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Operational Semantics of an Imperative
Language in Definite Clauses

Jorgen Villadsen

Computer Science, Roskilde University

Building 42.1, DK-4000 Roskilde, Denmark

jv@ruc.dk

Abstract. We present the “big-step” operational semantics of a small
programming language NIL (Natural Imperative Language) in definite
clauses, thus building on the fixpoint semantics of logic programs. NIL
operates on a state which is just a sequence of counters. As basic state-
ments NIL has incrementation, decrementation and test for null. NIL
allows for sequential composition and non-deterministic choice of state-
ments as well as mutually recursive definitions of procedures, which we
find support our long-term aim of formalizing and reasoning about spe-
cific actions and planning tasks for rational agents. A novelty is the use
of the de Bruijn notation instead of names. To our knowledge the opera-
tional semantics of an imperative language like NIL have not been given
in definite clauses, although it is well-known that it is possible.

The ISO Prolog source is available at http://www.ruc.dk/~jv/nil.html
Solutions obtained using GNU Prolog, see http://gnu-prolog.inria.fr

1 Introduction and Motivation

By an imperative language we have in mind a formal language in which changes
to some kind of a state can be expressed. Our aim is to present the operational
semantics [11] for NIL (Natural Imperative Language) directly in definite clauses,
thus building on the fixpoint semantics of logic programs [2]. A first sketch of
NIL was presented in the extended abstract [15].

In imperative languages the expressions that change the state are usually
called statements, but in the present paper we call them actions since our long-
term aim is to formalize and reason about specific actions and planning tasks
for rational agents, cf. [I5]. In computer science an agent is anything from a few
lines of code automatically executed on certain primitive conditions to complex
Al systems like robots. A rational agent bases its actions on a model of the
world including both declarative and procedural knowledge, also called know-
that and know-how, respectively. The know-how must describe how actions of
agents change the world and we think that with respect to the planning task for
rational agents both the operational semantics and the denotational semantics
of NIL are worth investigating.
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In the rest of this section we provide the motivation for NIL, which have
a number of new features like the use of de Bruijn notation instead of names
in action definitions [7]. In the following sections we describe the operational
semantics of NIL using logic programs. In the final section we conclude and
discuss related work, in particular the denotational semantics of NIL.

1.1 Idea
We have the following characteristics of NIL:

— A simple notion of a state.
— A simple formal semantics of the basic actions.
— A simple formal semantics of the compound actions.

These are in contrast both to the usual imperative programming languages
(often based on the “while” statement for which we seem to need at least boolean
expressions, e.g. comparisons) and also to the recursive functions, the untyped
A-calculus and other theoretical computers like the Turing machine.

We take as basic actions only incrementation, decrementation, and test for
emptiness on counters. These actions are of course only meant as building blocks
for more complicated actions.

We take as action combinations the usual sequential composition and also
the non-deterministic choice construct. Since these correspond to relational com-
position and relational union in the denotational semantics we simply call these
composition and union, respectively (note that skip and fail are the identity
relation and the empty relation, respectively).

1.2 Examples

We can view the following axioms and rules as a logic program, which is pure
Prolog without an ordering on subgoals and clauses. We discuss several small but
non-trivial examples in details using an implementation in Prolog to compute
the solutions (the relation between the input and output states).

For example, consider the action skip that does nothing at all. The axiom
for the skip action is simply (in our notation which we shall define in details
later):

act (skip,X-X) .

Here X-X means that the state is unchanged, since the first X is the input state
and the second X is the output state. We use italic for the predicate we are
about to describe via axioms and rules, like act, and the actions themselves
are in lowercase roman letters as opposed to the variables in upper-case roman
letters. Of course the dash - in the axiom above is not the subtraction function,
but merely a (pair) term constructor written infix.

Actions interact with the state, but not all actions change the state. One
example of an action that does not change the state is the skip action already



mentioned. Another example is the fail action that for no input state has an
output state. There are no axioms for the fail action since it never relates an
input state to an output state.

As an opposite to the action fail we consider the somewhat strange action
miracle that relates every input state to every output state. As we explain later
it can be used as a kind of exception and the axiom for the miracle action is:

act (miracle,X-Y).

The actions miracle, skip and fail could be taken as basic, but we view
them as special cases of action definitions and combinations as explained later.

