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Abstract. A method is developed to infer a polymorphic well-typing
for a logic program. Our motivation is to improve the automation of ter-
mination analysis by deriving types from which norms can automatically
be constructed. Previous work on type-based termination analysis used
either types declared by the user, or automatically generated monomor-
phic types describing the success set of predicates. The latter types are
less precise and result in weaker termination conditions than those ob-
tained from declared types. Our type inference procedure involves solving
set constraints generated from the program and derives a well-typing in
contrast to a success-set approximation. Experiments so far show that
our automatically inferred well-typings are close to the declared types
and result in termination conditions that are as strong as those obtained
with declared types. We describe the method, its implementation and
experiments with termination analysis based on the inferred types.

1 Introduction and Motivation

For a long time, the selection of the right norm was a barrier to progress to-
wards the full automation of termination analysis of logic programs. Recently,
type-based norms have been introduced [23] as well as a technique to perform
an analysis based on several norms [8]. There is evidence that the combination
of both techniques solves in many cases the problem of norm selection [13,1].
However, most logic programs are untyped. Hence, obtaining type information
is a new barrier to full automation. Systems for the automated inference of types
do exist [7,24]. They derive monomorphic types that approximate the success-set
of the program, and such inferred types are used to generate norms in a system
for termination analysis [13]. Success types cannot in general be used directly by
methods that require a well-typing [1]. In any case, inferred types obtained by
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current methods are often less precise than declared types, which are not neces-
sarily over-approximations of the success set. The derived termination conditions
are thus weaker than those obtained with declared types. The type inference de-
scribed in this paper yields well-typings rather than success-set approximations
and in all experiments so far yield types – and hence termination conditions –
comparable to user-declared types.

We start by sketching an example of type-based termination analysis [1].

Example 1. Consider the append/3 predicate and its abstraction according to
the type signature append(list(T),list(T),list(T)). Each argument is ab-
stracted by the type-based list(T) norm that abstracts a term by the number
of subterms of type list(T) and the type-based T norm that abstracts a term by
the number of subterms of type T (subscripts l and e for abstracted variables).

append([ ],L,L).

append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

append(1,0, 1+Ll,Le, 1+Ll,Le).

append(1+1+Xsl,1+Xe+Xse, 1+Ysl,Yse, 1+1+Zsl,1+Xe+Zse):-

append(1+Xsl,Xse, 1+Ysl,Yse, 1+Zsl,Zse).

This suffices to infer that a call to append/3 terminates if it is list(T)-rigid1

in either the first or the last argument. A goal independent type inference [7,24]
infers the type append(list(any),any,any), giving rise to the abstract program:

append(1,0, 1+La, 1+La).

append(1+1+Xsl,1+Xa+Xsa, 1+Ysa, 1+1+Xa+1+Zsa):-

append(1+Xsl,Xsa, 1+Ysa, 1+Zsa).

The subscripts l and a of abstracted variables correspond to respectively the
list(any) and any-norm; a term of type any has only subterms of type any, so
the second and third argument have only an any-abstraction. The termination
condition for the third argument is weaker than with the declared type as it
requires any-rigidity and this corresponds to groundness.

In this paper, the signature append(a1(T),a2(T),a2(T)) is inferred, with
the types defined as a1(T) −→ [ ]; [T|a1(T)] and a2(T) −→ [T|a2(T)].
The type a1(T) is equivalent to list(T); the type a2(T) may look odd as it lacks
a “base case” but it gives a well-typing. Calls such as append([a],[b|X],Y)
are well-typed, and give rise to well-typed calls in their computations. In short
“well-typed programs do not go wrong” even with such peculiar types. Now, the
abstracted program is:

append(1,0, 1+La2,LT , 1+La2,LT ).

append(1+1+Xsa1,1+XT +XsT , 1+Ysa2,YsT , 1+1+Zsa2,1+XT +ZsT ):-

append(1+Xsa1,XsT , 1+Ysa2,YsT , 1+Zsa2,ZsT ).

Hence calls terminate when a1-rigid in the first or a2-rigid in the third argu-
ment.
1 Rigid: all instances have the same size under the norm.
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As the next example shows, a call from outside can extend the type of a
predicate.

Example 2. The naive reverse procedure is given by the clauses

rev([ ],[ ]).

rev([X|Xs],Zs) :- rev(Xs,Ys),append(Ys,[X],Zs]).

together with the clauses for append. The inferred signatures and types are

t1(T) --> [T|t1(T)]; [] rev(t2(T),t1(T)).

t2(T) --> [T|t2(T)]; [] app(t1(T),t1(T),t1(T))

Note that the two types denote the same set of terms. The analysis derives
two distinct types because the cons-functors of both do not interact with each
other.

