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Abstract.

Through the coupling between the electrical capacitance of a
spherical piezoceramic shell and the mechanical stiffness of a
liquid contained therein, the frequency dependent adiabatic bulk

modulus K,(w) of the liquid can be derived.Using this method,
K, (w) of glycerol in the range 15 Hz - 15 kHz has been measured
at the glass transition. The 1loss peak frequencies of the

compressibility ¥ ()= K;'(w) and the specific heat cp(w) are

found to be nearly equal .
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Determination of the Frequency Dependent
Bulk Modulus of Liquids

Using a Piezoelectric Spherical Shell

T. Christensen and N. B. Olsen

IMFUFA, Roskilde University Center

&




-2 -
The elastic properties of an ideal isotropic elastic solid. are
characterized by two elastic constants, the Shear modulus G and
the bulk modulus K. Concerning the latter, the thermodynamié

condition, isothermal (X;) or adiabatic (K;) should be stated.

The viscous behaviour of an ideal Newtonian liquid is charac-

terized by a shear viscosity n,. Applying a harmonically varying

shear strain with frequency f and cyclic freduency w=2nf, shear
viscosity can be conceived as a frequency dependent shear modulus

G=-iwn,. Real liquids show both liquid and solid behaviour in
their shear médulus. A simple phenomenological model reconciling
these features is the Maxwell model [1]

G(w)=(Gt+(-iwn,) 1) ? (1)
showing solidlike behaviour at high frequencies (G-G., @w-~) and

liquidlike behaviour at 1low frequencies (G--iwn,w-0). The
transition takes place at ®,=ty (T) ,where t,(T)=1n,/G. is the

Maxwell relaxation time.This is the characteristic phenomenon of

the glass transition, and the glass transition temperature 7, in
the Maxwell model is the temperature, where 1,(T,) is equal to a

characteristic experimental time scale or reciprocal
frequency.The imaginary part of G has its maximum at the loss

peak frequency .

Real liquids cannot be described by a single relaxation time,
since G(w) has a more complicated frequency dependence.Other
properties like the specific heat [2],[3] and bulk modulus

[4] also show relaxation . It is an important experimental and
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theoretical task in the study of the glass transition to £find
connections between these properties. In this respect one should
distinguish between relationships wbich stem from 1linear
irreversible thermodynamics [5] and relations which depend on

more specific models [6]. Let s be the entropy density, T the

temperature, €;; the strain tensor and 0;; the stress tensor.

Denote the relative volume change by € =Tr(e;) and the

hydrostatic pressure by p =-%TT(oﬁ) . Then one has

. ‘ _
- [ ()~(2)
de -dp, -dp

a, x;

where ¢, is the isobaric specific heat, «

P is the isobaric

expansion coefficient and Kk, is the isothermal compressibility.

These 3 quantities constitute the thermoelastic compliance matrix

J. In equilibrium thermodynamics the symmetry of J is one of the

Maxwell relations b%g),= -(EEJ

(F7)p - The recipe of transfering to

nonequilibrium thermodynamics for a relaxing medium is simply to

let ds,de, dT,dp be the amplitudes of harmonically varying small

perturbations « e™i®t, Then Cp,®,, X, become complex, ‘thereby

describing the phase shift introduced by the relaxation
prbcesses. The symmetry of J still holds, but now it expresses
an Onsager relation [5]). Thus, there are three independent
complex thermoelastic response functions, which should . be

' in&estigated. Experimentally related functions may be more
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. convenient to measure. The triple ¢, @,, K, would contain the same

information since

T

2
-c:(_m-)-a’(m) (3)

kp(w) = x,(w) +

which follows from interchanging the variables of (2).Thus (3) is
as equally valid in linear nonequilibrium thermodynamics as in
‘equilibrium thefmodynamics. An example of a specific model is

Zwanzigs [6] proposal that the isochoric specific heat ¢, is

frequency independent and that c,(w) and x;(w) are related by

xp(w)

i S 4
(o) (4)

c(w) =c, + (c,(0) - ¢
A knowledge of three independent thermoelastic response functions
could verify this model or give a clue to other models. The

present work should be seen in this perspective.

We have developed a new method for measuring K,(w) (=x,(w)™?) at

low frequencies, i.e. frequencies at which the corresponding
acoustic wavelength is much larger than the sample size
(quasistatic regime). On the other the frequencies are
sufficiently high to ensure adiabatic conditions, i.e. the
corresponding thermal diffusion length is much smaller than the
sample size.

Conventional methods [7] have to measure Dboth the

longitudinal, M and the shear, G modulus through the

longitudinal, ¢; and transversal,c¢, sound velocity. The bulk
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modulus is then given by the relation

M= K+_43.G (5)

These methods demand high and discrete frequencies say 10 MHz in
order that the corresponding wavelength is smaller than or
comparable to the sample size.

