
Roskilde
University

Integrity Checking and Maintenance with Active Rules in XML Databases

Christiansen, Henning; Rekouts, Maria

Published in:
24th British National Conference on Databases : proceedings

DOI:
10.1109/BNCOD.2007.13

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Christiansen, H., & Rekouts, M. (2007). Integrity Checking and Maintenance with Active Rules in XML
Databases. In 24th British National Conference on Databases : proceedings (pp. 59-67). IEEE Computer
Society Press. https://doi.org/10.1109/BNCOD.2007.13

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 02. Dec. 2021

https://doi.org/10.1109/BNCOD.2007.13
https://doi.org/10.1109/BNCOD.2007.13

Integrity Checking and Maintenance with Active Rules in XML Databases

Henning Christiansen
Programming, Logic and Intelligent Systems

Dep’t of Communication, Business and Information Technologies
Roskilde University

P.O.Box 260, DK-4000 Roskilde, Denmark
henning@ruc.dk

Maria Rekouts
Institute for System Programming

Russian Academy of Sciences
Moscow, B. Kommunisticheskaya, 25, Russia

rekouts@ispras.ru

Abstract

While specification languages for integrity constraints
for XML data have been considered in the literature, actual
technologies and methodologies for checking and maintain-
ing integrity are still in their infancy. Triggers, or active
rules, which are widely used in previous technologies for
the purpose are still rather untested in XML databases.

We present the first steps towards a methodology for de-
sign and verification of triggers that maintain integrity in
XML databases. Starting from a specification of the in-
tegrity constraints plus a collection of XPath expressions
describing the possible updates, the method indicates trig-
ger conditions and correctness criteria to be met by the
trigger code supplied by a developer or possibly automatic
methods. We show examples developed in the Sedna XML
database system which provides a running implementation
of XML triggers.

1 Introduction

Active rules or triggers in databases can be difficult
to work with due to their complex semantics, but well-
designed triggers are very effective for detection and pre-
vention of inconsistencies in a database, including in situ-
ations that are not anticipated by the developer. Compared
with other approaches that leave to the application program
to do the checking, triggers may have advantages in effi-
ciency (executed internally to the database engine) and se-
curity (triggers can be verified once and for all, so that infe-

rior application programs cannot destroy the database).
Triggers are an established technology for relational

databases with methodologies described in research papers
and textbooks and supported by developers’ tools. For
XML databases, on the other hand, triggers are still a novel
technology, only few implemented systems are reported and
the body of experience in using them rather is limited.

The semantics of triggers in XML database management
systems seems inherently more intricate than what is famil-
iar from relational systems. For XML, updates can affect ar-
bitrarily nested structures so, e.g., deleting one node means
to delete all its descendant nodes, each of which may need
to be considered by a trigger to have suitable repair actions
performed elsewhere in the database. Results and method-
ologies for traditional technology cannot be adapted in a
direct way to the case of XML, and this is the motivation
for the present work.

We show the first steps in the direction of a methodology
for reasoning about XML triggers and proving them correct
with respect to specified integrity constraints. Such meth-
ods are in demand for manual development of triggers as
well as for (semi-) automatic tools that produce triggers di-
rectly from the constraints and perhaps specifications of the
possible updates.

We intend to develop methods that are independent of
specific update and trigger languages, both to ensure gen-
erality and to avoid getting stuck in the morass of XML
related notations. XPath expressions are used to designate
those parts of a database that are critical for maintenance
of given constraints. Combining this with other XPath ex-
pressions that limit the possible update requests, we pro-

vide suggestions for the trigger conditions and specify con-
ditions needed for proving their correctness. We consider
both checking and repairing triggers.

We envision a semantics for triggers based on predi-
cate transformers as a way to abstract away the complex-
ity of triggers and to be able to rely on established proof
techniques. We unfold this for selected classes of “well-
behaved” triggers.

The concepts are illustrated by triggers in the native
XML database management system Sedna [25] which pro-
vides one of the few running implementations of XML trig-
gers. We refer to survey papers [21, 17, 22] for general
background on integrity constraints, checking, and mainte-
nance.

The present work is preliminary in the sense that it pro-
vides an overall framework and definitions within which a
research agenda can be posed, rather that presenting ready-
to-use practical methods and tools. Section 2 gives basic
definitions related to databases, constraints, and triggers,
and section 3 defines correctness and sufficiency for triggers
and hint proof methods. Section 4 reviews related work in
traditional and XML databases, and section 5 summarizes
the contribution and our perspectives for future research.