1.3 The de Bruijn Notation

Instead of named definitions we use the so-called de Bruijn notation which is a
coding of A-terms where each occurrence of a bound variable is replaced by a
natural number, indicating the structural distance from the occurrence to the
abstraction that introduced the variable.

A few examples from [7] illustrate the notation:

1. The identity function Az.x becomes Al in the de Bruijn notation. That is,
the x of Az is removed, and the x of the body z is replaced by 1 to indicate
the X it refers to.

2. Similarly, Az.\y.zy becomes AA21. That is, the  and y of Az and Ay are
removed, and the x and y of the body zy are replaced by 2 and 1 respectively
to indicate the \’s they refer to.

3. Finally, a few computations of distances show that Az.(Ay.y(Az.z))(Az.xz)
becomes A(A1(A1))(A12)).

However, in the following we compute the distance starting from 0 rather than

as in the examples above from 1. We call the distance the de Bruijn index.

2 Logic Programs

In this section we explain the notation for the logic program [2] that we use to
describe the operational semantics of NIL in the following sections.

2.1 Standard Notation

A term is either a variable X (in uppercase) or a compound term f(t1,...,tx)
(in lowercase), where f is a functor and the ¢;’s are terms (k > 0). If £ = 0 the
compound term is just a constant and the parentheses are omitted.

A logic program is a finite set of definite clauses of the form:

bp—aq,...,qn-



Here the p and the ¢;’s are non-variable terms (n > 0). If n = 0 the clause is an
axiom (often called a fact in logic programming, in particular if it contains no
variables), otherwise it is a rule. In a clause a functor of a term that is not part
of another term is called a predicate.

A query is a clause of the form:

—dq1y---549m-

As for the logic programs the ¢;’s are non-variable terms (m > 0).

2.2 Pure Prolog

There are only two differences between logic programs and pure Prolog. The
first is the trivial one that in Prolog :- is used instead of « in a rule (in
a query ?7- is used). The second is that in Prolog the search for solutions is
done applying the clauses top-to-bottom left-to-right corresponding to depth first
traversal with backtracking while in logic programs all possible traversals are
taken into account. The implications for NIL are illustrated in the examples
below. We emphasize that the reference semantics is with logic programs —
Prolog is just used in the following definite clauses and queries for illustrative
purposes (hence in case of a non-deterministic choice there is no bias).

We use the usual list constructions with [ and ] (elements are separated
by commas). The stroke | separates the head and the tail of a list. Lists are
eliminable using right-nested terms with a binary functor . (the head to the left
and the tail to the right) and the constant [] as the empty list.

Please observe the following convention. We use the infix operators + and -
as binary functors with the convention that - is used when the two arguments
are of the same type (e.g. both are states) and + if not. In both cases it is
simply a pair construction. When arguments are e.g. just passed from predicate
to predicate it is an advantage to use pairs instead of separate arguments.

We use the usual convention where any variable with only a single occurrence
in an axiom or rule is written as _ to indicate a so-called anonymous variable.

3 Overview of NIL

In this section we provide a brief overview of NIL.

3.1 States

Before we describe the actions expressible in NIL we need to elaborate on the
notion of states:

— A state consists of counters referred to as 0,1,2,3, ...
— A counter has a value in {0,1,2,3,...}.



3.2 Basic Actions

We have the following basic actions:

— Incrementation inc (counter)
Add 1 to a counter.

— Decrementation dec (counter)
Subtract 1 from a counter or fail if counter = 0.

— Test for emptiness emp (counter)

Fail if counter # 0 (otherwise do nothing).

By using action definitions and combinations as explained below we can con-
struct any other relevant action.

3.3 Action Combinations and Definitions

We have the following action combinations:

— Composition com (action-list)
A sequence of actions.
— Union uni (action-list)

Alternative actions.

These combinations can be seen as general problem-solving techniques (sequen-
tial composition and non-deterministic choice).

In e.g. [II] only binary action combinations are allowed, but then we are
forced to settle on one of the following two readings for actions «, 8 and ~:

? ?
a;Biy~(as B)sy as;Biy~as (B57)
We think that this is a rather artificial way of handling action combinations and

therefore we allow simply a list of actions in action combinations.
We propose the following abbreviations:

skip = com([]) fail = uni([1)

In a composition all actions must be carried out; if there are none then nothing
needs to be done. In a union one action must be carried out; if there are none
then nothing can be done at all.