Example 3. A program to transpose a matrix represented as a list of rows [1]:

transpose(A,B) :- transpose aux(A,[ ],B).

transpose aux([ ], W, W).

transpose aux([R|Rs],Z,[C|Cs]) :-

row2col(R,[C|Cs],Cls1,[ ],Acc), transpose aux(Rs,Acc,Cls1).

row2col([ ],[ ],[ ],A,A).

row2col([X|Xs],[[X|Ys]|Cols],[Ys|Cols1],B,C) :-

row2col(Xs,Cols,Cols1,[[ ]|B],C).

The inferred signature and type definitions are as follows:

t1(T) −→ []; [t4(T)|t1(T)] transpose(t1(T),t2(T))

t2(T) −→ []; [t3(T)|t2(T)] transpose aux(t1(T),t2(T),t2(T))

t3(T) −→ []; [T|t3(T)] row2col(t3(T),t2(T),t2(T),t2(T),t2(T))

t4(T) −→ []; [T|t4(T)]

The types t3(T) and t4(T) are equivalent and denote a row of elements T.
Also t1(T) and t2(T) are equivalent; they denote a list of rows of T. These
types are equivalent to what a programmer would declare: the first argument
of row2col/5 is a row and all others are lists of rows. Types inferred by over-
approximation of success sets using current techniques, even when using a goal-
directed analysis with the goal transpose(X,Y) are less accurate.

We define the basic notions of types and set constraints in Section 2; we
present the type inference procedure in Section 3. The implementation, com-
plexity and some experiments in both type inference and the use of the types in
termination analysis are described in Section 4. An extension for obtaining more
polymorphism is given in Section 5. Finally we discuss related work in Section 6
and future research in Section 7.
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2 Preliminaries

2.1 Types

For type definitions, we adopt the syntax of Mercury [19]. Type expressions
(types), elements of T , are constructed from an infinite set of type variables
(parameters) VT and an alphabet of ranked type symbols ΣT ; these are disjoint
from the set of variables V and alphabet of functors Σ used to construct terms.
Variable free types are called monomorphic; the others polymorphic. Type sub-
stitutions of the form {T1/τ1, . . . , Tn/τn} with the Ti parameters and the τi

types define mappings from types to types by the simultaneous replacement of
the parameters Ti by the corresponding types τi.

Definition 1 (Type definition). A type rule for a type symbol h/n ∈ ΣT is
of the form h(T̄ ) −→ f1(τ̄1); . . . ; fk(τ̄k); (k ≥ 1) where T̄ is a n-tuple of distinct
type variables, f1, . . . , fk are distinct function symbols from Σ, τ̄i (1 ≤ i ≤ k)
are tuples of corresponding arity from T , and type variables in the right hand
side, if any, are from T̄ 2. A type definition is a finite set of type rules where no
two rules contain the same type symbol on the left hand side, and there is a rule
for each type symbol occurring in the type rules.

A predicate signature is of the form p(τ̄ ) and declares a type τi for each
argument of the predicate p/n. The mapping τ̄i → h(T̄ ) can be considered the
type signature of the function symbol fi. As in Mercury [19], a function symbol
can occur in several type rules, hence can have several type signatures.

A typed logic program consists of a logic program, a type definition and
a predicate signature for each predicate of the program. Given a typed logic
program, a type checker can verify whether the program is well-typed, i.e., that
the types of the actual parameters passed to a predicate are an instance of
the predicate’s type signature. To formalize the well-typing, we first inductively
define the well-typing of a term.

Definition 2. A variable typing is a mapping from variables to types. A term
t has type h(τ̄ ) (notation t : h(τ̄ )) under a variable typing µ iff either t is a
variable X and µ(X) = h(τ̄ ) or t is of the form f(t1, . . . , tn), the type rule for
h(T̄ ) has an alternative f(τ1, . . . , τn) and, for all i, ti has type τi{T̄ /τ̄}.

Definition 3 (Well-typing). A typed program P has a well-typing if each
clause p(t1, . . . , tn)← B1, . . . , Bm ∈ P has a variable typing µ that satisfies:

1. Let p(τ1, . . . , τn) be the predicate signature of p/n. Then ti has the type τi

under the variable typing µ (1 ≤ i ≤ n).
2. For 1 ≤ j ≤ m, let Bj = q(s1, . . . , sl) and q(τ1, . . . , τl) be the predicate

signature of q/l. Then there is a type substitution θ such that, for all k, sk

has type τkθ under the variable typing µ.
2 The last condition is known as transparency and is necessary to ensure that well-

typed programs cannot go wrong [17,10].
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Example 4. Given a type definition list(T) −→ [ ]; [T | list(T)] the sig-
nature append(list(T),list(T),list(T)) gives a well-typing of the program
of Example 1. The variable typing of the first clause is {L/list(T)} and that of
the second clause is {X/T,Xs/list(T),Ys/list(T),Zs/list(T)}.

