
Roskilde
University

Constraint-Based Abstraction of a Model Checker for Innite State Systems

Banda, Gourinath; Gallagher, John Patrick

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Banda, G., & Gallagher, J. P. (2009). Constraint-Based Abstraction of a Model Checker for Innite State Systems.
Paper presented at 23rd Workshop on Constraint Logic Programming (WLP 2009), Potsdam, Germany.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 27. Mar. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Roskilde Universitet

https://core.ac.uk/display/388940067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Constraint-Based Abstraction of a Model Checker for
Infinite State Systems?

Gourinath Banda1 and John P. Gallagher1,2

1 Roskilde University, Denmark
2 IMDEA Software, Madrid

Email: {gnbanda,jpg}@ruc.dk

Abstract. Abstract interpretation-based model checking provides an approach
to verifying properties of infinite-state systems. In practice, most previous work
on abstract model checking is either restricted to verifying universal properties,
or develops special techniques for temporal logics such as modal transition sys-
tems or other dual transition systems. By contrast we apply completely standard
techniques for constructing abstract interpretations to the abstraction of a CTL
semantic function, without restricting the kind of properties that can be verified.
Furthermore we show that this leads directly to implementation of abstract model
checking algorithms for abstract domains based on constraints, making use of an
SMT solver.

1 Introduction

Model Checking is a widely used technique for verifying properties of reactive sys-
tems expressed as formulas in a temporal logic, but is restricted to finite-state systems.
Abstraction is an effective technique for handling infinite state spaces, where a finite
or infinite number of original states are collectively represented with a single abstract
state.

The theory of abstract interpretation formalises abstraction techniques. In abstract
interpretation-based analyses, an abstract domain is first constructed and then a Ga-
lois connection between the original (or concrete) domain and the abstract domain is
defined. Computations over the concrete domain are abstractly interpreted over the ab-
stract domain. Due to the Galois connection, the result from abstract computation will
always be an over approximation of the actual result, had the actual analysis been pos-
sible.

The present work is part of an attempt to develop a uniform CLP-based formal
modelling and verification framework for verifying infinite state reactive systems. The
modelling part of this framework was covered in [2] where it is shown (i) how to model
linear hybrid automata (LHA) specifications in CLP; (ii) how standard program trans-
formation tools of CLP can be applied to extract the underlying state transition system
semantics; and (iii) how to abstract the (infinite) reachable state space with the do-
main of linear constraints. In this extended abstract, we show the verification part of the
framework in which abstract interpretation and model checking are integrated.
? Work partly supported by the Danish Natural Science Research Council project SAFT: Static

Analysis Using Finite Tree Automata.

The contributions of this work are threefold. First, we present the definition of a
CTL-semantics function in a suitable form, using only monotonic functions and fix-
point operators. Second, we apply the standard abstract interpretation framework to get
a precise abstraction of the CTL-semantics function. We do not construct an abstract
transition system, which turns out to be an unnecessary restriction. Finally, we show
how a constraint-based abstraction can be directly implemented from the abstract se-
mantic function and show how satisfiability modulo theories (SMT)-technology can be
exploited to improve the performance of our abstract model checker.

The structure of this paper is as follows. Section 2 introduces the syntax and se-
mantics of CTL, and outlines the theory of abstract interpretation. Section 3 describes
abstract model checking, that is, abstract interpretation of the CTL semantics function.
Section 4 shows how the framework can be applied in practice to an abstraction based
on linear constraints. Section 6 gives some experimental results, and we conclude in
Section 8.

2 CTL, Model Checking and Abstract Interpretation

CTL is a formal language used to specify temporal properties. A well formed formula
in CTL is constructed from one or more atomic propositions and eight CTL-operators.
The syntax of CTL is given below.

Definition 1 (CTL Syntax). The set of CTL formulas φ in negation normal form is
inductively defined by the following grammar:

φ ::= true | p | ¬p | φ1∧φ2 | φ1∨φ2 | φ1→ φ2 | φ1↔ φ2 | AXφ | EXφ | AFφ

| EFφ | AGφ | EGφ | AU [φ1,φ2] | EU [φ1,φ2] | AR[φ1,φ2] | ER[φ1,φ2]

where p ranges over a set of atomic formulas P .

A CTL-formula is in negation normal form (NNF) if and only if the negations are
placed in front of the atomic propositions. Any formula not in NNF can be transformed
into NNF by moving negations inwards using equivalence-preserving transformations..
The unary operators AF,AG,AX and the binary operators AU,AR are called universal
CTL operators; while the unary EF,EG,EX and binary ER,EU operators are called
existential CTL operators.

2.1 CTL Semantics

The semantics of CTL formulas is defined with respect to a Kripke structure, which is
a state transition system whose states are labelled with atomic propositions that are true
in that state.

Definition 2 (Kripke structure). A Kripke structure is a tuple 〈S,∆, I,L,P 〉 where S is
the set of states, ∆⊆ S×S is the transition relation, I ⊆ S is the set of initial states, P is
the set of propositions and L : S→ 2P is the labelling function which returns the set of
propositions that are true in each state. The set of atomic propositions is closed under
negation.

Given the Kripke structure 〈S,∆, I,L,P 〉, the meaning of a formula is the set of states
in S where the formula holds; this is itself an abstraction of a more detailed trace-based
semantics [9]. We define a function [[·]] : CT L→ 2S that returns the set of states where
the formula holds. This function is called theCTL-semantics function.

Definition 3 (CTL-semantics function). Given a Kripke structure K = 〈S,∆, I,L,P 〉,
the semantic function [[·]] : CT L→ 2S is defined as follows.

