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Physical aging of molecular glasses studied by a device allowing for rapid
thermal equilibration

Tina Hecksher,a� Niels Boye Olsen,b� Kristine Niss,c� and Jeppe C. Dyred�

Department of Sciences, DNRF Centre “Glass and Time,” IMFUFA, Roskilde University,
P.O. Box 260, DK-4000 Roskilde, Denmark

�Received 9 June 2010; accepted 14 August 2010; published online 5 November 2010�

Aging to the equilibrium liquid state of organic glasses is studied. The glasses were prepared by
cooling the liquid to temperatures just below the glass transition. Aging following a temperature
jump was studied by measuring the dielectric loss at a fixed frequency using a microregulator in
which temperature is controlled by means of a Peltier element. Compared to conventional
equipment, the new device adds almost two orders of magnitude to the span of observable aging
times. Data for the following five glass-forming liquids are presented: dibutyl phthalate, diethyl
phthalate, 2,3-epoxy propyl-phenyl-ether, 5-polyphenyl-ether, and triphenyl phosphite. The aging
data were analyzed using the Tool–Narayanaswamy formalism. The following features are found for
all five liquids: �1� The liquid has an “internal clock,” a fact that is established by showing that aging
is controlled by the same material time that controls the dielectric properties. �2� There are no
so-called expansion gaps between the long-time limits of the relaxation rates following up and down
jumps to the same temperature. �3� At long times, the structural relaxation appears to follow a
simple exponential decay. �4� For small temperature steps, the rate of the long-time exponential
structural relaxation is identical to that of the long-time decay of the dipole autocorrelation
function. © 2010 American Institute of Physics. �doi:10.1063/1.3487646�

I. INTRODUCTION

The change of materials properties over time is referred
to as aging. Aging phenomena often involve chemical deg-
radation, but there are also several instances of purely physi-
cal property changes. Understanding physical aging is impor-
tant for many materials applications. Moreover, physical
aging presents fundamental scientific challenges and pro-
vides valuable insight into materials properties. This paper
shows that by utilizing the Peltier thermoelectric effect,
physical aging may be studied at considerably shorter times
than has so far been possible. The new setup adds almost two
decades to the span of aging times compared to what may be
obtained by conventional equipment in the same observation
time.

A prime example of aging is that of a viscous liquid’s
physical properties relaxing slowly towards equilibrium
when a perturbation is applied to the equilibrated liquid close
to its glass transition. In equilibrium, a liquid’s properties do
not change with time, of course �the fact that the liquids
studied below are supercooled and thus technically only in
quasiequilibrium is not important because no crystallization
was observed�. If the temperature is changed, properties
gradually adjust themselves to new equilibrium values. If the
temperature is lowered, a glass is produced; recall that by
definition, a glass is nothing but a highly viscous liquid that
has not yet had time to equilibrate.1–6 Any glass ages toward

the equilibrium liquid state. This state can only be reached
on laboratory time scales, however, if the glass is kept just
below the glass transition temperature; contrary to popular
myth, windows do not flow observably.

Aging is a nonlinear phenomenon. This is because the
aging rate is structure dependent and itself evolves with time
when the structure changes as equilibrium is gradually
approached.7–16 Thus, aging studies provide information be-
yond that obtained by linear-response experiments such as,
e.g., dielectric relaxation measurements. There are good rea-
sons to believe that on the microscopic level, aging is
heterogeneous;17–19 the below analysis is, however, entirely
macroscopic and does not discuss possible microscopic in-
terpretations of the observed aging phenomena �see, e.g.,
Refs. 20 and 21�.

A typical aging experiment consists of a temperature
step, i.e., a rapid decrease or increase of temperature to a
new, constant value. Ideally, such a temperature step should
be instantaneous; more precisely, the new temperature should
be established as constant in time and homogeneous through-
out the sample before any structural relaxation has taken
place. If this is achieved and if sufficient time is available, it
is possible to monitor the complete relaxation to equilibrium
of the physical property being probed. An experimental pro-
tocol that measures the complete relaxation curve will be
referred to as an “ideal aging experiment.”22

What are the requirements for an ideal aging experi-
ment? First, there should be good temperature control and
the setup should allow for rapid thermal equilibration follow-
ing a temperature jump. Second, a physical observable is
needed that may be monitored quickly and accurately and
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which, preferably, changes significantly even for small tem-
perature changes. The latter property allows for studying ag-
ing following temperature jumps that are of order just 1% in
absolute units, which is enough for most ultraviscous liquids
to become highly nonlinear. The organic liquids studied in
this paper have glass transition temperatures in the region
170–200 K and most temperature jumps are 1 or 2 K jumps.

In current state-of-the-art aging experiments, the charac-
teristic thermal equilibration time � is at least 100 s if � is
defined from the long-time thermal-diffusion-limited ap-
proach to equilibrium �exp�−t /��. This reflects the fact that
heat conduction is a notoriously slow process. Experience
shows that in order to monitor an almost complete aging
curve, at least four decades of time must be covered; for
instance, the typical aging function exp�−K�t� decays from
97% to 3% over four decades of time. Thus with present
methods, one needs at least of order 100 s�104=106 s for
an almost ideal temperature down-jump experiment. This is
more than a week. Clearly, much is to be gained if it were
possible to equilibrate sample temperatures faster.