To establish the connection with set constraints (Section 2.2) we formalize the
denotation of a type. Let D : VT → 2TermΣ be a mapping from parameters to sets
of ground terms. Let h(τ̄ ) be defined by the type rule h(T̄ ) −→ f1(τ̄1); . . . ; fk(τ̄k).
Using ej to denote the jth element in a sequence ē, the denotation of h(τ̄ ) with
respect to D, written DenD(h(τ̄ )) is inductively defined as:

1. For all T ∈ VT , DenD(T ) = D(T ).
2. DenD(h(τ̄ )) = {fi(s̄) | 1 ≤ i ≤ k, sj ∈ DenD(τij {T̄ /τ̄}) for all j}.

Proposition 1. Let t[X̄] denote a term with variables X̄; µ a variable typ-
ing and D : VT → 2TermΣ a mapping from type variables to sets of ground
terms. Then t[X̄] has type h(τ̄ ) under µ iff DenD(h(τ̄ )) ⊇ {t[X̄]{X̄/s̄} | si ∈
DenD(µ(Xi))}.

2.2 Set Constraints for Well-Typings

Set Constraints and Their Solutions. Set expressions are terms constructed
from an infinite set of set variables VS and the same alphabet of functors Σ
as used for constructing terms. Given a mapping V : VS → 2TermΣ from set
variables to sets of ground terms, one can inductively define the denotation for
set expressions e with respect to V , written DenV (e), as follows:

1. For all s ∈ VS , DenV (s) = V (s).
2. DenV (f(e1, . . . , en)) = {f(s1, . . . , sn) | si ∈ DenV (ei), 1 ≤ i ≤ n}.

The set constraints that we consider are of two kinds, namely t1 = t2 where
t1, t2 ∈ VS and t1 ⊇ f(e1, . . . , en) where t1 ∈ VS and f(e1, . . . , en) is a set
expression. We call set constraints of the first kind equality constraints and those
of the second kind containment constraints.

Let S be a set of set constraints (or constraint system). A solution for S is
any mapping S : VS → 2TermΣ such that for each constraint the following holds.

1. For all t1 = t2 ∈ S, DenS(t1) = DenS(t2).
2. For all t1 ⊇ f(e1, . . . , en) ∈ S, DenS(t1) ⊇ DenS(f(e1, . . . , en)).

Solved Form and Normal Form. A constraint system S is in solved form if,
for each equality constraint t1 = t2, t1 has no other occurrences in S.

Given a constraint system, one can derive an equivalent solved form by re-
peatedly taking an equality constraint t1 = t2 where t1 has other occurrences
and substituting t1 by t2 (or alternatively, replacing the equation by t2 = t1 and
substituting t2 by t1) throughout the other constraints. Any resulting equalities
t = t are removed. As each such step reduces the number of set variables on the
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left hand side of an equality with other occurrences, and no new variables are
introduced, the process terminates and yields a solved form.

Let S be a constraint system in solved form, and let t ∈ VS be a set variable.
Then t is constrained in S if t appears on the left hand side of a constraint,
otherwise t is unconstrained in S. Note that a constrained set variable in a solved
form occurs either in the left hand side of one equality constraint or in the left
hand side of one or more containment constraints. In constructing a solution for
a constraint system S in solved form, one can freely choose a denotation for its
unconstrained variables. We denote a solution for the unconstrained variables in
S by U . Denote by S[U ] any solution of S that extends U .

Definition 4 (Minimal solution). A solution S[U ] of S is minimal with
respect to U iff for each solution S′[U ], it holds that for all set variables s,
S[U ](s) ⊆ S′[U ](s).

We often omit U when it is not relevant and denote a solution by S.

Proposition 2. Let S be a minimal solution of a constraint system S in solved
form and t a set variable constrained by containment constraints. f(s̄) ∈ DenS(t)
iff there is a containment constraint t ⊇ f(ē) such that f(s̄) ∈ DenS(f(ē)).

Definition 5 (Normal form). A constraint system is in normal form if it is
in solved form and additionally the following conditions are satisfied.

1. It does not contain two distinct containment constraints t ⊇ f(e1, . . . , en)
and t ⊇ f(e′1, . . . , e

′
n).

2. All ei in containment constraints t ⊇ f(e1, . . . , en) are set variables.

Note that 1 corresponds to the requirement that functions symbols are dis-
tinct in the right hand side of a type rule. A constraint system S can be nor-
malised by applying the following operations until a fixpoint is reached.

1. If S contains t ⊇ f(e1, . . . , en) and t ⊇ f(e′1, . . . , e′n) with e1, . . . , en, e′1, . . . , e
′
n

set variables then replace the latter by the constraints e1 = e′1, . . . , en = e′n.
2. If S contains t ⊇ f(e1, . . . , ej , . . . , en) where ej is not a set variable, then

replace it by t ⊇ f(e1, . . . , s, . . . , en) and s ⊇ ej with s a fresh set variable.
3. Apply the rules for deriving a solved form.