2 XML Databases, Triggers, and Integrity
Constraints

Besides being adopted as the new interchange format
for the Internet, XML is finding increasing acceptance as
a native data repository language. There is a growing num-
ber of native XML database systems [30, 24, 25, 34, 15]
fully equipped with database management capabilities: they
support XQuery [10] for querying stored data and some
XQuery-based update language. Currently W3C is working
on XQuery update facility specification and its first draft has
recently been released; the mentioned native XML database
systems have provided their own update language inspired
by research proposals [31, 19, 2]. Now the time is ripe for
the XML database vendors to enrich their products with ad-
vanced facilities analogous to those that are popular in tra-
ditional DBMS (active rules, view maintenance, authorized
access control etc.) and to study how these capabilities can
be efficiently applied. In the present paper, we contribute
to this evolution showing how the well-established notion
of triggers is relevant for integrity constraint maintenance
in an XML context. Examples given below use Sedna’s up-
date language, which is based on [19], and Sedna’ XQuery
extension for triggers [29].

Our paper can be seen as a parallel to Ceri and Widom’s
work [8] from 1990, in which triggers for integrity mainte-
nance are designed on the basis of an analysis of constraints
and update requests in an SQL like setting. Although the
basic problem is the same, their setting makes it much sim-

pler than ours as their “path expressions” point out tables,
and the items to be inserted or removed are tuples and not
arbitraryly nested structures.

We make our definitions as abstract as possible in order
to make our approach independent of specific specification
languages and to avoid the overwhelming diversity of XML
related notations.

To solve these difficulties, we avoid a detailed analysis
of update expressions and constraint specifications and re-
quire the developer (or perhaps some automatic process) to
present a set of XPath expressions that is sufficient for the
purpose. In many cases, e.g., if only single nodes are up-
dated one at a time, these “sufficient” expressions can be
read directly out of the code, and an analysis similar to that
of [8] can be used.

Definition 2.1. A database is a set of distinctly named
XML documents which may or may not have an associated
schema. Any database mentioned in the following has the
same fixed set of document names.

A constraint is a logical condition c which, given a
database D, returns a truth value; when c is true in D,
we write D |= c and similarly for a set of constraints when
they are all true in D. A fixed set of constraints C is as-
sumed, and we say that a database D is consistent when-
ever D |= C; otherwise, i.e., D 6|= C we say that D is
inconsistent.

Example 2.2. Let us consider a simple database D consist-
ing of two documents, staff and offices:

staff:
...
<person pid = "1234">

<name>Maria</name>
<office>A7</office>

</person>

<person pid = "1235">
<name>Henning</name>
<office>A7</office>

</person>
...

offices:
...
<office oid = "A7">
<no_of_persons>2</no_of_persons>

</office>
...

For brevity, we may occasionally leave the document names
implicit in XPath expressions appearing in the examples
that follow.

The following definition characterizes, by sets of XPath
expressions, those nodes in a database which, when up-
dated, may be critical for maintenance of consistence. Criti-
cal nodes are those, which, when affected by an update, may

need to be considered by a trigger for checking and possi-
ble repair by a trigger. The clue to understand definition 2.3
below is that an update is conceived as a process that grad-
ually modifies leaf nodes, one at a time. So, for example,
replacing one subtree T1 by another T2 can be seen as first
removing all subtrees of T1 by gradually cutting more and
more leaves, then replacing the top node and building T2

top down by adding more and more leaves.
Below, we refer to restricted XPath expressions, which

do not contain predicates and only refer to descendant,
descendant-or-self, and attribute axes. This means that
whether or not a given node n is contained in the value of a
restricted XPath expression depends only on the direct path
from the root down to n.

Definition 2.3. Three sets of restricted XPath expressions
are assumed, CritInsXP, CritDelXP, and CritRplXP, called
critical XPath sets, satisfying the following properties.

• Whenever a leaf node n can be inserted into a consis-
tent database D, leading to an inconsistent database
D′, there is an element in CritInsXP whose value in
D′ includes n.

• Whenever a leaf node n can be deleted from a consis-
tent database D, leading to an inconsistent database,
there is an element in CritDelXP whose value in D in-
cludes n.

• Whenever a leaf node n in a consistent database D
can be replaced by another leaf node, leading to an in-
consistent database, there is an element in CritRplXP
whose value in D includes n.

It can be argued that a definition referring to only top
nodes of “problematic” subtrees will include too many
nodes as critical and would thus claim too many triggers
necessary: if node n is critical for insertion by such a def-
inition, the any node from the n to the root would also be
critical.

Example 2.4. Consider a tree T which contains <a>
 and assume for this example a constraint say-
ing that an a node must have one or two b subtrees. Dele-
tion of just a single b does not introduce inconsistency, but
since an XML update can delete several subtrees at a time,
it is essential that at least one of the b subtrees are consid-
ered critical. To see that this is the case, consider a copy of
T with the indicated subtree replaced by <a> .
Definition 2.3 requires CritDelXP to contain an expression
E = · · ·/a/b; we see that the evaluation of E in T will
provide a set of nodes that includes the two b nodes.