[[true]] = S [[f alse]] = /0

[[p]] = states(p) [[¬p]] = states(¬p)
[[EXφ]] = pred∃([[φ]]) [[φ1∨φ2]] = [[φ1]]∪ [[φ2]]
[[AXφ]] = pred∀([[φ]]) [[φ1∧φ2]] = [[φ1]]∩ [[φ2]]
[[EFφ]] = µZ.([[φ]]∪pred∃(Z)) [[ER[φ1,φ2]]] = νZ.([[φ2]]∩ ([[φ1]]∪pred∃(Z))
[[AFφ]] = µZ.([[φ]]∪pred∀(Z)) [[AU [φ1,φ2]]] = µZ.([[φ2]]∪ ([[φ1]]∩pred∀(Z))
[[AGφ]] = νZ.([[φ]]∩pred∀(Z)) [[EU [φ1,φ2]]] = µZ.([[φ2]]∪ ([[φ1]]∩pred∃(Z))
[[EGφ]] = νZ.([[φ]]∩pred∃(Z)) [[AR[φ1,φ2]]] = νZ.([[φ2]]∩ ([[φ1]]∪pred∀(Z))

This semantics function makes use of three subsidiary functions pred∃ : 2S→ 2S, pred∀ :
2S → 2S and states : P → 2S called the existential predecessor function, the universal
predecessor function and allocating function respectively. These three functions are
specific for a given Kripke structure K and are monotonic.

Definition 4. Given a Kripke structure K = 〈S,∆, I,L,P 〉 we define functions pred∃ :
2S→ 2S, pred∀ : 2S→ 2S and states : P → 2S as follows.

– pred∃(S′) = {s | ∃s′ ∈ S
′
: (s,s

′
) ∈ ∆} returns the set of states having at least one of

their successors in the set S′ ⊆ S;
– pred∀(S′) = pred∃(S′)\pred∃(compl(S′)) returns the set of states all of whose suc-

cessors are in the set S′ ⊆ S; the function compl(X) = S\X.
– states(p) = {s ∈ S | p ∈ L(s)} returns the set of states where p ∈ P holds.

In the CTL semantic definition, µZ.(F(Z)) (resp. νZ.(F(Z))) stands for the least
fixed point (resp. greatest fixed point) of the function λZ.F(Z). The Knaster-Tarski
fixed point theorem [28] guarantees the existence of least and greatest fixed points
for a monotonic function on a complete lattice. All the expressions F(Z) occurring
in µZ.(F(Z)) and νZ.(F(Z)) in the CTL semantic functions are functions 2S → 2S

on the complete lattice 〈2S,⊆,∪,∩,S, /0〉. They are constructed with monotonic oper-
ators (∪,∩) and monotonic functions (pred∃,pred∀). Thus the CTL semantics function
is well-defined.

2.2 Model Checking

Model checking is based on checking that the Kripke structure K = 〈S,∆, I,L,P 〉 pos-
sesses a property φ, written K |= φ. This is defined to be true iff I ⊆ [[φ]], or equivalently,
that I ∩ [[¬φ]] = /0. (Note that ¬φ should be converted to negation normal form). Thus
model-checking requires implementing the CTL-semantics function which in essence
is a fixed point computation. When the state-space S is finite the greatest and least fixed

point expressions can be evaluated as the limits of Kleene sequences. But when S is in-
finite, the fixed point computations might not terminate and hence the model checking
of infinite state systems becomes undecidable. In this case we try to approximate [[.]]
using the theory of abstract interpretation.

2.3 Abstract Interpretation

In abstract interpretation we replace the “concrete” semantic function by an abstract
semantic function, developed systematically from the concrete semantics with respect
to a Galois connection. We present the formal framework briefly.

Definition 5 (Galois Connection). 〈L,vL〉 −−→←−−
α

γ

〈M,vM〉 is a Galois Connection be-
tween the lattices 〈L,vL〉 and 〈M,vM〉 if and only if α : L→ M and γ : M → L are
monotonic and ∀l ∈ L,m ∈M,α(l)vM m↔ l vL γ(m).

In abstract interpretation, 〈L,vL〉 and 〈M,vM〉 are the concrete and abstract se-
mantic domains respectively. Given a Galois connection 〈L,vL〉 −−→←−−

α

γ

〈M,vM〉 and a
monotonic concrete semantics function f : L→ L, then we define an abstract semantic
function f] : M→M such that for all m ∈M, (α◦ f ◦ γ)(m)vM f](m). Furthermore it
can be shown that lfp(f)vL γ(lfp(f])) and that gfp(f)vL γ(gfp(f])).

Thus the abstract function f] can be used to compute over-approximations of f ,
which can be interpreted using the γ function. The case where the abstract semantic
function is defined as f] = (α◦ f ◦ γ) gives the most precise approximation.

If M is a finite-height lattice then the non-terminating fixed point computations of
lfp(f) and gfp(f) over L are approximated with a terminating fixed point computation
over the finite lattice M.

We next apply this general framework to abstraction of the CTL semantic function,
and illustrate with a specific abstraction in Section 4.

3 Abstract Interpretation of the CTL-Semantic function

In this section we consider abstractions based on Galois connections of the form 〈2S,⊆
〉 −−→←−−

α

γ

〈2A,⊆〉, where the abstract domain 2A consists of sets of abstract states. In fact
the abstract domain could be any lattice but for the purposes of this paper we consider
such state-based abstractions, which will be further discussed in Section 4.