In order to make possible faster temperature-jump ex-
periments, we designed a dielectric cell based on a Peltier
thermoelectric element by means of which the heat flow is
controlled via electrical currents �Fig. 1�.23 The characteristic
thermal equilibration time of the microregulator is 2 s. This
is almost a factor of a hundred times faster than that of con-
ventional equipment, which usually involves much larger
heat diffusion lengths; our liquid layer is 50 �m thick and
the use of a Peltier element minimizes heat diffusion lengths
outside of the liquid layer. In the microregulator, the tem-
perature may be kept constant over weeks, keeping fluctua-
tions below 100 �K.23,24

For monitoring aging we chose to measure the dielectric
loss �the negative imaginary part of the dielectric constant� at
a fixed frequency. With modern equipment, this quantity may
be measured quickly and accurately; our electronics setup is
detailed in Ref. 24. Moreover, for a viscous liquid of mol-
ecules with a permanent dipole moment, a frequency range
exists in which the dielectric loss changes considerably for
small temperature variations. The dielectric loss was used
previously for monitoring aging by several groups, e.g., by
Johari,25 Schlosser and Schönhals,26 Alegria et al.,27–29 Le-

heny et al.,30,31 Cangialosi et al.,32 Lunkenheimer et al.,33–35

D’Angelo et al.,36 and Serghei and Kremer.37

This paper presents ideal aging experiments on five or-
ganic liquids with both temperature up and down jumps
�Sec. II�. As mentioned, the temperature jumps are of order
1% and, aging is monitored by measuring the dielectric loss
at a fixed frequency in the hertz range. In Sec. III we give a
mathematical formulation of the reduced time concept. This
is sometimes referred to as the material time or, perhaps
more intuitively appealing, the time measured on an “inter-
nal” clock, i.e., a clock with clock rate varying with tempera-
ture and with the annealing state of the sample. We here
follow Narayanaswamy’s38 seminal paper from 1971 and go
into some detail in order to make the text easier to read for
nonexperts in aging. In Sec. IV a new test of the existence of
an internal clock is proposed. In contrast to most earlier
works, this test makes no assumptions regarding which quan-
tity controls the internal clock’s rate or the mathematical
form of the relaxation function. This section demonstrates
that all five liquids have internal clocks. Section V extends
the data analysis in order to study whether the long-time
relaxation is stretched or simple exponential. Section VI
shows that within the experimental uncertainties, the long-
time simple exponential structural relaxation has the same
rate as the long-time exponential decay of the dipole auto-
correlation function. Finally, Sec. VII gives a summary and a
few concluding remarks. A discussion of noise and system-
atic errors in the data analysis is given in the Appendix.

II. EXPERIMENTAL RESULTS AND INITIAL DATA
ANALYSIS

The experimental setup is detailed in Refs. 23 and 24,
which describe the microregulator, the surrounding cryostat,
and the electronics used for measuring the frequency-
dependent dielectric response. We studied aging of the fol-
lowing five organic liquids: dibutyl phthalate �“DBP”�, di-
ethyl phthalate �“DEP”�, 2,3-epoxy propyl-phenyl-ether
�“2,3-epoxy”�, 5-polyphenyl-ether �“5-PPE”�, and triphenyl
phosphite �“TPP”�. These liquids are all excellent glass
formers. In order to ensure complete equilibrium before each
measurement, the sample was kept at the temperature in
question until there were no detectable changes of the dielec-
tric properties.

Aging was studied by monitoring how the dielectric loss
at a fixed frequency ���f� develops as a function of time
following a temperature jump. In order to avoid the liquid
aging significantly during the measurement of a single fre-
quency response data point, the monitoring frequency f must
be considerably higher than the inverse structural relaxation
time, which is of order of the inverse main �alpha� loss-peak
frequency; thus the monitoring frequency must be much
larger than the loss-peak frequency. For the data analysis of
Secs. III and IV to apply, however, f must also be sufficiently
below any contribution�s� from potential beta processes.
These constraints vary with the liquid and the selected tem-
perature range, and the choice of f was optimized for each
liquid. For all five liquids the optimal f is in the Hertz range.

Measurements consist of consecutive temperature jumps

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

Microregulator

Control System

TemperaturePeltier element

Dielectric cell
+

Copper base

Electrode pin NTC thermistor

−

PEEK posts

� � � � � � � � �

DC current

� � � � � � � � �

FIG. 1. Schematic drawing of the dielectric measuring cell with the micro-
regulator. The liquid is deposited in the �50 �m� gap between the disks of
the dielectric cell. The Peltier element heats or cools the dielectric cell,
depending on the direction of the electrical current powering the element.
The current is controlled by an analog temperature-control system that re-
ceives temperature feedback information from an NTC thermistor embedded
in one disk of the dielectric cell. A stainless steel electrode pin keeps the cell
pressed against the Peltier element and provides electrical connection to one
of the disks. The dielectric measuring cell is placed in the main cryostat.
Details of the setup are described in Refs. 23 and 24.
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of �usually� 1 or 2 K, in most cases with two down/up jumps
followed by two up/down jumps. This is illustrated in Fig. 2,
which in Fig. 2�b� shows the raw data obtained for DEP.
Here f =1 Hz and the temperature jumps are 1 K. The tem-
perature protocol ensures that data are obtained for one up
and one down jump to the same temperature. The duration of
each measurement varies with the relaxation time of the liq-
uid in question at the measured temperatures. A time-
consuming part of the experiment is the initial aging to com-
plete equilibrium at the target temperature just below the
calorimetric glass transition temperature, which in most
cases required weeks of annealing. In all cases, care was
taken to ensure that the loss at one temperature was moni-
tored until the sample had reached equilibrium; only there-
after was temperature changed to a new value. The Appendix
discusses possible sources of errors in the experiments.

Figures 3�a�–3�f� show the data on which the paper is
based. Two data sets were included for DBP, with aging
monitored at different frequencies. Note that aging for down
jumps to a given temperature is faster than for an up jump to
the same temperature �compare, e.g., the two jumps to 200 K
in Fig. 3�f��. This is the so-called fictive-temperature effect
described already by Tool39 in the 1940s, an effect which
comes from the fact that the relaxation rate is structure de-
pendent and itself evolves with time: A down jump is

“autoretarded”8 because as the structure ages, the aging rate
decreases. In contrast, an up jump is “autoaccelerated” be-
cause as the structure ages, the aging rate increases.8 These
are nonlinear effects that are characteristic for structural re-
laxation of single-component systems �but not, e.g., for ag-
ing involving composition fluctuations in binary systems�.
The fictive-temperature effect is clearly visible in Fig. 3,
which shows that even relatively small temperature jumps
are highly nonlinear, reflecting the fact that the equilibrium
relaxation time is strongly temperature dependent for glass-
forming liquids.