Thus, we can in the present experiment obtain information on

K,(w) continous in a frequency range not usually considered.

Furthermore, our method also determines M at certain resonance
frequencies.

- The method of Mckinney, Edelman and Marvin [8] 1is a
quasistatic method as ours. The principle of their method,
however, is quite different, involving an inert ligquid as
pressure transfering agent and depending on both an emitter and
receiver of acoustic vibrations. We have no separate emitter and
receiver, only one transducer constituting the sample cell also.
The measuring cell is .a spherical shell of a piezoceramic
material (pz26, Ferroperm, Denmark) polarized in radial
direction. We will call it the piezoelectric bulk modulus gauge
(PBG). It is covered with electrodes on the inner and outer
surfaces. An insulated wire 1is put through the shell and
connected to the inner electrode and another wire is connected to
the outer electrode. On applying a potential difference across
the shell, the PBG will expand or contract fadially depending on
the polarity. For a mechanical free outer surface, the coupling
between the compiex amplitudes of the normal stress ¢ and the
volume change AV respectively the surface charge Q and the

potential difference U is given by a transfer matrix C;y




(U) = 'C11 c12 (0) (6)
O/ \ea €3] \AY,

The measured electrical capacitance therefore depends on whether
the shell is free to move (0=0) or clamped (AV=0),

C
szee(w) ='c—23' Cclamped(w) e (7)
12 11 -

g

If a medium of stiffness S(w)= AV

is placed inside the PBG, then

the electrical capacitance becomes

Cy2+C225

C(w) =
(@) €y +Cy, S

(8)

c
Thus, S can be found knowing ¢;; and measuring C(w) . The quantity —6-1—2-

11

gives a characteristic stiffness where the PBG is most sensitive.

For a thin piezoelectric ceramic shell, c¢;; can be expressed by

the inner radius r, thickness ¢, density p, elastic constants

S3,+8,,, piezoelectric constant d,, and dielectric constant e,,

[9]. Introducing the "breathing mode" resonance frequency

1 2
W, = , the lan
c r\J (511+512) p planar coupling constant
2d}
kp= ,the free capacitance at zero frequency
(S1:+S;;) €55
- _4nr? - t
Co=C,(0) = €, and the inertance L=p anai’ the result is
na
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1 w L (A
—_— —E,I——(l-(-—-—)z)
k Ic. k C W,
(C15)= POl P (9)

1'k: CO mc 2 (A 2
———kpmc I TPLCO(l (1 kp) (—(3:) )

In the specific case p =7.65gecm™3,t=0.10cmr =0.90 cm,

whereby L =7.52:10™2 gcm™ . By fitting a measurement of the free

electrical capacitance to the theoretical expression

1-(1-kZ) (-(:-;’-)2

c22
=C°
clz 7 1-( 2y
w

szee(m)= (10)

[~
the three constants Co,kp,wc are found (see fig. 1l). These

constants are both temperature and weakly time dependent due to

annealing processes in the piezoceramic itself. Thus the same

time and temperature scheme is exactly followed during reference :

measurement and modulus measurement. Typical values are C, = 12nF, kp = 0.51,

w
f“=—2—1: = 85 kHz.One has to correct the expression (9) for the

transfer matrix taking the finite thickness of the transducer
into account. We have indeed calculated and used the general
transfer matrix, but these lengthy expressions are omitted here.

The corrections amounts to 15% on X,.
At the top of the sphere a small hole of radius I, makes it

possible to fill the sphere with liquid. Also, a reservoir of
liquid resides in a small tube on top of the sphere. The hole
connects this to the inside of the sphere, allowing for thermal

expansion of the 1liquid. Despite this hole, the vliquid is
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virtually confined in the sphere at the frequencies of interest:
Assuming Poiseuille flow thiough the hole, a characteriétic flow
time t, will be

32t
3 r

T A =105, (11)

2
Thus, one has in fact quite a large range of times beyond the
Maxwell relaxation time at disposal. On the other hand, the cell
can of course only be filled in a reasonably time at high
temperatures where the viscosity is low.

The stiffness S(w) of a spherical isotropic viscoelastic solid
is derivablé from the solution of the equation of motion

[10]. If the density is p,;, the longitudinal wavevector

k1=~l %m and the volume V = inr’® then one finds

1 (k;r)? sin(k,r) )

. (12)
3 k;r cos(k,r) -sin(k,r)

S(w) = -%,(K—M(1+

K (w)
%

At low frequencies S(w) is simply .At higher frequencies

it depends on both K(w) and M(w) because longitudinal waves are
excited.