Proposition 3. The reduction to normal form terminates. Moreover, if S is a
constraint system and S′ is the normal form obtained by applying the procedure
above, then every solution of S′ is also a solution of S.

Given a normalised constraint system with a set variable t, we define type(t)
as a type that has the same denotation as the minimal solution of t as follows.

First, define a directed graph with the set variables as nodes. For each con-
straint t ⊇ f(s1, . . . sn) add, for all i, the arc (t, si); for each constraint t = s
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add the arc (t, s). Note that unconstrained variables have no out-arcs. For each
constrained set variable t, define params(t) to be the set of unconstrained vari-
ables reachable from t in the graph. For each unconstrained variable s define
a unique type parameter Ts. For each variable t constrained by containment
constraints, define a unique type symbol τt/n where n = |params(t)|.

Now, for each set variable t define type(t) as Tt if t is unconstrained, as
type(s) if t is constrained by an equality constraint t = s, and as τt(T1, . . . , Tn)
if t is constrained by containment constraints where T1, . . . , Tn are the type pa-
rameters corresponding to params(t) (enumerated in some order). To construct
the type rules, let t be a constrained variable, and t ⊇ f1(t̄1), . . . , t ⊇ fm(t̄m)
the containment constraints having t on the left. Then construct a type rule
type(t) −→ f1(τ̄1); . . . ; fm(τ̄m) where τ̄1, . . . , τ̄m are obtained from t̄1, . . . , t̄m by
substituting each set variable ti,j by type(ti,j).

Example 5. Consider the set variables a1, a2, a3 and the solved form a1 ⊇ [ ],
a1 ⊇ [x|a1], a3 ⊇ [x|a3], a2 = a3.

The associated directed graph is {(a1, x), (a1, a1), (a2, a3), (a3, x), (a3, a3)}
The set variable x is unconstrained; let type(x) = X. We have params(a1)
= {x} and params(a3) = {x}. We use τai

= ai, so type(a1) = a1(X) and
type(a3) = a3(X). Hence the derived type rules are a3(X) −→ [X| a3(X)]
and a1(X) −→ [ ]; [X | a1(X)]. Finally, type(a2) = a3(X) because a2 = a3.

From Proposition 2 and the way the types are derived the following propo-
sition follows immediately.

Proposition 4. Let S be a constraint system in normal form and let S[U ] be
a minimal solution. Let type(s) be as defined above and let ρ denote the type
definition derived from S. For all u ∈ domain(U) define D(type(u)) = U(u).
Then, for each set variable s it holds that DenD(type(s)) = DenS [U ](s).

3 Inference of a Well-Typing

The purpose of type inferencing is to derive a typed program, that is, a type
definition and a set of predicate signatures such that the program is well-typed.
Whereas well-typing allows the type of a call to be an instance of the declared
type, we will derive types such that they are equal. In Section 5 we outline a
method for deriving truly polymorphic well-typings. Here, the approach is to
associate a set variable with each type in the signatures of the predicates and
one with each variable in the program code and to formulate a constraint system
whose solution denotes a well typing. Then the constraint system is reduced
to normal form. According to Proposition 3, its solutions are solutions of the
original system, hence well-typings. From the normal form, the type definition is
extracted as described in Section 2.2 and the predicate signatures are obtained
by taking the types type(s) of the corresponding set variables.
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3.1 Generation of Constraints

Let P be a program. We introduce fresh set variables p1, . . . , pn for each predicate
p/n of P and a fresh set variable tx for each variable x of P 3. In concrete
examples we reuse the program variables as set variables in the constraints (that
is, tx = x), since there can be no confusion between them. The constraint system
for a program is the union of the constraint systems generated for each atom in
the program. The constraints generated from an atom p(u1, . . . , un) are:

{pj ⊇ uj | if uj is not a variable} ∪ {pj = uj | if uj is a variable}

Example 6. Consider the append/3 program of Example 1. Using the set vari-
ables ap1, ap2 and ap3 for the append/3 predicate, we obtain:

– From append([],L,L): ap1 ⊇ [ ], ap2 = L, ap3 = L.
– From append([X|Xs],Ys,[X|Zs]): ap1⊇[X|Xs], ap2 = Ys, ap3⊇[X|Zs].
– From append(Xs,Ys,Zs): ap1 = Xs, ap2 = Ys, ap3 = Zs.

