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Solidity of viscous liquids. IV. Density fluctuations

Jeppe C. Dyre
Department of Mathematics and Physics (IMFUFA), DNRF centre “Glass and Time,” Roskilde University, Postbox 260,

DK-4000 Roskilde, Denmark
�Received 17 February 2006; published 4 August 2006�

This paper is the fourth in a series exploring the physical consequences of the solidity of highly viscous
liquids. It is argued that the two basic characteristics of a flow event �a jump between two energy minima in
configuration space� are the local density change and the sum of all particle displacements. Based on this it is
proposed that density fluctuations are described by a time-dependent Ginzburg-Landau equation with rates in
k space of the form �0+Dk2 with D��0a2 where a is the average intermolecular distance. The inequality
expresses a long-wavelength dominance of the dynamics which implies that the Hamiltonian �free energy� may
be taken to be ultralocal. As an illustration of the theory the case with the simplest nontrivial Hamiltonian is
solved to second order in the Gaussian approximation, where it predicts an asymmetric frequency dependence
of the isothermal bulk modulus with Debye behavior at low frequencies and an �−1/2 decay of the loss at high
frequencies. Finally, a general formalism for the description of viscous liquid dynamics, which supplements the
density dynamics by including stress fields, a potential energy field, and molecular orientational fields, is
proposed.

DOI: 10.1103/PhysRevE.74.021502 PACS number�s�: 64.70.Pf

I. INTRODUCTION

Glasses are made by cooling viscous liquids. The liquid
relaxation time � increases dramatically upon cooling, and
the glass transition takes place when � exceeds the inverse
cooling rate: ��1/ �d ln T /dt�. For cooling rates of the order
of K/min one speaks about the calorimetric glass transition;
glasses, however, may be produced by much higher cooling
rates, like the splat coolings of traditional metallic glasses, or
much more slowly, as when manufacturing large mirrors for
astronomical telescopes by cooling gently over months. In all
cases, by definition the glassy state has been arrived at when
the liquid is no longer in thermal equilibrium. The glassy
state is not unique—it depends on the thermal history of the
system after it first fell out of equilibrium. In view of this
inherent complexity of the glassy state it appears that a genu-
ine understanding of a glass and its properties can come only
from a proper understanding of the preceding simpler equi-
librium viscous liquid phase.

Are viscous liquids just quantitatively different from less-
viscous liquids or are they, in fact, qualitatively different
�1–8�? On the one hand, one expects that all liquids obey the
Navier-Stokes equation, albeit with a viscosity which in
some cases is so large that it would take years to pour the
liquid out of a cup; this suggests that the difference is just
quantitative. On the other hand, consider the actual molecu-
lar motions in viscous liquids. Going back in time at least to
Kauzmann’s 1948 paper �1�, these were always believed to
be predominantly vibrational. The physical picture is that the
molecules are caught in deep potential energy minima, vi-
brating billions and billions of times before rearranging to
arrive at another potential energy minimum. Kauzmann de-
scribed these rare flow events as “jumps of molecular units of
flow between different positions of equilibrium in the liq-
uid’s quasicrystalline lattice” �1�. This idea, which was
elaborated upon in Goldstein’s 1969 paper �4�, was
confirmed during the last decade in numerous computer

simulations. In our interpretation the resulting physical
picture �9� is

viscous liquid � solid that flows. �1�

The implicit statement is viscous liquid�ordinary liquid. If
the vibrations are averaged out, viscous liquid dynamics may
be identified with the “inherent dynamics” consisting of
jumps between the energy minima in the system’s configu-
ration space �10�. Each minimum has a basin of attraction
�4,5�, known as an inherent structure. The concept of inher-
ent structures was originally introduced by Stillinger and
Weber as a way of thinking about liquids and solids in gen-
eral �11�, but the concept seems to be particularly useful for
understanding the physics of highly viscous liquids.

The liquid relaxation time � is related to the �shear� vis-
cosity � and the instantaneous shear modulus G� by Max-
well’s famous relation �=� /G� �12�. For “ordinary” less-
viscous liquids like ambient water the viscosity is in the
10−3 Pa s range and the instantaneous shear modulus is typi-
cally of the order of 109–1010 Pa. Thus the relaxation time is
barely 1 ps and comparable to a typical molecular vibration
time. Viscous liquids approaching the calorimetric glass tran-
sition, on the other hand, have relaxation times of the order
of 100–1000 s. These extremely long relaxation times reflect
the fact that molecular motion has almost completely ceased.
The molecules still have the thermal velocity distribution, of
course, but virtually all motion is vibrational like in a solid.
Thus the incoherent �single-particle� diffusion constant Ds
is extremely small, and in the well-known expression for Ds
in terms of the velocity autocorrelation function Ds
=�0