Definition 6. Let pred∃ : 2S → 2S, pred∀ : 2S → 2S, and states : P → 2S be the func-
tions defined in Definition 4 and used in the CT L semantic function. Given a Galois
connection 〈2S,⊆〉 −−→←−−

α

γ

〈2A,⊆〉, we define apred∃ : 2A → 2A, apred∀ : 2A → 2A and

astates : P → 2A as

apred∃ = α◦pred∃ ◦ γ apred∀ = α◦pred∀ ◦ γ astates = α◦ states

It follows directly from the properties of Galois connections that for all S′⊆ S, α(pred∃(S′))⊆
apred∃(α(S′)) and α(pred∀(S′))⊆ apred∀(α(S′)).

Definition 7 (Abstract CT L semantics function). Given a Galois connection 〈2S,⊆
〉 −−→←−−

α

γ

〈2A,⊆〉, the abstract CT L semantic function [[·]]a : CT L→ 2A is defined as fol-
lows.

[[true]]a = A [[f alse]]a = /0

[[p]]a = astates(p) [[¬p]]a = astates(¬p)
[[EXφ]]a = apred∃([[φ]]a) [[φ1∨φ2]]a = [[φ1]]a∪ [[φ2]]a

[[AXφ]]a = apred∀([[φ]]a) [[φ1∧φ2]]a = [[φ1]]a∩ [[φ2]]a

[[EFφ]]a = µZ.([[φ]]a∪apred∃(Z)) [[ER[φ1,φ2]]]a = νZ.([[φ2]]a∩ ([[φ1]]a∪apred∃(Z))
[[AFφ]]a = µZ.([[φ]]a∪apred∀(Z)) [[AU [φ1,φ2]]]a = µZ.([[φ2]]a∪ ([[φ1]]a∩apred∀(Z))
[[AGφ]]a = νZ.([[φ]]a∩apred∀(Z)) [[EU [φ1,φ2]]]a = µZ.([[φ2]]a∪ ([[φ1]]a∩apred∃(Z))
[[EGφ]]a = νZ.([[φ]]a∩apred∃(Z)) [[AR[φ1,φ2]]]a = νZ.([[φ2]]a∩ ([[φ1]]a∪apred∀(Z))

Since all the operators appearing in the abstract CTL-semantic are monotonic, the
fixpoint expressions and hence the abstract semantic function is well defined. The fol-
lowing soundness theorem is the basis of our abstract model checking approach.

Theorem 1 (Safety of Abstract CTL Semantics). Let K = 〈S,∆, I,L,P 〉 be a Kripke
structure, 〈2S,⊆〉−−→←−−

α

γ

〈2A,⊆〉 be a Galois connection and φ any CTL-formula in nega-
tion normal form. Then α([[φ]])⊆ [[φ]]a and γ([[φ]]a)⊇ [[φ]].

The proof follows from the fact that α is a join-morphism: that is, that α(S1 ∪ S2) =
α(S1)∪α(S2) and the fact that α(S1∩S2)⊆ α(S1)∩α(S2).

This theorem provides us with a sound abstract model checking procedure for any
CTL formula φ. As noted previously, K |= φ iff [[¬φ]]∩ I = /0 (where ¬φ is converted to
negation normal form). It follows from Theorem 1 that this follows if γ([[¬φ]]a)∩ I = /0.
Of course, if γ([[¬φ]]a)∩ I ⊇ /0 nothing can be concluded.

4 Abstract Model Checking in Constraint-based Domains

The abstract semantics given in Section 3 is not always implementable in practice for a
given Galois connection 〈2S,⊆〉−−→←−−

α

γ

〈2A,⊆〉. In particular, the function γ yields a value
in the concrete domain, which is typically an infinite object such as an infinite set. Thus
evaluating the functions (α◦pred∃ ◦ γ) and (α◦pred∃ ◦ γ) might not be feasible.

In this section we show that the construction is implementable for transition systems
and abstract domains expressed using linear constraints.

4.1 Constraint Representation of Transition Systems

We consider the set of linear arithmetic constraints (hereafter simply called constraints)
over the real numbers.

c ::= t1 ≤ t2 | t1 < t2 | c1∧ c2 | c1∨ c2 | ¬c

where t1, t2 are linear arithmetic terms built from real constants, variables and the op-
erators +, ∗ and −. The constraint t1 = t2 is an abbreviation for t1 ≤ t2 ∧ t2 ≤ t1. Note

that ¬(t1 ≤ t2)≡ t2 < t2 and ¬(t1 < t2)≡ t2 ≤ t2, and so the negation symbol ¬ can be
eliminated from constraints if desired by moving negations inwards by Boolean trans-
formations and then applying this equivalence.

A constraint is satisfied by an assignment of real numbers to its variables if the
constraint evaluates to true under this assignment, and is satisfiable if there exists some
assignment that satisfies it. A constraint can be identified with the set of assignments
that satisfy it. Thus a constraint over n real variable represents a set of points in Rn.

A constraint can be projected onto a subset of its variables. Denote by projV (c) the
projection of c onto the set of variables X .

Let us consider a transition system defined over the state-space Rn. Let x̄, x̄1, x̄2 etc.
represent n-tuples of distinct variables, and r̄, r̄1, r̄2 etc. represent tuples of real numbers.
Let x̄/r̄ represent the assignment of values r̄ to the respective variables x̄. We consider
transition systems in which the transitions can be represented as a finite set of transition

rules of the form x̄1
c(x̄1,x̄2)−→ x̄2. This represents the set of all transitions from state r̄1 to

state r̄2 in which the constraint c(x̄1, x̄2) is satisfied by the assignment x̄1/r̄1, x̄2/r̄2. Such
transition systems can be used to model real-time control systems [18, 2].