The new method was applied to that canonical example of the glass
transition, glycerol. Fig. 2 shows how the electrical capacitance C(w)
of the PBG is reduced from its free value by the partial clamping
of the transducer due to the contained 1liquid. The glass

transition in this picture is seen indirectly in the decrease of C
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with increasing frequency. Also shown is the measured Crree a@nd
the calculated C_j,meq-

Fig. 3 and 4 presents the measured real and imaginary part of

bulk modulus X, as a function of fre'quency at different

temperatures.Denote the relaxational part X,(w)- X ,(0) by X, (w).

The solid line represents a fit to data of a phenomenological

model, where K,(w) is given by an extended Maxwell model
K (w)= K () (1+(-iwT,) t+g(-iwT,) ). It is found that g =1.40
and ¢ = 0.43. 1, is temperature dependent and corrésponds to the

Maxwell relaxation time.

The 1logarithm of the 1loss peak frequency £ of the:

-
compressibility as a function of the reciprocal temperature is

T,
shown in fig. 5. f, has been fitted to f,= foexp(-(-?°)3) finding .

f, = 6.6710*2Hz and T, = 612 K. T, is 0.126f; in the fitting model

for the present values of g and a. The figure shows, that the

loss peak frequency of the specific heat ¢, (w) earlier measured

[3] is almost the same as the loss peak frequency of x, (w) if

extrapolated down in temperature. This would also be expected for
a comprehensive model of the thermoviscoelastic properties of the
liquid.The expression (4) predicts equality of the loss peak

frequencies of ¢ (w) and x,;(w) but not necessarily of x,(w).

The real and imaginary part of the specific stiffness S(w)V of
the liquid sphere as a function of temperature at 1 kHz is shown

in fig. 6. Two dispersion regions are seen with maxima in the
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imaginary part at 214 K and 268 K respectively.. The low
temperature”dispersipn region is simply the glass transition in

K,, since at this frequency the measured specific stiffness (12)

is equal to bulk modulus. At higher temperature the liquid is
able to flow through the filling hole and this gives rise to the
second dispersion region. Therefore although the measured
stiffness still reflects feiaxatioﬁ processes at the .glaSS
transition, it does not give bulk modulus and cannot easily be

analyzed in a rigorous way. The ratio of f, at 214 K and 268 K

is 10°, whidh is in agreement with the estimate (11).
According to (12) a viscoelastic sphere will show stiffness

resonances when tan(k,r)= k,r. These resonances are seen in the

electrical capacitance of the PBG. Although the resonances are
moved due to the mechanical coupling of the PBG and the liquid,
this is only of importance for the lowest lying resonances. Thus

for resonance frequency v, n23 the condition simply gives
longitudinal modulus to a good approximation as 16(1+2n)4p1v§r2.

In fig. 6 M calculated by the third resonance at 280-320 K is
shown. At these temperatures the inverse Maxwell relaxation time
is much higher than the resonance frequency. Thus shear modulus
can be neglected compared to bulk modulus and (5) reduces to

M,= K,, where index O means the 1low frequency 1limit. The
extrapolation of K,(T) measured by this resonance technique into

the temperature region, where the quasistatic method works,
agrees within 1%. In this way one has an independent and simple

check on the validity of the procedure of the quasistatic method.
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In conclusion, the main benefits of the method are the
following.The transducer converts a mechanical impedance to an
electrical impedance, which is convenient to measure. The small
transducer is handy to place in a cryostat and reach thermal
equilibrium in a reasonable time.The spherical s&mmetry makes it
possibie to calculate the stiffness of the liquid and the
transfer matrix of the transducer analytically. Finally the
transducer can operate in two modes, quasistatic and resonance.
The results obtained for glycefol points towards a related

relaxation of x,(w) and c,(w). The development however of a
method of measuring e« (w) will be necessary to get full

information of the thermoelastic properties of liquids at the

glass transition.
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Figure captions;

Fig.1l. The first resonance (breathing mode) of the piezoceramic

shell without liquid at 210 K ( ° ). The solid line is fit of

data to equation (10).

Fig.2. The electrical capacitance of the PBG filled with glycerol

at 210 K (9 ). Upper solid line is Cf,,. Lower solid line is

Ccl amped *

Fig.3. The real part of bulk modulus of glycerol at the glass
transition as a function of frequency at different temperatures.

Solid line is fit to an extended Maxwell model.

Fig.4. The imaginary part of bulk modulus corresponding to the

real part shown in fig.3.

Fig.5. The logarithm of the loss peak frequency of the

compressibility ( ° ) and of the specific heat ( * ).

Fig.6. Real (t ) and imaginary (% ) parts of the specific

stiffness at 1 kHz measured by the quasistatic method. K, ( * )

measured by the resonance method.
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