For any experiment monitoring the relaxation of some
quantity toward its equilibrium value, the normalized relax-
ation function R�t� is defined by subtracting the long-time
�equilibrium� limit of the quantity in question and subse-
quently normalizing by the overall relaxation strength.12,38 In
the DEP case, for instance, for which the quantity monitored
is log ���f =1 Hz�, for a temperature jump from T1 to T2

starting from equilibrium the normalized relaxation function
is given by

R�t� =
log ���1 Hz,T2,t� − log ���1 Hz,T2,t → ��

log ���1 Hz,T1,t = 0� − log ���1 Hz,T2,t → ��
. �1�

The Kovacs–McKenna �KM� relaxation rate ��t� is
defined8,13 by

��t� � −
d ln R

dt
= −

1

R

dR

dt
. �2�

The KM relaxation rate gives the relative change of the re-
laxation function with time and has the convenient property
of being independent of the normalization. For a simple ex-
ponential relaxation function R�t�=exp�−t /��, the KM relax-
ation rate is constant: ��t�=1 /�. In general, the KM relax-
ation rate changes with time. For both for temperature up and
down jumps, we found that ��t� decreases with time �for
large up jumps this does not have to be the case�. A popular
analytical fitting function is the stretched exponential R�t�
=exp�−�t /���� �0	�	1�; this function has ��t�= �� /��
��t /���−1 that decreases monotonically to zero as t→�.

Taking DBP as an example, Fig. 4�a� shows as functions
of time the normalized relaxation functions for all six tem-
perature jumps of Figs. 3�a� and 3�b�. Figure 4�b� shows the
corresponding KM relaxation rates. At long times there is
considerable noise in the KM rate because this quantity is
difficult to determine by numerical differentiation when the
noise becomes comparable to R�t�.41 In order to eliminate
unreliable long-time ��t� data points, we introduced a cutoff
at 0.5% from equilibrium for all data sets. Despite the long-
time noise, it is clear that for up and down jumps ending at
the same temperature �175, 176, or 177 K�, the KM relax-
ation rates eventually approach the same number. This shows
that there is no so-called expansion gap as Kovacs8 proposed
in 1963 based on experiments monitoring relaxation by mea-
suring volume changes. Figure 4�c� gives a parametrized plot
of �R�t� , log���t��� which, except for the normalization of R
introduced here, was the data representation originally used
by Kovacs.8 Again, it is clear that up and down jumps to the
same temperature approach the same KM relaxation rate at
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FIG. 2. A typical measurement. �a� Schematic representation of the protocol
in which the sample is first aged to complete equilibrium at a temperature
slightly below the calorimetric glass transition temperature Tg, a process that
typically takes weeks, followed by two down temperature jumps and two up
temperature jumps. �b� Data from measurements for DEP following this
protocol, jumping from 184 to 183 K, further to 182 K, back to 183 K, and
finally to 184 K. The dielectric loss �� was measured as a function of time
at the frequency f =1 Hz. The duration of the measurement depends on the
temperature range, i.e., how long it takes to equilibrate the sample fully after
a temperature jump. Following this procedure, we know the relaxation func-
tions as well as the equilibrium values of the dielectric losses at the tem-
peratures in question. Throughout this paper log refers to the logarithm with
base 10.
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long times �R→0�. The existence of an expansion gap has
been a matter of debate.41–44 Kolla and Simon22 recently con-
cluded, however, that there is no expansion gap for t→�;
they attributed the reported expansion gap to the fact that
Kovacs was unable to examine departures from equilibrium
that were small enough to show the convergence of time
scales. Our findings confirm this.

III. THE INTERNAL CLOCK HYPOTHESIS

For interpreting the data we use the Tool–
Narayanaswamy �TN� formalism, which dates back to Tool’s
works in the 1940s and matured with Narayanaswamy’s
seminal paper from 1971.12,38,39,45 The TN formalism inter-
prets aging in terms of a so-called material time. The main
feature of the TN formalism is that it describes aging in
terms of a linear convolution integral, even when the aging is
highly nonlinear. The formalism generally works well, al-
though from a fundamental point of view it is still somewhat
of a mystery why this is.

Lunkenheimer and co-workers33–35 recently studied ag-
ing also by monitoring the dielectric loss. They found that
the relaxation curves R�t� to a good approximation may be

described by a stretched-exponential relaxation function
which, as a new feature, introduces a time-dependent char-
acteristic time ��t� :R�t�=exp�−�t /��t����. Interestingly, the
nonlinear stretching exponent � was found to be identical to
that derived from the linear dielectric relaxation function.
This is a novel approach to aging studies. However, it does
not lend any obvious physical interpretation to ��t�, which
has the appearance of an averaged relaxation time represent-
ing the entire aging process until time t.

The TN approach’s material time may be thought of as
time measured on a clock with rate changing as sample prop-
erties evolve with time. The material time is analogous to the
proper time concept of relativity theory, the reading on a
clock following a �possibly accelerated� observer’s world
line; from an inertial system one would say that the clock
rate varies with the observer’s velocity, but the moving ob-
server would dispute this. The existence of a material time is
an old idea that predates Narayanaswamy; thus the well-
known time-temperature superposition concept may be re-
garded as a “linear” internal clock hypothesis. Naraya-
naswamy’s brilliant insight was to generalize this to describe
aging, which is a highly nonlinear phenomenon.
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FIG. 3. Monitoring aging by measur-
ing the dielectric loss at a fixed fre-
quency. This figure presents the full
set of data on which the paper’s analy-
sis is based �Ref. 40�. The data are
given in log-log �base 10� plots show-
ing the dielectric loss as a function of
time. In all cases, the starting situation
�“t=0”� is that of thermal equilibrium,
a condition that is ensured by anneal-
ing for such a long time that no ob-
servable change is seen in the dielec-
tric loss. �a� DBP. A series of
measurements at f =0.18 Hz, stepping
1 K from 177 K and 175 K to 176 K,
as well as the reverse. �b� DBP step-
ping from 175 to 177 K and back, this
time monitored at f =1 Hz. �c� DEP
�f =1 Hz�. �d� 2,3-epoxy �f =1 Hz�.
�e� 5-PPE �f =1 Hz�. �f� TPP �f
=1 Hz�.
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The material time, which will be denoted by t̃, is time
measured using a unit that itself evolves with time. If the
structural clock rate is denoted by 
s�t�, the material time t̃ is
defined12,22,38,39,41–45 by

dt̃ = 
s�t�dt . �3�

This means that

t̃�t� = 	
−�

t


s�t�dt , �4�

where the lower bound is, of course, arbitrary. The TN for-
malism is standard for interpreting aging experiments and
used routinely in industry for predicting aging effects.46–48

Nevertheless, it is not known whether—and in which
sense—the internal clock exists, or if it should merely be
regarded as a convenient mathematical construction.