We also need action definitions:

— Introduction of definitions action-list
Mutually recursive actions; perform first action.
— Use of definition use (index)

Call the action referred to by the de Bruijn index.

Notice that we do not use a keyword for the introduction of definitions. Like for
action combinations we also allow a list of actions in action definitions, and we
propose the following abbreviation:

miracle = []

Hence if in an introduction of definitions no definitions are made then it is like
hoping for a miracle.



4 Representation of NIL

In this section we explain how we represent states and actions in logic programs.

4.1 States and Actions

We represent a state as a list of counter values. The end of the list is always
an anonymous variable; hence additional counters can always be accessed by
extending the list and still leaving an anonymous variable at the end.

We represent a counter value as a list such that its length is the value of the
counter. The list has arbitrary elements. For example, the list [[1,_,[_,_,_11_]
represents a state where counter 0 has value 0, counter 1 has an arbitrary value,
counter 2 has value 3 and the remaining counters all have arbitrary values. Notice
the anonymous variable at the end.

Actions are represented using the constructions given in the previous section.
We also represent a counter (not to be confused with the counter value just
described) and the de Bruijn index as a list (again with arbitrary elements). For
example, the list [_,_,_] represents counter 3 (or the de Bruijn index 3).

Using lists for the counters and the de Bruijn indices is a bit more complicated
than using zero and successor constructions, but the benefit is that auxiliary
predicates working on action-lists can be reused.

4.2 Example

We now consider the semantics of a “random number generator” that increments
counter 0 an arbitrary number of times; i.e. either it does nothing or it increments
counter 0 and recurses (using the de Bruijn index 0). The action is as follows
(the action is an action-list, hence the introduction of definitions):

[uni( [skip, com( [inc([]1),use([1)] )] )]

The logic program and query below are not just of theoretical interest; for many
actions the solutions can be computed automatically, for instance viewing the
logic program and query as pure Prolog.

?- act ( [uni( [com( [] ),
com( [inc([]),use([1)] )
1)
1,Ww).

A-A

(AIB]-[[_IA]IB]
(AIBI-L[_,_IA]IB]
(AIBI-[[_,_,_IA]IB]

= = = =
] 1] 1]



Here and in the following examples we recall that skip is an abbreviation for
com([]). The variables A and B are automatically generated. We only show the
first few solutions to the query (solutions are obtained as long as the user enters
a semicolon at the prompt). We see that we have the following solutions:

— 0 increments — The input and output states are the same (both 4).

— 1 increment of counter 0 — The value of counter 0 is A in the input state and
is incremented in the output state (the remaining counters are not changed
since B is used in both the input and output states).

— 2 increments of counter 0.

— 3 increments of counter 0.

As explained earlier the ordering of the solutions corresponds to the top-to-
bottom left-to-right strategy for Prolog. No solutions will be produced in Prolog
(loops until stack overflow) if the recursion is before the skip action:

?7- act ( [uni( [com( [inc([]),use([1)] ),
com( [] )
1)
1,Ww).

If in the main example above the recursion with the use action is replaced with
the action miracle = [] we obtain exactly the following two solutions:

?7- act ( [uni( [com( [] ),
com( [inc([1),[1] )
1)
1,Ww).

A-A
LI-]-_

We immediately recognize the second solution as a “miracle” since the input
and output states share absolutely no information. Furthermore, while we know
nothing about the output state we do know that counter 0 has been accessed
before the miracle action since the input state is [_|_] rather than just _.

It is also possible to perform actions after the “miracle” as the following
minor modification of the previous query shows:

?7- act ( [uni( [com( [] ),
com( [[],inc([1)] )
1)
1,Ww).

W= A-A
el N P O



Again we immediately recognize the second solution as a “miracle” since the
input and output states share absolutely no information. Furthermore, while
we know nothing about the input state we do know that counter 0 has been
incremented after the miracle action since the output stateis [[_|_]1|_] rather
than just _.

5 Operational Semantics of NIL

In this section we give the axioms and rules of the operational semantics of NIL
using the above representation.

5.1 Act

The main issue is how to handle the action definitions using axioms and rules
only. We use an auxiliary predicate sub that substitutes the actions definitions
for all relevant indices in the first action and then we just use the predicate act
on the result.