A normal form of this system consists of the constraints

ap1 ⊇ [ ] ap1 ⊇ [X|ap1] ap3 ⊇ [X|ap3]

Ys = ap3 L = ap3 Xs = ap1 ap2 = ap3 Zs = ap3

As shown in Example 5, we obtain the following types and signature:

ap1(X) −→ [ ]; [X | ap1(X)] append(ap1(X),ap3(X),ap3(X))

ap3(X) −→ [X | ap3(X)]

While the type of the first argument is isomorphic to the list(T) type, that of
the second and third argument is not as the [ ] alternative is not included. Inter-
estingly, this type is accepted by Mercury [19]. It is only when append/3 is called
from elsewhere in the program as e.g. in the rev program of Example 2 that our
type inference extends the type ap3(X) with a base case. The type inference
on the rev program still results in two distinct (although equivalent) types. Al-
though we are used to a signature append(list(T),list(T),list(T)), nothing
in the code of append/3 imposes this; append(list(T),mylist(T),mylist(T))
where mylist(T) −→ mynil; [X | mylist(X)] is an equally good signature.
In fact, unless there is a call that imposes a base case, the choice of the base
case is open, so one can argue that ap3(X), a type without a base case is the
most general and the most natural one.

Theorem 1. The type signatures and the type rules derived from the normal
form of the constraints generated from a program P are a well-typing for P .

The proof follows immediately from Propositions 1, 3 and 4 (see [3]).

3 We assume program clauses do not share variables and predicates p/n and p/m with
n �= m do not occur.
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4 Implementation and Experiments

The algorithm for type inference system consists of four main stages: (i) gener-
ation of the constraints from the program text, (ii) realisation of a solved form,
(iii) normalisation and (iv) generation of the parameterised type definitions. Of
these, normalisation is the only stage whose implementation requires careful
consideration in order to be able to apply the system to larger programs.

Constraint Generation. One constraint is generated for each argument of each
atom (see Section 3.1). This is achieved in a single pass over the program.

Solved Form. Constraint generation implies that the number of constraints is
linear in the size of the program. Collecting the set of all the equalities, we
compute the set of equivalence classes such that all members of an equivalence
class are equal to each other. This can be done in time linear in the number
of equality constraints. An element of each class is selected; denote by rep(s)
the selected element of s’s class. The constraints of the solved form then consist
of (i) the set of equalities {s = rep(s) | s is different from rep(s)} and (ii) the
containment constraints with each variable s replaced by rep(s). Given a suitable
representation of the equivalence classes (see the discussion on union-find below)
the substitution can be done in time proportional to the number of containment
constraints. The resulting system is in solved form. Thus reduction to solved
form can be achieved in linear time (with respect to the size of the program).

Normal Form. Normalisation is achieved starting from the containment con-
straints of the solved form. As described in Section 2.2, normalisation causes
new constraints to be added, which can destroy solved form.

We focus on the removal of non-normal constraints t ⊇ f(s̄1), t ⊇ f(s̄2); the
other case of non-normal constraints is trivial and can be removed in one pass.
The algorithm for producing normal form is as follows, in outline.

Initialise equivalence classes, one class per variable;

while (not in normal form) {
Pick a pair of constraints t1 ⊇ f(...) and t2 ⊇ f(...),

where t1 and t2 are in the same equivalence class;

Generate the appropriate constraints to remove the violation;

Adjust equivalence classes using the generated equalities;

endwhile

The adjustment of the equivalence classes is essentially merging; when a constraint
s = t is generated we merge the equivalence classes of which s and t respectively
are members. All the containment constraints whose left-hand-sides are in the
same equivalence class are stored with the representative element of that class.
The management of the equivalence classes uses the well-known union-find algo-
rithms [21], so that the adjustment of the equivalence classes, and the location of
the representative for a given class, can be done in close to constant time.

Thus the time taken to normalise is roughly linear in the number of con-
straints generated during normalisation. This is not directly determined by the



44 M. Bruynooghe, J. Gallagher, and W. Van Humbeeck

size of the program, since it depends on the distribution of variables in the pro-
gram, the number of clauses for each predicate, and so on. However for typical
programs the number of generated constraints is roughly proportional to the size
of the program.

Conversion to parametrised type definitions. The procedure for finding the pa-
rameters involves constructing the dependency graph and finding the reachable
unconstrained variables from each constrained variable, as described in Section
3. The time required for reachability computation is proportional to the number
of normalised constraints, for each constrained variable.

In summary, each stage can be achieved efficiently in time roughly proportional
to the size of the program. In our Prolog implementation, the elements of the
equivalence classes in the union-find algorithm are stored in a balanced tree,
thus giving logarithmic-time rather than constant-time execution of the find
operation. Our experiments confirm that the running time of the type inference
is roughly O(n.log(n)) where n is the size of the program.

4.1 Inference Experiments

We applied the procedure to a range of programs from the termination analysis
literature as well as many other programs (including the implementation of the
procedure itself). The procedure shows reasonable scalability: space does not
permit a detailed table of statistics so we quote a few timings to give an impres-
sion. The largest program we attempted is the Aquarius compiler benchmark
(4,192 clauses, 19,976 generated constraints, 18,168 normalisation constraints)
for which type inference takes approximately 100 seconds on a Macintosh Power-
book G4. The Chat parser (515 clauses, 2,010 generated constraints, 1,613 nor-
malisation constraints) requires 4.5 seconds. Programs of 100 clauses or less are
analysed in fractions of a second. The software runs in Ciao or SICStus Prolog
and can be downloaded from http://www.ruc.dk/~jpg/Software/. A sample
of derived types can be found in [3].