��vx�0�vx�t�	dt there is a most delicate cancellation of
contributions. This fact was emphasized in 1984 by Brawer
�7� who pointed out that if one wishes to apply conventional
liquid-state theory to viscous liquids approaching the calori-
metric glass transition, the approximations used should be
accurate to many digits in order to give reasonable results.
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A further argument for viscous liquids being qualitatively
different from the less-viscous liquids dealt with in tradi-
tional liquid-state theory is the following. A liquid is charac-
terized by a number of diffusion constants: the heat diffusion
constant, the incoherent diffusion constant, the dynamic vis-
cosity � of the Navier-Stokes equation �i.e., the transverse
momentum diffusion constant: viscosity/density�, and the
coherent diffusion constant �characterizing the long-
wavelength decay of density fluctuations�. For “ordinary”
liquids these diffusion constants are all typically within one
or two orders of magnitude of 10−7 m2/s. This is easy to
understand from kinetic theory, according to which the dif-
fusion constant is of the order of the mean free path squared
over the mean time between collisions of the diffusing entity.
Rough estimates of these quantities are 1 Å and 0.1 ps, re-
spectively, resulting in the value 10−7 m2/s. For a viscous
liquid approaching the calorimetric glass transition, however,
the approximate identity of diffusion constants breaks down:
As the Maxwell relaxation time increases upon cooling from
the less-viscous phase, the single-particle diffusion constant
Ds decreases roughly inversely proportional to the viscosity
�13�. At the same time the dynamic viscosity � increases.
Thus the ratio Ds /� changes from roughly 1 to a number of
order 10−30 just above the calorimetric glass transition. Such
small dimensionless numbers are rare in condensed matter
physics. Small numbers in physics usually signal a qualita-
tive change and a simplification of some kind. It view of
this it seems likely that the physics of highly viscous liquids
is different from—and somehow simpler than—that of
“ordinary” liquids.

Viscous liquids have common features which are indepen-
dent of the nature of the chemical bonds involved. These
features �14,15� may be summarized into three non’s: Non-
Debye behavior of the main ��� relaxation process,
non-Arrhenius viscosity �or relaxation time, �
� because
�=� /G��, and nonlinearity of relaxations following even
relatively small temperature jumps. The last non is probably
less basic because in most models nonlinearity is a conse-
quence of the strong temperature dependence of �, but the
non-Debye and non-Arrhenius behaviors constitute crucial
and defining characteristics of viscous liquids.

Given the universal features of viscous liquids, an
obvious question is: Does the high viscosity—translating
into �1�—in and of itself make it possible to physically
understand and mathematically derive the non’s? Since the
high viscosity is caused by energy barriers large compared
to kBT, this seems to have been Goldstein’s view when
he in 1969 wrote: “I am only conjecturing that whatever
rigorous theory of kinetics we will someday have, processes
limited by a high potential barrier will share some common
simplifications of approach” �4�.

The present paper is the fourth in a series �I–III� �16–18�
entitled Solidity of viscous liquids attempting to identify
Goldstein’s “common simplifications of approach” by ex-
tracting the physical consequences of Eq. �1�. The term so-
lidity is meant as a concise way of referring to the “solid-
like-ness” of viscous liquids. The first paper from our group
utilizing solidity-type arguments preceded the series. This
was a joint publication with Olsen and Christensen from
1996 �19� which proposed a model for the non-Arrhenius

temperature dependence of � �see also Ref. �20��. The idea is
that the activation energy for a flow event is the work done in
shoving aside the surroundings in order to—in a brief
moment—create the extra space which by assumption is
needed for the molecules to rearrange. According to this
“shoving” model the activation energy is mainly shear elastic
energy located in the surroundings of the rearranging mol-
ecules. Consequently, the activation energy is proportional to
the instantaneous shear modulus, a quantity which is usually
much more temperature dependent in viscous liquids than in
crystals and glasses �or in “ordinary” liquids�. The shoving
model appears to work well for molecular liquids �19�, but it
is too early to tell whether the model is generally applicable
�15�.

Paper I introduced the concept of a solidity length l that
determines the length scale below which a viscous liquid for
all purposes behaves as a solid, albeit one that flows. In
terms of the average intermolecular distance a �defined by
writing the volume per molecules as a3�, the � relaxation
time �, and the high-frequency sound velocity c, the solidity
length is given by

l4 = a3�c . �2�

This expression was derived by noting that a flow event
is followed by the emission of a spherical sound wave; l
is determined by requiring that elastic equilibrium be just
about established throughout a sphere with radius l before
the next flow event inside the sphere typically takes place
�16�. At the calorimetric glass transition the solidity length is
approximately 10 000 Å.

In paper II we discussed anisotropic flow events and de-
fined a parameter characterizing the anisotropy; it now ap-
pears, however, that this parameter is of only minor
significance—see below. The origin of the non-Debye � lin-
ear response functions was the subject of paper III where it
was argued that a long-time-tail mechanism may explain
what appears to be a generic property of the � process as
observed, e.g., by dielectric relaxation �21�: At high frequen-
cies the loss follows an �−1/2 decay once the effects of 	
processes are minimized by going to sufficiently low tem-
peratures �but still in the equilibrium liquid phase�. It was
further argued that the coherent diffusion constant D is much
larger than the incoherent diffusion constant Ds, implying
that D�a2 /�. The latter inequality, which is essential for the
long-time-tail mechanism to work for a range of times
shorter than � �i.e., above the � loss peak frequency�, reflects
a long-wavelength dominance of the dynamics.

