
Roskilde
University

Techniques for Scaling Up Analyses Based on Pre-interpretations

Gallagher, John Patrick; Henriksen, Kim Steen; Banda, Gourinath

Published in:
Logic Programming, 21st International Conference

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Gallagher, J. P., Henriksen, K. S., & Banda, G. (2005). Techniques for Scaling Up Analyses Based on Pre-
interpretations. In M. Gabbrielli, & G. Gupta (Eds.), Logic Programming, 21st International Conference (pp. 280-
296). Springer. Lecture Notes in Computer Science Vol. 3668

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 27. Mar. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Roskilde Universitet

https://core.ac.uk/display/388932082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Techniques for Scaling Up Analyses Based
on Pre-interpretations�

John P. Gallagher��, Kim S. Henriksen, and Gourinath Banda

Computer Science, Building 42.1, P.O. Box 260,
Roskilde University, DK-4000, Denmark

{jpg, kimsh, gnbanda}@ruc.dk

Abstract. Any finite tree automaton (or regular type) can be used to
construct an abstract interpretation of a logic program, by first deter-
minising and completing the automaton to get a pre-interpretation of
the language of the program. This has been shown to be a flexible and
practical approach to building a variety of analyses, both generic (such
as mode analysis) and program-specific (with respect to a type describ-
ing some particular property of interest). Previous work demonstrated
the approach using pre-interpretations over small domains. In this pa-
per we present techniques that allow the method to be applied to more
complex pre-interpretations and larger programs. There are two main
techniques presented: the first is a novel algorithm for determinising fi-
nite tree automata, yielding a compact “product” form of the transitions
of the result automaton, that is often orders of magnitude smaller than an
explicit representation of the automaton. Secondly, it is shown how this
form (which is a representation of a pre-interpretation) can then be input
directly to a BDD-based analyser of Datalog programs. We demonstrate
through experiments that much more complex analyses become feasible.

1 Introduction and Motivation

In this paper we investigate the question of the scalability of logic program analy-
ses based on pre-interpretations. This question is raised since pre-interpretations
provide a general and flexible approach to specifying a variety of analyses, com-
bining modes, types and other program specific properties. However, previous
experiments [1,2,3] were limited to domains containing not more than four or
five elements; furthermore for larger programs (especially those with predicates
of high arity) experiments were restricted to even smaller domains. We discuss
the reasons for this below. It was mentioned in earlier work that efficient repre-
sentations of relations would be crucial to scalability.

An arbitrary regular type can be used to construct a pre-interpretation [2].
This contributes to the ease of specifying pre-interpretations, but adds another
dimension to the complexity problem. A pre-interpretation can be orders of
� Work partially supported by European Framework 5 Project ASAP (IST-2001-

38059).
�� Partially supported by the CONTROL project funded by the Danish Natural Science

Research Council, and the IT University of Copenhagen.

M. Gabbrielli and G. Gupta (Eds.): ICLP 2005, LNCS 3668, pp. 280–296, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Techniques for Scaling Up Analyses Based on Pre-interpretations 281

magnitude larger than the regular type from which it is derived, when repre-
sented naively. This raises the question of whether the flexibility of this approach
can be exploited for more complex analyses.

To summarise our conclusions, we show promising results for both aspects of
the scalability problem. We give a new determinisation algorithm for finite tree
automata, which returns the determinised automaton in a compact form. We
then show how this compact form can be used directly in a BDD-based analyser
for Datalog programs.

2 Preliminaries

In this section we recall those concepts pertaining to pre-interpretations and
finite tree automata that concern us. We assume familiarity with standard logical
concepts such as interpretation, satisfiable and model [4].

Pre-interpretations. Let P be a definite program and Σ the signature of its
underlying language L; Σ is a set of ranked function and predicate symbols. A
pre-interpretation of L consists of

1. a non-empty domain of interpretation D;
2. an assignment of an n-ary function Dn → D to each n-ary function symbol

in Σ (n ≥ 0).

A domain atom for a pre-interpretation J having domain D is an expression
p(d1, . . . , dn) where p is an n-ary predicate symbol in Σ and d1, . . . , dn are el-
ements of D. Let BJ

P be the set of domain atoms for pre-interpretation J and
the signature of the language associated with program P . A model of a definite
program P , based on pre-interpretation J , is some subset of BJ

P which satisfies
P . A definite program has a least model for a given pre-interpretation. In partic-
ular, the least model for the Herbrand pre-interpretation is the usual declarative
semantics of definite logic programs. The least model for a pre-interpretation J
can be computed as the least fixpoint of a function T J

P : BJ
P → BJ

P .
A pre-interpretation assigns a domain element to each ground term in

Term(Σ), its denotation. Let fJ : Dn → D be the function assigned to the
n-ary function f by the pre-interpretation J . Then the denotation DenJ(t) of a
term t ∈ Term(Σ) is defined as DenJ(f(t1, . . . , tn)) = fJ(Den(t1), . . . , Den(tn))
(n > 0), and DenJ (t) = fJ(t) if t is a 0-ary function symbol.

Pre-interpretations and term properties. The domain elements of a pre-
interpretation J define term properties. A domain element d corresponds to
a term property p where for all terms t, p(t) holds if and only if DenJ(t) = d.
Note that the properties defined by the elements of a pre-interpretation are dis-
joint and complete; each term has exactly one of the properties since it denotes
exactly one domain element.

Abstract interpretation based on pre-interpretations. Static analysis of definite
logic programs using (finite) pre-interpretations was set out in [5,6] and [1]. Ear-
lier related ideas, not mentioning pre-interpretations, were developed by Corsini

282 J.P. Gallagher, K.S. Henriksen, and G. Banda

et al. [7] and by Codish and Demoen [8]. We briefly summarise the approach;
analysis consists of the construction of a pre-interpretation capturing some prop-
erty of interest, followed by the computation of the least model with respect to
that pre-interpretation. The implementation method is in three stages; let P be
a program and J a pre-interpretation.