Notice that definition 2.3 allows the sets of critical XPath
expressions to over-approximate, which may be an advan-
tage when they are otherwise difficult to characterize. How-

ever, for the applications of these XPath sets below, it is bet-
ter to have them as fine-grained and precise as possible, i.e.,
a large set of specific expressions is better than a smaller
one with a higher degree of over-approximation.

For any specific constraint c ∈ C, we use informally
notation CritDelXP(c) for those expressions of a CritDelXP
set needed to cope with c and similarly for the other two
sets.

Example 2.5. (continues example 2.2) For the running ex-
amples, we specify a set C of the three constraints described
below: key constraints, a referential integrity constraint and
an aggregate constraint. Each constraint is described using
the XIC constraint language proposed in [12]. For each
one, we indicate its contribution to the critical XPath sets.

c1: Attributes pid are keys for persons, and attributes
oid are keys for offices:

∀x, y, id[doc(′staff ′)//person](x) ∧
[doc(′staff ′)//person](y) ∧
[./@pid](x, id) ∧ [./@pid](y, id) → x = y

∀x, y, id[doc(′offices ′)//office](x) ∧
[doc(′offices ′)//office](y) ∧
[./@oid](x, id) ∧ [./@oid](y, id) → x = y

CritInsXP(c1) = {doc(′staff ′)//person/@pid;

doc(′offices ′)//office/@oid}
CritRplXP(c1) = {doc(′staff ′)//person/@pid;

doc(′offices ′)//office/@oid}

c2: For each office element in staff there must exist
a corresponding office in offices with relevant
oid:

∀p, oid[doc(′staff ′)//person/office](p, o) →
∃o[doc(′offices ′)//office](o)(o) = (p, oid)

CritInsXP(c2) = {doc(′staff ′)//person/office}
CritDelXP(c2) = {doc(′offices ′)//office/@oid}
CritRplXP(c2) = {doc(′staff ′)//person/office;

doc(′offices ′)//office/@oid}
In other words, insertion of a new item with a possi-
bly dangling reference might lead to violation of c2;
deletion of an item to which other items could possibly
refer to might also lead to violation of c2.

c3: Each no_of_persons element contains the number
of persons in that office:

∀o[doc(′offices ′)//office/no of persons](o) →
[doc(′staff ′)//person](p)(o) = sum(p)

CritInsXP(c3) = {doc(′staff ′)//person/office}

CritDelXP(c3) = {doc(′staff ′)//person/office}
CritRplXP(c3) =

{doc(′staff ′)//person/office;

doc(′offices ′)//office/no of persons;

doc(′offices ′)//office/@oid}

It may be possible to use instead more elaborate, criti-
cal expressions with predicates that actually check whether,
say, a referential integrity is broken, but our method can-
not employ this at present. Triggers in database systems,
whether relational or XML, are often triggered not only by
the effect of an update, but also the type of update that pro-
duced the effect. Here we will model the conventions used
in Sedna, but other choices could have been made as well.
In the following definition we have abstracted away most
of the syntax of an update language, except the details that
affect trigger behavior.

For an update, we informally characterize its application
points as representing the nodes where an update attaches or
detaches something from a tree. For delete and replace op-
erations, the application points typically correspond to the
value of an XQuery expression given in the update request,
e.g., the value of x in DELETE x or REPLACE x WITH
y. We capture the applications point by the sets denoted
Applic(−) in the definition.

Definition 2.6. An update u is an operation that modifies
one or more documents in a database D1, producing an-
other database D2; we denote this fact D1

τ :u⇒ D2, where
τ is a type τ ∈ {INSERT ,DELETE ,REPLACE}. An
update of this form is characterized by four sets of nodes,
Applic(u), Inserted(u), Deleted(u), and Replaced(u);
Applic(u) is determined by the semantics of the update lan-
guage.

For type INSERT , Deleted(u) and Replaced(u) are
empty, and Applic(u) is a set of nodes in D2; Inserted(u)
is comprised by Applic(u) and any descendant thereof; re-
moving Inserted(u) from D2 yields D1.

For type DELETE , Inserted(u) and Replaced(u) are
empty, and Applic(u) is a set of nodes in D1; Deleted(u)
is comprised by Applic(u) and any descendant thereof; re-
moving Deleted(u) from D1 yields D2.

For type REPLACE , Applic(u) identifies a set of nodes
in D1; Replaced(u) coincides with Applic(u); Inserted(u)
is comprised by the nodes of D2 in positions matching
Applic(u) and any descendant thereof in D2; Deleted(u)
is comprised by the nodes of Applic(u) in D1 and any
descendant thereof; removing Inserted(u) from D2 and
Deleted(u) from D1 yields identical databases.

Example 2.7. The transition from <a>
into <a> <c/> can be defined by differ-
ent updates, 1) inserting a <c> node under the node,

2) replacing the node by <c/> , and 3) re-
placing the whole tree by the new one. Although the effect
is the same of all three, the Applic, Inserted, Deleted, and
Replaced sets differ (and we may expect that different trig-
gers are called in each case).