Long-time tails derive from a diffusion equation which
implies decay rates 
k2 for the k-wave-vector component of
the relevant conserved variable �22,23�. An explicit realiza-
tion of the long-time-tail scheme of paper III was given sub-
seqently in a simple model for dielectric relaxation �24�. This
model is based on a conserved scalar field, the density, and a
nonconserved vector field, the dipole density, with the sim-
plest possible interaction term. When the model is solved in
the Gaussian approximation to second order in the interac-
tion strength between the two fields, one finds for the
frequency-dependent dielectric constant,
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���� 

1

�1 + i��
+

1
�2 + �1 + i��

+
C

1 + i��
. �3�

This expression reproduces the generic �21� asymptotic be-
haviors of the � process: −��
� at low frequencies and
−��
1/�� at high frequencies.

The present paper elaborates on the point made briefly in
paper III and Ref. �24� that the density “dispersion relation”
�the decay rate� realistically should include an additive con-
stant and be of the form �0+Dk2 where �0=1/�. We arrive
at this result by first identifying the most important charac-
teristics of a flow event. A new argument is given for the
long-wavelength-dominance inequality D��0a2. Then a
model for density fluctuations is proposed and solved in the
simplest approximation, predicting that the loss peak of the
frequency-dependent isothermal bulk modulus is asymmetric
towards the high-frequency side where the loss decays
as 
�−1/2. Finally, we propose principles for the general
description of viscous liquid dynamics.

II. BASIC CHARACTERISTICS OF A FLOW EVENT

A. First approach

The arguments of this paper refer to length scales below
the solidity length l. For liquids approaching the calorimetric
glass transition l is so large that there are four orders of
magnitude of length scales between l and the average inter-
molecular distance a. We argued above that in view of Eq.
�1� viscous liquid dynamics are basically to be identified
with the “inherent dynamics” �10� consisting of jumps be-
tween potential energy minima �inherent structures�. This is
what Goldstein envisaged in his emphasis on the importance
of potential energy barriers much larger kBT �4�. The fact that
these barriers are large is directly responsible for the ex-
tremely large low-temperature viscosity, of course, but it also
implies that there is a clear separation between the molecular
vibrations and the much slower changes of the configura-
tional degrees of freedom associated with jumps between the
potential energy minima. In the resulting picture the vibra-
tions are regarded as uncorrelated to the inherent dynamics,
and only the latter contribute to autocorrelation-function
variations on the time scale of the � relaxation.

A flow event is a jump from one potential energy mini-
mum to another. Leaving aside the interesting question why
the �-process activation energy increases upon cooling, and
whether this as in the shoving model �19� reflects the fact
that the high-frequency shear elastic constant increases upon
cooling, we shall nevertheless use shoving-model-type argu-
ments below. This is done by comparing the situation before
and after a flow event, and not as in the shoving model
before and at the barrier maximum of the flow event.

It seems compeling that flow events are localized in
space; this is also what is observed in the numerous
computer simulations that now have been published. Justi-
fied by Eq. �1� we utilize arguments from the theory of solid
elasticity �25� by regarding the liquid as an isotropic solid in
which the flow event takes place. As a simple model, sup-
pose that the flow event is radially symmetric. If it takes
place at r=0, the radial displacement field induced in the

surroundings may be written u�r�=ur�r�r /r where r= �r�. To
determine ur�r� we combine the equation of elastic equilib-
rium after the flow event—zero divergence of the stress ten-
sor, �i�ik=0—with the stress-strain relation �ik=Kullik
+2G�uik−ullik /3�, where K and G are the bulk and shear
moduli and uik= ��iuk+�kui� /2 is the strain tensor. This leads
to

�K +
G

3
 � �� · u� + G�2u = 0 . �4�

Because the displacement is radial one has ��u=0 which,
via the vector identity �� ���u�=��� ·u�−�2u, implies
that ��� ·u�=�2u. When substituted into Eq. �4� this leads
to ��� ·u�=0, or � ·u=C1. The radial displacement is found
by solving the equation � ·u�r−2�r�r2ur�=C1, leading to
ur=C2r−2+C1r /3. Since the latter term diverges as r→�, we
must have C1=0. In conclusion, the displacement field is
analogous to the Coulomb electric field of a point charge:

u 

r

r3 . �5�

The relative density change is −� ·u �25� which is zero ex-
cept at r=0. Thus in this macroscopic and radially symmet-
ric description there is no density change in the surroundings
of the flow event. A decrease of density at the flow event
center induces a positive radial expansion which results in
the same particle flux through all spheres centered at the flow
event. This means that for any spherical shell surrounding
the flow event, thick or thin, just as many molecules enter the
shell from the inside as leave it on the outside. In effect, a
flow event corresponds to a three-dimensional version of
Hilbert’s hotel, the infinite hotel which—even when totally
occupied—makes room for an extra guest by asking all
guests to move to one higher room number. .