1. Represent J as a set of facts of the form f(d1, . . . , dn) → d, such that
fJ(d1, . . . , dn) = d, where fJ is the function assigned to f .

2. Transform P , introducing equalities until every non-variable appears in the
left-hand-side of an equality, and no nested functions occur.

3. Convert to an abstract domain program by interpreting the introduced equal-
ities as the pre-interpretation function. In practice this just means replacing
the = symbol by →.

The stages of transformation are illustrated for a single clause below.

rev([X|Xs],Zs) :- rev(Xs,Ys), append(Ys,[X],Zs).
rev(U,Zs) :- rev(Xs,Ys), append(Ys,V,Zs), [X|Xs]=U, [X|W]=V, []=W.
rev(U,Zs) :- rev(Xs,Ys), append(Ys,V,Zs), [X|Xs]→U, [X|W]→V, []→W.

To continue the example, the pre-interpretation capturing the properties
ground (g) and non-ground (ng) is given by the following facts defining the
relation →: {[] → g, [g|g] → g, [g|ng] → ng, [ng|g] → ng, [ng|ng] → ng}. The
least model of the transformed program together with the facts defining the
pre-interpretation is then computed.

Analysis based on pre-interpretations can be presented as an abstract in-
terpretation [9]. The abstract domain 2BJ

P is relational, capturing dependencies
among arguments of a predicate, and condensing, implying that a bottom-up,
goal-independent analysis yields results that lose no information with respect to
goal-dependent analyses.

From regular types to pre-interpretations. In [2] it was shown that any term prop-
erties expressible by regular types could be transformed to a pre-interpretation,
even if the properties were not disjoint. The process of constructing the pre-
interpretation uses the algorithm for determinising a finite tree automaton. This
means that one can start from term properties and build a pre-interpretation
capturing those properties. More specifically, the pre-interpretation captures a
set of disjoint properties derived from the original properties; for instance, given
properties p1, p2 and p3, the pre-interpretation might for example have domain
elements corresponding to p1 ∧ p3, p2 ∧ p3, where these two properties were
disjoint.

Determinisation of Finite Tree Automata. A finite tree automaton (FTA) is
defined as a quadruple 〈Q, Qf , Σ, ∆〉, where Q is a finite set called states, Qf ⊆ Q
is called the set of accepting (or final) states, Σ is a set of ranked function symbols
and ∆ is a set of transitions. Each element of ∆ is of the form f(q1, . . . , qn) → q,
where f ∈ Σ and q, q1, . . . , qn ∈ Q. We write fn to indicate that function symbol
f has arity n. and we often write the term f0() as f and call f a constant. TermΣ

is the set of ground terms (or trees) constructed from Σ in the usual way.

Techniques for Scaling Up Analyses Based on Pre-interpretations 283

An FTA can be “run” on terms in TermΣ ; the details are omitted here,
except to say that a successful run of a term and an FTA is one in which the
term is accepted by one of the final states the FTA. Implicitly, a tree automaton
R defines a set of terms, that is, a tree language, denoted L(R), as the set of all
terms that it accepts.

As far as expressiveness is concerned we can limit our attention to FTAs in
which the set of transitions ∆ contains no two transitions with the same left-
hand-side. These are called bottom-up deterministic finite tree automata (DF-
TAs). For every FTA R there exists a bottom-up deterministic FTA R′ such that
L(R) = L(R′). A term can be accepted by at most one final state of a DFTA.

An automaton R = 〈Q, Qf , Σ, ∆〉 is called complete if for all n-ary functions
f ∈ Σ and states q1, . . . , qn ∈ Q, f(q1, . . . , qn) → q ∈ ∆.

A complete DFTA in which every state is an accepting state partitions the
set of terms into disjoint subsets, one for each state, since every term is accepted
by exactly one state.

Example 1. Let Σ = {[]0, [|]2, 00}, and let Q = {list, listlist, any}. We define
the set ∆any , for a given Σ, to be the following set of transitions.

{f(
n times

︷ ︸︸ ︷

any, . . . , any) → any |fn ∈ Σ}

Let Qf = {list, listlist}, ∆ = {[] → list, [any|list] → list, [] → listlist,
[list|listlist] → listlist} ∪ ∆any. The state (or regular type) list accepts terms
in the set of lists of any terms, while the state listlist accepts terms in the set
of lists whose elements are themselves lists. Clearly listlist is contained in list,
which is contained in any.

The automaton is not bottom-up deterministic; a determinisation algorithm
yields the DFTA 〈Q′, Q′

f , Σ, ∆′〉, where Q′ = {q1, q2, q3}, Q′
f = {q1, q2} and

∆′ = {[] → q1, [q1|q1] → q1, [q2|q1] → q1, [q1|q2] → q2, [q2|q2] → q2, [q3|q2] →
q2, [q3|q1] → q2, [q2|q3] → q3, [q1|q3] → q3, [q3|q3] → q3, 0 → q3}. q1 corresponds

any

listlist

list

q1 = any list listlist

q2 = (any list) - listlist

q3 = any - (list listlist)

Fig. 1. The original types and the disjoint types from Example 1

284 J.P. Gallagher, K.S. Henriksen, and G. Banda

to the set any ∩ list ∩ listlist, q2 to the set (list ∩ any) − listlist, and q3 to
any−(list∪listlist). Thus q1, q2 and q3 accept disjoint sets of terms. The original
regular types and the disjoint types are shown in Figure 1. This automaton is also
complete. In fact, any DFTA obtained from an FTA whose transitions include
∆any (for the appropriate signature) is complete.
�

3 An Algorithm for Determinisation

Product representation sets of transitions. The determinisation algorithm de-
scribed below generates an automaton whose transitions are represented in
product form, as described below, which is a more compact form and leads
to a correspondingly more efficient determinisation algorithm. The main dif-
ference from the textbook algorithm is the form of the output, and in the
explicit use of indices for efficient searching of the set of transitions. A prod-
uct transition is of the form f(Q1, . . . , Qn) → q where Q1, . . . , Qn are sets of
states and q is a state. This product transition denotes the set of transitions
{f(q1, . . . , qn) → q | q1 ∈ Q1, . . . , qn ∈ Qn}. Thus

∏

i=1...n |Qi| transitions are
represented by a single product transition.