According to the TN formalism, for all temperature
jumps applied to a given system in equilibrium—small or
large, up or down—the normalized relaxation function is a
unique function of the material time that has passed since the
jump was initiated at t̃=0: R=R�t̃�. In applications of the TN
formalism, one often allows for different material times to
control the aging of different quantities �with also the func-
tion R�t̃� varying with which quantity that is being moni-
tored�. But if an internal clock really exists, a common ma-
terial time must control all relaxations. In particular, the
relaxation of the clock-rate activation energy itself during
aging must be controlled by the same material time that con-
trols the dielectric aging process �details are given below�. A
major point of this paper is to check against experiments the
consequences of assuming that an internal clock exists. The
next subsections develop a theory for testing this.

Determining the structural clock rate 
s�t� in the TN for-
malisms usually involves some mathematical modeling, fit-
ting of data, or assumption regarding what controls the
relaxation.9,12,38,49 In Sec. IV we develop a test of the internal
clock hypothesis which does not require such procedures, but
proceeds directly from data without explicitly determining
t̃�t�. First, however, it is necessary to define precisely both
the dielectric relaxation rate in an out-of-equilibrium situa-
tion and the structural relaxation clock rate.

A. Defining the dielectric relaxation rate for
out-of-equilibrium situations

The five liquids studied all obey time-temperature super-
position �TTS� for their main �alpha� process to a good ap-
proximation. Moreover, they all have a high-frequency decay
of the loss that to a good approximation may be described by
a power-law ���f�� f��, where � is close to 1/2. It was con-
jectured some time ago that a high-frequency exponent of
�1/2 reflects the generic properties of the pure alpha process
obeying TTS �i.e., whenever the influence of additional re-
laxation processes is negligible�,50 a conjecture that was
strengthened by a recent study involving more than 300 di-
electric spectra.51 For the data analysis below, the exponent
� was identified as the minimum slope51 of the log-log plot-
ted dielectric loss curve above the loss peak, evaluated at the
temperature where the loss peak is 0.1 Hz �Fig. 5�. The �
values thus obtained are listed in Table I.

The inverse power-law high-frequency dielectric loss,
compare Fig. 6�a�, is used to monitor the dielectric relaxation
rate 
d�t� as the structure ages following a temperature
jumps. This is done by proceeding as follows. First, we de-
fine the dielectric relaxation rate for the equilibrium liquid 
d

as the dielectric loss-peak angular frequency


d � 2
fm, �5�

where fm is the loss-peak frequency. If the temperature is
lowered in a step experiment, the dielectric loss curve gradu-
ally moves to lower frequencies as the system ages and re-
laxes to equilibrium. How to define a dielectric relaxation
rate 
d for this out-of-equilibrium situation? It is not possible
to continuously monitor the entire loss curve. This is because
the aging takes place on the same time scale as that of the
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FIG. 4. �a� Normalized relaxation functions for DBP as functions of log
�time�. �b� The KM relaxation rates � defined in Eq. �2� for these data, as
functions of log�time�. Up and down jumps ending at 176 K give the same
relaxation rate at long times, showing that there is no so-called expansion
gap as proposed by Kovacs in 1963 �Ref. 8�. �c� Parametrized plot of
�R�t� ,��t��. Again, it is seen that different temperature jumps to the same
temperature approach the same relaxation rate at long times �small R�.
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dielectric loss, implying that linear-response measurements
around the loss-peak frequency are not well defined �i.e., a
harmonic input does not result in a harmonic output�. To
circumvent this problem, the intuitive idea is that how much
the dielectric relaxation rate has changed may be determined
from how much the loss has changed at some fixed fre-
quency in the high-frequency power-law region �Fig. 6�c��.
Mathematically, this corresponds to defining 
d�t� from the
high-frequency equilibrium expression as follows:

���f ,t� � �f/
d�t��−�. �6�

Thus by probing the dielectric loss at the fixed frequency f ,
the dielectric relaxation rate may be determined during aging
from

log 
d�t� =
1

�
log ���f ,t� + A . �7�

The calibration constant A is found by using equilibrium data
from higher temperatures where the loss peak is within the
observable frequency range.

It should be emphasized that it is not a new idea to
monitor aging by measurements at a frequency much larger
than the reciprocal structural relaxation time; for instance,
Struik11 long ago discussed the proper protocols for doing
this.

Although the above ideas seem straightforward, from a
fundamental point of view one may question the validity of
the concept of a dielectric relaxation rate in a situation where
the structure ages on the same time scale as the dipoles relax.
In order to specify the precise assumptions needed to justify
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FIG. 5. �a� Illustration of the procedure used to determine the inverse
power-law exponent �, which is identified as the minimum slope of the
dielectric loss curve in a log-log plot at the temperature where the loss-peak
frequency is 0.1 Hz �blue dotted curve�. The red data points give the nu-
merical slopes of this curve and the red dashed curve is a parabola fitted to
the bottom points of the slope; the analytic minimum of the parabola deter-
mines the minimum slope �Ref. 51�. �b� The loss-peak frequencies deter-
mined from the equilibrium spectra �green� and the predicted peak positions
using Eq. �7� �corresponding to 
d� at different measuring frequencies. The
curves line up at low temperatures, showing that this procedure determines
the correct loss-peak frequency.

TABLE I. The high-frequency slopes � used in the data analysis.