4.2 Computation of the CTL semantic function using constraints

A constraint representation of a transition system allows a constraint solver to be used
to compute the functions pred∃, pred∀ and states in the CTL semantics. Let T be a
finite set of transition rules. Let c′(ȳ) be a constraint over variables ȳ. It is assumed that
the set of propositions in the Kripke structure used in the semantics is the set of linear
constraints.

pred∃(c′(ȳ)) =
W
{projx̄(c′(ȳ)∧ c(x̄, ȳ)) | x̄ c(x̄,x̄)−→ ȳ ∈ T}

pred∀(c′(ȳ)) = pred∃(c′(ȳ))∧¬(pred∃(¬c′(ȳ)))
states(p) = p

In the definition of states we use p both as the proposition (the argument of states) and
as a set of points (the result).

4.3 Abstract Domains Based on a Disjoint State-Space Partition

Suppose we have a transition system with n state variables; we take as the concrete
domain the complete lattice 〈2C,⊆〉 where C ⊆ 2Rn

is some nonempty, possibly infinite
set of n-tuples including all the reachable states of the system.

We build an abstraction of the state space based on a disjoint partition of C say
A = {d1, . . . ,dk} such that

S
A = C. Such a partition can itself be constructed by an

abstract interpretation of the transition relation [2]. Define a representation function
β : C→ 2A, such that β(x̄) = {d ∈ A | x ∈ d}. We extend the representation function to
sets of points, obtaining the abstraction function α;2C→ 2A given by α(S) =

S
{β(x) |

x ∈ S}. Define the concretisation function γ : 2A → 2C, as γ(V) = {x ∈C | β(x) ⊆ V}.
As shown in [24, 7], (C,⊆)−−→←−−

α

γ

(A,⊆) is a Galois connection. Because the partition A
is disjoint the value of β(x) is a singleton for all x, and the γ function can be written as
γ(V) =

S
{γ({d}) | d ∈V}.

4.4 Representation of Abstraction Using Constraints

A constraint can be identified with the set of points that satisfies it. Suppose that each
element d of the partition A is representable as a linear constraint cd over the variables
x1, . . .xn. The β function can be rewritten as β(x) = {d | x satisfies cd}. Assuming that
we apply α to sets of points represented by a linear constraint over x1, . . .xn, we can
rewrite the α and γ functions as follows.

α(c) = {d | SAT(cd ∧ c)} γ(V) =
W
{cd | d ∈V}

4.5 Computation of α and γ functions using constraint solvers

The constraint formulations of the α and γ functions allows them to be effectively com-
puted. The expression SAT(cd∧c) occurring in the α function means “(cd∧c) is satisfi-
able” and can be checked by an SMT solver. In our experiments we use the SMT solver
Yices [13]. The γ function simply collects a disjunction of the constraints associated
with the given set of partitions; no solver is required.

4.6 Implementation of constraint-based abstract semantics

Combining the constraint-based evaluation of the functions pred∃ and pred∀ with the
constraint-based evaluation of the α and γ functions gives us (in principle) a method of
computing the abstract semantic counterparts of pred∃ and pred∀, namely (α◦pred∃ ◦γ)
and (α◦pred∀ ◦γ). This gives us a sound abstract semantics for CTL as discussed previ-
ously. The question we now address is the feasibility of this approach. Taken naively, the
evaluation of these constraint-based functions (in particular pred∀) does not scale up.
We now show how we can transform these definitions to a form which can be computed
much more efficiently, with the help of an SMT solver.

Consider the evaluation of (α◦pred∀ ◦ γ)(V) where V ∈ 2A is a set of disjoint parti-
tions represented by constraints.

(α◦pred∀ ◦ γ)(V) = (α◦pred∀)(
W
{cd | d ∈V})

= α(pred∃(
W
{cd | d ∈V})∧¬(pred∃(¬(

W
{cd | d ∈V})))

= α(pred∃(
W
{cd | d ∈V})∧¬(pred∃(

W
{cd ∈ A\V}))

In the last step, we use the equivalence ¬(
W
{cd | d ∈ V})↔

W
{cd ∈ A \V}), which

is justified since the abstract domain A is a disjoint partition of the concrete domain;
thus A \V represents the negation of V restricted to the state space of the system. The
computation of pred∃(

W
{cd ∈ A\V}) is much easier to compute (with available tools)

than pred∃(¬(
W
{cd | d ∈ V})). The latter requires the projection operations proj to

be applied to complex expressions of the form projx̄(¬(c1(ȳ)∨ ·· · ∨ ck(ȳ))∧ c(x̄, ȳ)),
which involves expanding the expression (to d.n.f. for example); by contrast the former
requires evaluation of simpler expressions of the form projx̄(cd(ȳ)∧ c(x̄, ȳ)).

4.7 Further Optimisation by Pre-Computing Predecessor Constraints

We now show that we can improve the computation of the abstract function (α◦pred∃ ◦
γ). Let {ci} be a set of constraints, each of which represents a set of points. It can easily
seen that pred∃(

W
{ci}) =

W
{pred∃(ci)}. Consider the evaluation of (α ◦pred∃ ◦ γ)(V)

where V ∈ 2A is a set of disjoint partitions represented by constraints.