4.2 Termination Analysis Experiments

We took a set of 45 small programs from [1] (most of them in turn are from the
experiments in [13]) which included declared types. We compared the termina-
tion conditions obtained from the inferred types with those obtained from the
declared types. We did so using the TerminWeb analyser [20]. On all examples,
the termination conditions were equivalent.

In a second experiment, we inferred regular types [6] that approximate the
success set of the program and used them for type-based termination analysis.
Regular types are not always well-typings. As TerminWeb expects well-typings,
we used the cTI termination analyser [13] for this experiment. The system is
weaker than TerminWeb and cannot prove termination for 4 of the programs.
For 3 programs, termination conditions are obtained with the well-typing but
not with the regular types. For 14 programs, the termination conditions are
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equivalent. For the remaining 24 programs, the well-typing results in stronger
termination conditions. Typically, using the regular types, some argument is
required to be ground while rigidity of some type constituent suffices when using
the well-typing.

It is interesting to compare the inferred types with the declared types. For
27 of the 45 programs the inferred type is equivalent to the declared types
in the sense that there is a simple renaming of type symbols that maps the
inferred types to the declared types. The reverse mapping is not always pos-
sible, because sometimes distinct types are inferred that are a renaming of
each other (and hence of a single declared type). Moreover, in most remain-
ing cases one can say that the inferred type is more precise in the sense that
the type allows fewer cases. Typically, a base case is missing as in the type
ap3(X) −→ [X | ap3(X)] of the third argument of append. For two programs,
der and parse, the analysis distinguishes somewhere two types whereas the
declared type has a single type that is the union of both. For the program
minimum shown in Example 9 of Section 5 there is a more substantial differ-
ence. The declared type signature is minimum(t(X),X) with type rule t(X)
−→ void; tree(X,t(X),t(X)). The code in question does not access the right
branch of the tree, hence there is no reason to infer it is a tree; the type in-
ference derives the signature minimum(t1(X,Y),X) with t1(X,Y) −→ void;
tree(X,t1(X,Y),Y). This difference is irrelevant when analysing termination.
In this case one can observe that the declared type is an instance of the inferred
type, since the denotations of t(X) and t1(X,t(X)) are the same.

This experiment suggests that the types we infer are comparable to those one
would declare. Often they are identical, and in the remaining cases, the most
frequent situation is that the solved form that corresponds to the declared types
is an extension of the solved form derived by our analysis.

5 Towards Inference of a Polymorphic Well-Typing

So far we derive a single signature for a predicate p that is valid for all its
occurrences. While we do derive parametric types, our types are not truly poly-
morphic, because we insist that the type of a call is identical to the signature
of the predicate rather than being an instance of it. When using the types for
type-based termination analysis, polymorphic types are potentially more useful
since the norms are more simple and more reuse of results is feasible [2,13]. We
develop an extension where the type of calls can be different instances of the
predicates signatures. First we illustrate the difficulty of achieving this.

Example 7. Consider the artificial program P consisting of the clause p :-
append([a],[b],M), append([M],[M],R). together with Papp, the definition
of append. The relevant part of the normal form of the constraint system gen-
erated from Papp and the extracted well-typing are respectively

ap1 ⊇ [ ] ap1 ⊇ [X|ap1] ap3 ⊇ [X|ap3] ap2 = ap3

ap1(X) −→ [ ]; [X | ap1(X)] append(ap1(X),ap3(X),ap3(X))

ap3(X) −→ [X | ap3(X)]
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The extra constraints on append coming from the p clause are ap1 ⊇ [a], ap2 ⊇
[b], ap3= M, ap1⊇ [M], ap2⊇ [M], and ap3= R. The constraints on ap1 and ap2
give rise to M = X, X ⊇ a, X ⊇ b and ap3 ⊇ [ ]. Finally, ap3 = M enforces the same
type for X and ap3; hence we obtain the signature append(ap1,ap3,ap3) with
the types ap1 −→ [ ]; [ap3 | ap1] and ap3 −→ [ ]; a; b; [ap3 | ap3].

Note that one cannot obtain types equivalent to the latter signature by in-
stantiating the type parameter of the former. Moreover, we obtain an imprecise
type for ap3 that includes a and b as alternatives because the constraints imply
that all calls to append have the same type.