Example 2.8. (continues examples 2.2 and 2.5) The follow-
ing two update statements u1 and u2 are given in Sedna’s
update language:
u1 : UPDATE

delete doc("staff")//person[@pid="1234"]

u2 : UPDATE
replace

$n in doc("staff")//person[@pid="128"]/name

with

<name>Maria P. Rekouts</name>

With u2, each node returned by doc("staff")
//person[@pid="128"]/name is replaced with
<name>Maria P. Rekouts</name>; variable $n is
bound to the nodes one at a time (but not referenced in this
particular example).

We assume that update requests are issued by a fixed ap-
plication program P and trigger set T . While our goal is
to provide guidelines for how triggers should be defined in
order to work correctly (according to given constraints C),
we assume for ease of notation that the trigger set T is fixed
and analyze in the following requirements to this trigger set.
Thus there is a well-defined meaning when below we say
“an update D1

τ :u⇒ D2 that may occur (for (P, T))”. The
following definition provides an abstract characterization of
the possible updates in terms of XPath expressions.

Definition 2.9. For fixed application program P and trig-
ger set T , three sets of XPath expressions are assumed,
InsXP(P, T), DelXP(P, T), and RplXP(P, T) with the
following properties.

For any update D1
τ :u⇒ D2 that may occur, it holds

that for any n in Inserted(u), there is an expression in
InsXP(P, T) whose value in D2 contains n.

For any update D1
τ :u⇒ D2 that may occur, it holds that

for any n in Deleted(u) (resp. Replaced(u)), there is an ex-
pression in DelXP(P, T) (resp. RplXP(P, T)) whose value
in D1 contains n.

It is worth noting that the InsXP, DelXP, and RplXP sets
can be much simpler than those XPath expressions found
in the actual code. For example, //a in InsXP may “sub-
sume” a huge collection of more detailed expressions end-
ing with /a, which in some cases may be useful in order to
reduce the number of triggers.

These sets can be produced by intellectual manners or
automatically as discussed above for critical XPath sets. If
the purpose of the trigger collection to be developed is to de-
tect and reject updates that violate integrity, and only that,

InsXP etc. may be identified from an analysis of the appli-
cation program.

On the other hand, when triggers are intended to repair
inconsistencies introduced by updates, there will be a natu-
ral feed-back loop in the development process, since InsXP
etc. are translated into triggers, which as their instrument
for repair introduce yet other updates, which in turn require
extensions to InsXP, etc.

Example 2.10. (continues examples 2.2, 2.5, and 2.8) We
consider in this example an application program P which
performs updates similar to u1 and u2 but for varying pids
and names; the trigger set is currently assumed empty. Here
we may use the following XPath sets to capture the possible
updates.
InsXP(P, T) = {doc(′staff ′)//person/name}
DelXP(P, T) = {doc(′staff ′)//person;

doc(′staff ′)//person/office;
doc(′staff ′)//person/name;
doc(′staff ′)//person/@pid}

RplXP(P, T) = {doc(′staff ′)//person/name}

Following [18], we define E1 ∩ E2 6= ∅ to be true for
XPath expressions E1 and E2 if for some database D, E1

and E2 evaluate to lists of values with a common element in
D; the reference [18] shows that the problem is decidable
and provides algorithms. The following sets of XPath ex-
pressions determine the trigger expressions for which trig-
gers must be provided; we will later show that a set of trig-
gers for these patterns and satisfying a suitable semantic
condition, will be sufficient to maintain consistency.

Definition 2.11. Three sets of XPath expressions are de-
fined as follows.
CritInsXP(P, T) = {pi ∈ InsXP(P, T) |

∃pc ∈ CritInsXP: pi ∩ pc 6= ∅}
CritDelXP(P, T) = {pd ∈ DelXP(P, T) |

∃pc ∈ CritDelXP: pd ∩ pc 6= ∅}
CritRplXP(P, T) = {pr ∈ RplXP(P, T) |

∃pc ∈ CritRplXP: pr ∩ pc 6= ∅}

The following important property indicates the relevance
of this definition which later will indicate that at least one
trigger is called when an inconsistency is introduced; the
proof depends on the fact that the indicated XPath sets con-
sist of restricted expressions only.

Proposition 2.12. Let D1
τ :u⇒ D2 be an update that may

occur for some P and T , with D1 consistent and D2 in-
consistent. Then at least one of the following properties are
true.

• There is a p ∈ CritInsXP(P, T) whose value in D1

includes a node of Inserted(u).

• There is a p ∈ CritDelXP(P, T) whose value in D2

includes a node of Deleted(u).

• There is a p ∈ CritRplXP(P, T) whose value in D1

includes a node of Replaced(u).