Example 2. The transitions of the DFTA generated in Example 1 can be repre-
sented in product transition form as follows. ∆′ = {[] → q1, 0 → q3, [{q1, q2, q3}|
{q3}] → q3, [{q1, q2}|{q2}] → q2, [{q1, q2, q3}|{q1}] → q1, [{q3}|{q2}] → q2}. Thus
4 product transitions replace the 9 transitions for [|]2 shown in Example 1.
There are other equivalent sets of product transitions, for example, ∆′ = {0 →
q3, [{q1, q2}|{q3}] → q3, [{q3}|{q3}] → q3, [{q1, q2}|{q2}] → q2, [{q3}|{q2}] →
q2[{q1, q2}|{q1}] → q1, [{q3}|{q1}] → q1, [] → q1}.

3.1 A Determinisation Algorithm Generating Product Form

The algorithm developed in this section was based initially on the classical text-
book algorithm [10]. It differs firstly by introducing an index structure to avoid
traversing the complete set of transitions in each iteration of the algorithm, and
secondly by noting that the algorithm only needs to compute explicitly the set of
states of the determinised automaton. The set of transitions can be represented
implicitly in the algorithm and generated later if required from the determinised
states and the implicit form. However, in our approach the implicit form is
close to product transition form and we will use this form directly. Hence, we
never need to compute the full set of transitions and this is a major saving of
computation. Let 〈Q, Qf , Σ, ∆〉 be an FTA. Consider the following functions.

– qmap∆ : (Q × Σ × N) → 2∆

qmap∆(q, fn, j) = {f(q1, . . . , qn) → q0 ∈ ∆ | q = qj} for 1 ≤ j ≤ n.
– Qmap∆ : (2Q × Σ × N) → 2∆

Qmap∆(Q′, fn, j) =
⋃

{qmap∆(q, fn, j) | q ∈ Q′}.
– states∆ : 2∆ → 2Q

states∆(∆′) = {q0 | f(q1, . . . , qn) → q0 ∈ ∆′}.

Techniques for Scaling Up Analyses Based on Pre-interpretations 285

– fmap∆ : Σ × N × 22Q → 22∆

fmap∆(fn, j, D) = {Qmap∆(Q′, fn, j) | Q′ ∈ D} \ ∅, for 1 ≤ j ≤ n.
– C : 2Q

C = {{q | f0 → q ∈ ∆} | f0 ∈ Σ}
– F∆ : 22Q → 22Q

F∆(D′) = C ∪ {states∆(∆1 ∩ · · · ∩ ∆n) | fn ∈ Σ,
∆1 ∈ fmap∆(fn, 1, D′),
. . . ,
∆n ∈ fmap∆(fn, n, D′)} \ ∅

The subscript ∆ is omitted in the context of some fixed FTA. The function
qmap∆ is an index on ∆, recording the set of transitions that contain a given
state q at a given position in its left-hand-side. Qmap∆ is the same index lifted
to sets of states.

The algorithm finds the least set D ∈ 22Q

such that D = F(D). The set D is
computed by a fixpoint iteration as follows.

initialise i = 0; D0 = ∅
repeat Di+1 = F(Di); i = i + 1 until Di = Di−1

It can be shown that the sequence D0, D1, D2, . . . increases monotonically (with
respect to the subset ordering on 22Q

) and clearly there exists some i such that
Di−1 = Di since Q is finite.

Example 3. Consider the following regular types (FTA transitions), in which
each transition has been labelled to identify it conveniently. We have Q =
{any, list} and ∆ = {t1, . . . , t5}.

t1 : [] → list t3 : [] → any
t2 : [any|list] → list t4 : [any|any] → any

t5 : f(any, any) → any

The qmap function is as follows:

qmap(list, cons, 1)=∅ qmap(list, cons, 2)={t2} qmap(list, f, 1)=∅
qmap(list, f, 2)=∅ qmap(any, cons, 1)={t2, t4} qmap(any, cons, 2)= v{t4}
qmap(any, f, 1)={t5} qmap(any, f, 2)={t5}

There is only one constant, [], and C = {{any, list}}. Initialise D0 = ∅; the
iterations of the algorithm produce the following values.

1. D1 = {{any, list}}
2. D2 = {{any, list}, {any}}
3. D2 = D3
�

The determinised automaton can be constructed from the fixpoint D and Qmap.
The set of states Q is D itself. The set of final states Qf is {Q′ | Q′ ∈ Q,
Q′ ∩ Qf �= ∅}. The set of transitions is

{f(Q1, . . . , Qn) → states(Qmap(Q1, f, 1) ∩ · · · ∩ Qmap(Qn, f, n)) |
fn ∈ Σ, Q1 ∈ Q, . . . , Qn ∈ Q}

286 J.P. Gallagher, K.S. Henriksen, and G. Banda

The transition for each constant f0 is f0 → {q | f0 → q ∈ ∆}. Continuing
Example 3, we obtain

[] → {any, list}
[{any}|{any, list}]→ states(Qmap({any}, cons, 1)∩Qmap({any, list}, cons, 2))

→ states({t2, t4} ∩ {t2, t4})
→ {any, list}

[{any} | {any}] → states(Qmap({any}, cons, 1) ∩ Qmap({any}, cons, 2))
→ states({t2, t4} ∩ {t4})
→ {any}

f({any}, {any}) → states(Qmap({any}, f, 1) ∩ Qmap({any}, f, 2))
→ states({t5} ∩ {t5})
→ {any}

and so on.

