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Abstract

When a database is defined as views over autonomous
sources, inconsistencies with respect to global integrity con-
straints are to be expected. This paper investigates the pos-
sibility of using simplification techniques for integrity con-
straints in order to maintain, in an incremental way, a cor-
rection table of virtual updates which, if executed, would
restore consistency; access can be made through auxiliary
views that take the table into account. The approach em-
ploys assumptions about local source consistency as well
as cross-source constraints whenever possible.

1 Introduction

We study the problem of maintaining consistency of
global integrity constraints in a data integration (DI) system,
i.e., a system providing a reconciled and unified view of a
set of possibly distributed and heterogeneous data sources.
Our basic assumption is that sources are autonomous in the
sense that the integrating systems, henceforth referred to as
the global level, cannot update sources; the global level can
ask queries to and receive answers from each source, and
we assume, furthermore, that each source maintains its own
local integrity constraints and provides information about
the updates that it has experienced.

Under the assumption that all integrity constraints (ICs)
at global as well as local levels are correct properties of the
world, a violation of a global IC means that at least one of
the sources has wrong (or lacking) information. To maintain
global consistency, it seems natural to introduce a correc-
tion table (CT) of virtual updates which, if executed, would
restore consistency; access can be made through auxiliary
views that take the table into account (transformation of
global queries into a set of source query followed by a com-
position step is a well-studied topic so we leave this aside).

Simplification of ICs is a principle introduced in the
early 1980es for single databases [10] and which means
to optimize the checking of ICs based on the assumption
that the database was consistent before the update. This
implies an incremental checking and maintenance of ICs
so that (ideally) only a minimal number of tuples poten-
tially affected by each update are checked. In the version
of [10] and successor works, the check is performed af-
ter the update so that problematic updates need to be un-
done. This has been improved in later work by checking
before each proposed update and thus problematic ones can
be rejected and inconsistency effectively avoided. There
are several problems involved in simplification which have
hindered for a widespread application; see [9] for a survey.
Our own recent work [6, 8] uncovers theoretical limitations
and proposes an effective method that produce simplified
checks for a very general class of updates; such updates can
be parameterized so that the potentially complex symbolic
transformations involved can be performed at database de-
sign time with actual parameters plugged into test queries at
runtime. Typically, this method removes an order of mag-
nitude or more. The principle has been applied to detect
inconsistency in DI by [5] and in the present work we ex-
tend this with a correction table which makes it possible
to maintain a virtual view of consistency. Similar tables
have been used by [7], but the optimization by simplifica-
tion seems new. Other approaches to consistency mainte-
nance in DI, e.g., [3, 4, 12], modify source relations and
do not incrementally trace changes. Instead of maintain-
ing (virtual) consistency, approaches to consistent query-
answering [1, 2] return only tuples that the different repairs
of the database agree on.

In the following we introduce correction tables and con-
sider their application for consistency maintenance using
simplification. The results are still preliminary in the sense
that no proofs are given and that no practical implementa-
tions have been tested.



2 Databases and data integration systems

We adopt DATALOG with default negation [11] referring
to clauses, including facts (ground clauses whose body is
empty, understood as true) for the tuples of a relation, de-
nials (clauses whose head is empty, understood as false) for
integrity constraints (ICs), and rules (all other clauses) to
define views. An integrity theory is a satisfiable set of ICs.
Built-in predicates including = and 6= are assumed with
their standard meaning. Clauses are assumed to be range re-
stricted meaning that any variable in a clause appears (also)
in some positive database literal in the body of that clause.
For example, the IC ← p(X) ∧ ¬q(X) is range restricted
as variable X appears in the positive literal p(X). Only
nonrecursive databases are considered, so a standard, least
Herbrand model semantics can be used; D |= φ means that
a formula φ holds in the standard model of database D.