DBP DEP 2,3-epoxy 5-PPE TPP

� 0.506 0.483 0.550 0.507 0.495
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FIG. 6. �a� Dielectric loss spectra for DBP above Tg �i.e., equilibrium data�.
�b� TTS plot of the same spectra illustrating that the high-frequency wing of
the alpha �main� process approaches a slope of �1/2 as the temperature is
lowered �Refs. 50 and 51�. All five liquids have high-frequency slopes close
to �1/2, but this fact is not important for the analysis. �c� Illustration of how
one utilizes the fact that the loss varies as f�� at high frequencies to measure
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defining 
d�t� via Eq. �7�, we reason as follows. According to
linear-response theory, for a system in thermal equilibrium
the measured output is calculated from a convolution integral
involving the input before the measuring time. A convenient
way to summarize TTS for the equilibrium liquid is to for-
mulate the convolution integral in terms of a dielectric “ma-
terial” time t̃: If 
d is the equilibrium liquid’s dielectric re-
laxation rate �Eq. �5��, the dielectric material time is defined
from the actual time t by

t̃ = 
dt . �8�

In terms of t̃, since in a standard dielectric experiment the
input variable is the electric field E and the output is the
displacement vector D, the convolution integral is of the
form

D�t̃� = 	
0

�

E�t̃ − t̃����t̃��dt̃�. �9�

Equation �9� describes TTS because it implies that except for
an overall time/frequency scaling, the same frequency-
dependent dielectric constant is observed at different tem-
peratures �we ignore the temperature dependence of the over-
all loss, an approximation which introduces a relative error
into the data treatment well below 1% over the range of
temperatures studied�.

In Eq. �9�, which applies at equilibrium whenever TTS is
obeyed, the dielectric material time is defined from the actual
time by scaling with 
d �Eq. �8��. In the out-of-equilibrium
situation following a temperature jump, the simplest assump-
tion is that Eq. �9� also applies, but with a generalized di-
electric material time involving a time-dependent dielectric
relaxation rate 
d�t�, i.e.,

dt̃ = 
d�t�dt . �10�

As the system gradually equilibrates at the new temperature,
the dielectric relaxation rate 
d�t� approaches the equilibrium
liquid’s loss-peak angular frequency at the new temperature.
The equilibrium liquid’s power-law dielectric loss ��� f−�

applies in a range of frequencies obeying f � fm. Since by
Eq. �9� ���̃�=
0

���t̃��exp�−i�̃t̃��dt̃�, where �̃=� /
d, the
equilibrium liquid’s loss obeys ����̃−� for �̃�1. By the
mathematical Tauberian theorem, this implies that ��t̃��
� �t̃���−1 whenever t̃��1. The proposed generalization of Eq.
�9� to out-of-equilibrium situations now mathematically im-
plies that the dielectric relaxation rate 
d�t� is given by Eq.
�6�. In summary, assuming the simplest generalization of
TTS to out-of-equilibrium situations, a generalized dielectric
relaxation rate has been defined; moreover, we have shown
how to measure it by monitoring the high-frequency dielec-
tric loss at a fixed frequency using the inverse power-law
approximation.

The idea of determining an out-of-equilibrium relaxation
rate directly from experimental data instead of via modeling
is mathematically equivalent to the so-called time-aging time
superposition.29,52–55 This is traditionally43,56–58 implemented
by first using the short-time response of, for instance, a me-
chanical perturbation to take a “snap-shot” of the structure
during a volume-recovery experiment. These curves are then

shifted horizontally on the time axes in order to determine
the aging-time shift factors, �Tf

. Assuming time-aging time
superposition, the shift factors are proportional to the struc-
tural relaxation time. Thus, the reduced time is found via an
equation equivalent to Eq. �10�, t̃=
0

t �aTf
�t���−1dt.59

In Sec. III B, we relate 
d�t� to the TN structural relax-
ation clock rate 
s�t�, but first the latter quantity needs to be
defined precisely.

B. Defining the structural relaxation clock rate

The structural relaxation clock rate 
s�t� determines the
structural relaxation’s material time in the TN formalism.
Just as was the case for the generalized dielectric relaxation
rate, it is not a priori obvious that any 
s�t� may be defined;
the test of the existence of 
s�t� is whether a consistent de-
scription is arrived at by assuming its existence. Assuming
for the moment that this is the case, we define the structural
relaxation clock rate’s time-dependent activation �free� en-
ergy E�t� by writing


s�t� = 
0e−E�t�/kBT�
0 = 1014 s−1� . �11�

The activation energy E�t� depends on the structure and
evolves during the structural relaxation. Consider the case of
structural relaxation induced by a general temperature varia-
tion. According to the TN formalism, the aging of the acti-
vation energy is described by a linear convolution integral
over the temperature history involving a material time t̃s de-
fined by the analog of Eq. �10�,

dt̃s = 
s�t�dt . �12�

Including for convenience the inverse temperature in the be-
low equation, the linear convolution integral for the activa-
tion energy’s evolution induced by a temperature variation
T�t�=T0+�T�t� is given by an expression of the form

��E/kBT��t̃s� = 	
0

�

�T�t̃s − t̃s����t̃s��dt̃s�. �13�

C. Assuming the existence of an internal clock

A main purpose of this paper is to investigate the conse-
quences of assuming that an internal clock exists. This as-
sumption implies that the same material time controls dielec-
tric aging via Eq. �9� and aging of the structural relaxation
clock rate via Eqs. �11� and �13�, i.e., that for any aging
experiment one has


s�t� � 
d�t� . �14�

A clock works by counting repeated physical processes, and
two clocks measure the same physical time if the number of
ticks counted by the clocks are proportional for all time in-
tervals. Thus both the above-defined clock rates 
d and 
s are
defined only up to a proportionality: The physical content of
Eqs. �9� and �13� is invariant if the reduced times are rede-
fined by multiplying by some number. Nevertheless, Eq. �14�
is not trivial; thus Eqs. �9� and �13� may both apply with
different definitions of the reduced time. As mentioned, the
TN formalism is often used assuming that different physical
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quantities �e.g., volume and enthalpy� relax with rates that
are not proportional.12

If Eq. �14� applies, we find via Eqs. �6� and �11� that
after a temperature jump to temperature T the logarithm of
the measured loss is given by

ln ���f ,t� = − �
E�t�
kBT

+ C �15�

and that this quantity relaxes controlled by a material time
whose rate may be determined from Eq. �7�. We proceed to
derive a test of this prediction.