There are nine transitions in this small example. As we will see we can also
obtain a more compact representation as a set of product transitions.

Implementation of the Algorithm. The function qmap is computed once at the
start of the algorithm in time O(|∆|), and it can be stored as a hash-table,
which allows the computation of qmap(q, f, j) in constant time. The value of
Qmap(Q′, f, j) can thus be computed in O(|Q|). states(∆′) can be computed in
O(|∆|) after construction of a suitable index to the transitions.

The function fmap is maintained as a table, called ftable. As described above,
the algorithm computes a sequence ∅, F(∅), F2(∅), . . . , where Di = Fi(∅). Let
Di and Di+1 be successive values of the sequence. At the i + 1th stage of the
algorithm values of the form fmap(f, j, Di+1) are computed for each f and j. We
use the property that fmap(f, j, Di+1) = fmap(f, j, Di) ∪ fmap(f, j, (Di+1 \ Di)).
The table entry ftable(fn, j) holds the values of fmap(f, j, Di) on the ith iteration
of the algorithm. Hence on the next iteration only the new values of fmap, that
is, fmap(f, j, (Di+1 \ Di)), need to be added to ftable(f, j).

The evaluation of the function F can also be optimised taking into account
the newly computed values of fmap. Assuming the existence of the ftable, define
a function F′ as

F′(Dnew) = {states(∆1 ∩ · · · ∩ ∆n) | fn ∈ Σ,
∆1 ∈ ftable(fn, 1),
. . . ,
∆j ∈ fmap(fn, j, Dnew),
. . . ,
∆n ∈ ftable(fn, n),
1 ≤ j ≤ n} \ ∅

Thus for each tuple ∆1, . . . , ∆n, at least one component of the tuple must be
chosen from Dnew , ensuring that each tuple ∆1, . . . , ∆n needs to be considered
only once for each fn during the execution of the algorithm. After performing
these optimisations the algorithm can be summarised as follows.

Techniques for Scaling Up Analyses Based on Pre-interpretations 287

D = C; Dnew = D;
for fn ∈ Σ

for j = 1 to n
ftable(fn, j) = ∅

endfor
endfor
repeat

Dold = D;
for fn ∈ Σ
for j = 1 to n

ftable(fn, j) = ftable(fn, j) ∪ fmap(fn, j, Dnew)
endfor

endfor
D = D ∪ F′(Dnew);
Dnew = D \ Dold

until Dnew = ∅

Complexity. For each fn ∈ Σ, the computation time is dominated by the number
of tuples Q1, . . . , Qn that have to be considered during the computation of F.
This is

∏

i=1...n |fmap(f, i, D)|. The maximum size of |fmap(f, i, D)| is the number
of possible right-hand-sides in the determinised transitions for a f , say kf . This
is 2Q in the worst case, but in practice it is often much smaller. The number
of tuples is in fact closely related to the set of product transitions generated as
follows. As can be seen from Figure 2, this is usually much smaller than the set
of transitions in the DFTA.

Let fn ∈ Σ and let D be the set of sets of states computed as the fixpoint
in the algorithm. Then the set of product transitions for fn (n > 0) is

{f(fmap−1(∆1, f
n, 1), . . . , fmap−1(∆n, fn, n)) → states(∆1 ∩ · · · ∩ ∆n) |

∆1 ∈ fmap(fn, 1, D), . . . , ∆n ∈ fmap(fn, n, D)}

where fmap−1(∆′, fn, i)={Q′ | Qmap(Q′, fn, i)=∆′, Q′ ∈D}. fmap−1(∆′, fn, i)
can be computed and stored during the evaluation of fmap(fn, i, D). For the
example above, the final values of the fmap function are

fmap(cons, 1, D) = {{t2, t4}} fmap(cons, 2, D) = {{t2, t4}, {t4}}
fmap(f, 1, D) = {{t5}} fmap(f, 2, D) = {{t5}}

The values of fmap−1 are:

fmap−1({t2, t4}, cons, 1)={{any, list}, {list}} fmap−1({t2, t4}, cons, 2)={{any, list}}
fmap−1({t4}, cons, 2)={{any}} fmap−1({t5}, f, 1)={{any, list}, {list}}

From these values we obtain the following product transitions (including the
transition for the constant []).

[{{any}, {any, list}}|{{any, list}}] → {any, list}
[{{any}, {any, list}}|{{any}}] → {any}
f({{any}, {any, list}}, {{any}, {any, list}}) → {any}
[] → {any, list}

288 J.P. Gallagher, K.S. Henriksen, and G. Banda

The two states {any} and {any, list} denote non-lists and lists respectively. The
determinised automaton is a pre-interpretation over this two-element domain. In
general, a state {q1, . . . , qk} in a determinised automaton represents those terms
in the intersection of the original states q1, . . . , qk, and not in any other state.
Thus {any} always stands for terms that are of type any that are not of some
other type.