Procedure for Deriving Polymorphic Types. We first introduce some con-
cepts and notations. A predicate p depends directly on a predicate q when q occurs
in the right hand side of a clause with p in the head. A set variable s depends
directly on a set variable t when t occurs in the right hand side of a constraint
with s in the left hand side. In both cases, the depends relation is the transitive
closure of the directly depends relation. With Pp, we denote the part of a pro-
gram defining predicate p and the predicates p depends on. With SP , we denote
the constraint system generated by program P . With S p̄, we denote the part of
the normal form of S that contains all constraints with on the left hand side
either one of the pi or a set variable on which one of the pi depends, i.e., the
part of the normal form needed to construct the complete type definitions of the
types type(pi). With ρi(S) we denote a renaming of S where each set variable s
is replaced by si. Finally, when using s≡ in the context of S, we mean either s
itself or a t such that s = t belongs to the normal form of S.

Now consider the partitioning of a program in two parts P and Q such that
if P has a clause with head p, then it has all clauses with as head either p
or predicates on which p depends4. Our goal is to derive a well-typing for all
predicates such that the variable typing in Q of calls to P are instances of the
(polymorphic) signatures of the predicates in P . As shown in Example 7, this
is not straightforward to achieve. For each call p(t̄) in Q to a predicate in P ,
we assume that the function id(p(t̄)) returns an index that is unique for the
call. From P we generate the constraint system SP as described in Section 3.1.
When generating SQ, calls p(t̄) to predicates in P are treated differently. Instead
of the constraints pj rel tj (with rel ∈ {=,⊇}), we generate ρid(p(t̄))(pj) rel tj
(the left hand side is renamed); moreover we add to SQ the constraint system
ρid(p(t̄))(S p̄

P ), a renaming of the constraints relevant for type(pj) (for all j). Cre-
ating a different instance for each call ensures that each call can have a distinct
well-typing. Note that SP and SQ do not share any set variables.

Next, the following operations are exhaustively applied on (the normal form
of) SP and SQ.

1. Let q be a set variable from SP with type(q) not a type parameter. If, for
some i, qi

≡ ⊇ f(t̄) ∈ SQ and there is no s̄ such that q≡ ⊇ f(s̄) ∈ SP (i.e., q
contributes to the type signature of one or more predicates in P and type(q)
has no case for functor f while type(qi) of the signature of the call with

4 More generally, one could consider a partition of strongly connected components.
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identifier i does) then add q ⊇ f(r̄) to SP with r̄ new set variables5 and, for
all j such that qj exists in Q, add ρj(q ⊇ f(r̄)) to SQ (all copies in Q are
updated).

2. Let s and t be different set variables in SP such that s depends on t or t on
s. If, for some i, si

≡ = ti≡ ∈ SQ and s≡ = t≡ /∈ SP , then add s = t to SP

and, for all j 	= i such that sj exists in Q, add ρj(s = t) to SQ. This rule
is needed because, if type(s) is different from type(t), then there is no way
—because of the dependency— that their instances can be equal.

Finally the (polymorphic) type signatures for the predicates defined in P are
extracted from SP . The extraction of the types from SQ needs a small adjust-
ment. For a predicate p defined in P , the type of its jth argument type(pi

j) is
type(pj){s1/type(si

1), . . . , sk/type(si
k)} with {s1, . . . , sk} = params(type(pj)).

Example 8. We reconsider Example 7. P consists of the append clauses. Sapp
P ;

the relevant part of the solved form is as follows:

ap1 ⊇ [ ] ap1 ⊇ [X|ap1] ap2 = ap3 ap3 ⊇ [X|ap3]

SQ consists of

ap1
1 ⊇ [ ] ap1

1 ⊇ [X1|ap1
1] ap1

2 = ap1
3 ap1

3 ⊇ [X1|ap1
3]

ap1
1 ⊇ [a] ap1

2 ⊇ [b] ap1
3 = M

ap2
1 ⊇ [ ] ap2

1 ⊇ [X2|ap2
1] ap2

2 = ap2
3 ap2

3 ⊇ [X2|ap2
3]

ap2
1 ⊇ [M] ap2

2 ⊇ [M] ap2
3 = R

The normal form is:

ap1
1 ⊇ [ ] ap1

2 = ap31 ap1
3 ⊇ [ ] X1 ⊇ a M = ap1

3

ap1
1 ⊇ [X1|ap1

1] ap1
3 ⊇ [X1|ap1

3] X1 ⊇ b

ap2
1 ⊇ [ ] ap2

2 = ap2
3 ap2

3 ⊇ [ ] X2 = ap1
3 R = ap2

3

ap2
1 ⊇ [X2|ap2

1] ap2
1 ⊇ [X2|ap2

3]

Rule 1 applies on ap3, the constraint ap3 ⊇ [ ] is added to SP (ap1
3 ⊇ [ ]

and ap2
3 ⊇ [ ] are already in SQ) and the extracted types are:

ap1(X) −→ [ ]; [X | ap1(X)] append(ap1(X),ap3(X),ap3(X))

ap3(X) −→ [ ]; [X | ap3(X)]

The signature of the first call is append(type(ap1
1),type(ap

1
2),type(ap

1
3))

which is an instance of the above; the instance of the type parameter X is given by
type(X1) which is t1 −→ a; b. Similarly, in the second call, the type parameter
is instantiated into type(X2) = type(ap1

3) which is the type ap3(t1).

