, T) = (1, 1). Equation (13) with γ 0 = 3.56
was tested in two different ways. First, we compared at
each state point along an isomorph the exponent γ (ρ)
predicted from Eqs. (5) and (13) with that calculated from
the fluctuations via γ = 〈�W�U〉/〈(�U)2〉 (right panel of
Fig. 2). The left panel presents a second test of Eq. (13)
by showing results from simulating five temperatures at ρ

= 1, plotting for each temperature instantaneous values of
the potential energy versus the potential energy of the same
microconfigurations scaled to three other densities (ρ = 0.5,
1.6, 2.0). The theory behind the observed straight lines is

3.25 3.5 3.75 4 4.25 4.5
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Prediction
Simulation
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ρ = 1.00

ρ = 1.60

ρ = 2.00

Slope = 13.4

Repulsive Lennard-Jones

Slope = 5.68

FIG. 2. “Multiple direct isomorph check” applied to simulations of
N = 1000 particles of the repulsive LJ fluid defined by the pair potential (r−12

+ r−6)/2. The left panel shows a scatter plot of the potential energies of pairs
of microconfigurations, where the potential energy of a given microconfigu-
ration at density 1.0 is denoted U(1.00) and that of the same microconfigura-
tion scaled to density ρ is denoted U(ρ) (ρ = 0.5, 1.6, 2.0). This was done for
T = 0.6, 0.8, 1.0, 1.2, 1.4. The yellow asterisks mark the average of
each scatter plot. The black lines are the predictions (see the text) with
slopes determined via Eq. (13) from the fluctuations calculated at the state
point (ρ, T) = (1, 1) marked by an arrow. The right panel shows the
density-scaling exponent along an isomorph predicted from Eqs. (5) and (13)
(full curve) and the exponent calculated at each state point from the fluctua-
tion formula γ = 〈�W�U〉/〈(�U)2〉 (Ref. 3) (red crosses). The arrow marks
the state point (ρ, T) = (1, 1).

the following. Consider two isomorphic state points (ρ0,
T0) and (ρ, T) and suppose each temperature is changed a
little, keeping both densities constant. If the two new state
points are also isomorphic, the entropy change is the same
for both: dU0/T0 = dU/T. This implies dU/dU0 = T/T0, i.e.,
(∂U/∂U0)ρ0,ρ

= T/T0. Since h(ρ)/T is constant along an
isomorph, this implies (∂U/∂U0)ρ0,ρ

= h(ρ)/h(ρ0). Integrat-
ing this at constant ρ0 and ρ leads to U = [h(ρ)/h(ρ0)]U0

+ φ(ρ0, ρ). In our case of reference density unity ρ0 = 1 and
h(ρ0) = 1. Thus, plotting U versus U0 is predicted to result
in straight lines with slope h(ρ) (yellow asterisks in the left
panel of Fig. 2). The scaled state points are isomorphic to
the original ρ = 1 state points, with temperatures given by T
= T0h(ρ). Via the “direct isomorph check”3 this implies that
the scaled microconfigurations form elongated ovals also
with slope h(ρ).

In summary, we have shown that for strongly correlating
liquids or solids, temperature separates into a function of en-
tropy times a function of density. For these systems the energy
scale is consequently determined by density alone. It is an
open question whether, conversely, the thermodynamic sepa-
ration identity equation (2) implies that the system in question
is strongly correlating. We anticipate that this is the case, at
least for realistic potentials.

The centre for viscous liquid dynamics “Glass and Time”
is sponsored by the Danish National Research Foundation
(DNRF).
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