The above analysis is oversimplified because of the as-
sumption of spherical symmetry. Nevertheless, the result that
the displacement field far from the flow event center varies
as 1 /r2 is correct and general. To see this, note that the effect
of one flow event on its surroundings may be mimicked by
first imagining a tiny sphere surrounding the flow event cen-
ter. If the molecules inside the sphere are removed, the effect
of the change of positions of the molecules before and after
the flow event may be reproduced by external forces acting
suitably on the surface of the sphere—forces that must sum
to zero. An external force acting on a point in an elastic
medium introduces a momentum flux spreading to infinity;
since the stress tensor � is the momentum flux density, we
conclude that �
1/r2 as r→�. The stress tensor is given by
first-order derivatives of the displacement vector field; thus
one expects that �u�
1/r. For forces summing to zero, how-
ever, we get �u�
1/r2, just as the potential from an electric
dipole varies as 1 /r2 whereas it varies as 1 /r from a point
charge. As shown elsewhere �26�, even in the most aniso-
tropic case more than 90% of the elastic energy in the far-
field surroundings is shear elastic energy, so the assumption
that there are no density changes in the surroundings is a
good approximation for describing the long-ranged effects of
a flow event.
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Flow events may be regarded as instantaneous on length
scales below the solidity length. Numbering the flow events
consecutively after the time they take place, t�, if r� is the
center of the �th flow event and the number b� measures
its magnitude, the above considerations translate into the
following dynamic equation for the density ��r , t� in a
coarse-grained description:

�̇�r,t� = �
�

b��r − r���t − t�� . �6�

Equation �6� is not inconsistent with particle conservation, of
course. Nevertheless, a density field obeying Eq. �6� does
have the appearance of not being conserved, because density
changes at one point in space do not affect the density else-
where. A field of noninteracting spins fluctuating randomly
in time would be described by a similar time evolution equa-
tion, and there is nothing conserved by such a spin field. To
summarize, the “Hilbert’s hotel effect” deriving from solidity
is not inconsistent with the fact that the particle number is
obviously and trivially conserved, but it implies that the den-
sity acts as if it is a nonconserved field. Although we show
below that Eq. �6� is too simple to reflect all relevant features
of density fluctuations, this conclusion remains valid.

The interpretation of the flow event magnitude b� is
found by integrating Eq. �6� over a brief period of time in-
cluding only the flow event taking place at t�. This leads to a
density change equal to b��r−r��, so the number of par-
ticles inside any volume which includes the flow event center
r� changes by precisely b�. Note that via the continuity
equation �̇+� ·J=0 and the identity � · �r /r3�=4��r�, Eq.
�6� corresponds to the following expression for the particle
current density in the coarse-grained description:

J�r,t� = − �
�

b�

4�

r − r�

�r − r��3
�t − t�� . �7�

B. More detailed treatment

To study flow events in more detail we consider the in-
duced density changes by going to k space. If the liquid
consists of N molecules in volume V each with position r j,
the variable �k defined by

�k =
1

�N
�

j

eik·rj . �8�

Normalizing in this way is convenient because it makes the
fluctuations independent of sample size in the V→� limit
where the static structure factor is given by S�k�= ���k�2	 �27�.

As usual, the k vectors are restricted to values compatible
with periodic boundary conditions, i.e., having an integer
number of periods in the volume V in all three axis direc-
tions. We are particularly interested in small k vectors. If the
molecular displacements induced by a single flow event are
denoted by �r j, by a first-order Taylor expansion the change
of �k for small k is given by

�k =
1

�N
�

j

eik·rjik · �r j . �9�

Since particle displacements are unlikely to be much larger
than the intermolecular distance a, Eq. �9� applies whenever
ka�1. As discussed in paper III and Ref. �28�, for realistic
viscous liquid samples momentum is not conserved because
the transverse momentum diffusion constant �the kinematic
viscosity �=� / ��	� is so large that on the time scale of the �
relaxation momentum is unavoidably exchanged between the
sample holder and the liquid. Thus momentum conservation
is irrelevant for viscous liquid dynamics just as it is, e.g., for
the description of point defect diffusion in crystals, and the
sum of all particle displacements induced by a flow event
�R=� j�r j is generally nonzero. In our present view the
vector �R is a more important measure of flow event aniso-
tropy than the quadrupolar-type parameter introduced in pa-
per II, where it was implicitly assumed that �R=0.

If the �th flow event is centered at r�, because the largest
displacements take place close to r�, for small k it is tempt-
ing to argue �paper III� that it is a good approximation to
replace all exponentials by exp�ik ·r��, leading to

�k �
eik·r�

�N
ik · �R . �10�

This implies that ��k�2
k2 for small k. Equation �6�, on the
other hand, which we argued provides a good coarse-grained
description, implies that ��k�2 is constant for small k. Which
is right? In fact, both are partially correct as we now proceed
to show.

The starting point is Eq. �9� �still assuming small k�. The
calculation leading to Eq. �10� is not quite correct, however.
This is because, although displacements far from the flow
event are small �
1/r2�, there are many molecules far away
�
r2� and their contributions cannot be ignored. A more de-
tailed analysis proceeds as follows. Suppose a flow event of
magnitude b is located at r=0. As a reasonable first approxi-
mation we use Eq. �7� which implies that the total particle
flux due to this flow event through the perpendicular area dA
at the distance r from 0 is equal to �−b /4���dA /r2�. Identi-
fying this flux with ��	udA, where u is the particle displace-
ment, leads to u=−�b /4�r2��	�. Thus the displacement of
the jth molecule, �r j, is given by �r j =−�b /4���	��r j /rj

3�. In
terms of the density ��r��� j�r−r j�, Eq. �9� thus becomes

�k =
− b

4��N
�

V

��r�
��	

ik · r

r3 eik·rdr . �11�

If the flow event magnitude b is uncorrelated to other quan-
tities, the ensemble average of the absolute square is given
by

���k�2	 =
�b2	

16�2N
�

V

���r���r��	
��	2

k · r

r3

k · r�

r�3 eik·�r−r��drdr�.