IV. A TEST FOR THE EXISTENCE OF AN INTERNAL
CLOCK

In this section we show that the existence of an internal
clock, i.e., the assumption that the dielectric clock rate is
proportional to the structural relaxation clock rate �Eq. �14��
can be tested without evaluating t̃ explicitly and without fit-
ting data to analytical functions.

First, we define a dimensionless KM relaxation rate by
replacing time in Eq. �2� by the reduced structural relaxation
time

�̃ � −
d ln R

dt̃s

. �16�

According to the TN formalism, for all temperature jumps

R�t̃s� is the same function of t̃s. This implies that �̃�t̃s� is the

same for all jumps. By eliminating t̃s, �̃ is a unique function
of R

�̃ = ��R� . �17�

Thus, one way of testing whether the TN formalism applies

is to check whether �̃ is indeed a unique function of the
normalized relaxation function for different temperature
jumps. To do this we express the dimensionless KM relax-
ation rate in terms of the real-unit KM relaxation rate

�̃�t̃� = −
d ln R

dt

dt

dt̃s

=
��t�

s�t�

. �18�

If an internal clock exists, 
s�t� may be evaluated from its
proportionality to the dielectric relaxation rate Eq. �14�,
which is accessible via Eq. �7�. Note that the unknown pro-
portionality constant in Eq. �14� is irrelevant because, as
mentioned, clock rates are only defined up to a proportion-
ality constant �in Sec. VI we discuss the possibility of abso-
lute calibration of the structural and dielectric clock rates�. In

summary, if 
s�t��
d�t�, via Eq. �18� �̃ may be calculated
directly from a temperature-jump experiment’s data, since
��t� and 
d�t� are both determined from ln ���f , t� via Eqs.
�2� and �7�, respectively.

Defining the proportionality constant between the two
rates to be unity, 
s�t�=
d�t�, the results for the KM relax-
ation rates ��R� and the dimensionless KM relaxation rates

�̃�R� are plotted in Fig. 7. For all five liquids the results are
consistent with the internal clock hypothesis. Even the 4 K
down jump for TPP—corresponding to a clock-rate change

of almost two orders of magnitude—falls nicely onto the
master curve. The spread in KM relaxation rates as R�0 is
approached at long times reflects the already mentioned fact
that relaxation rates cannot be determined reliably by nu-
merical differentiation when the noise becomes comparable
to the distance to equilibrium.

Once the existence of an internal clock has been demon-
strated, it is natural to evaluate the reduced time t̃ explicitly
by integration in order to determine R�t̃�. As shown in Fig. 8,
this gives the data collapse predicted by the TN formalism.
For the numerical integration, one must either include short-
time transient points, where the sample still undergoes tem-
perature equilibration, or omit the initial measurements. The
error introduced from this uncertainty influences all values of
t̃. This is one reason to prefer the “direct” test of the internal
clock hypothesis of Fig. 7; another reason is that the direct
test is simpler by not evaluating the material time t̃.

V. LONG-TIME ASYMPTOTIC BEHAVIOR OF THE
STRUCTURAL RELAXATION

Inspecting the shape of the dimensionless KM relaxation
rate as a function of the normalized relaxation function in
Fig. 7 shows that the aging is not exponential because that
would imply a constant KM relaxation rate. The stretched-
exponential function exp�−t̃�� is commonly used for fitting
relaxation functions. It is difficult to get reliable data on the
long-time behavior of structural relaxations, but our data al-
low one to get such data with fair accuracy. Figure 7 shows

that �̃�R�→Const. at long times �R→0� for all five liquids.
This is also evident from the DBP data for which Fig. 9�a�
shows the dimensionless Kovacs plots, a stretched exponen-
tial �red line�, and Eq. �20� �blue line� with the values of the
fit parameters listed in Table II. The KM relaxation rate for
the same data is shown in Fig. 9�b�, where a test of the fit by
the stretched-exponential relaxation function �red straight
line� is again included. Although the data become noisy at
long times, they indicate a bend over at long times that is not
consistent with the stretched-exponential relaxation function;
the KM relaxation rates appear to approach a finite value at
long times. The blue curve in Fig. 9�b� is the “exponential
�t” relaxation function detailed below �Eq. �20��.

The fact that the KM relaxation rates appear to converge
to finite values means that the relaxation function at long
times follows a simple exponential decay. To model this
mathematically with as few parameters as possible, we fitted
the data to the following “exponential �t” relaxation func-
tion, which retains features of a stretched exponential with
exponent 1/2 but has a long-time simple exponential
decay:48,60

R�t̃� = exp�− A − Bt̃ − Ct̃1/2� . �19�

Here A, B, and C are fitting parameters. The number A re-
flects the fact that due to fast relaxations, the normalized
relaxation function R does not start at unity at the shortest
experimentally accessible times. The case B=0 gives a
stretched exponential with exponent 1/2 and the C=0 case
gives an ordinary exponential decay. At short times one has
R�t̃��1−A−Ct̃1/2, which justifies the name “exponential �t
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relaxation function” �see Ref. 51 and references therein to �t
relaxation in other contexts�. Equation �19� may be rewritten
as

R�t̃� = exp�− a − bt̃ − c�bt̃�1/2� , �20�

where a=A, b=B, and c=C /�B. Recast in this form, it is
clear that b merely adjusts the time scale and that c is the
only genuine shape parameter. Table III quantifies how well
analytical relaxation functions fit data, concluding that Eq.
�20� fits data somewhat better than the standard stretched
exponential relaxation function.