This has an interesting consequence which we state in-
formally: if an update u is reduced to a smallest update
u′ which introduce inconsistency, then there will still be a
match of one of the indicated XPath expressions with a node
of Inserted(u′), Deleted(u′), or Replaced(u′). In other
words, the XPath expressions characterize the “real cause”
of inconsistency, but we cannot exclude that it matches a bit
more than this.

We notice the following corollary.

Proposition 2.13. In case CritInsXP(P, T) =
CritDelXP(P, T) = CritRplXP(P, T) = ∅, any up-
date of a consistent database will preserve consistency.

This proposition can indicate when no triggers are nec-
essary, but may also apply when triggers are used for main-
taining relationships that are not formalized as constraints.

We notice that our approach may possibly be improved
here in some case where, say CritInsXP (with no argu-
ments, i.e., derived from the constraint set C only) con-
tains predicates that test whether integrity actually is bro-
ken. Here it may be advantageous not only to take a subset
of InsXP(P, T), but to produce a more optimal integration
with CritInsXP, e.g., employing predicates in it. Our cur-
rent version misses such optimizations.

Example 2.14. (continues examples 2.2, 2.5, 2.8, and 2.10)
With the collected assumptions we get the following sets.
CritInsXP(P, T) = ∅
CritDelXP(P, T) = {doc(′staff ′)//person/office}
CritRplXP(P, T) = ∅
The expression //person/office from CritDelXP is in-
cluded in CritDelXP(P, T) as it appears identically in
DelXP(P, T), i.e., a special case of nonempty intersection.

3 Correct and sufficient triggers

A trigger is a piece of code controlled by the database
management system; it starts performing its actions when
an update is registered for a node within the value of its
triggering expression. We sketch here the syntax of triggers
as they appear in the Sedna system.

CREATE TRIGGER <trigger_name>
BEFORE|AFTER (INSERT|DELETE|REPLACE)+
OF XPathExpression (,XPathExpression)*
FOR EACH (NODE|STATEMENT)
DO
{ (XQuery-expression($NEW, $OLD, $WHERE);)* }
}

• The CREATE TRIGGER clause is used to define a
new XML trigger with the specified name.

• BEFORE | AFTER clause the triggering time relative
to the triggering operation.

• Each trigger is associated with a set of update op-
erations (INSERT, DELETE and REPLACE) adopted
from the update extension used in Sedna [19].

• The operation is relative to nodes that match an XPath
expressions specified after the OF keyword.

• FOR EACH NODE/STATEMENT expresses the trig-
ger granularity. A statement-level trigger executes
once for each set of nodes extracted by evaluating the
XPath expressions mentioned above, while a node-
level trigger executes once for each of those nodes.

• The action is expressed by means of the DO clause. It
consists of any number of arbitrarily complex update
operations and, possibly, a final query operation. For a
node-level trigger, the value of the query operation is
returned to the calling executor. A node-level trigger
fired BEFORE an operation has the following options:

– It can return an empty sequence with the mean-
ing of skipping the operation for the current node.
This instructs the executor to reject the node-
level operation that invoked the trigger (the in-
sertion or replacement of a particular node).

– For node-level INSERT and REPLACE triggers
only, the returned node becomes the node that
will be inserted or will replace the node being up-
dated. This allows the trigger to modify the node
being inserted or updated.

• Trigger action can make update requests to other XML
documents, possibly starting other triggers (known as
cascading).

• For node-level triggers transition variables $OLD,
$NEW and WHERE are accessible in the trigger’s ac-
tion.

However, for reasons of efficiency and scheduling, Sedna
has the restriction that within the handling of a given top-
level update, cascading must never lead to updates in a doc-
ument from which a trigger has been called. This restric-
tion is similar to what is found in some RDBMS [35]. The
method we propose here, does not depend on this restric-
tion.

When executed, a trigger has access to the value of the
triggering XPath expression, and it can access any part of
the database, including old and new value of nodes which
are subject of a modification. From this, it determines its
action as indicated.

Example 3.1. As an example we provide the following trig-
ger that would partially support c3 of example 2.5.

CREATE TRIGGER "tr_c3"
AFTER DELETE
OF doc("staff")//person/office
FOR EACH NODE
DO { UPDATE

replace $n
in doc("offices")//office[@oid=$OLD]

/no_of_persons/text()
with xs:integer($n)-1 ;

}

This trigger fires, when an office node of any person in
the doc("staff") is deleted, and decreases the value of
no_of_persons element in a corresponding office.
Note, the predefined variable $OLD is used to refer the
deleted office.

For proving correctness of a trigger or set of triggers,
we consider an update, and the possible combination of up-
dates performed by triggers as a predicate transformer [13].
When u is such a piece of code (e.g., an update request),
the notation [C1]u[C2] means that if a set of constraints C1

holds before u, then C2 holds after the update.

