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Conventional methods fail to measure c,(w) of glass-forming liquids

Tage Christensen, Niels Boye Olsen, and Jeppe C. Dyre
DNRF centre “Glass and Time,” IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
(Received 5 December 2006; published 17 April 2007)

The specific heat is frequency dependent in highly viscous liquids. By solving the full one-dimensional

thermoviscoelastic problem analytically it is shown that, because of thermal expansion and the fact that
mechanical stresses relax on the same time scale as the enthalpy relaxes, the plane thermal-wave method does
not measure the isobaric frequency-dependent specific heat c¢,(w). This method rather measures a “longitudi-
nal” frequency-dependent specific heat, a quantity defined and detailed here that is in between c¢,(w) and ¢y(w).
This result means that no reliable wide-frequency measurements of c[,(w) on liquids approaching the calori-

metric glass transition exist. We briefly discuss consequences for experiment.

DOI: 10.1103/PhysRevE.75.041502

I. INTRODUCTION

All liquids are viscoelastic—i.e., flow only on long time
scales—whereas they are elastic on short time scales. This
fact was first described quantitatively in 1867 by Maxwell
[1]. If 7 is the (dc) shear viscosity and G., the instantaneous
shear modulus, the Maxwell model implies that the charac-
teristic time 7 separating “long” and “short” times is given
by
(1)

T= i.
G,
For liquids like ambient water, 7 is in the picosecond range;
for highly viscous liquids, 7 can be seconds, hours, or even
months.

When a liquid is supercooled, its viscosity increases dra-
matically upon continued cooling; since G.. is not nearly as
temperature dependent, the relaxation time 7 also increases
enormously. At some point—if crystallization is avoided—
the liquid freezes into a glass. The glass transition takes
place when the liquid is unable to fully equilibrate on the
experimental time scale [2]. The properties of viscous liquids
approaching the glass transition are far from well understood
[3-8]. A viscous liquid is characterized by its relaxation time
which is the time it takes for the system to relax to equilib-
rium after an externally imposed disturbance. The distur-
bance may be electrical, thermal, or mechanical. The relax-
ation time depends somewhat on which quantity is measured,
but as a first approximation all relaxation times may be re-
garded as identical. Since shear stresses also relax on this
time scale, the liquid relaxation time is basically the Max-
well 7 of Eq. (1). Indeed, numerous experiments on viscous
liquids confirm that the Maxwell relaxation time determines
the rate of molecular motion beyond pure vibration [3-6].

When probed by a linear-response experiment on time
scales shorter than 7, viscous liquids exhibit a solidlike re-
sponse. As an example, consider dielectric relaxation. This is
an experimental technique where accurate data nowadays are
easily obtained over nine or more decades [9,10]. Upon in-
crease of the angular frequency w, the dielectric constant
e(w) drops from its value when w7< 1 to a lower value at
high frequencies (w7>> 1) where dipolar rotations no longer
contribute. The high-frequency dielectric constant corre-
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sponds to that observed in the glass where the molecules are
basically frozen. Another example is the compressibility.
This quantity is also frequency dependent and is also larger
at low frequencies (w7<1) than at high (w7m>1) [11].
Again, the low compressibility observed at high frequencies
reflects glassy behavior.

It has been known for almost a century that the specific
heat is higher in the liquid phase than in the glass—indeed,
the glass transition is often identified from specific heat mea-
surements [12]. It thus appears that the specific heat in the
viscous liquid phase must be frequency dependent. This pos-
sibility was discussed briefly by Angell and Torell in 1983
[13], but was also implicit in earlier theoretical papers
[14-16]. The frequency-dependent specific heat of a viscous
liquid was first measured in 1985 by Birge and Nagel and by
Christensen in two independent works utilizing different
methods [17-19]. By coincidence both works measured on
glycerol, but the results were not consistent (a discrepancy
that is still unsettled, incidentally). We here focus on the
Birge-Nagel method; it covers a much wider frequency range
than that of Ref. [19].

Perhaps because of its unusual thermodynamic reference
there were early doubts about the nature of the frequency-
dependent specific heat [20-22]. These critiques were based
on the assumption coming from generalized hydrodynamics
that, although transport coefficients may well be frequency
dependent, linear constitutive quantities do not depend on
frequency. This is an assumption, however, and not based on
first principles. Today few researchers doubt that the
frequency-dependent specific heat is a standard linear-
response quantity; in fact, it is straightforward to derive a
fluctuation-dissipation theorem for this quantity [23]. Thus
just as for any other linear response, upon a periodic small
time-dependent temperature variation S7(z), the enthalpy
variation may be written as a convolution integral over the
past temperature history. The frequency-dependent specific
heat is the Laplace transform of the kernel of this convolu-
tion integral, and its imaginary part determines the dissipa-
tion (i.e., free energy loss) [17,19,23]. That the specific heat
is frequency dependent is obvious in simple energy-based
master-equation models [23,24]; in fact, even the simple
asymmetric double-well potential has a frequency-dependent
specific heat. Recent works brought further insights into this
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continuously developing field, both as regards novel experi-
mental techniques [25-30] and theory including computer
simulations [31-34]. Very recently the field was reviewed by
Garden in a paper with many useful references [57].