VI. CALIBRATING THE DIELECTRIC CLOCK RATE

The results obtained so far may be summarized as fol-
lows. The TN formalism predicts that the dimensionless KM
relaxation rate �Eq. �16�� is a unique function of R for the
relaxation toward equilibrium following any temperature
jump. This can be tested only, however, if one is able to
determine the structural relaxation clock rate 
s�t�. This can
be done either by some assumption about the clock rate’s
structure dependence, a commonly used procedure, or, as
above, by the internal clock hypothesis 
s�t��
d�t�, where
the dielectric relaxation rate is determined from data via Eq.
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FIG. 7. Kovacs-McKenna �KM� relaxation rates � and its dimensionless version �̃�t̃�=��t� /
d�t� �defined in Eq. �16� and calculated from data via the internal
clock hypothesis 
s�t�=
d�t�� as functions of the normalized relaxation functions R for the five liquids. For each liquid, the upper subfigure shows ��R� and

the lower subfigure shows �̃�R�. In all cases there is data collapse of �̃�R� within experimental errors. This confirms the existence of an internal clock for these
liquids.
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�7�. The data do collapse as predicted by the internal clock
hypothesis, confirming the existence of such a clock for all
five liquids.

As emphasized, a clock rate is determined only up to a
proportionality constant, i.e., two clocks measure the same
physical time if their numbers of “ticks” are proportional for
all time intervals. Still, one may ask whether some sort of
absolute calibration of the dielectric and structural relaxation
clock rates is possible. We defined the dielectric relaxation
rate in equilibrium 
d as the dielectric angular loss-peak fre-
quency �Eq. �5��. This is convenient because the loss-peak
frequency can easily be determined accurately. A character-
istic feature of the dielectric losses of supercooled organic
liquids is their pronounced asymmetry. Whereas the loss de-
cays as a nontrivial power-law above the loss-peak fre-
quency, at low frequencies the loss almost follows the Debye
function ���������. Via the fluctuation-dissipation theorem,
the low-frequency behavior corresponds to a simple expo-
nential long-time decay of the equilibrium dipole autocorre-
lation function. Inspired by the recent work of Gainaru et
al.,61 it is obvious to ask whether redefining 
d to be the rate
of this long-time decay and assuming equality in Eq. �14�

would imply that �̃→1 asymptotically at long times. In
other words: Is the long-time exponential structural relax-
ation clock rate equal to the exponential long-time decay of
the equilibrium dipole autocorrelation function? Because the
liquids studied here all obey TTS, such a recalibration of 
d

corresponds to multiplying each liquid’s equilibrium 
d �Eq.
�5�� by a fixed constant. This is illustrated in Fig. 10.

For each liquid, the recalibration constant is obtained as
follows. Assuming Eq. �20� for the equilibrium dipole auto-
correlation function, the liquid’s dielectric loss was fitted by
the Laplace transform of the negative time-derivative of this
function �which interestingly provides an excellent fit to the
dielectric data of all five liquids �compare Fig. 10�b��, a fit
that is better than that of standard single-parameter fitting
functions�. In Fig. 11 we show the result of applying this
recalibration of the dielectric relaxation rate in the analysis
of Sec. IV. Within experimental uncertainties, all recalibrated
KM relaxation rates converge to one at long times �R→0�.
This suggests an underlying unity in the description of aging
for the liquids examined in this paper.
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FIG. 8. The traditional way of demon-
strating TN data collapse by plotting
the normalized relaxation functions as
function of the reduced time R�t̃�. The
insets show the normalized relaxation
functions plotted against real time
R�t�.
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VII. CONCLUDING REMARKS

We have shown how the internal clock hypothesis can be
checked in a test that neither involves free parameters nor the
fitting of data to some mathematical expression. The test is
based on assuming the standard Tool–Narayanaswamy for-
malism for structural relaxation studied by monitoring the
liquids’ dielectric loss at a fixed frequency in the Hertz
range, following temperature up and down jumps. Based on
data for five organic liquids we conclude that within the ex-
perimental uncertainties �1� all liquids age consistent with
the TN formalism; �2� all liquids have an internal clock; �3�
no liquid exhibits an expansion gap; �4� all liquids appear to
have exponential long-time relaxation; and �5� the long-time
structural relaxation clock rate equals that of the long-time
simple exponential decay of the dipole autocorrelation func-
tion.

Our finding that the liquids appears to have exponential
long-time relaxation is consistent with several classical vis-
coelastic and aging models, for instance, the famous Kovacs-
Aklonis-Hutchinson-Ramos �KAHR� model59 based on a
box distribution of relaxation times, which implies the exis-
tence of a longest relaxation time and thus an exponential
long-time relaxation. It is also worth emphasizing that, in
contrast to reports for other materials �e.g., oxide glasses� for
which there is evidence that the material clock does not tick
the same way for all processes, the data presented here are
consistent with the existence of a unique material time. We
have shown that the structural relaxation rate is proportional
to the dielectric relaxation rate for five organic supercooled

TABLE II. Values of fitted parameters of Eq. �20�.

DBP DEP 2,3-epoxy 5-PPE TPP

a 0.42 0.46 0.37 0.35 0.33
b 0.11 0.04 0.06 0.13 0.02
c 3.1 5.1 4.7 2.6 6.2

TABLE III. Test of how well the two functions fit data, where superscript
“exp�t” is the exponential �t relaxation function of Eq. �20� and superscript
“str exp” is the stretched-exponential relaxation function. The quality of the
fits is measured via the standard mean-square deviation � for fitting, respec-
tively, log�R� as a function of time and log��� as a function of time. The
exponential �t relaxation function provides a somewhat better fit than does
the stretched exponential.