�12�

At first sight this expression appears to confirm that
���k�2	
k2, but that is not correct: As shown in the
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Appendix, because the term ���r���r��	 for �r−r��→� be-
comes constant, one has

���k�2	 =
�b2	
N �1 +

1

N
�
k�

S�k���k · �k + k��
�k + k��2 2� . �13�

For small k this implies that

���k�2	 
 1 + C�ka�2, �14�

where C
�1/N��k�S�k�� / ��k�a�2�
1.

III. DENSITY FLUCTUATIONS

A. General framework

Based on the above considerations we now seek a model
for density fluctuations in equilibrium viscous liquids. To
simplify matters it is assumed that density is the only rel-
evant variable, although eventually other variables should
definitely be included in the description �Sec. IV�. The basic
assumption is that the density obeys a standard Langevin
equation �29�. For discrete degrees of freedom Q1 , . . . ,Qn the
Langevin equation starts from a Hamiltonian H�Q1 , . . . ,Qn�,
and the dynamics are given by the equations Q̇i
=−�i��	H� /�Qi+�i�t� where 	=1/kBT and �i�t� is a Gauss-
ian white noise term obeying ��i�t�� j�t��	=2�iij�t− t��.
These equations give the correct canonical equilibrium prob-
ability for the average occupation in configuration space
�29�.

In the present case the Hamiltonian is the free energy
written as a functional of the density field. In terms of the
complex density field variables �k the Langevin equation
looks as follows with a complex noise term:

�̇k = − �k
��	H�
��−k

+ �k�t� . �15�

The noise term obeys �k
*�t�=�−k�t� and ��k�t��k�

* �t��	
=2�kk,k��t− t��; because �k

* =�−k, Eq. �15� is equivalent to
two independent real Langevin equations, one for the real
part of �k and one for its imaginary part. To determine the k
dependence of the rate �k we note that when Eq. �15� is
integrated over a short time interval, the noise term domi-
nates. Thus, if the short time interval is �t, the magnitude of
the change ��k is given by ����k�2	=2�k�t. On the other
hand, because flow events are uncorrelated over short time
spans, from Eq. �14� one finds that ����k�2	
�t�1+C�ka�2�
for small k. In conclusion, for small k the rate �k is of the
form �31�

�k = �0 + Dk2. �16�

We shall assume that this expression applies for all k. A
conserved field is characterized by �k
k2 for k→0 �30�, so
Eq. �16� expresses the fact that density has the appearence of
a nonconserved field.

According to the calculation of last section C
1, which
implies that D
�0a2. This calculation, however, assumes
much more symmetry than realistically may be expected.
Thus Eq. �5� is based on the macroscopic elasticity theory

describing an isotropic and homogeneous solid. Surely a vis-
cous liquid is solidlike, but it is neither homogeneous nor
isotropic on the molecular scale, and although the fact that
the displacements far from a flow event vary as 1/r2 remains
valid, one would not expect Eq. �5� to be accurate. Violations
of isotropy and homogeneity easily lead to a much larger
flow-event-induced �R than found in the calculations lead-
ing to Eq. �14� �similarly, local correlations of flow events, as
seen, e.g., in the observations of strings of flow events in
some computer simulations �10,32�, also severely violate
isotropy�. In conclusion, since the C term of Eq. �14� is de-
termined by the magnitude of �R which is a measure of the
flow event anisotropy �Eq. �10��, it appears likely that
C�1 or, equivalently,

D � �0a2. �17�

We shall henceforth assume that this inequality is obeyed. In
paper III Eq. �17� was justified by arguing that D is much
larger than the incoherent diffusion constant. In neither case,
however, has Eq. �17� been rigorously proved and it remains
an assumption justified by physical arguments.

In principle, all k vectors consistent with periodic bound-
ary conditions are allowed, but since there are just a finite
number of molecules, one should only include the 
N small-
est k vectors—for larger k vectors the �k’s become redun-
dant. This means that there is an implicit cutoff in k space,
kc, which is easily shown to be given by kca
1. In view of
this, Eq. �17� implies that there is a range of allowed k vec-
tors where the Dk2 term of Eq. �16� dominates over the �0
terms. As shown below and in Ref. �24� this makes it pos-
sible to understand the generic �−1/2 high-frequency decay of
the � loss as a consequence of a long-time tail mechanism
operating over a range of times short compared to the �
relaxation time.

The inequality �17� expresses a long-wavelength domi-
nance of the dynamics. This assumption, which a posteriori
justifies our focus on small k vectors, makes it possible to
simplify the Hamiltonian considerably. A number of scatter-
ing experiments have looked a for diverging length scale as
the glass transition is approached, but found none. The con-
sensus is that viscous liquids have no long-ranged static �i.e.,
equal-time� density correlations. Thus, if the dynamics are
dominated by the long-wavelength behavior, a model with no
equal-time spatial density correlations should suffice. In
field-theory terms this means that the Hamiltonian may be
assumed to be “ultralocal”—i.e., without the usual gradient
term ����2 or other terms coupling fields at different points
in space. Although this is rather unusual from a general field-
theory perspective, note that a simple example of an ultralo-
cal field theory is the free energy functional for an ideal gas.
More generally, the Ramakrishnan-Yussouff density func-
tional �33� to second order becomes ultralocal in descriptions
which are coarse grained on length scales beyond the
correlation length of the direct correlation function.