Example 3.2. Consider an update D1
τ :U⇒ D2, where

D1: <a> <a> ,
D2: <a> <a> ,
and let u−1 be the reversed update. Here we have [C1]u[C2]
and [C2]u−1[C1] where C1 is “a nodes have no subtrees”,
and C2 “a nodes have no subtrees, except the first one”.

Correctness of an arbitrary trigger set is specified in the
following highly abstract and, at first glance, not very useful
way.

Definition 3.3. For given application program P and a
trigger set T , we say that T is correct for an update u ap-
plied to a consistent database, whenever the net effect of
the activated triggers (with possibly cascading and change
of the requested update) amounts to an action Tu with the
following property. Notice that C refers to the given fixed
set of constraints.

[C]Tu[C]

The definition is relevant since we can show below, dif-
ferent sufficient conditions which apply for specific classes
of triggers.

Definition 3.4. Given an application programP and a trig-
ger set T , we say that T is sufficient for (P, T) if at least
one trigger is called for any update that may occur in a
consistent state and leading to an inconsistent state.

Proposition 3.5. A trigger set T for application program
P is sufficient if it satisfies the following properties.

• For any p ∈ CritInsXP(P, T), T has a trigger of the
form CREATE TRIGGER . . . INSERT OF p . . .

• For any p ∈ CritDelXP(P, T), T has a trigger of the
form CREATE TRIGGER . . . DELETE OF p . . .

• For any p ∈ CritRplXP(P, T), T has a trigger of the
form CREATE TRIGGER . . . REPLACE OF p . . .

Proposition 3.6. Consider an application program P and
a trigger set T , which is correct and sufficient. Then any
sequence of updates produced by (P, T), starting from a
consistent database, will lead to consistent databases only
(not counting intermediate states between a top level update
request is posed and the last trigger has finished).

We can now give a (high-level!) recipe for producing a
set of triggers T that is guaranteed to maintain consistency:

1. T := ∅,

2. Calculate the three sets of XPath expres-
sions CritInsXP(P, T), CritDelXP(P, T), and
CritRplXP(P, T).

3. Add a trigger to T for each of those and ensure that T
is correct.

4. If step 3 resulted in new critical XPath expressions
(due to update requests in trigger bodies), continue
with the relevant portions of 2–4.

The big issue is, now, how actually to prove correctness of
a trigger set. At present, we have not developed a catalogue
of proof techniques, and we provide instead a few infor-
mally described propositions stating examples of sufficient
conditions.

Proposition 3.7. Consider an application program P and
a set of BEFORE triggers T with no cascading, i.e., when a
trigger body requests an additional update, this affects only
other nodes in a way that does not start other triggers.

We have that T is correct, if any T ∈ T satisfies the
following property:

• For any update u which activates T , T either rejects u
or modifies it into another u′ and requests additional
update u′′ for which [C]u′′[C ′]u[C] holds for some C ′.

This property has the practical advantage that each trig-
ger can be proved correct one at a time. It will be relevant to
identify less restricted classes of triggers that preserve this.

For cascading triggers, we may rely on an ordering
among the triggers analogously to [9]. Let us detail a spe-
cial case. We assume, for a given constraint c, that there is
a well-founded ordering that measures of the degree of vio-
lation of c; for a referential constraint, for example, this can
be defined in terms of the number of nodes that contain an
unbound reference.

Proposition 3.8. Consider an application program P and
a set of triggers T = {t1, . . . , tn} such that the set of con-
straints can be listed as C = {c1, . . . , cn} where the fol-
lowing holds for i = 1, . . . , n,

• ti requests additional updates only when ci is violated,
in which case it reduces the degree of violation for ci;
furthermore, it does not increase the degree of viola-
tion for any of c1, . . . , ci−1.

Then T is correct.

4 Related work

The use of active rules to support database integrity con-
straints has been recognized for decades and extensively
studied for relational databases. A lot of research has been
devoted to the automatic or semi-automatic generation of
integrity-preserving rules from specifications of integrity
constraint for relational databases. These works may be
classified roughly by three main possibilities:

1. Syntactic generation of events (and conditions, if the
active rule language allows condition specification).
Triggering events and rule conditions usually can be
generated from the integrity constraint specification by
means of relatively straightforward syntactic analysis
[8]. This approach leaves the generation of the action
part of the rules to the designer.

2. Syntactic generation of events and condition, declar-
ative specification of action. When multiple repair
strategies are possible, the designer may specify, in a
declarative style, the integrity constraint together with
a repair strategy. Rule generation can then be fully au-
tomated [4, 16].

3. Syntactic generation of events and condition, semantic
generation of action. A rule generation module may
exhaustively consider all possible repair actions for a
set of constraints and choose an appropriate combina-
tion among them, considering the interactions among
constraints and possibly gathering additional informa-
tion from the designer [7, 26].