(α◦pred∃ ◦ γ)(V) = (α◦pred∃)(
W
{cd | d ∈V})

= α(
W
{pred∃(cd) | d ∈V})

Give a finite partition A, we pre-compute the constraint pred∃(cd) for all d ∈ A. Let
Pre(d) be the stored predecessor constraint for partition element d. The results can be
stored as a table, and whenever it is required to compute (α◦pred∃◦γ)(V) where V ∈ 2A,
we simply evaluate α(

W
{Pre(d) | d ∈ V}). The abstraction function α is evaluated

efficiently using the SMT solver, as already discussed.
Note that expressions of the form α(pred∃(

W
{· · ·})) occur in the transformed ex-

pression for (α ◦ pred∀ ◦ γ)(V) above. The same optimisation can be applied here too.
Our experiments show that this usually yields a considerable speedup (2-3 times faster)
compared to dynamically computing the pred∃ function during model checking.

5 Implementation

The abstract CTL semantic function was implemented directly in Prolog without se-
rious attempt at optimisation of the algorithm. The function [[φ]]a yielding a set S is
represented by the predicate absCtl(Phi,S), where Phi is a suitable representation of
a CTL formula. Thus for example, the rule for evaluating a formula AGφ, namely

[[AGφ]]a = νZ.([[φ]]a∩apred∀(Z))

is rendered in Prolog by the clauses

absCtl(ag(F),States) :-
absCtl(F,FStates),
gfp ag(FStates,States).

gfp ag(F,S) :-
gfp(’$VAR’(’Z’), intersect(F,predForall(’$VAR’(’Z’))), S).

The predicate gfp(Z,F,S) computes the greatest fixed point of the function λZ.(F(Z)),
and is implemented naively as shown below by computing successive iterations A,F(A),
F(F(A)), . . . until F j(A) = F j+1(A) for some j. Here, A is the set of all abstract regions
for the system under consideration. There are improved fixpoint algorithms in the liter-
ature which could be applied, e.g. [4].

gfp(Z,E, S1) :-
allStates(S),
gfp iteration(S, Z, E, S1).

gfp iteration(Prev, Z, E, Fix) :-
apply arg(Z,Prev,E,E1),
evalExpr(E1,Next),
gfp check fix(Next,Prev,Z,E,Fix).

gfp check fix(E1,Prev, , ,Fix) :-
subset(Prev,E1),
!,
return fixpoint(E1,Fix).

gfp check fix(E1, ,Z,E,Fix) :-
gfp iteration(E1, Z, E, Fix).

return fixpoint(X,X).

The most relevant aspect of the prototype implementation is the interface to external
libraries to perform constraint-solving functions. In implementing the pred∃ operation
we make use of a Ciao-Prolog interface to the PPL library [1]. In particular, this is used
to compute the proj function. The α function is implemented using the SMT solver
Yices [13]. We implemented an interface predicate yices sat(C,Xs), where C is a
constraint and Xs is the set of variables in C. This predicate simply translates C to the
syntax of Yices, and succeeds if and only if Yices finds that the constraint is satisfi-
able. Using this predicate the definition of α, that is α(c) = {d | SAT(cd ∧ c)} can be
implemented directly as defined.

6 Experiments Using an SMT Constraint Solver

Figure 1 shows the transitions of a water-level controller taken from [18]. The transi-
tions are represented as constraint logic program clauses generated automatically from
a Linear Hybrid Automaton specification of the controller, as explained in detail in [2].
The state variables in an atomic formula of form rState(X,W,T,L) represent the rate
of flow (X), the water-level (W), the elapsed time (T) and the location identifier (L). The
meaning of a clause of form

rState(X,W,T,L) :- c(X,W,T,L,X1,W1,T1,L1), rState(X1,W1,T1,L1)

is a transition rule (X1,W1,T1,L1)
c(X,W,T,L,X1,W1,T1,L1)−→ (X,W,T,L). The initial state is given

by the clause rState(0,1, ,1). Note that there are transitions both from one location
to another, and also from a location to itself, since the controller can remain in a location
so long as an invariant is satisfied.

Figure 2 shows the result of an analysis of the reachable states of the system, based
on computing an approximation of the minimal model of the constraint program in Fig-
ure 1. There are 8 regions, which cover the reachable states of the controller starting in
the initial state (which is region 1). The term v(N, rState(A,B,C,D),[. . .]) means

rState(0,1, ,1).
rState(A,B,C,1) :- D<A, B = E+A-D, C = F+A-D, B<10,

rState(D,E,F,1).
rState(0,A,B,1) :- C<D, E = F-2*(D-C), G = H+D-C, G=2, B = G, A=E,

rState(C,F,H,4).
rState(A,B,C,2) :- D<A, B = E+A-D, C = F+A-D, C<2,

rState(D,E,F,2).
rState(0,A,B,2) :- C<D, E = F+D-C, = G+D-C, E=10, B = 0, A=E,

rState(C,F,G,1).
rState(A,B,C,3) :- D<A, B = E-2*(A-D), C = F+A-D, B>5,

rState(D,E,F,3).
rState(0,A,B,3) :- C<D, E = F+D-C, G = H+D-C, G=2, B = G, A=E,

rState(C,F,H,2).
rState(A,B,C,4) :- D<A, B = E-2*(A-D), C = F+A-D, C<2,

rState(D,E,F,4).
rState(0,A,B,4) :- C<D, E = F-2*(D-C), = G+D-C, E=5, B = 0, A=E,

rState(C,F,G,3).