Thus we assume that the dimensionless Hamiltonian func-
tional, when scaled by the inverse temperature 	, is of the
form
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	H = ��	�
V

dr� 1

2A
���r� − ��	

��	
2

+
�

3
���r� − ��	

��	
3

+ ¯ � .

�18�

The third-order term is crucial for the results derived
below; to ensure stability, however, there must be
further higher-order even terms. To transform this expression
into k space, we first note that Eq. �8� implies that
��r�= ��N /V��k�k exp�−ik ·r�, which in turn implies that
���r�− ��	� / ��	=�k�0�k exp�−ik ·r� /�N. When this is
substituted into Eq. �18�, the dimensionless Hamiltonian
becomes

	H =
1

2A
�
k

�k�−k +
�

3�N
�
k,k�

�k�k��−k−k� + ¯ . �19�

Here it is implicitly understood that no terms with k=0 ap-
pear �because a system with fixed volume is considered, for
k=0, �k is not a dynamic degree of freedom�.

Once the dynamics have been specified, one can calculate
the density autocorrelation function as a function of time, the
Laplace transform of which gives the dynamic structure fac-
tor. To the best of the author’s knowledge, there are no data
for this quantity for highly viscous liquids. But by the
fluctuation-dissipation theorem the k→0 limit of the
density autocorrelation function determines the macroscopic
frequency-dependent isothermal bulk modulus. It is
convenient to introduce the notation

�k�t� = ��k�0��−k�t�	 . �20�

Obviously, �k�t�=�−k�t� by time-reversal and parity invari-
ance. It is possible to establish an exact equation for �k�t� by
use of the following general theorem �18,24�: If Qi obeys

a Langevin equation of the form �no sums over i� Q̇i
=−�i�i�	H�+�i�t�, one has d2 /dt2�Qi�0�Qi�t�	=�i

2��i�	H�
��0��i�	H��t�	. Substituting Eq. �19� into this identity leads
to

d2

dt2�k�t� = �k
2���k�0�

A
+

�

�N
�
k�

�k+k��0��−k��0� + ¯ 
���−k�t�

A
+

�

�N
�
k�

�−k−k��t��k��t� + ¯ � .

�21�

Approximations are needed in order to proceed. The simplest
approximation is the Gaussian approximation which leads to
nonlinear self-consistent equations.

B. Gaussian approximation

The simplest nontrivial case is when one ignores the
higher-order terms of Eq. �19�, a procedure which is justified
when these terms are so small that they do not significantly
influence the density autocorrrelation function. Using the
well-known fact that for variables with zero mean distributed
according to a Gaussian one has �x1x2x3x4	= �x1x2	�x3x4	
+ �x1x3	�x2x4	+ �x1x4	�x2x3	 whereas averages of odd order

are zero, Eq. �21� in the Gaussian approximation becomes

d2

dt2�k�t� = �k
2��k�t�

A2 + 2
�2

N
�
k�

�k+k��t��−k��t� + ¯  .

�22�

We keep only the terms relevant for the below calculation; as
mentioned the inclusion of, e.g., a small fourth-order term in
the Hamiltonian may be ignored for calculating the density
autocorrelation function—it would just lead to a minor
renomalization of A and a further small �3-type term.

The k→0 limit of �k�t� may be determined analytically
to second order in � by proceding as follows. To zeroth order
in � the Hamiltionan is quadratic, implying for the equal-
time average that ��k�−k	=A. Thus to zeroth order one has
�k

�0��t�=A exp�−�kt /A�, which is substituted into the per-
turbing term of Eq. �22�. Because of Eq. �17� the k sum may
be evaluated by extending the k integration to infinity �recall
that ��	=a−3�:

2
�2

N
�
k�

�k�
�0��t��−k�

�0� �t� = 2
�2A2

N
� V

dk�

�2��3e−2��0+Dk�2�t/A

=
2�2A2

�2��3��	
e−2�0t/A

��
0

�

dk�4�k�2e−2Dk�2t/A

=
2�2A2

�2��3��	
e−2�0t/A4��2Dt

A
−3/2��

4

=
�2A7/2

8�2��D�3/2��	
t−3/2e−2�0t/A. �23�

If the k→0 limit of �k�t� is denoted by ��t�, we thus
arrive at the following equation for ��t� in terms of the
dimensionless time t̃��0t /A:

�̈�t̃� = ��t̃� + �t̃−3/2e−2t̃, �24�

where �=�2A4��0 /�D�3/2 / �8�2��	�. The general solution of
this differential equation obeying ��t̃→��=0 is

��t̃� = ��
t̃

�

sinh�t̃� − t̃�e−2t̃�t̃�−3/2dt̃� + Ce−t̃. �25�

This result applies to second order in � and assumes that the
first term is small, but at this stage it is not possible to real-
istically estimate the relative weights of the two terms.