The method of Birge and Nagel [18,35] is based on so-
called thermal effusion. A thin metal film evaporated onto a
solid glass substrate in the form of a plane slab is immersed
in the liquid. The metal film acts both as heat generator and
thermometer [18,36—40]. An applied oscillatory electric cur-
rent at angular frequency w, generates oscillating Joule heat-
ing at the frequency w=2w, due to the electric resistance of
the metal film. The generated power ‘“effuses” as thermal
waves into the liquid and into the supporting slab. The re-
sulting temperature oscillations depend on both specific heats
and heat conductivities. The amplitude and phase of the tem-
perature oscillations are detected by the clever so-called 3w,
technique [35,36]: Since the electric resistance of the film is
temperature dependent, the resistance is perturbed at fre-
quency 2w, in concert with temperature. The detected volt-
age across the film thus contains a 3w, component propor-
tional to temperature arising from the product of varying
current and resistance. The temperature is measured at the
heat-producing film surface itself. If the thermal wavelength
is short compared to the lateral dimensions of the film, the
film is effectively an isothermal surface in space (not in time,
of course). The heat current is orthogonal to this surface,
implying that the thermal waves are planar and that boundary
effects can be neglected. In the periodic situation all fields
vary with time proportional to exp(st) where s=*iw depend-
ing on convention [41]. By solving the heat diffusion equa-
tion Birge and Nagel arrived at the following expression for
the (area-specific) thermal impedance of the liquid, Z—i.e.,
the ratio between the complex amplitudes of temperature,
ST (w), and heat current density, j(w):

_ M) _ -12

Z i) (sc M)~ (2)
Here A\ is the heat conductivity and c, is the (generally
frequency-dependent) specific heat per unit volume. In this
paper we prefer to discuss the reciprocal function, the ther-
mal admittance Y=1/Z which is additive when taking the
thermal response of the substrate into account: Y
=(sciN )2+ (scyhy)? where index 1 refers to liquid proper-
ties and index 2 to those of the supporting slab. Denoting the
complex amplitude of the total power by P(w), the total ad-
mittance Y,,,= P(w)/ 6T(w) scales with the area A of the film,
Y,,,=YA.

The terms “thermal impedance” and “thermal admittance”
come, of course, from the close analogy between flowing
electricity and flowing heat [42]. Temperature is analogous to
potential and heat current to electric current. Thus Fourier’s
law becomes equivalent to Ohm’s law, and the definition of
heat capacity (specific heat) becomes equivalent to the defi-
nition of electric capacity. Even the dissipation of the free
energy—being proportional to the real part of the
impedance—follows from this scheme, justifying the termi-
nology.
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According to Eq. (2) the bulk property measured by the
Birge-Nagel experiment is the so-called effusivity Ac
[43-45]. If the heat conductivity is frequency independent,
as was generally assumed and recently confirmed [46,47],
the method yields information about the frequency-
dependent specific heat. The main conclusion of the present
paper, however, is that the experiment does not measure the
isobaric specific heat. This is because the ordinary heat dif-
fusion equation fails for highly viscous liquids. The precise
nature of the specific heat measured can only be clarified
from a detailed analysis. This analysis is the subject of this
paper. A brief description of the problem is the following:
The ordinary (dc) specific heat exists in isochoric, ¢y, and
isobaric, Cps versions. Similarly, there are two ac specific
heats cy(w) and c,(w). Since the pressure is usually ambient
pressure, one would a priori expect that experiments mea-
sure ¢,(w) which, indeed, is what is always reported in the
literature. There is a problem, however, which implies that
c,(w) is not the quantity measured by the plane-plate experi-
ment. The problem is that the coupling between the tempera-
ture field and the displacement field induced by thermal ex-
pansion implies that the ordinary heat diffusion equation
fails. In other situations this can be ignored, but a subtle
combination of two physical conditions prevailing at the
glass transition renders the usual approach invalid: First, the
quantity (c,—cy)/cy has a non-negligible value in the vis-
cous liquid state. Second, upon increasing frequency the ra-
tio of shear to bulk modulus increases to a non-negligible
value. Physically what happens is that the high viscosity hin-
ders the release of stresses induced by the thermal wave.
Thermal stresses relax on the very time scale that experi-
ments focus on. This implies that the specific heat is not
measured at isobaric conditions; the stress tensor is not pro-
portional to the unit tensor because the liquid is not in hy-
drostatic equilibrium.