Definition 2.1 A database D = 〈F,∆,Γ〉 consists of a set
of facts F (the state) and two constraint theories, ∆ called
the set of trusted constraints with F |= ∆, and Γ referred
to as the ICs of D; ∆ ∪ Γ is satisfiable. Database D is
consistent whenever F |= Γ and inconsistent otherwise. We
may use D |= φ to indicate F |= φ.

This definition captures a broad collection of information
systems, e.g., single databases in which ∆ is enforced as
hard constraints, and Γ are soft ones which are desired prop-
erties not always obeyed. The main focus in this paper is
data integration systems:

• Each source relation is represented as a relation in D.

• ∆ collects local ICs for the different sources, assumed
to be enforced by separate mechanisms at the local
level, plus cross-source constraints.

• The mapping from states of the local databases to a
global database state is made using a mapping (e.g.,
view definitions) in such a way that global integrity
constraints can have their predicates unfolded using
that mapping so that we get integrity constraints Γ
which are denials over the source relations.

As an example of a cross-source constraint, we may have
that the domain of two attributes in different sources are
disjoint. Global integrity constraints may easily be violated
as sources are autonomous, only taking care of their own,
local integrity constraints.

Example 2.1 Consider two sources with predicate m1 and
m2, and a global predicate m0(husband, wife) describing
marriages and defined by a mapping specified by the view
m0(x, y) ← m1(X, Y ) ∨m2(X, Y ). On all databases an
integrity constraint is imposed enforcing non-bigamism of
husbands: Γi = {← mi(X, Y ) ∧ mi(X, Z) ∧ Y 6= Z},

for i = 0, 1, 2. The trusted constraints are ∆ = {Γ1,Γ2},
and the unfolding of Γ0 with respect to the mapping is

Γ = { ← m1(X, Y ) ∧m1(X, Z) ∧ Y 6= Z,
← m1(X, Y ) ∧m2(X, Z) ∧ Y 6= Z,
← m2(X, Y ) ∧m1(X, Z) ∧ Y 6= Z,
← m2(X, Y ) ∧m2(X, Z) ∧ Y 6= Z }

The informally specified translation of DI systems into
databases (in the sense of def. 2.1) implies some restrictions
on the relationship between global and local databases. In
a global-as-view setting, views defining the global database
must be nonrecursive and certain chains of negations must
have even length; see [6, 8] for details including general-
ization with quantifiers so that referential integrity can be
expressed by ICs such as← p(X) ∧ ¬∃Y q(X, Y ).

In order to monitor and eventually maintain consistency,
it is assumed that each source informs the global database
about each local update in terms of which tuples that have
been added and deleted. Thus if an update U indicates the
addition of an atom A, this implies that A was not in the
database before the update; similarly for deletions. An up-
dates is indicated as a set of ground literals: the positive
ones indicate addition, the negative ones deletion. For any
literal A, we let ¬¬A indicate A, and for a set of literals U ,
¬U denotes {¬L | L ∈ U}. Application and composition
of updates are defined using the following notation.

Definition 2.2 Let U and V be sets of literals; the compo-
sition U ◦V is defined as (U ∪V )\{L|{L,¬L} ⊆ U ∪V }.

Definition 2.3 Let D = 〈F,∆,Γ〉 be a database. An up-
date U (for D) is a set of ground source literals such that
L ∈ U implies F 6|= L. The updated database is defined as
DU = 〈F ◦ U,∆,Γ〉; it is assumed that DU |= ∆.

As mentioned in the introduction, our proposal for provid-
ing a consistent view of an inconsistent database or DI sys-
tem is to introduced a globally maintained table of virtual
correction, which we conceive as an update which, if it were
executed, would restore consistency.

Definition 2.4 A correction table (CT) for a database D =
〈F,∆,Γ〉 is an update R to D so that DR |= Γ ∪ ∆; R is
minimal when there is no other R′ ⊂ R which is a CT for
D.

Trivially, for a consistent database D and an update U for
which DU is inconsistent, ¬U is a CT (although not neces-
sarily a minimal one).