Fig. 1. The Water-Level Controller

v(1, rState(A,B,C,D), [1*A=0,1*B=1,D=1]).
v(2, rState(A,B,C,D), [-1*B> -10,1*B>1,1*A+ -1*B= -1,D=1]).
v(3, rState(A,B,C,D), [1*B=10,1*A=0,1*C=0,D=2]).
v(4, rState(A,B,C,D), [-1*C> -2,1*C>0,1*A+ -1*C=0,1*B+ -1*C=10,D=2]).
v(5, rState(A,B,C,D), [1*B=12,1*A=0,1*C=2,D=3]).
v(6, rState(A,B,C,D), [-2*C> -11,1*C>2,1*A+ -1*C= -2,1*B+2*C=16,D=3]).
v(7, rState(A,B,C,D), [1*B=5,1*A=0,1*C=0,D=4]).
v(8, rState(A,B,C,D), [-1*C> -2,1*C>0,1*A+ -1*C=0,1*B+2*C=5,D=4]).

Fig. 2. Disjoint Regions of the Water-Level Controller

that the region labelled N is defined by the constraint in the third argument, with con-
straint variables A,B,C,D corresponding to the given state variables. The 8 regions are
disjoint. We use this partition to construct the abstract domain as described in Section
4.3.

Our implementation of the abstract semantics function is in Ciao-Prolog with exter-
nal interfaces to the the Parma Polyhedra Library [1] and the Yices SMT solver [13].
Our prototype implementation of the fixpoint computations is very naive. Nonethe-
less we successfully checked many CTL formulas including those with CTL opera-
tors nested in various ways, which in general is not allowed in either UPPAAL [3] or
HYTECH [19].

Table 1 gives the results of abstract model checking two systems, namely, a water
level monitor and a task scheduler. Both of these systems are taken from [18]. In the
table: (i) the columns System and Formula indicate the system and the formula being
checked; (ii) the columns A and ∆, respectively, indicate the number of abstract regions
and original transitions in a system and (iii) the column time indicates the computation

time to check a formula on the computer with an Intel XEON CPU running at 2.66GHz
and with 4GB RAM.

6.1 Water level controller

For the water level system, which has 4 state variables, no formula that we have tried to
evaluate takes longer than 0.2 seconds to check. Since verifying certain properties re-
quires finer abstractions (as discussed shortly in Section 6.3), we consider two variants,
a coarse one with eight and a more refined abstraction with twelve abstract regions.

The formula EF(W = 10) means “there exists a path along which eventually the
water level (W) reaches 10”, while AG(W = 10→ EF(W 6= 10)) means “on every path
it is possible for the water level not to get stuck at 10”. The formula EF(AG(min≤W ≤
max)) where min, max ∈ R states “possibly the water level stabilises and fluctuates be-
tween a minimum min and maximum max”. Using this formula, we can check whether
the system reaches a stable region with the given bounds on the water level.

6.2 Scheduler

For the scheduler system that has 8 state variables, 42 abstract regions and 12 transi-
tions, the checking time increases. Here, formulas can take up to 5-6 seconds to check
in our prototype implementation. We proved a number of safety and liveness properties,
again successfully checking properties of a form beyond the capability of other model
checkers. For example the formula AG(K2 > 0→ EF(K2 = 0)), containing an EF
nested within an AG, means that the tasks of high priority (whose presence is indicated
by a strictly positive value of K2) do not get starved (that is, the value of K2 eventually
returns to zero).

6.3 Increasing precision by property-specific refinements

The property EF(W = 3) in the water level controller should hold on the system. But
this formula cannot be verified when the state space is abstracted with 8 abstract re-
gions. Because of the coarse abstraction, we cannot distinguish W = 3 from W 6= 3.
The negation of the formula, namely AG(W > 3∨W < 3), holds in the abstract initial
state since there are infinite paths from region 1 which always stay in regions that are
consistent with W 6= 3.

One approach to solving such cases is to make a property-specific refinement to
the abstraction. Each region is split into three regions by adding W = 3, W > 3 and
W < 3 respectively to each region. Consequently, since there are 8 regions in the current
abstraction (shown in 2), we get a new abstraction with 24 abstract regions, of which
only 12 are satisfiable. Only the satisfiable regions need to be retained, giving a total of
12 regions in this example. With this refined abstraction, the property EF(W = 3) can
then successfully be checked.

System Formula A ∆ Time (secs.)
Waterlevel Monitor EF(W = 10) 8 8 0.08

AG(W = 10→ EF(W 6= 10)) 8 8 0.06
EF(AG(1≤W ≤ 12)) 8 8 0.04
AG(W ≥ 1)) 8 8 0.01
EF(W = 3) 12 8 0.16

Task Scheduler EF(K2 = 1) 42 14 5.51
AG(K2 > 0→ EF(K2 = 0)) 42 14 3.49
AG(K2≤ 1) 42 14 3.49

Table 1. Experimental Results

6.4 Limitations implied by our modelling technique

We cannot always successfully check formulas of the form AFφ, due to an abstraction
introduced into our model of continuous behaviour (rather than the abstraction induced
by the Galois connection). The reason for this is that the transitions of the system in
general include additional self-transitions that were not intended in the original system.
Such transitions with the same location for the successor state as well as predecessor
state are those which do not respect the continuity of the physical system. For example,
the transition rules of the water level controller allow a transition within location 1
directly from W = 1 to W = 5 without passing through W = 3. When trying to prove a
formula of the form AFφ, we need to refute the formula ¬(AFφ) i.e. EG¬φ. Because
of the extra self transitions, there might exist a path from the initial state on which ¬φ

holds forever. Thus refutation might not be possible. Other modelling techniques are
needed to capture continuity.