According to the fluctuation-dissipation theorem, if v is a
large subvolume of V , �v�t��v�t�−v�0�, and L�s� is the
Laplace transform of ��v2�t�	 evaluated at the complex vari-
able s� i�, the frequency-dependent isothermal bulk modu-
lus KT��� is given by

KT��� 

1

sL�s�
. �26�
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Besides the relaxational density fluctuations described by Eq.
�15� there are always the fast vibrational density fluctuations.
In any reasonable model these two types of fluctuations are
uncorrelated. Consequently, if �vr�t� is the relaxational vol-
ume change over time t and �vv�t� the vibrational analog,
one has ��v2�t�	= ��vr

2�t�	+ ��vv
2�t�	. On time scales much

longer than phonon times the vibrational-volume mean-
square displacement is independent of time and one may
write ��v2�t�	=C+ ��vr

2�t�	. Thus L�s� becomes C /s plus the
Laplace transform of ��vr

2�t�	, a quantity that is proportional
to ��0�−��t�. Equation �25� implies that ��0�−��t�
�t at
short times �i.e., whenever t̃�1 or equivalently t�� where
��A /�0�, whereas for t ��, ��t� goes exponentially to
zero. These asymptotic behaviors imply that KT���
1
−C1 /�i�� for ���1 and KT���
1+C2�i��� for ���1.
For the imaginary part of the frequency-dependent bulk
modulus �the loss� one finds KT����
�−1/2 for ���1 and
KT����
� for ���1. The model thus predicts bulk modulus
loss peaks which are asymmetric towards the high-frequency
side. This is what is always observed for the dielectric and
shear mechanical loss peaks, but unfortunately there are only
few measurements of the frequency-dependent adiabatic
bulk modulus �and none of the isothermal frequency-
dependent bulk modulus�. The only published adiabatic mea-
surements close to the glass transition known to this author
�on glycerol �34�� are not inconsistent with these
predictions—it is described by a stretched-exponential relax-
ation function with exponent 0.43 which implies an asym-
metric loss peak with asymptotics fairly close to those
predicted here.

IV. GENERAL DESCRIPTION OF VISCOUS LIQUID
DYNAMICS: A PROPOSAL

To simplify matters as much as possible this paper fo-
cused on density as the sole relevant configurational variable.
In a recent work �24� we discussed the case where the rel-
evant fields are the density and dipole density fields. This
was suggested as a simple model for dielectric relaxation. In
that model the density and dipole density fields couple to
each other by a third-order term in the Hamiltonian �model C
of Ref. �30��. In most cases the molecules do not have con-
tinuous rotational symmetry around one axis, however, and
their orientations should properly be described by more gen-
eral variables ��SO�3� representing the Eulerian angles.
The stress tensor is another relevant field which should be
included in the description, as should the potential energy
density field.

Inspired by the model for density fluctuations discussed in
this paper and the above-mentioned model for dielectric re-
laxation �24�, we propose the following general recipe for
modeling viscous liquid dynamics:

�i� The relevant degrees of freedom are fields ��1��r� , . . .,
��n��r� defined as �a� the densities of the different types of
molecules, �b� the densities of the different molecules’ orien-
tational variables reflecting their symmetry, �c� the five com-
ponents of the traceless stress tensor �the pressure is reduced
because the pressure fluctuations are not independent of the

density fluctuations�, �d� the potential energy density.
�ii� The Hamiltonian H �the free energy� is ultralocal; H

consists of invariant �i.e., scalar� terms up to some even
order.

�iii� For each field the dynamics are described by a Lange-
vin equation,

�̇k
�j� = − �k

�j���	H�
��−k

�j� + �k
�j��t� , �27�

where �k
�j��t� is a standard Gaussian white noise term.

�iv� For density fields the Langevin equation coefficients
are given by �k

�j�=�0
�j�+D�j�k2 where D�j���0

�j�a2; for all
other fields the coefficients are k independent: �k

�j�=�0
�j�.

V. SUMMARY AND DISCUSSION

At low temperatures viscous liquid dynamics may be
identified with the inherent dynamics taking the system from
one potential energy minimum to another. Each such jump is
referred to as a flow event. The basic characteristics of a flow
event are �a� its position, �b� its time, �c� the induced density
change at the position of the flow event quantified by the
flow event “magnitude” b of Eq. �6�, and �d� the total dis-
placement of all molecule positions induced by the flow
event, �R.

The density dynamics are described by a time-dependent
Ginzburg-Landau equation �30� with rates in k space of the
form �0+Dk2. The first term, which is a consequence of the
solidity of viscous liquids, reflects the fact that the density
may change locally without changing in the surroundings, a
result which implies that density has the appearance of a
nonconserved field variable. The second term Dk2 is the stan-
dard diffusion term. The disorder of the solidlike liquid and
its lack of isotropy most likely result in highly anisotropic
flow events. This is mathematically reflected in the inequal-
ity D��0a2 which implies a long-wavelength dominance of
the dynamics. Since experimentally there are no long-ranged
static density correlations, the long-wavelength dominance
of the dynamics makes it realistic to assume that the
Hamiltonian is ultralocal.