In the remainder of this paper we study how such tables
can be constructed and maintained (i.e., given an existing
table and an update, how to provide a new table) supported
by simplification techniques. As will be noticed below, it is
not always a minimal table which is the desired one.

2



3 Simplification

Here we review the framework of [6, 8]. Central to
this approach is a syntactic replacement operator, called
AfterU (·), which transforms a constraint theory Φ into an-
other Ψ that evaluates in any state D in the same way as
Φ would evaluate in an updated state DU . Basically, the
operator unfolds each atom according to a view that incor-
porates the update and subsequently performs trivial truth
preserving transformations as to keep the specific syntax of
denials. We skip the definition in favour of an example.

Example 3.1 Consider constraint theory Γ1 from example
2.1 and update U = {m1(a, b)}. We have

AfterU (Γ1)={←m1(X, Y ) ∧m1(X, Z) ∧ Y 6= Z,
←m1(X, Y ) ∧X = a ∧ Z = b ∧ Y 6= Z,
←X = a ∧ Y = b ∧m1(X, Z) ∧ Y 6= Z,
←X =a ∧Y =b ∧X =a ∧Z =b ∧Y 6=Z}.

Proposition 3.1 Let D be a database, U an update, and Φ
a constraint theory. Then D |= AfterU (Φ) iff DU |= Φ.

The result of After corresponds to what in Hoare’s logic is
called a weakest precondition. Notice that a shift of notation
leads to a useful alternative formulation,

DU |= After¬U (Φ) iff D |= Φ. (1)

Simplification involves an optimization phase which can
employ (e.g.) the hypothesis that the state before the update
is consistent. We indicate with OptimizeΘ an optimization
operator which employs that a constraint theory Θ holds in
a given state (also referred to as “background knowledge”).
Any such optimization operator must satisfy the following
soundness and idempotency conditions.

For any D with D |= Θ, D |= OptimizeΘ(Φ) iff D |= Φ

OptimizeΘ(OptimizeΘ(Φ)) = OptimizeΘ(Φ)

An Optimize operator is described in [6, 8] in terms of a
nontrivial combination of different proof procedures that
remove, from the input constraint theory, all denials and
literals that can be proved redundant. In the end one ob-
tains an output constraint theory with a minimized number
of literals, which in most cases is a good approximation of
the “most efficient” theory to evaluate. These details are
not central to the present paper, and we will simply assume
that there exists an optimization procedure, referred to as
Optimize, having the above properties.

One important application of simplification in a tradi-
tional, single database is to produce optimal tests that can
check whether a given update will destroy ICs Γ on the
background that Γ holds in the present state prior to the
update. Such a test is produced as OptimizeΓ(AfterU (Γ))

which can be tested before the update, and if it fails, the
update is not even performed and expensive rollback opera-
tions to restore consistency are unnecessary.

Example 3.2 For Γ1 and U defined in examples 2.1
and 3.1, the optimized condition is calculated as {←
m1(a, Y ) ∧ Y 6= b}, which indicates that for a database
D to keep consistency at source 1 after update U , husband
a must not already be married to a wife different from b.

The simplification process itself can be very complex,
and [6, 8] describe an extension for parameterized update
patterns so that simplification can be done at database de-
sign time, and actual data values are plugged into the tests
at runtime. (You may think of a and b in the example as pa-
rameters, to be replaced by, say, “John” and “Mary” when
update m1(“John”, “Mary”) is encountered.

4 Integrity maintenance in DI systems

The situation for data DI is different, as the sources act
independently and the global database is informed about an
update after it is has taken place at the sources: simpli-
fied constraints are needed which apply in the updated state.
Suppose as a first simplified case that global consistency of
a database D = 〈F,∆,Γ〉 was given before an update U .
An optimal test for consistency in the updated state can be
produced as follows, with the background knowledge of all
formulas known to hold in DU ; notice that we apply princi-
ple (1) to get useful formulas.