For solids the difference between ¢, and cy is small and
can usually be neglected. For less-viscous liquids internal
stresses are quickly released and the stress tensor is propor-
tional to the unit tensor to a good approximation. The prob-
lem of measuring ¢, () reliably arises only close to the glass
transition. Once the problem is recognized, the following
questions arise: Which quantity is measured, and how should
one proceed to obtain reliable ¢,(w) data? In this paper we
present the formalism needed to answer these questions by
treating the one-dimensional case in detail. From first prin-
ciples we derive the results for the adiabatic boundary con-
dition that were simply stated in Ref. [48]; these results are
supplemented by results for the isothermal boundary condi-
tion. After reviewing the basic equations governing thermo-
viscoelasticity we derive the general solution of the one-
dimensional case relevant for understanding the results of the
Birge-Nagel plane-plate method. The solution is based on the
transfer matrix method, a little-known but very convenient
formalism which is introduced by first discussing the simpler
special case of no thermomechanical coupling. Based on the
general solution the thermal admittance is worked out for
several cases corresponding to various experimentally rel-
evant boundary conditions (adiabatic or isothermal, mechani-
cally clamped or free). Finally, the results are discussed in
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light of what they tell us about the prospects of obtaining
reliable ¢,(w) data by means of the plane-plate method or
otherwise.

I1. BASIC EQUATIONS OF THERMOVISCOELASTICITY
A. Thermoelasticity

Thermoviscoelasticity describes the coupling between
thermal and mechanical deviations from equilibrium. We
shall only discuss the linear case which is well understood on
the phenomenological level. To illustrate the general method
we first discuss the simpler case where all linear-response
coefficients are frequency independent. This is referred to as
thermoelasticity, a theory that describes ordinary solids well
[49].

The linearity requirement implies that the system is as-
sumed to be infinitesimally close to equilibrium. The mass
density is denoted by p, its average by py; the temperature is
T with the average temperature T,. Deviations from equilib-
rium are quantified in terms of the displacement field u
=u(r,?), and temperature variation in terms of &7T(r,?)
=T(r,t)-T,. The equations governing these variables in-
volve the isothermal bulk modulus K7 and the shear modulus
G (isothermal and adiabatic shear moduli are identical). Re-
call that these quantities are defined as follows: If V is vol-
ume and p pressure, the isothermal bulk modulus (inverse
compressibility) is defined by

KTE—V(a—p) . (3)
T

The shear modulus G is by definition half of the proportion-
ality constant between an off-diagonal component of the
stress tensor and the corresponding strain tensor element.

If the heat current density is denoted by j,, the basic
thermoelastic equations involve the following three constitu-
tive quantities: The heat conductivity A defined via j,=
—\V T, the isochoric specific heat per unit volume cy, and
the isochoric “pressure coefficient” By defined by

dp
Bv= <(9T> “

The thermoelastic “equations of motion™ are [48-51]

2o ZZ‘Z‘ (KT+ G)V(V W) -GV X (V X u) - B,V4T,
(5)
ST J
CV? + BVTOa_t(V . u) = )\Vzﬂ (6)

For completeness, we briefly sketch how these equations are
derived: If g; is the derivative with respect to the ith spatial
coordinate x; and u; is the ith component of the displacement
vector u, the stain tensor €;; is defined by €;=(du;+du;)/2.
Using the Einstein summatlon convention and denoting the
stress tensor by a;, we first note that the relevant constitutive
relation is the Duhamel-Neumann relation [50,51]
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1
= Kr€5;; +2G( 3€kk ) ByoT 5 (7)

Considering a few special cases quickly convinces one that
this equation is correct: If temperature is constant and the
deformation is isotropic, only the first term contributes; thus,
Eq. (7) reproduces the definition of the isothermal bulk
modulus because €=V -u is the relative volume change and
the pressure is the negative diagonal element of the stress
tensor. If temperature is constant and a pure shear deforma-
tion is considered, the second term gives the definition of the
shear modulus. Finally, if there are no mechanical deforma-
tions, the last term reduces to the definition of By, Eq. (4).
Now, Newton’s second law for a small volume element AV
is pAVii;=F;. Here F; is the ith component of the force which
is AV times the divergence of the stress tensor: F;=AVJ,0;;.
Equation (5) follows by substituting Eq. (7) into Newton’s
second law, because p to lowest order may be replaced by py,.
Equation (6) is based on the following thermodynamic rela-
tion for the volume element AV: 8S=(dS/dT), 6T
+(381V)1(AV)=(AVey/ Ty) ST+ Byd(AV) where the last
equality follows from the definition of ¢y and the Maxwell
relation (dS/dV)y=Py. For the entropy per unit volume s
=S/AV, since the relative volume change is the divergence
of the displacement field, S(AV)/AV=V-u, we get &
=(cy/Ty) 6T+ B,V -u. Entropy is conserved to first order:
(9s/3t)+V -j,=0 where j,=—(\/T,) V(5T) is the entropy cur-
rent density. Thus to lowest order we have (ds/df)=(cy/
To)(9ST/ dt)+ By d(V -u)/ dt=(N/T,)V*(ST) which is the re-
quired Eq. (6).