4 Computing Models of Datalog Programs

The essential task in performing an analysis using pre-interpretations is to com-
pute the minimal Herbrand model of a (definite) Datalog program [11]. A definite
Datalog program is a set of Horn clauses containing no function symbols with
arity greater than zero. The Herbrand models of such programs are finite. In the
abstract domain programs defined in Section 2, a pre-interpretation was repre-
sented by a set of facts (unit clauses) of the form (f(d1, . . . , dn) → d) ← true.
Although there are function symbols occuring in such facts, we can easily repre-
sent the facts using a separate predicate for each function symbol; say pref is the
relation corresponding to f . Then all atoms of form f(d1, . . . , dn) → d would be
represented as the function-free atom pref (d1, . . . , dn, d) instead. Since function
symbols occur nowhere else in the abstract domain program, we are left with a
Datalog program.

Efficient techniques for computing Datalog models have been studied exten-
sively in research on deductive database systems [11], and indeed, many tech-
niques (especially algorithms for computing joins) from the field of relational
databases are also relevant. In the logic programming context, facts containing
variables are also allowed; tabulation and subsumption techniques have been
applied in a Datalog model evaluation system for program analysis [12].

The analysis method based on pre-interpretations is of course independent
of which technique is used for computing the model of the Datalog program.
Having transformed the analysis task to that of computing a Datalog program
model, we are free to choose the best method available. We do not give a detailed
account of the various techniques here, but remark only that current techniques
allow very large Datalog programs to be handled [13].

Our previous experiments [2] used a Prolog implementation, which though it
incorporated many optimisations such as computing SCCs and the semi-naive
strategy, did not scale well in certain dimensions. In particular, programs con-
taining predicates of high arity (such as the Aquarius compiler benchmark, which
has some predicates with arity greater than 25) could not be analysed for do-
mains with size greater than three. The number of possible tuples of arity n with
a domain of size m is mn, so this limitation is almost certain to apply to any
tuple-based representation. It was pointed out in [2] that improved representa-
tions of finite relations was a key factor in scaling up to larger domains.

Computing Datalog models using BDDs. Our current work uses the BDD-based
solver bddbddb developed by Whaley [14]. This tool computes the model of
a Datalog program, and provides facilities for querying Datalog programs. It

Techniques for Scaling Up Analyses Based on Pre-interpretations 289

is written in Java and can link to established BDD libraries using the Java
Native Interface (JNI). Our experiments were conducted using bddbddb linked
to the BuDDy package [15]. We wrote a front end to translate our abstract logic
programs and pre-interpretations into the form required by bddbddb.

The possibility of using Boolean functions to represent finite relations1 was
exploited in model-checking [16]. Assume that a relation over Dn is to be rep-
resented, where D contains m elements. Then we code the m elements using
k = �log2(m)� bits and introduce n.k Boolean variables x1,1, . . . , x1,k, x2,1, . . . ,
xn,1, . . . , xn,k. A tuple in the relation is then a conjunction x1,1 =b1,1∧. . .∧, xn,k =
bn,k where bi,1 · · · bi,k is the encoding of the ith component of the tuple. A finite
relation is thus a disjunction of such conjunctions. BDDs allow very large rela-
tions, translated in this way into Boolean formulas, to be represented compactly
(though variable ordering is critical, and there are some relations that admit no
compact representation).

In a BDD-based evaluation of a Datalog program, the solution of each pred-
icate is thus represented as a Boolean formula (in BDD form) and the relational
operations required to compute the model can be translated into operations on
BDDs. For example, if we are solving the conjunction p(A, B), q(B, C) we take
the Boolean formulas representing the current solutions of p and q, say Fp and
Fq and build a new BDD representing the formula Fp ∧ Fq ∧ x2,1 = y1,1 ∧ . . . ∧
x2,k = y1,k where x1,1, . . . , x1,k, x2,1, . . . , x2,k and y1,1, . . . , y1,k, y2,1, . . . , y2,k are
the Boolean variables representing the respective arguments of p and q.

Representing and manipulating Boolean formulas is a very active research
field and there are other techniques besides BDDs that are competitive. In logic-
program analyses, multi-headed clauses have demonstrated good performance
when compared to BDDs, for example [17].

5 From Product Representations to Datalog

The determinisation algorithm in Section 3 returns transitions in product form.
Though this saves computation, we still need to represent the product form
as a Datalog program, so that we can exploit techniques such as BDD-based
evaluation of the model.

Consider a product transition f({a, b}, {c, d, e}) → q. As before, we can in-
troduce a predicate for each function to replace the arrow relation, obtaining
pref ({a, b}, {c, d, e}, q). To represent this as a clause we could write the following.

pref (X, Y, q) ← member(X, [a, b]), member(Y, [c, d, e]).

To convert to Datalog we need only introduce a specialised member predicate
for each set that occurs as an argument in a product transition. In the above
case we obtain:

1 We are indebted to Peter Stuckey for drawing our attention to the fact that BDD-
based approaches could be applied to arbitrary Datalog programs.

290 J.P. Gallagher, K.S. Henriksen, and G. Banda

pref (X, Y, q) ← m1(X), m2(Y). m2(c) ← true.
m1(a) ← true. m2(d) ← true.
m1(b) ← true. m2(e) ← true.

As a further optimisation, if some product transition has for some argument a
set containing all of the determinised states, we may simply replace that argu-
ment by an anonymous variable (a “don’t care” argument). Also, singleton sets
{q} can be replaced by q instead of introducing a deterministic member call.
For the transitions produced from Example 3, the set of determinised states was
{{any}, {any, list}}. (We can write these states as constants q1, q2 respectively).
The product transitions are

[{q1, q2}|{q2}] → q2
[{q1, q2}|{q1}] → q1
f({q1, q2}, {q1, q2}) → q1
[] → q2

The Datalog program is thus

precons(, q2, q2) ← true.
precons(, q1, q1) ← true.
pref (, , q1) ← true.
prenil(q2) ← true.