Our work considers the first of these possibilities for
XML databases, where support for advanced features such
as active rules is becoming available. Currently, we are only
aware of the XML database Sedna [25] which is sufficiently
powerful to support integrity maintenance in way we have
presented. We are aware that the native XML database eX-
ist [24] supports triggers, but in a restricted manner: triggers
can only be set on documents and collections, and do not
cover the XML document hierarchy [23]. We expect that

our results can be integrated with the two other possibilities
as XML database technologies get more mature.

However, active rules for XML has been considered in a
number of research papers. In [5], an active rule language
for XML repositories, called Active XQuery, is presented
as an extension of XQuery. The authors describe the syntax
and semantics of Active XQuery describing an algorithm
to support triggers and a sketchy system architecture. The
authors assume that trigger processing can be done com-
pletely at compile-time and trigger supporting module can
be implemented on top of the existing XML repository with
XQuery support. In [29] we provide a method for tightly
coupled XML triggers support that can be considered as an
alternative approach.

Reference [3] provides an ECA-rule language for XML
(that is close Sedna’s) and exhaustively covers the problem
of statically predicting the active rules’ run-time behavior.
This work can be used as a good basis for building active
rules design tools to facilitate a designer’s work of building
sufficient set of triggers for constraint maintenance.

Another research direction concerns repair of inconsis-
tent databases (XML and other kinds) which has applica-
tions in, among other fields, data integration; general and
automatic methods are described by, e.g., [6, 33]. An inter-
esting detailed study of particular cases of repairs in a partly
manual and partly automatic system is done by [14], which
may provide inspiration for extending our approach into an
interactive environment for development of triggers.

Instead of using triggers, integrity can also be checked
and maintained by tests and actions performed by the ap-
plication program, before or after an update is performed.
This is often based on so-called simplification methods [27]
which are systematic or automatic methods, which have
been studied mainly for relational and deductive databases,
to transform global integrity constraints into specialized and
optimal checks for individual updates or update patterns;
see [21, 11] for an overview of previous and recent re-
sults. Similar techniques are suggested for XML databases
by [28], however, seemingly unaware of the work on sim-
plification.

5 Conclusion and future directions

We may envision an interactive development tool which
takes as input constraints in some formal language plus per-
haps XPaths expressions describing possible updates. Trig-
ger expressions are generated automatically as indicated
above, and code templates can be suggested. The system
may also embed knowledge about the semantics in terms of
a mapping into predicate transformers, and supply assisting
proof tools.

Simplification techniques known from relational and de-
ductive databases, e.g., [11], may be adapted to XML, so

that proposals for checking code, and alternatives for re-
pair code, may be produced by automatic transformations
of constraints; some initial work has been done in this di-
rection, but fully satisfactory solutions are yet to come.

An important detail in our approach which can and must
be improved is the derivation of trigger expression from the
given XPath sets, definition 2.11. At present, we take sub-
sets of the restricted XPath expressions describing the possi-
ble updates, which seems unnecessarily coarse. A better ap-
proach may be to invent a sort of intersection operation for
XPath, which produces new XPath expressions that capture
the intersection of node sets for the critical and the update
XPath expressions.

In order to test our approach for applications that can-
not be expressed in a natural way using relational technol-
ogy, we are currently developing a database which mimics
a program text editor for a Java-like language. Arbitrarily
deep syntax trees are stored as XML trees and triggers are
introduced to check context-sensitive syntax constraints re-
lating to declarations, visibility and scope, marking possible
violations.

XML is also extensively used in content management ap-
plications. Here, the dependencies between the documents
in a complex publishing scenarios are usually defined using
some domain specific language (for example as it is orga-
nized in Cocoon framework [32]). It should be analyzed
how our methodology may be applied to generate triggers
that maintain constraints specified in such domain-specific
languages.

Acknowledgement: This work is supported by the CON-
TROL project, funded by Danish Natural Science Research
Council.

References

[1] 16th International Workshop on Database and Expert
Systems Applications (DEXA 2005), 22-26 August 2005,
Copenhagen, Denmark. IEEE Computer Society, 2005.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.
Wiener. The Lorel query language for semistructured data.
Int. J. on Digital Libraries, 1(1):68–88, 1997.

[3] J. Bailey, G. Papamarkos, A. Poulovassilis, and P. T. Wood.
An event-condition-action language for xml. In Levene and
Poulovassilis [20], pages 223–248.

[4] E. Baralis, S. Ceri, and S. Paraboschi. Modularization tech-
niques for active rules design. ACM Trans. Database Syst.,
21(1):1–29, 1996.

[5] A. Bonifati and S. Paraboschi. Active xquery. In Levene and
Poulovassilis [20], pages 249–274.

[6] A. Calı̀, D. Calvanese, G. D. Giacomo, and M. Lenz-
erini. Data integration under integrity constraints. Inf. Syst.,
29(2):147–163, 2004.