Example 9. This example illustrates the need for the second rule.

minimum(tree(X, void, Y), X).

minimum(tree(U, Left, V), W) :- minimum(Left, W).

p(S,M) :- minimum(tree(a,S,S),M).

5 They are unconstrained, hence type(rk) are new type parameters in the type signa-
ture of p.
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Let P consist of the first two clauses; the solved form of SP is:

min1 ⊇ tree(X,min1,Y) min2 = X U = X W = X

min1 ⊇ void Left = min1 V = Y

This gives a signature with two parameters, namely minimum(tr(X,Y),X)
with tr(X,Y) −→ void; tree(X,tr(X,Y),Y). The solved form of SQ is

min1
1 ⊇ tree(X1,min1

1,min
1
1) min1

2 = X1 Y1 = X1 S = X1

min1
1 ⊇ void M = X1 p1 = min1

1 p2 = X1 X1 ⊇ a

This system implies the constraint Y1 = min1
1 while min1 depends on Y in

SP . Hence Y = min1 has to be added to SP . For min1, this gives the constraints
min1 ⊇ tree(X,min1,min1) and min1 ⊇ void hence we obtain the signature
minimum(tr(X),X)with tr(X) −→ void; tree(X,tr(X),tr(X)). For p/2 the
signature is p(tr(t),t) with t −→ a.

6 Related Work

We can contrast this work to previous work on inferring types for logic programs
in which a regular approximation of the success set (minimal Herbrand model) of
a program is computed [16,25,5,11,6,22]. We derive a well-typing, which may or
may not be a safe approximation of the success set. As a result our approach is
not based directly on abstract interpretation, and the inference algorithm has a
different structure, based on solving constraints rather than computing a fixpoint.

Our procedure resembles in some ways the set constraint approximations of
logic programsdeveloped by Heintze and Jaffar [9], as well as earlier work on deriv-
ing regular types from functional programs [18,12].Wealso generate set constraints
and solve them, but again, our constraints do not represent an over-approximation
of the success set in contrast to the cited works. Because we aim at well-typing in-
stead of approximating the success set, our set constraints are much simpler than
those ofHeintze andJaffar. In particular there areno intersections in our set expres-
sions, and this allows an efficient solution procedure. Marlow and Wadler [15] de-
scribe the automatic derivationof types forErlangusinga similar approach, namely
the generation of set constraints capturing the well-typing requirements followed
by a constraint solving procedure. Their type system is somewhat more expressive
than ours, including a limited form of type complement, and the constraints gen-
erated require a more complex solution procedure. However their approach yields
truly polymorphic types such that the calls are subtypes of the type signature, and
thus their constraint solutions methods could be applicable in our future work in
extending Section 5. Christiansen [4] also describes a method of generating type
declarations that give a well-typing, using a constraint-solving approach, but his
method requires some given types.

Finally we note that unlike classical type inference for ML and other typed
languages, we assume no basic types. In part of [14], the authors describe (poly-
morphic) type reconstruction for logic programs: given a set of types and a type
for each functor, they derive types for the predicates and the variables of the
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program. It is noteworthy that they point out that it has been shown that the
problem is undecidable unless the type of body occurrences of a recursive poly-
morphic predicate is identical to the type of the predicate (we impose this too).
The main difference with our approach is that we do not provide any type defini-
tions in advance but construct new definitions during the analysis. We share the
latter property with the work in [25]; however, to our understanding, the authors
do not infer parametric types - type variables are merely names for types that
are defined by their own type rules - and their types are less precise than ours,
since they are success set approximations.

7 Conclusion

We have presented a method for automatically deriving polymorphic well-typings
for logic programs, along with its implementation and the results of some experi-
ments. Distinguishing features of our approach are: (1) No types are assumed, the
analysis constructs its own types; (2) recursive calls to a predicate are assumed
to have the same type as the original call to the predicate; (3) set constraints
impose only conditions for well-typing, not conditions for approximating the suc-
cess set; (4) the same function symbol can be used in different type rules, i.e.,
a function symbol can have several type signatures. The experiments show that
the inferred types are useful for termination analysis; indeed we may claim to
have solved the problem of type inference for deriving norms, since we could not
find any example where a user-declared type gave better termination conditions
than our automatically derived types.

Future work will focus on two aspects. Firstly, we will develop the approach to
polymorphism described in Section 5. Secondly we will investigate to what extent
the inferred types could be used for error detection. As the procedure derives a
well-typing for every program, it may seem that the possibilities are limited, but
there are clear caseswhen the call constraints for a predicate are not consistentwith
any intended solution of the constraints derived from the predicate definition, and
in such cases an error is indicated. For example, any call to append in which the
first argument contains a function other than [] or [.|.] is erroneous. The exact
conditions for such errors are the subject of future research.
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