Introduction of don’t care arguments is certainly important for tuple-based rep-
resentations but probably not for BDD-based approaches. In any case it does no
harm in the latter case.

6 Experiments

We now summarise the analysis procedure. The procedure takes two inputs: a
program P to be analysed and a set of regular type definitions R expressing
term properties of interest. The procedure then follows these steps.

1. Augment the types with a standard type any over the signature of the pro-
gram, and determinise yielding transitions Rd in product form.

2. Transform P to an abstract domain program Pa (using flattened predicates
pref to denote the pre-interpretation of function f as explained in the pre-
vious section).

3. Transform Rd to a suitable Datalog representation Rdat, again using the
pref representation, together with the specialised member predicates for
the product transitions (and optionally introduce don’t care arguments).

4. Transform Pa ∪ Rdat to the syntax required by bddbddb and compute its
least model.

bddbddb provides facilities for querying specific predicates rather than computing
the whole model, which may be more useful in certain applications, especially

Techniques for Scaling Up Analyses Based on Pre-interpretations 291

those where we are simply interested in whether a predicate has any solution
at all. However, we simply computed the whole model in the experiments. All
the experiments were carried out using a machine equipped with a Pentium
IV 2.8GHz processor with Hyper Threading enabled, 512MB RAM, with Linux
installed. The determinisation algorithm is implemented in Ciao-Prolog, and the
bddbddb tool is implemented in Java, with a JNI interface to the BuDDy BDD
package, which is implemented in C.

Experiments on determinisation. Figure 2 shows a few experimental results just
illustrating the effect of the determinisation algorithm. For each input FTA, the
table shows the number of states Q and transitions ∆, followed by the number
of states in the output DFTA, Qd. Three measures of the set of transitions are
shown. First the total number of transitions ∆d, followed by the size of the set of
product transitions generated by the algorithm ∆∏ . Thirdly we show the size of
another set of product transitions ∆dc that is generated by locating “don’t care”
arguments. The final column is the time in seconds to compute the product form
∆dc (which is almost identical to the time to compute ∆∏).

The most important observation is the significant reduction in size of ∆∏

and ∆dc compared to ∆d. Note also that the set of states in the DFTA can
actually be less than the set of states in the input FTA, as in the dnf example.
This is because, as is typical in automatically generated FTAs, there are many
equivalent states in the input, and this redundancy is removed in the DFTA.

FTA DFTA
Name Q ∆ Qd ∆d ∆∏ ∆dc secs
chr 21 64 57 118837 242 86 0.09
dnf 105 803 46 6567 168 141 0.57
mat1 6 10 6 39 8 8 0.01
mat2 3 8 3 12 9 7 0.01
ring 5 12 5 30 14 11 0.01
pic 8 270 8 4989 274 280 0.15

Fig. 2. Determinisation results

The input FTAs are chr, a set of regular types for analysing a CHR transition
system; dnf, the regular type inferred automatically by the abstract interpreta-
tion over DFTAs described in [18]; mat1, a set of types for an off-line binding
time analysis of a matrix transposition program; mat2, the regular types from
Example 1 augmented by two extra function symbols; ring, the regular types
describing states in the token-ring analysis problem [2]; and pic, a set of regu-
lar types expressing properties of a PIC processor emulator. We were unable to
determinise the chr, dnf or pic examples using an available toolkit for handling
tree automata, Timbuk2 [19].
2 The author of Timbuk confirmed that the implementation followed the textbook

algorithm and no special effort to optimise it had been made.

292 J.P. Gallagher, K.S. Henriksen, and G. Banda

Experiments on model computation. We now describe some experiments with
analyses that use both determinisation and model computation.

We performed three general kinds of experiment. Firstly, we analysed two
larger standard benchmarks using general-purpose domains including ground-
ness, and list types. The results shown are for the Aquarius compiler and the
Chat parser. One domain (dom1) has four elements (ground-lists, non-ground-
lists, ground-non-lists, non-ground-non-lists) but this is more complex than the
two-element domains (such as Pos [20]) reported previously for analysis of these
programs [21,17]. Another (dom2) includes a fifth element (variable) as well as
the ones mentioned above (and therefore the binary encoding requires three bits
per element). This caused a much more complex analysis for the Aquarius com-
piler (see Figure 3). Secondly, we took an example of automatically generated
regular types from a program (dnf) using the type inference system described in
[18] and re-analysed the program with a pre-interpretation based on those types
dnftype. The point of doing this is that further precision can be gained, since
the type inference analysis is not relational, but derives an independent type for
each variable of the program. Using analysis with a pre-interpretation, depen-
dencies among the arguments can be derived. Thirdly, we analysed a program
using some program-specific types colours written by the user. The purpose is
to check that required properties hold. In our case the program analysed is a
Coloured Petri Net emulator, implemented in Prolog, for the task scheduler of
an operating system kernel for real-time embedded systems [22]. The user types
describe the types (colours) of the tokens in the net.

None of these examples could be handled by our previous analyser employ-
ing a tuple-representation of the least model. In the case of the larger pre-
interpretations, the results show that the product representation allows pre-
interpretations that would have enormous numbers of transitions if written out
in full.

For each experiment in Figure 3, the following information is reported: the
name of the program (Prog) and the number of clauses it contains (Clauses); the
name of the pre-interpretation (Domain); the number of states in the original
FTA (Q); the number of transitions in the FTA (∆); the number of states in the
determinised automaton (Qd); the number of transitions in the full determinised
automaton (∆d), which is shown in brackets as this is not actually computed -
it is just shown to underline the impracticality of computing this; the number of
product transitions (∆∏); and finally the time taken, split into the pre-processing
time and the actual model computation. The pre-processing is shown separately
since bddbddb can be considerably optimised in this respect3, and should in fact
be linear in the size of the program.