Before proceeding we note that if «), is the isobaric ther-
mal expansion coefficient [a,=(1/V)(dV/dT),], the math-
ematical identity (dp/dT)\(dT/dV),(dV/dp)r=-1 implies
that

Byv=a,Ky. (8)

In particular, if there is no thermal expansion upon heating
isobarically (a,=0), one has 8,=0. In this case Egs. (5) and
(6) decouple and reduce to the ordinary elastic equation of
motion and Fourier’s equation for heat conduction, respec-
tively. Thus the coupling between mechanics and thermody-
namics arises only when there is nonzero thermal
expansion—which is indeed intuitively obvious.

B. General thermoviscoelastic equations

We now turn to the general linear thermoviscoelastic case.
According to the “correspondence principle” [49], linear
time-dependent equations are arrived at from the thermoelas-
tic equations (5) and (6) by replacing each time derivative by
an s factor and assuming that the constitutive coefficients K,
G, By, cy, and \ are generally frequency dependent:

4
pos’u = (KT+ gG)V(V ‘) =GV X (V Xu) - BV,

)
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cysST + ByTysV - u=\V24T. (10)

For simplicity we shall not explicitly indicate the frequency
dependencies. In this way the theory is generalized from
thermoelasticity to thermoviscoelasticity. It is important to
note that the symmetry of the constitutive equations is main-
tained; thus, the Maxwell relations become Onsager relations
[15,52,53]. From here on we exclusively use the description
in the frequency domain.

III. FULL ANALYTIC SOLUTION
OF THE ONE-DIMENSIONAL CASE

This section presents the solution of the one-dimensional
case—i.e., the case where all functions vary only in one spa-
tial direction x. The transfer matrix formulation of the solu-
tion given below is convenient in practice for discussing
various experimentally relevant boundary conditions [42].

A. Case of no thermomechanical coupling

As an introduction to the transfer matrix technique we
first solve the case of no thermomechanical coupling (By
=0) which, although much simpler than the general case,
maintains an independent interest. If c=cy (=c, when By
=0) is the specific heat per unit volume, A the heat conduc-
tivity, and j the x component of the heat current j,, the
equations for temperature and heat current are

J6T aj
c—=—-—,
ot ox
96T
j=—A—. (11)
ox

In a steady-state periodic situation where all variables vary in
time proportionally to exp(s?) these equations become

9i
csOT =— —],
ox
d6T
j==-N—". (12)
ox

It is convenient to discuss the problem in terms of the two
variables 67T and j, although one usually focuses on the heat-
diffusion equation which results from combining the two
equations: c¢s8T= )\HfﬁT . The general solution of this equa-
tion is OT(x)=c exp(kx)+cexp(—kx) where ¢, and ¢, are
integration constants and

2_ 22
k—)\. (13)

Now j(x) is found from &T(x): j(x)=—=Nk[c exp(kx)
—c,exp(—kx)]. The results may be summarized as follows:
OT(x) ) (C 1 )
=M , 14
(1@) ol (14

where
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ekx e—kx
) . (15)

M(x) = (- Nkek Nke™

This formulation allows one to establish the connection be-
tween temperature- and heat-current amplitudes at one
point—say, x=0—and at the point at x: By eliminating the
integration constants one arrives at

5T(x)> ~ (ﬂ((»)
<ju) =T\ o) ) (16)

where the “transfer matrix” T(x) is defined by
T(x) = M(x)M(0)~". (17)

By straightforward calculation one finds that the transfer ma-
trix is given [42] by

cosh(kx)

— sinh(kx)/(\k) )
— Nk sinh(kx) (18)

T = ( cosh(kx)

Further calculation shows that the consistency requirement
T(x)T(y)=T(x+y) is fulfilled; in particular, T(0)=1 (the
identity matrix) and T(-x)=T(x)"".

From the general solution various special cases are easily
derived. Suppose the sample is located between x=0 and x
=L and heated periodically at x=0. To calculate the
frequency-dependent (area-specific) “thermal admittance” Y
experienced from the heating side of the sample, Y
=j(0)/6T(0), we note that there are two experimentally rel-
evant boundary conditions referring to the sample end at x
=L: the adiabatic boundary condition j(L)=0 and the isother-
mal boundary condition 8T(L)=0. In the adiabatic case Egs.
(16) and (18) imply that 0=j(L)=—\k sinh(kL)ST(0)
+cosh(kL)j(0) which implies

Yadiab = )\k tanh(kL) . (19)

On the other hand, the isothermal boundary condition at x
=L is 0=6T(L)=cosh(kL)ST(0)—sinh(kL)J(0)/(\k) which
implies

Yicoth = Nk coth(kL). (20)