Glarum in 1960 suggested that relaxation takes place via
defect motion �35,36�. In his words “molecules do not relax
independently of one another, and the motion of a particular
molecule depends to some degree on that of its neighbors¼
This is because the reorientation of a molecule is far more
likely immediately after one of its neighbors has relaxed than
it is at an arbitrary time.” The defect motion was described
by a diffusion equation. Glarum’s model gave a novel
mechanism for explaining dielectric loss peaks which are
asymmetric towards the high-frequency side. Inspired by this
work Anderson and Ullman in 1967 generally considered the
effect of a fluctuating environment on molecular relaxation
rates �37�. These authors showed that fluctuations fast com-
pared to the � relaxation rate lead to a symmetric, almost
Debye response and slow fluctuations to a symmetric, but
broad loss peak—two results which were known already
from Kauzmann’s 1942 paper on dielectric relaxation �38�—
whereas if the environment fluctuates on the � time scale, the
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loss peak becomes asymmetric towards the high-frequency
side. Montrose and Litovitz in 1970 �39� discussed a model
involving an order parameter with both a diffusive and a
decaying term in its dynamics. The decay term derives from
the fact that “the structure can change by a simple rate pro-
cess,” whereas if, for instance, the order parameter is a func-
tion of the number of holes, the diffusive term corresponds to
the “many small steps arising from the rapid jiggling of mol-
ecules.” In their review from 1972 of the mechanical re-
sponse of viscous liquid �40� Dexter and Matheson summa-
rize these three papers by the remark: “Thus, the physical
basis of the theories of Glarum, Anderson and Ullman, and
Montrose and Litovitz is similar: the molecular environment
is assumed to change as a result of spontaneous molecular
motion and small diffusional motions.” The similarity to the
present work is clear; here, however, the “small diffusional
motions” occur in the surroundings of a flow event and may
be thought of as consequences of the “spontaneous molecu-
lar motion.” After these early works, also in the spirit of the
present paper, Zwanzig �41� and MacPhail and Kivelson �42�
in the 1980s explored the possibility that a long-time-tail
mechanism is relevant for understanding viscous liquid dy-
namics. We mention these works in order to emphasize that
the ideas of paper III and this paper have close analogs in
several papers published a long time ago.

In this paper we regarded flow events as taking the system
instantaneously from one inherent structure to another. Al-
though this approximation applies only on length scales be-
low the solidity length, which is of order 10 000 Å around
the calorimetric glass transition, it is not impossible that the
proposed density dynamics applies also at macroscopic
length scales. The problem of properly linking the behavior
on length scales below the solidity length to those above
needs further consideration, though.
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APPENDIX

By writing ���r���r��	= ��	2+ ����r����r��	 where
��	=N /V and ����− ��	, Eq. �12� is split into two terms:

���k�2	 =
�b2	

16�2N
�I1�k� + I2�k�� , �A1�

where

I1�k� = �
V
�

V

k · r

r3

k · r�

r�3 eik·�r−r��drdr� = ��
V

k · r

r3 eik·rdr�2

�A2�

and

I2�k� = �
V

����r����r��	
��	2

k · r

r3

k · r�

r�3 eik·�r−r��drdr�.

�A3�

The latter integral may be expressed in terms of the
static structure factor, which for k�0 is defined by S�k�
= ��k�−k	= ���k�2	: First note that the definition of �k �Eq. �8��
implies that for k�0 one has �N�k=�V���r�exp�ik ·r�dr,
which implies that S�k�=1/N�V�V����r����r��	exp�ik · �r
−r���drdr�=V /N�V����0����r�	exp�ik ·r�dr. Inversion of
this Fourier integral allows one to write the density autocor-
relation function as a sum over the k vectors consistent with
periodic boundary conditions:

����r����r��	
��	2 =

1

N
�
k�

S�k��eik�·�r−r��. �A4�

When this is substituted into Eq. �A3� we get

I2�k� =
1

N
�
k�

S�k����
V

k · r

r3 ei�k+k��·rdr�2

. �A5�

Thus in terms of the integral

I�k,�� � �
V

k · r

r3 ei�·rdr , �A6�

we have

���k�2	 =
�b2	

16�2N��I�k,k��2 +
1

N
�
k�

S�k���I�k,k + k���2� .

�A7�

To evaluate I�k ,�� we note that, if the z axis is along the �
vector, k is in the xz plane, and �0 is the angle between �
and k, we have �= �0,0 ,�� and k= �k sin �0 ,0 ,k cos �0�. In
spherical coordinates we thus get

I�k,�� = �
0

�

d� sin ��
0

�

drr2�
0

2�

d�

�
kr�sin � cos � sin �0 + cos � cos �0�

r3 ei�r cos �.

�A8�

This reduces to

I�k,�� = 2�k cos �0�
0

�

d� sin � cos ��
0

�

drei�r cos �.

�A9�

The radial integral is evaluated by assuming an implicit
convergence term lima→� exp�−r /a�, leading to
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I�k,�� = 2�k cos �0�
0

�

d� sin � cos �
1

�− i� cos ��

= 4�i
k

�
cos �0 �A10�

or

I�k,�� = 4�i
k · �

�2 . �A11�

In conclusion, Eq. �A7� becomes

���k�2	 =
�b2	
N �1 +

1

N
�
k�

S�k���k · �k + k��
�k + k��2 2� .

�A12�
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