Variable ordering can be critical to the effectiveness of BDDs. In the exper-
iments we used the default textual order of variables occurring in the program,
and this was satisfactory except for the aquarius program with dom2, which
was unable to complete in one hour. bddbddb has various heuristics for selecting
variable order but we have not yet succeeded in exploiting these effectively. An-

3 Personal communication from the developer of bddbddb.

Techniques for Scaling Up Analyses Based on Pre-interpretations 293

Prog Clauses Domain Q ∆ Qd (∆d) ∆∏ Pre-Process Analyse
aquarius 4192 dom1 3 1933 4 (1130118) 1951 68.8s 3.0s
aquarius 4192 dom2 4 1934 5 (10054302) 1951 70.0s 1h+
chat 515 dom1 3 655 4 (20067) 433 1.6s 0.2s
chat 515 dom2 4 656 5 (86803) 433 1.6s 2.8s
dnf 33 dnftype 105 803 46 (6567) 141 0.5s 58.0s
petri 66 colours 16 65 16 (268436271) 89 1.2s 1.5s

Fig. 3. Experimental results for Model Computation

other aspect of the variable ordering issue is the binary encoding of the domain
elements. For instance,4 given domain elements {a, b, c, d}, with the encoding
a = 00, b = 01, c = 10, d = 11, the relation {p(b), p(c)} requires two BDD nodes,
while the relation {p(a), p(b)} can be represented with a single node. The situa-
tion is reversed with the encoding a = 10, b = 00, c = 01, d = 11.

7 Related Work and Conclusions

Analysis based on pre-interpretations was introduced some time ago [5,6,1]. Ear-
lier related approaches were put forward [7,8]. Scalability of these approaches was
not really investigated, except in the case of Boolean domains, where BDDs [21]
and other representations [17] were applied.

Tree automata are increasingly being applied in static analysis e.g.
[23,24,25,26,18,19]. It is well known that an arbitrary finite tree automaton
(FTA) can be transformed to an equivalent bottom-up deterministic tree au-
tomaton (DFTA). Many important operations and properties of tree automata
are stated in terms of DFTAs [10]. However, the transformation to deterministic
form can result in an explosion of states and transitions, and so some previous
attempts to use DFTAs directly in static analysis reported problems with scala-
bility [25,27]. The possibility of using a product representation does not seem to
have been investigated before, though other means of compressing tree automata
have been studied [28].

Dawson et al. [12] described an approach to program analysis (for various
target languages) using logic programs to express semantic properties. Computa-
tion in a Datalog program is fundamental to the approach. Their implementation
uses optimisations such as tabling and subsumption, but presumably relies on
a tuple-based representation of the model and hence scalability for large rela-
tions must be an issue. Whaley et al. [14] obtained very promising results, with
more evidence of scalability, again using Datalog programs to represent proper-
ties, but using BDDs to represent relations. Iwaihara et al. [29] presented two
different approaches for using BDDs to compute models of Datalog programs,
including the one used in bddbddb. In future work we plan to compare other
binary encodings of relations.

4 This example was provided by one of the anonymous referees.

294 J.P. Gallagher, K.S. Henriksen, and G. Banda

Conclusions. We have described two techniques for handling larger
pre-interpretations and applying them to analyse larger programs. Firstly, we
presented a novel determinisation algorithm for finite tree automata, which yields
a compact representation of the result. This makes it possible to build pre-
interpretations from regular types, that are much more complex than those de-
scribed previously [2]. Secondly, we showed how analysis based on
pre-interpretations can be computed using BDD-based methods (or any other
technique able to compute models of Datalog programs). Such methods have
proven their scalability in other domains, especially model-checking, and there
is a reasonable hope of achieving greater scalability for logic program analysis
using these techniques.

Much work is required, especially in investigating strategies for improving
BDD-based computations, particularly variable orderings, but also strategies for
solving clause bodies, where the order of solution of body atoms, and the early
elimination of local variables, can have a significant effect.

Acknowledgements

We wish to thank Peter Stuckey for suggesting the use of BDDs for computing
models of Datalog programs, and for other related discussions. John Whaley
provided great assistance with the bddbddb tool. We also thank the partners in
the ASAP project for discussions and feedback on related topics. An abstract
presenting the determinisation algorithm was presented at the NSAD Work-
shop in Paris, January 2005, and useful comments were received from Laurent
Mauborgne and other attendees at the workshop. The ICLP referees gave valu-
able suggestions for improving the paper.

References

1. Gallagher, J.P., Boulanger, D., Sağlam, H.: Practical model-based static analy-
sis for definite logic programs. In Lloyd, J.W., ed.: Proc. of International Logic
Programming Symposium, MIT Press (1995) 351–365

2. Gallagher, J.P., Henriksen, K.S.: Abstract domains based on regular types. In
Lifschitz, V., Demoen, B., eds.: Proceedings of the International Conference on
Logic Programming (ICLP’2004). Volume 3132 of Springer-Verlag Lecture Notes
in Computer Science. (2004) 27–42

3. Craig, S., Gallagher, J.P., Leuschel, M., Henriksen, K.S.: Fully automatic binding
time analysis for Prolog. In Etalle, S., ed.: Pre-Proceedings, 14th International
Workshop on Logic-Based Program Synthesis and Transformation, LOPSTR 2004,
Verona, August 2004. (2004) 61–70