Before proceeding to the general thermoviscoelastic case,
we identify the limits of samples that are thick and thin,
respectively, compared to the frequency-dependent thermal
diffusion length: The complex number k defines a (complex)
characteristic diffusion length via I,=1/k. If L>>|l,|, one is
in the “thermally thick limit” [54], a case that applies at high
frequencies where the thermal wave does not reach the end
of the sample. In this case the two solutions become identi-
cal:

Yadiab = Yisotn = Nk = (she) ' (kL[> 1). (21)

In the “thermally thin limit” at low frequencies [54], L<|l,,
the adiabatic boundary condition leads to

)

Yodiab = ML =scL (kL] < 1), (22)

corresponding to a capacitor. For the isothermal boundary
condition the admittance becomes frequency independent:
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Yisom = (|kL| < 1) (23)

~ >

In this limit the magnitude of the heat current is solely de-
termined by the temperature difference between the points
x=0 and x=L, corresponding to the static limit of ordinary
heat conduction.

B. Full one-dimensional thermoviscoelastic problem

We now proceed along the above lines to determine the
4 X 4 transfer matrix for the full one-dimensional thermovis-
coelastic problem, restricting ourselves to frequencies much
lower than those where sound waves become important, the
inertia-free limit. All relevant fields depend only on the x
coordinate and all displacement is in the x direction. This
does not mean that, e.g., ayy is zero—on the contrary, the
stress tensor adjusts itself to be consistent with the clamping
of all motion not in the exact x direction. Physically, this
situation corresponds to a box-shaped sample where the
boundary conditions on the faces perpendicular to the heat-
ing plane are adiabatic and sliding. More realistically, the
one-dimensional case to a good approximation describes the
case where the dimensions of the plane heater are much
larger than the relevant thermal wavelength.

We still assume periodically varying fields ocexp(st). The
first of the four coupled equations to be solved comes from
Eq. (9). In the inertia-free limit the left-hand side is zero. If
the x coordinate of the displacement vector u is denoted by
u, since VXu=0, this equation when integrated over x im-
plies (where a; is an integration constant)

A= Lé>‘T+al. (24)
Kr+4G/3

Just as with all amplitudes and coefficients here and below,

the integration constants generally depend on frequency. The

next equation is arrived at by substituting Eq. (24) into Eq.

(10) which leads to

Aﬁié’T=sc,§T+ sByToa,, (25)

where the “longitudinal heat capacity” ¢, (a name justified by
the results derived below) is defined by

By

. (26)
Ky +4G/3

Cl:CV+ TO

In passing we note that, utilizing Eq. (8) and the well-known
thermodynamic identities c¢,—cy= Tya’K; and cpley
=K/ K where K¢=-V(dp/JV)s is the adiabatic bulk modu-
lus, the longitudinal heat capacity obeys

¢ Ks+4G/3

= . (27)
¢y Kp+4G/3

In analogy to the standard abbreviation y=c,/cy (a quantity
that is also generally frequency dependent) we define

PHYSICAL REVIEW E 75, 041502 (2007)

C
y=—. (28)

Cy
This quantity equals vy at low frequencies where G becomes
negligible compared to K, but generally for viscous liquids
approaching the glass transition one has |y;| <|y|. The third
equation involves the xx component of the stress tensor
which by Eq. (7) in the one-dimensional case is given by

o= (Kp+4GI3)du— ByoT. (29)

The final equation is the defining equation for the time inte-
gral dg of the heat current j:

J .
anzj' (30)

In terms of &g the definition of the heat-conduction coeffi-
cient N [Eq. (11)] becomes

)
8q=—"~d,0T. (31)
S

In order to solve the four equations (24), (25), (29), and
(31) it is convenient to first rewrite them in dimensionless
units. If /p is the complex diffusion length defined as the
complex number with positive real part given by (here and
henceforth ¢; is used in the definition of /)

A
Ih=—, (32)
(9N

the (complex) dimensionless space and time variables are
defined by

¥=uxllp,

= st. (33)

Any function f(x,7) is made dimensionless by writing

f(x,0)/fy=f(%,7). The four basic fields of the problem are
thus scaled as follows:

6q = 6q/(Krlp). (34)

We finally define the following dimensionless linear-
response quantities:

c= T()CI/KT,
g=4G/(3K;),

a=Tya,. (35)

For later reference, note that in terms of these variables the
following identity applies:
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&2 1 The complete solution is summarized as follows:
— =1-—. (36)
c(1+g) Vi
When Egs. (24), (25), (29), and (31) are rewritten as dimen- Ox aj
sionless equations, the result is ST a,
=M(%) ; (45)
a  ~ u as
17’=—~5T+a1, (37) -
1+g oq y
= _ s, & where
OT" = 6T + —ay, (38)
¢
~ 1+g 0 O 0
on=1+gu" —adT, (39) _
o ~ ~
B -—= 0 € e
SG=-coT'. (40) M(F) = fz . B
. . L . . a - ae ae
The integration of these equations is straightforward. Substi- (1 - = — )x 1 - - -
tuting Eq. (37) into Eq. (39) leads to c1+8) 1 +8 1 +8
0 0 —cet cet
Fo= (1+)ay. (41) o