OptimizeAfter¬U (Γ)∪∆∪U∪After¬U (∆)(Γ) (2)

Example 4.1 Consider the database of example 2.1 and
update U = {m1(a, b)}. The task is now to find an opti-
mal test which, under the given conditions, is equivalent to
Γ0. Expression (2) above gives {← m2(a, Z) ∧ b 6= Z}.
Clearly, this denial is much simpler to evaluate than the
original Γ, and it is difficult imagine another denial satisfy-
ing the same semantics requirements which executes faster.

Adding the cross-source constraint that the domains of
husbands in either source are disjoint (← m1(X, Y ) ∧
m2(X, Y )) makes formula (2) amount to true, i.e., under
this assumption, U cannot introduce global inconsistency.

In the general case, we cannot expect the integrated
database to be consistent even before a particular update,
but we maintain a CT (def. 2.4) in an incremental way in
order to provide a consistent of the database. The cur-
rent CT is in itself useful for providing background knowl-
edge about the current database state. Assume a database
DU = 〈F,∆,Γ〉 following an update U and let R′ be a CT
for the state D prior to the update. The following set Θ
collects properties about the current state DU .

Θ = After¬U◦R′
(Γ)∪∆∪U∪After¬U (∆)∪After¬U◦R′

(∆)
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Notice that we used After backwards to simulate reversal of
the update followed by application of the table R′ with the
effect of simulating a consistent database. The trusted con-
straints ∆ are utilized for all states available physically or
by “simulation”. The following property shows how sim-
plification can be used for characterizing an updated CT.

Proposition 4.1 Let D = 〈F,∆,Γ〉 be a database, U an
update, and R′ a CT for D. Then R is a CT for DU iff

DU |= OptimizeΘ(AfterR(Γ ∪∆))

where Θ is a set of formulas with DU |= Θ; this holds
especially for the value of Θ indicated above.

Given a proposal for a CT R, the proposition provides an
optimized check for whether R is in fact a CT. The task is
now to provide effective ways of producing candidate CTs.

It should be noticed that we need just some CT R′ to
apply the proposition; it need not be minimal and we can
ignore the complexity given by that fact that there exponen-
tially many different (minimal) tables. [4]

5 Maintenance of correction tables

In the following we characterize CTs for different cases
in ways which may be used for effective implementation.
In general, we cannot rely on evaluation of simplified ICs
only, which we can indicate by a simple example. Assume
IC← p(X)∧ q(X) and update {p(a)} to a consistent state;
the simplified check is thus ← q(a). If the simplified test
fails, an inspection of it indicates the CT {¬q(a)}. How-
ever, the simplification removed (as part of its job) all ref-
erences to the atom in the update (since it is obviously true
in the updated state), so looking at the simplified ICs only
is prone for missing corrections that neutralize part of the
recent update, e.g., {¬p(a)} in the present example. On
the other hand, inspection of the instance of the original IC,
← p(a) ∧ q(a), gives both results immediately.

Definition 5.1 Let D be a database and Σ a constraint the-
ory. Let Ground(Σ) be the set of all ground instances
of denials in Σ; Falsifiers(D,Σ) is defined as {σ ∈
Ground(Σ)|D 6|= σ}.

We define PotentialCorrections(D,Σ) as {¬L | (←
· · · ∧ L ∧ · · ·) ∈ Falsifiers(D,Σ)}; however, if (←) ∈ Σ,
PotentialCorrections(D,Σ) = ⊥. A potential correction
set for Σ in D is a subset C ⊆ PotentialCorrections(D,Σ)
such that each denial of Falsifiers(D,Σ) contains some lit-
eral M with ¬M ∈ C; C is minimal if no subset of it is a
potential correction set for Σ.

The sets defined above are finite since every component is
finite and Σ is range restricted; they can be found by posing

Σ as a query to D followed by straightforward processing of
the result. In the following we consider an updated database
DU = 〈F,∆,Γ〉 and a given CT R′ for D; Θ refers to the
background theory described in the previous section.