4. Lloyd, J.: Foundations of Logic Programming: 2nd Edition. Springer-Verlag (1987)
5. Boulanger, D., Bruynooghe, M., Denecker, M.: Abstracting s-semantics using a

model-theoretic approach. In Hermenegildo, M., Penjam, J., eds.: Proc. 6th Inter-
national Symposium on Programming Language Implementation and Logic Pro-
gramming, PLILP’94. Volume 844 of Springer-Verlag Lecture Notes in Computer
Science. (1994) 432–446

Techniques for Scaling Up Analyses Based on Pre-interpretations 295

6. Boulanger, D., Bruynooghe, M.: A systematic construction of abstract domains. In
Le Charlier, B., ed.: Proc. First International Static Analysis Symposium, SAS’94.
Volume 864 of Springer-Verlag Lecture Notes in Computer Science. (1994) 61–77

7. Corsini, M.M., Musumbu, K., Rauzy, A., Le Charlier, B.: Efficient bottom-up ab-
stract interpretation of prolog by means of constraint solving over symbolic finite
domains. In Bruynooghe, M., Penjam, J., eds.: Programming Language Implemen-
tation and Logic Programming, 5th International Symposium, PLILP’93. Volume
714 of Springer-Verlag Lecture Notes in Computer Science. (1994) 75 – 91

8. Codish, M., Demoen, B.: Analysing logic programs using “Prop”-ositional logic
programs and a magic wand. In Miller, D., ed.: Proceedings of the 1993 Interna-
tional Symposium on Logic Programming, Vancouver, MIT Press (1993)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM Symposium on Principles of Programming Languages, Los Angeles.
(1977) 238–252

10. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree Automata Techniques and Applications. http://www.grappa.univ-
lille3.fr/tata (1999)

11. Ullman, J.: Principles of Knowledge and Database Systems; Volume 1. Computer
Science Press (1988)

12. Dawson, S., Ramakrishnan, C.R., Warren, D.S.: Practical program analysis us-
ing general purpose logic programming systemsa case study. In: Proceedings of
the SIGPLAN Conference on Programming Language Design and Implementation.
(May 1996) 17–126

13. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In Pugh, W., Chambers, C., eds.: PLDI, ACM (2004)
131–144

14. Whaley, J., Unkel, C., Lam, M.S.: A bdd-based deductive database for program
analysis (2004) http://bddbddb.sourceforge.net/.

15. Lind-Nielsen, J.: BuDDy, a binary decision diagram package (2004)
http://sourceforge.net/projects/buddy.

16. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
17. Howe, J.M., King, A.: Positive Boolean Functions as Multiheaded Clauses. In

Codognet, P., ed.: International Conference on Logic Programming. Volume 2237
of LNCS. (2001) 120–134

18. Gallagher, J.P., Puebla, G.: Abstract Interpretation over Non-Deterministic Fi-
nite Tree Automata for Set-Based Analysis of Logic Programs. In: Fourth Inter-
national Symposium on Practical Aspects of Declarative Languages (PADL’02).
LNCS (2002)

19. Genet, T., Tong, V.V.T.: Reachability analysis of term rewriting systems with
Timbuk. In Nieuwenhuis, R., Voronkov, A., eds.: LPAR. Volume 2250 of Lecture
Notes in Computer Science., Springer (2001) 695–706

20. Marriott, K., Søndergaard, H.: Bottom-up abstract interpretation of logic pro-
grams. In: Proceedings of the Fifth International Conference and Symposium on
Logic Programming, Washington. (1988)

21. Schachte, P.: Precise and Efficient Static Analysis of Logic Programs. PhD thesis,
Dept. of Computer Science, The University of Melbourne, Australia (1999)

22. Banda, G.: Scalable real-time kernel for small embedded systems. Master’s thesis,
Southern Univ. of Denmark, Sønderborg (2003)

296 J.P. Gallagher, K.S. Henriksen, and G. Banda

23. Charatonik, W., Podelski, A.: Set-based analysis of reactive infinite-state systems.
In Steffen, B., ed.: Proc. of TACAS’98, Tools and Algorithms for Construction and
Analysis of Systems, 4th International Conference, TACAS ’98. Volume 1384 of
Springer-Verlag Lecture Notes in Computer Science. (1998)

24. Goubault-Larrecq, J.: A method for automatic cryptographic protocol verification.
In Rolim, J.D.P., ed.: 15 IPDPS 2000 Workshops, Cancun, Mexico, May 1-5, 2000,
Proceedings. Volume 1800 of Springer-Verlag Lecture Notes in Computer Science.,
Springer (2000) 977–984

25. Monniaux, D.: Abstracting cryptographic protocols with tree automata. Sci. Com-
put. Program. 47(2-3) (2003) 177–202

26. Comon, H., Kozen, D., Seidl, H., Vardi, M.: Applications of Tree Au-
tomata in Rewriting, Logic and Programming. Schloß Dagstuhl Seminar
9743, http://www.informatik.uni-trier.de/~seidl/Trees.html (October 20-
24, 1997)

27. Heintze, N.: Using bottom-up tree automaton to solve definite set constraints.
Unpublished. Presentation at Schloß Dagstuhl Seminar 9743,
http://www.informatik.uni-trier.de/~seidl/Trees.html (1997)

28. Börstler, J., Möncke, U., Wilhelm, R.: Table compression for tree automata. ACM
Trans. Program. Lang. Syst. 13 (1991) 295–314

29. Iwaihara, M., Inoue, Y.: Bottom-up evaluation of logic programs using binary
decision diagrams. In Yu, P.S., Chen, A.L.P., eds.: ICDE, IEEE Computer Society
(1995) 467–474

	Introduction and Motivation
	Preliminaries
	An Algorithm for Determinisation
	A Determinisation Algorithm Generating Product Form

	Computing Models of Datalog Programs
	From Product Representations to Datalog
	Experiments
	Related Work and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