(46)
The integration of Eq. (38) introduces two new (frequency-

dependent) integration constants: ) ) B )
The transfer matrix T(X) connecting the fields at X=0 with

-~ _ _ a —~
ST=c'ay+e*a,— —a. (42) those at X,
c

This is substituted into Eq. (37), the integration of which 0., (X) 7., (0)
Its i ~ ~
results in 57(5) 570)
&2 &ef &e_f — = T(-f) - s (47)
a={1-— — |Xa, +a, + —a; — —ay. (43) a(x) 7(0)
c(1+9) 1+32 1+2 55(0) 53(0)

Finally, when Eq. (42) is substituted into Eq. (40) the result

18 is given by Eq. (17). The explicit calculation of T(X) results

8j = — Ce*as + ceMay. (44) in
|
1 0 0 0
c?(c;)(silfl7 )— 1) cosh(®) 0 ~ sinlci()"c)
T(X)=| &@(sinh(¥)-3%) +&(1+2)% asinh(¥) | a(l - cosh(@) |. (48)
&1 +9)? 1+3 c1+9)
~ a sinh(¥)

— —csinh(x) 0 cosh(%)
1+g

As in the case of simple heat conduction, a direct calculation shows that the consistency requirement T(X)T(¥)=T(X+7) is
fulfilled, implying that T(0)=1 and T(-%X)=T(X)"".

IV. THERMAL RESPONSE FOR DIFFERENT BOUNDARY CONDITIONS

Consider now a situation where one imposes a heat current density with amplitude j(0) at the surface x=0 and measures the
corresponding temperature amplitude S7(0). The liquid is assumed to be fixed at the x=0 surface—i.e., u(0)=0. The experi-
mentally relevant quantity is the thermal (area-specific) admittance Y=;(0)/8T(0). If one defines the dimensionless thermal
compliance by
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~ 0
7= (49)
(0)
in real units one has
Krlps~
y = —L235 (50)
Ty
We proceed to calculate Y for a number of situations by means of the inverse transfer matrix,
P=TYL)=T(-L). (51)
For reference we give the matrix P:
1 0 0 0
@(cosh(L) — 1 ~ sinh(L
Glcosh(l) ~ 1) — ( 1 ) cosh(L) O —~( )
c(1+9) c
P=| @(-sinh(L)+L)-c(1+g)L  asinh(L) - cosh(L)) (52)
c(1+32)? 1+3 c1+9)
@ sinh(L - -
4 Zsinh(L) O cosh(L)
1+g2
I
For each case we shall explicitly give the low-frequency (1)) 0
(thermally thin) and high-frequency (thermally thick) limits. _ 0
OOy | _p| (56)
A. Free mechanical termination &,,(L)=0 0 i(L)
1. Adiabatic termination 63(0) oq(L)
This case corresponds to 5§(Z)=0, and thus Eq. (47) im- From this we get
lies = =
P ~ 6q(0)  Pyi(L) + Pyydq(L) Py _ ~
_ 0 J=——=— ~~=P—=cc0th(L).
7:(0) v 8T(0)  Pyil(L) + Pyyo7(L)  Pos
ST ST(L
©) |_ (~ ) (53) (57)
0 (L) Thus in real units the thermal admittance is given by
q(0) 0 —
7 Y = ¢/lps coth(L/l) = V\egs coth(L/1p). (58)
From this we get o .

In the thermally thin limit L< |Ip|, this reduces to Y
~ 53(0) PuOT(L)+ Pyi(L) Py _ =V\cslp/L=N/L. In the thermally thick limit L>> ||, one
J=—"—= — — = —- =Ctanh(L). finds Y=1\\c;s.

ST(0)  PpST(L) + Pyit(L) P22 B
(54) B. Clamped mechanical termination #(L)=0
Thus in real units the thermal admittance is given by 1. Adiabatic termination
Y = ¢/lps tanh(L/Ip) = \e"rc,s tanh(L/1,). (55) This case corresponds to 8g(L)=0, and thus Eq. (47) im-

In ﬁ thermally thin limit, L<<|l pl, this reduces to Y
=V\¢ssL/lp=c/Ls. In the thermally thick limit, L>>|l,|, one
finds Y=1\c;s.

2. Isothermal termination

This case corresponds to 6T(L)=0, and thus Eq. (47) im-
plies

plies

G, (0) 7. (L)

TO) | _p| oT(D) (59)
0 0

64(0) 0

From the second and fourth equations of Eq. (59) we get
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3G(0) _ Py + PypdT(L)/G (L)

J=— — —, (60)
OT(0) Py + Py dT(L)/G (L)
and from the third we get 0= P55, (L)+ P3,6T(L) or
~ ~ ~ P
ST(L)/& (L) =— =2, (61)
P
Substituting this into Eq. (60) leads to
~ Py Py—PyP
FotaTn Dol (62)
Py P3y— PyP3
A calculation of this leads to
j=—F - (63)
coth(L) + (y;— 1)/L
Thus in real units [55]
[
CitpSs (64)

Y= .
COth(L/lD) + (lD/L)(Cl/CV_ 1)

In the thermally thin limit L<|l,
In the thermally thick limit L>>|l,

, this reduces to Y=cyLs.