Case 1: Consistently signed IC. We say that D is con-
sistently signed whenever the same predicate cannot occur
positively as well as negatively in ∆ ∪ Γ. Intuitively, this
means that correcting one failed IC instance ← · · ·A · · ·
by adding ¬A to the CT cannot create other failing IC in-
stance. The following characterization relies on After and
Optimize preserving the consistent sign property.

Claim: Any minimal CT for a consistently signed database
is a subset of ¬U ∪ PotentialCorrections(DU ,Σ) where
Σ = OptimizeΘ(Γ).
When ¬U ∪ PotentialCorrections(DU ,Σ) is of manage-
able size it is feasible to generate a minimal CT by trying
out different subsets in a systematic manner. If preference
is given to the most recent information given by U , a CT
can be found by first selecting a minimal potential correc-
tion set for Σ, and if this is not sufficient, we begin testing
which elements of U needs to be virtually deleted. The in-
volved calculation can be performed using only simplified
ICs, the original ICs are not evaluated.

Case 2: Case 1 extended with data verification. Assume
that there is a way to check database facts against the real
world, e.g., by an infallible human expert. Our idea is to
maintain a CT that contains only verified information and
that the expert should be asked as little as possible. This
has two implications. Firstly, minimality is not relevant and
secondly, the table should keep verified information still af-
ter a source update has made it redundant. This means that
the table does not conform with our definition of an update,
but we avoid this problem by keeping the redundant data in
a separate table. What we need in this case is to produce a
new CT by extending the existing R′.

If DU |= OptimizeΘ(AfterR′
(Γ)) nothing is necessary,

otherwise we may construct firstly a minimal potential cor-
rection set for OptimizeΘ(AfterR′

(Γ)) by asking the expert
which facts should be virtually added or deleted. If that is
not sufficient, we can consult the expert concerning the ele-
ments of U one by one until a consistent view is gained. In
any non-construed example we expect this procedure to in-
volve only very few steps; only simplified ICs are checked.

Case 3: General ICs. Dropping the consistent sign as-
sumption means that an attempt to correct one failed IC in-
stance may generate other failing instances which in turn
may need to be corrected; notice that we also need to moni-
tor possible effects on the trusted constraints. This indicates
that the integrity check needs to be repeated, including cal-
culation of potential correction sets. The following nonde-
terministic algorithm calculates all possible minimal CTs
(when followed by a straightforward thinning process).
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R := ∅
repeat

Σ := OptimizeΘ(AfterR(Γ ∪∆))
if DU |= Σ, return(R), otherwise
C := PotentialCorrections(DU ,Σ) ∪ U \ R \ ¬R
if C = ∅ or C = ⊥, abort, otherwise
R := R ∪ {L} for some L ∈ C

In most cases, we expect the number of iterations to be
small, and if adapted for data verification, the cases where
one correction produces new violations will be rare.

Example 5.1 In our running example, assume a correction
table CT = ∅ and the update m1(a, b). In case m2(a, c)
is indicated by second source, the algorithm produces two
different new minimal CTs, {m1(a, b)} and {m2(a, c)}.

Assuming instead an initial CT = {m2(a, b)} we may
expect this table be output unchanged as the sole minimal
CT for the updated DI system.

6 Discussion

The runtime applications of simplification is a poten-
tially high computational cost in the algorithms indicated
above which may outweigh the reduction in orders of mag-
nitude compared with checking of unsimplified ICs.

The exact complexity of simplification is currently not
known, but it is independent of the database size, being a
function of the size of the ICs and the updates. However, the
use of parameters [6, 8] may make it possible to unfold (or
partially evaluate) the algorithm into a decision tree where
choices are made from queries posed to the source.

Comparing with approaches to consistent answering
from in an inconsistent DI system (e.g., [4]), we notice that
the use of a CT is less pessimistic in that it may provide
more answers to a query. The assumption of a human expert
who is always online may be a bit problematic, but a com-
bination of consistent answering and a CT maintained man-
ually through a simplification-based interface, can make it
possible to collect problematic updates over time and only
involve the expert now and then.
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