7 Related Work

The topic of model-checking infinite state systems using some form of abstraction has
been already widely studied. Abstract model checking is described by Clarke et al.
[6]. In this approach a state-based abstraction is defined where an abstract state is a
set of concrete states. A state abstraction together with a concrete transition relation ∆

induces an abstract transition relation ∆abs. Specifically, if X1,X2 are abstract states,
(X1,X2) ∈ ∆abs iff ∃x1 ∈ X1,x2 ∈ X2 such that (x1,x2) ∈ ∆. From this basis an abstract
Kripke structure can be built; the initial states of the abstract Kripke structure are the
abstract states that contain a concrete initial state, and the property labelling function
of the abstract Kripke structure is induced straightforwardly as well. Model checking
over the abstract Kripke structure is correct for universal temporal formulas (ACTL),
that is, formulas that do not contain operators EX ,EF,EG or EU . Intuitively, the set of
paths in the abstract Kripke structure represents a superset of the paths of the concrete
Kripke structure. Hence, any property that holds for all paths of the abstract Kripke
structure also holds in the concrete structure. If there is a finite number of abstract
states, then the abstract transition relation is also finite and thus a standard (finite-state)
model checker can be used to perform model-checking of ACTL properties. However,

if an ACTL property does not hold in the abstract structure, nothing can be concluded
about the concrete structure, and furthermore checking properties containing existential
path quantifiers is not sound in such an approach.

This technique for abstract model checking can be reproduced in our approach,
although we do not explicitly use an abstract Kripke structure. Checking an ACTL for-
mula is done by negating the formula and transforming it to negation normal form,
yielding an existential temporal formula (ECTL formula). Checking such a formula
using our semantic function makes use of the pred∃ function but not the pred∀ func-
tion. It can be shown that the composition (α ◦ pred∃ ◦ γ) gives the pred∃ function
for the abstract transition relation defined by Clarke et al. Note that whereas abstract
model checking the ACTL formula with an abstract Kripke structure yields an under-
approximation of the set of states where the formula holds, our approach yields the
complement, namely an over-approximation of the set of states where the negation of
the formula holds.

There have been different techniques proposed in order to overcome the restriction
to ACTL formulas. Dams et al. [10] present a framework for constructing abstract inter-
pretations for transition systems. This involves constructing a mixed transition system
containing two kinds of transition relations, the so-called free and constrained transi-
tions. Godefroid et al. [16] proposed the use of modal transition systems [22] which
consist of two components, namely must-transitions and may-transitions. In both [10]
and [16], given a state abstraction together with a concrete transition system, a mixed
transition system, or an (abstract) modal transition system respectively, is automatically
generated. Following this, a modified model-checking algorithm is defined in which
any formula can be checked with respect to the dual transition relations. There are cer-
tainly similarities between these approaches and ours, though more study of the precise
relationship is needed. The may-transitions are captured by the abstract transitions de-
fined by Clarke et al. [6] and hence by our abstract function (α◦pred∃ ◦γ), as discussed
above. We conjecture that the must-transitions are closely related to the abstract func-
tion (α ◦ pred∀ ◦ γ). We argue that the construction of abstract transition systems, and
the consequent need to define different transitions preserving universal and existential
properties, is an avoidable complication, and that our approach is conceptually simpler.
Probably the main motivation for the definition of abstract transition systems is to re-use
existing model checkers, as remarked by Cousot and Cousot [9].

The application of the theory of abstract interpretation to temporal logic, includ-
ing abstract model checking, is thoroughly discussed by Cousot and Cousot [8, 9]. Our
abstract semantics is inspired by these works, in that we also proceed by direct abstrac-
tion of a concrete semantic function using a Galois connection, without constructing
any abstract transition relations. The technique of constructing abstract functions based
on the pattern (α◦ f ◦ γ), while completely standard in abstract interpretation [7], is not
discussed explicitly in the temporal logic context. We focus only on state-based abstrac-
tions (Section 9 of [9]) and we ignore abstraction of traces. Our contribution compared
to these works is to work out the abstract semantics for a specific class of constraint-
based abstractions, and point the way to effective abstract model checking implemen-
tations using SMT solvers. Kelb [21] develops a related abstract model checking algo-

rithm based on abstraction of universal and existential predecessor functions which are
essentially the same as our pred∀ and pred∃ functions.

Giacobazzi and Quintarelli [15] discuss abstraction of temporal logic and their re-
finement, but deal only with checking universal properties.

Our technique for modelling and verifying real time and concurrent systems using
constraint logic programs builds on the work of a number of other authors, including
Gupta and Pontelli [17], Jaffar et al. [20] and Delzanno and Podelski [11]. However
we take a different direction from them in our approach to abstraction and checking
of CTL formulas, in that we use abstract CLP program semantics when abstracting the
state space (only briefly covered in the present work), but then apply this abstraction
in a temporal logic framework, which is the topic of this work. Other authors have
encoded both the transition systems and CTL semantics as constraint logic programs
[5, 23, 25, 12, 14, 26, 27]. However none of these develops a comprehensive approach
to abstract semantics when dealing with infinite-state systems. Perhaps a unified CLP-
based approach to abstract CTL semantics could be constructed based on these works.