DBP DEP 2,3-epoxy 5-PPE TPP

�log�R�
exp�t 0.041 0.029 0.042 0.023 0.026

�log�R�
str exp 0.043 0.030 0.042 0.026 0.026

�
log��̃�
exp�t

0.052 0.028 0.081 0.172 0.111

�
log��̃�
str exp

0.074 0.037 0.092 0.186 0.116
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FIG. 10. �a� Illustration of the difference between the two calibrations of the
dielectric relaxation rate 
d, using either the loss-peak angular frequency or
the rate of the long-time exponential decay of the dipole autocorrelation
function giving the low-frequency Debye behavior. �b� Normalized Cole–
Cole plot of the dielectric loss of DEP �black dots� vs that of the exponential
�t relaxation function �Eq. �20�� used to fit the dielectric data at the follow-
ing temperatures: 206, 207, 208, 209, 210, and 211 K �blue dashed line�.
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functions. �b� Relaxation rates as functions of the �reduced� times in a log-
log plot. In this representation, the stretched-exponential function is a
straight line, while the exponential �t relaxation function of Eq. �20� has a
“banana” shape: at short times it gives a straight line with slope �1/2 and at
long times it bends over and eventually levels off to a constant value. The
two asymptotes are marked with dashed lines. Although the measurements
are noisy at long times, the data do not appear to follow a straight line, but
have a curved shape similar to the one of the exponential �t relaxation
function.
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liquids. The fact that the structural relaxation was monitored
by measuring the dielectric loss is, in our opinion, not im-
portant. Nevertheless, it would be interesting to study, for
instance, volume relaxation for the same liquids to investi-
gate whether there is really a common material clock for
these liquids. We finally note that in contrast to the well-
known Tool-Narayanaswamy-Moynihan �TNM� formalism
of Moynihan et al.,9 the analysis applied here does not re-
quire one or more fictive temperatures. In this sense our ap-
proach is closer in spirit to the KAHR approach �which is
known, however, to be mathematically equivalent to the
TNM formalism�.

The emphasis of the data analysis was on using data
directly without having to fit to analytical functions. This is

why we determine the dielectric clock rate from the loss-
peak angular frequency �Eq. �5�� and the exponent � as the
minimum slope of the dielectric loss at the temperature
where the loss-peak frequency is 0.1 Hz �Table I�. If this
purist approach is relaxed a bit, however, further interesting
features appear. Thus if the dielectric clock rate is instead
determined from the dielectric loss’ low-frequency Debye-
like behavior, all KM relaxation rates converge to unity at
long times �Fig. 11�. Moreover, since the minimum slopes
are not completely temperature independent, but converge to
the �in Ref. 51� conjectured generic value of �1/2 at the
lowest temperatures �Fig. 12�, one may ask what happens if
the exponent � of Eq. �7� is replaced by �1/2. The result of
repeating the entire analysis with this high-frequency expo-
nent is shown in Fig. 13. The main effect is to lift the 2,3-
epoxy data, the liquid whose exponent � was furthest from
�1/2. Since the long-time structural relaxation clock rate, if
identical to the redefined dielectric relaxation rate, should
approach the latter from above, this figure is consistent with
the conclusion that the two rates are identical.

By modern microengineering it should be possible to
extend aging experiments to even shorter times, thus making
it realistic to perform a series of ideal temperature-jump ex-
periments over just hours. When this is eventually realized, it
is not unlikely that aging studies could become routine on
par with, e.g., present-day dielectric measurements.
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APPENDIX: SYSTEMATIC ERRORS AND NOISE

We discuss here the some sources of errors of the data
and the analysis. For a general and systematic analysis of
errors and noise of the measurement, we refer to Refs. 23
and 24.

The geometry of the measuring cell �disk radius much
larger than disk separation� introduces an extremely slow
radial contraction which in equilibrium dielectric measure-
ments can be neglected. For aging experiments it poses a
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FIG. 12. The slopes of the equilibrium log-log plotted dielectric losses at the
measuring frequencies as functions of temperature. The aging interval is
marked with a blue dashed line. There is a temperature window where the
slope is almost constant. In this way, the measuring frequency and tempera-
ture jumps can be fine-tuned such that the proposed method for determining
the clock rate applies.
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long times �R→0�.
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problem because it introduces a small drift at long times,
which distorts the curve shape of the aging relaxation func-
tion and complicates the determination of the value ap-
proached at long times. In Fig. 14 a zoom of the tail of the
�upper� DBP data from Fig. 3�b� is shown. The drift is small
but clearly visible. After a temperature step, the curve should
level off to a constant �equilibrium� value; instead the curve
appears slightly slanted. The drift coming from the initial
quench may be reduced by annealing for a long time before
starting a measurement, which we did �typically over several
weeks�. A further source of error is that in some cases a small
overshoot is observed when approaching equilibrium. We do
not currently have an explanation for this, but it may be due
to something other than the drift. Whenever a small drift or
an overshoot was present, we chose to cut the data shortly
after reaching the maximum/minimum and ���t→�� was ad-
justed accordingly. This is illustrated in Fig. 14 where the
���t→�� is marked by a horizontal dashed line and the cut-
offs by a vertical dashed line.

The signal-to-noise ratio depends on the �dielectric� re-
laxation strength �corresponding to the absolute level of the
dielectric loss� of the liquids studied. Thus, there is more
noise in the data for TPP and 5-PPE, which have relatively
small dielectric relaxation strengths, than for DBP, DEP, and
2,3-epoxy, which have larger relaxation strengths.

Although the precision of a dielectric measurement is
high with barely any visible noise in the relaxation curve, we
still encountered noise problems when taking the numerical
derivatives of these curves. Averaging over even few data
points distorts the curve shapes at short times, but it is nec-
essary �and also less problematic� to average over more data
points in the long-time tails of these curves. To deal with this
problem, we designed an algorithm to average over a number
of data points that increases with aging time, i.e., no averag-
ing of the first data points and averaging over 8 �in the case
of DBP and 2,3-epoxy� or 16 �in the case of DEP, 5-PPE, and
TPP� data points in the tail. This procedure is illustrated in
Fig. 15.

In Fig. 12 we show the slope of the equilibrium dielec-
tric loss at the measuring frequencies of the aging experi-
ment as a function of temperature. The temperature intervals
used in the aging experiments are marked with a light blue
line. For each frequency there is a temperature window
where the slope is constant �close to �1/2�. In this way the
measuring frequency and temperature jumps can be fine-
tuned such that the proposed method for finding the clock
rate is valid. The graphs show that not all measurements
were carried out in the optimal regions. The slopes vary in
the aging temperature interval studied for some of the liquids
and they are not entirely identical to the value above Tg.
Thus the conditions for the proposed method for determining
the clock rate are not rigorously fulfilled in all cases. How-
ever, one will still obtain data collapse using a slightly incor-
rect inverse power-law exponent since the error made is the
same for all data points. The error simply results in a vertical
shift of the curves in Fig. 7 and a horizontal shift in Fig. 8.
Note finally that a slight variation of the power-law exponent
in the measured temperature interval will influence the shape
of the master curve and may explain why the data collapse is
not perfect.
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