—_—

, one finds Y=v\cs.

2. Isothermal termination

This case corresponds to ST(L)=0, and thus Eq. (47) im-
plies

G.,(0) &.(L)

STO) |_p| © (65)
0 0o |

6q(0) 5G(L)

From the second and fourth equations of Eq. (65) we get

84(0) Py + Py dG(L)/5 (L)

T=—= - — (66)
OT(0) Py + Pyu6q(L)/G (L)
and from the third we get

~ ~ P

SG(L)F (L) == 2. (67)
Py

Substituting this into Eq. (66) leads to

~ Py P3y— Py P
FotaTaa T Paaly (68)

P21P34_P24P3l

or

Foz (y,- l)sinh(j:) + Zcoih(Z) . (69)
2(y;— 1)[cosh(L) — 1]+ L sinh(L)

Thus in real units
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TABLE 1. The (area-specific) thermal admittance Y at the
boundary x=0 for different boundary conditions at x=_L in the ther-
mally thin limit |I5(w)|> L.

Yhin Adiabatic Isothermal
Free c/Ls N/ L
Clamped cyLs N/ L

(c//cy = 1)sinh(L/1p) + (L/1p)cosh(L/1p)
2(cj/cy— 1)[cosh(L/I) — 1]+ (L/p)sinh(L/1)
(70)

In the thermally thin limit L <|lp|, this reduces to Y=N/L.In
the thermally thick limit L>>|l,|, one finds ¥=1\c;s.

In the thermally thin limit |I;(w)|>> L, the above results
are summarized in Table I for the four combinations of ther-
mal and mechanical boundary conditions at the surface x
=L. It was to be expected that the isothermal boundary con-
dition gives the heat conductivity in both free and clamped
cases, because heat conductivity does not depend on whether
constant volume or constant stress boundary conditions ap-
ply. For the adiabatic clamped boundary condition it is also
expected that the admittance is related to the constant vol-
ume specific heat cy. That the admittance for free mechanical
boundary condition is related to ¢; and not c,, is not trivial; it
relates to the fact that the displacement associated with the
temperature oscillation is longitudinal.

In the thermally thick limit |/5(w)| <L, we se that the
thermal admittance becomes Y=(sc;\)/? and thus is deter-
mined by the longitudinal specific heat for all combinations
of boundary conditions considered (Table II).

Y=c/ps

V. DISCUSSION

How does the result Y=(sc,\)""? apply to real effusivity
measurements? Are the adiabatic and sliding boundary con-
ditions on faces perpendicular to the heating plane a good
approximation? In actual experiments the heating plate width
W fulfills |/5(w)| < W to assure one-dimensional heat flow
orthogonal to the heating plane. The associated displacement
field has a range of |I,(w)|, and if the solid slab supporting
the heating film is much thicker than this length, it will
clamp motion along the plane and only allow displacement
orthogonal to the plate. In this case the above solution is a
good approximation.

TABLE II. The (area-specific) thermal admittance Y at the
boundary x=0 for different boundary conditions at x=_L in the ther-
mally thick limit |/(w)| < L. In all four cases the longitudinal heat
capacity appears, neither the isochoric nor the isobaric heat
capacity.

Yihick Adiabatic Isothermal
Free (se\)1? (se\)1?
Clamped (se\)1? (se\)12
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One might expect that clamping problems could be cir-
cumvented by using an unsupported film free to expand lat-
erally, but that is not correct. Suppose the film were unsup-
ported and consequently did not stress the liquid. First, we
note that there would be a technical problem with the 3w
detection technique, since thermal expansion straining the
film would give a spurious resistance change on top of the
thermally induced resistance change. That problem may be
solved, however, and is not the main issue here. Even in this
case the thermomechanical coupling, however, would intro-
duce anisotropic stresses: Suppose the strain €,, were homo-
geneous on any plane at right angle to the x axis. Then the
displacement in the y direction at the boundary of the plate
would be proportional to the lateral dimension W, but at a
distance of order |I;(w)| in the x direction it would be zero.
This would produce enormous shear strains in the liquid [of

W

order e},ym], the relaxation of which is controlled by the

(high) shear modulus. The condition |I;,(w)| < W needed for
one-dimensional heat flow thus simultaneously gives rise to
a situation of partial and anisotropic clamping of the liquid.
To determine precisely which effective frequency-dependent
specific heat is actually measured in this (hypothetical) case
of a film free to expand laterally requires a detailed calcula-
tion; it will not be simply c,,.