[7] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Auto-
matic generation of production rules for integrity mainte-
nance. ACM Trans. Database Syst., 19(3):367–422, 1994.

[8] S. Ceri and J. Widom. Deriving production rules for con-
straint maintainance. In D. McLeod, R. Sacks-Davis, and
H.-J. Schek, editors, VLDB, pages 566–577. Morgan Kauf-
mann, 1990.

[9] S. Ceri and J. Widom. Deriving incremental production rules
for deductive data. Inf. Syst., 19(6):467–490, 1994.

[10] D. Chamberlin, M. F. Fernandez, and J. Simeon et
al. XQuery 1.0: An XML Query Language, W3C
Recommendation 23 January 2007. Available at
http://www.w3.org/TR/xquery/ link checked De-
cember 2006.

[11] H. Christiansen and D. Martinenghi. On simplification of
database integrity constraints. Fundamenta Informaticae,
71:371–417, 2006.

[12] A. Deutsch and V. Tannen. Xml queries and constraints, con-
tainment and reformulation. Theoretical Computer Science,
336(1):57–87, 2005.

[13] E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Commun. ACM, 18(8):453–
457, 1975.

[14] S. M. Embury, S. M. Brandt, J. S. Robinson, I. Sutherland,
F. A. Bisby, W. A. Gray, A. C. Jones, and R. J. White. Adapt-
ing integrity enforcement techniques for data reconciliation.
Inf. Syst., 26(8):657–689, 2001.

[15] T. Fiebig, C.-C. Kanne, and G. Moerkotte. Natix - ein na-
tives XML-DBMS. Datenbank-Spektrum, 1:5–13, 2001.

[16] M. Gertz. Specifying reactive integrity control for active
databases. In RIDE-ADS, pages 62–70, 1994.

[17] P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity
constraints: Semantics and applications. In Logics for
Databases and Information Systems, pages 265–306, 1998.

[18] B. C. Hammerschmidt, M. Kempa, and V. Linnemann. On
the intersection of xpath expressions. In IDEAS, pages 49–
57. IEEE Computer Society, 2005.

[19] P. Lehti. Design and implementation of a data manipulation
processor for an XML query language., 2001. Available at
http://www.lehti.de/beruf/diplomarbeit.pdf.

[20] M. Levene and A. Poulovassilis, editors. Web Dynamics
- Adapting to Change in Content, Size, Topology and Use.
Springer, 2004.

[21] D. Martinenghi, H. Christiansen, and H. Decker. In-
tegrity checking and maintenance in relational and deduc-
tive databases – and beyond. In Z. Ma, editor, Intelligent
Databases: Technologies and Applications, pages 238–285.
Idea Group Publishing, 2006.

[22] E. Mayol and E. Teniente. A survey of current methods
for integrity constraint maintenance and view updating. In
P. P. Chen, D. W. Embley, J. Kouloumdjian, S. W. Liddle,
and J. F. Roddick, editors, ER (Workshops), volume 1727 of
Lecture Notes in Computer Science, pages 62–73. Springer,
1999.

[23] W. Meier. exist XML database documentation. Available at
http://exist.sourceforge.net/.

[24] W. Meier. Open source native XML database eXist. Avail-
able at http://exist.sourceforge.net/.

[25] MODIS TEAM at ISP RAS. Open source
native XML database Sedna. Available at
http://www.modis.ispras.ru/sedna/.

[26] G. Moerkotte and P. C. Lockemann. Reactive consistency
control in deductive databases. ACM Trans. Database Syst.,
16(4):670–702, 1991.

[27] J.-M. Nicolas. Logic for improving integrity checking in
relational data bases. Acta Informatica, 18:227–253, 1982.

[28] S. B. N. Praveen Madiraju, Rajshekhar Sunderraman and
H. Wang. Semantic integrity constraint checking for multi-
ple xml databases. Journal of Database Management, 17:1–
19, 2006.

[29] M. Rekouts. Incorporating active rules processing into up-
date execution in XML database systems. In DEXA Work-
shops [1], pages 831–836.

[30] Software AG. XML database Tamino. Available at
www.softwareag.com/tamino.

[31] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Up-
dating xml. In SIGMOD Conference, pages 413–424, 2001.

[32] The Apache Cocoon Project. Cocoon, web devel-
opment framework. Available at http://cocoon
.apache.org/.

[33] J. Wijsen. On condensing database repairs obtained by tuple
deletions. In DEXA Workshops [1], pages 849–853.

[34] XHive. XML database XHive/DB. Available at http:
//www.x-hive.com/products/db/index.html.

[35] J. Y. Yu-May Chang, Jeff Ullman. Constraints and triggers in
Oracle. Available at http://www.cise.ufl.edu/˜
jhammer/classes/Oracle/Cons Triggers.htm.