8 Conclusion

We have demonstrated a practical approach to abstract model checking, by construct-
ing an abstract semantic function for CTL based on a Galois connection. Most pre-
vious work on abstract model checking is restricted to verifying universal properties
and requires the construction of an abstract transition system. In other approaches in
which arbitrary properties can be checked [16, 10], a dual abstract transition system is
constructed. Like Cousot and Cousot [9] we do not find it necessary to construct any
abstract transition system, but abstract the concrete semantic function systematically.
Using abstract domains based on constraints we are able to implement the semantics
directly. The use of an SMT solver adds greatly to the effectiveness of the approach.

Acknowledgements. We gratefully acknowledge discussions with Dennis Dams and
César Sánchez.

References

1. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra
and the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, editors, SAS 2002,
volume 2477 of Lecture Notes in Computer Science, pages 213–229. Springer, 2002.

2. G. Banda and J. P. Gallagher. Analysis of Linear Hybrid Systems in CLP. In M. Hanus,
editor, LOPSTR 2008, volume 5438 of Lecture Notes in Computer Science, pages 55–70.
Springer, 2009.

3. G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In M. Bernardo and
F. Corradini, editors, SFM-RT 2004, number 3185 in Lecture Notes in Computer Science,
pages 200–236. Springer, September 2004.

4. A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. R. Marrero. An improved algorithm
for the evaluation of fixpoint expressions. Theor. Comput. Sci., 178(1-2):237–255, 1997.

5. C. Brzoska. Temporal logic programming in dense time. In ILPS, pages 303–317. MIT
Press, 1995.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL’79,

pages 269–282. ACM Press, New York, U.S.A., 1979.
8. P. Cousot and R. Cousot. Refining model checking by abstract interpretation. Autom. Softw.

Eng., 6(1):69–95, 1999.
9. P. Cousot and R. Cousot. Temporal abstract interpretation. In POPL’2000, pages 12–25,

2000.
10. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM

Trans. Program. Lang. Syst., 19(2):253–291, 1997.
11. G. Delzanno and A. Podelski. Model checking in CLP. In TACAS, pages 223–239, 1999.
12. X. Du, C. R. Ramakrishnan, and S. A. Smolka. Real-time verification techniques for untimed

systems. Electr. Notes Theor. Comput. Sci., 39(3), 2000.
13. B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for DPLL(T). In T. Ball and

R. B. Jones, editors, CAV 2006, volume 4144 of Lecture Notes in Computer Science, pages
81–94. Springer, 2006.

14. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite-state sys-
tems by specializing constraint logic programs. In M. Leuschel, A. Podelski, C. Ramakr-
ishnan, and U. Ultes-Nitsche, editors, Proceedings of the Second International Workshop on
Verification and Computational Logic (VCL’2001), pages 85–96. Tech. Report DSSE-TR-
2001-3, University of Southampton, 2001.

15. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refinements in ab-
stract model-checking. In P. Cousot, editor, Static Analysis, 8th International Symposium,
SAS 2001, Paris, France, July 16-18, 2001, Proceedings, volume 2126 of Lecture Notes in
Computer Science, pages 356–373. Springer, 2001.

16. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using modal
transition systems. In K. G. Larsen and M. Nielsen, editors, CONCUR 2001, volume 2154
of Lecture Notes in Computer Science, pages 426–440. Springer, 2001.

17. G. Gupta and E. Pontelli. A constraint-based approach for specification and verification of
real-time systems. In IEEE Real-Time Systems Symposium, pages 230–239, 1997.

18. N. Halbwachs, Y. E. Proy, and P. Raymound. Verification of linear hybrid systems by means
of convex approximations. In SAS’94, volume 864 of Lecture Notes in Computer Science,
pages 223–237, 1994.

19. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid sys-
tems. In Computer Aided Verification, 9th International Conference, CAV ’97, Haifa, Israel,
June 22-25, 1997, Proceedings, volume 1254 of Lecture Notes in Computer Science, pages
460–463. Springer, 1997.

20. J. Jaffar, A. E. Santosa, and R. Voicu. A CLP proof method for timed automata. In J. Ander-
son and J. Sztipanovits, editors, The 25th IEEE International Real-Time Systems Symposium,
pages 175–186. IEEE Computer Society, 2004.

21. P. Kelb. Model checking and abstraction: A framework preserving both truth and failure
information. Technical report, Carl yon Ossietzky Univ. of Oldenburg, Oldenburg, Germany,
1994.

22. K. G. Larsen and B. Thomsen. A modal process logic. In Proceedings, Third Annual Sym-
posium on Logic in Computer Science, 5-8 July 1988, Edinburgh, Scotland, UK, pages 203–
210. IEEE Computer Society, 1988.

23. M. Leuschel and T. Massart. Infinite state model checking by abstract interpretation and pro-
gram specialisation. In A. Bossi, editor, Logic-Based Program Synthesis and Transformation
(LOPSTR’99), volume 1817 of Springer-Verlag Lecture Notes in Computer Science, pages
63–82, April 2000.

24. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag
New York, Inc., 1999.

25. U. Nilsson and J. Lübcke. Constraint logic programming for local and symbolic model-
checking. In Computational Logic, volume 1861 of LNCS, pages 384–398, 2000.

26. G. Pemmasani, C. R. Ramakrishnan, and I. V. Ramakrishnan. Efficient real-time model
checking using tabled logic programming and constraints. In ICLP, volume 2401 of Lecture
Notes in Computer Science, pages 100–114, 2002.

27. J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP programs.
In M. Leuschel, editor, Logic Based Program Synthesis and Tranformation, 12th Interna-
tional Workshop, LOPSTR 2002, Madrid, Spain, September 17-20,2002, Revised Selected
Papers, pages 90–108, 2002.

28. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285–309, 1955.