The “adiabatic” method of Christensen’s 1985 paper [19]
is quite different from the Birge-Nagel method, but suffers
from the same basic problem that the liquid upon thermally
expanding must flow to release the stresses and that this flow
is partly inhibited by the very large viscosity. Thus as for
most other calorimeters, the adiabatic method also has un-
controlled mechanical stresses and a stress tensor that is not
diagonal. This means that c,(w) is not measured. As men-
tioned, to determine precisely which quantity a given method
measures requires a detailed analysis taking into account the
properties of the calorimeter materials. It is quite possible
that the discrepancy between the 1985 Birge-Nagel and
Christensen measurements on glycerol derives from the two
methods de facto not measuring the same quantity.

Studying the frequency-dependent specific heat via effu-
sion can be done in other geometries than the planar. Birge
[18] also made experiments in an axially symmetric geom-
etry. This was done in order to separate out any possible
frequency dependence of the heat conductivity. These experi-
ments were not presented as a function of frequency. Rather,
temperature was scanned for fixed frequencies which makes
the analysis somewhat indirect (the thermomechanical cou-
pling was not considered in this early experiment, either).
Christensen and Olsen [56] performed an experiment in
spherical symmetry and did take into account the thermome-
chanical coupling. A small drop of 1,2,4-butanetriol of radius
r,=0.35 mm was placed around a temperature-dependent re-
sistor (thermistor) of radius r;=0.15 mm. By using the 3w
technique the thermal compliance J,,;=Y,,/s was found. In
the thermally thin limit one has [56]

_ (rz/rl)3K5+(4/3)G
o= v (r2/r1)3KT+ (4/3)G’

J, (71)

where V is the liquid volume. This means that the longitudi-
nal specific heat is measured in the limit r,/r; — 1 (thin lig-
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uid shell) and that the isobaric specific heat is measured in
the limit r,/r; — o (thick liquid shell).

How large is the difference between ¢, and ¢;? From the
two identities for y and 1y,

c K
y="2=2 (72)
cy Kr
and
Mg
cy My

the following relation is arrived at:

Cp_cl_i G Cp_CV

Cp _3MT c

(74)
P
For glycerol the relative change in measured specific heat
(45% at the glass transition) gives a rough upper estimate of
(c,—cy)/c,. The infinite-frequency shear and bulk moduli
are 4 GPa and 11 GPa respectively. Thus the factor 4G/3M
is 33% as an upper estimate. In the case of glycerol the
deviation of ¢; from ¢, becomes 15% or one-third of the
relaxation strength. For liquids with larger expansion coeffi-
cient, the effect is larger. Note that this is a frequency-
dependent correction and that ¢; does not just scale with
c,—it has a different frequency dependence. Equation (74)
expresses the influence of the thermomechanical coupling on
¢; in a nutshell: At low frequencies (or high temperatures),
G/My is small and c¢; becomes c,. At high frequencies (or
low temperatures), (c,—cy)/c, is negligible and c; again be-
comes c,,. This is why the problem treated in this paper is not
encountered for specific heat measurements of solids or of
ordinary liquids. The effect is only significant at the glass
transition where upon increasing frequency the first factor
[G/M7] increases while the second [(c,—cy)/c,] decreases.
Finally, we wish to emphasize that the effect discussed in
this paper has nothing to do with the liquid falling out of
equilibrium as the glass transition is approached; the effect is
present in the equilibrium liquid well above the calorimetric
glass transition temperature. Thus, even if effusivity mea-
surements are performed in, say, the kHz regime, the effect is
present and must be taken into account whenever the « re-
laxation time is of order milliseconds.

VI. CONCLUSIONS

Fundamental physical facts make it difficult to measure
the frequency-dependent isobaric specific heat for liquids ap-
proaching the glass transition because the temperature per-
turbation of a thermal experiment induces stresses. The high
shear modulus slows down the relaxation of the deviatoric
part of the stress tensor, giving rise to nonisobaric conditions.
In planar geometry this is a problem whether experiments are
done in the thermally thin or the thermally thick limits.

In this paper the one-dimensional thermoviscoelastic
problem was solved in terms of the transfer matrix, making it
easy to find the thermal response for any type of boundary
conditions. It was found that in the thermally thick case the
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isobaric specific heat should be replaced by the longitudinal
specific heat. This result applies to real effusivity measure-
ment to the extent they may be considered one dimensional.

In conclusion, wide-frequency specific-heat spectroscopy
based on thermal-wave effusion determines the longitudinal
specific heat. The isobaric and isochoric specific heats can be
calculated subsequently if the frequency-dependent mechani-
cal moduli are known. Although we here only studied the
thermoviscoelastic problem in the frequency domain, these

PHYSICAL REVIEW E 75, 041502 (2007)

results also give rise to serious questions regarding the inter-
pretation of time-domain enthalpy-relaxation experiments.
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