The act predicate takes an action and a pair of states, the input and output
states respectively. If “empty” definition then “miracle”: input and output states
are not related. Otherwise we take the first action H in the definition and make
a substitution in it; the resulting action I is then used. The auxiliary predicate
sub must substitute the whole definition [HIT] for all indices that refer to the
definitions just introduced. In order to do the substitution we need to take into
account nested definitions and the second part of the pair [H|T]+[] accumulates
the number of nested definitions using a list with a corresponding length (initially
[1 corresponding to no nested definitions).

act ([1,_-_).
act ([HIT],W) :- sub(H,I,[HITI+[]), act (I,W).

If “empty” composition then just skip: input and output states are the same.
Otherwise we act on the first action H in the composition giving the output
state Y and with Y as the input state we act on the remaining actions T.

act (com([]1),X-X).
act (com([H|T]),X-Z) :- act (H,X-Y), act (com(T),Y-Z).

If “empty” union then fail (no clause at all). We have a clause where we act on
the first action H, and a clause where we act on some of the other actions T.

act (uni([H|_1),W) :- act (H,W).
act (uni([_IT]),W) :- act (uni(T),W).

The first clause for incrementation considers just counter 0. Its input value is
the first element V in the list representing the state and the length is increased
in the output state with an arbitrary element (we use an anonymous variable



for this purpose). In the first clause for decrementation given below the roles
of the input and output states are swapped. The remaining counters are not
changed since R is used in both the input and output states. The second clause
for incrementation (and similarly for decrementation and test for emptiness)
considers all counters ¢ + 1 except counter 0 (¢ > 0) and hence the value for
counter 0 is the same for both the input and the output states, namely V. By
considering input and output states R-S without counter 0 we then act with
respect to incrementation (similarly for decrementation and test for emptiness)
of the counter ¢ (kept in L).

act (inc([1), [VIRI-CL[_IVIIR]).
act (inc([_IL]), [VIR]I-[VIS]) :- act (inc(L),R-S).

As explained decrementation is similar to incrementation (the failure in case of
trying to decrement a counter with value 0 is incorporated).

act (dec([1),[[_IV]IR]I-[VIR]).
act (dec([_IL]), [VIR]I-[VIS]) :- act (dec(L),R-S).

Also test for emptiness is similar and here the value for the counter in question
is 0 (represented as []) in both the input and output states.

act (emp([1), [[JIRI-CLIIR]D.
act (emp([_IL]1), [VIR]I-[VIS]) :- act (emp(L),R-S).

We do not need to act on the use action since the action must be closed
initially (the concepts of closed and open actions are taken over from A-terms)
and the substitution of action definitions ensures that the action stays closed.

5.2 Substitute

The auxiliary predicate sub maps actions to actions while carrying out the
substitution given a pair consisting of the action definitions and the distance.

Nothing needs to be done for the “miracle” action (similarly for the skip,
fail, incrementation, decrementation and test for emptiness actions below).

In case of a new definition the distance N has to be adjusted — the number of
new definitions must be added to the distance. The auxiliary predicate sep takes
3 arguments and uses the length (but not the elements) of the list given as the
first argument to separate the second and third arguments, using anonymous
variables. The axioms and rules for the sep predicate are given later. The
predicate is used several times below with either the second or third argument
as the result argument.

sub ([1,01,.).
sub ([HIT], [T|U],M+N) :- sep ([HITI,N,J),
sub (H,I,M+J), sub (T,U,M+J).



Substitution in compositions and unions is just substitution in the head and in
the tail of the list of actions.

sub (com([]),com([]1),_).
sub (com([HIT]) ,com([IIU]),E) :- sub(H,I,E),
sub (com(T) ,com(U) ,E).

sub (uni([]),uni([1), ).
sub (uni([H|T]) ,uni([I|U]),E) :- sub(H,I,E),
sub (uni(T) ,uni(U),E).

sub (inc (L) ,inc(L),_ ).
sub (dec(L) ,dec(L),_).
sub (emp(L) ,emp(L),_).

The real work is done for the use action. However, the first clause does nothing
if the index is less than the distance. The comparison uses the sep predicate
to check if a non-empty list [_|_] separates the index and the distance.

sub (use(F) ,use(F),_+N) :- sep (F,[_I_]1,N).
sub (use(F),C, [HIT]+N) :- sep (N,G,F),
rep (G,H, [HIT],[_IU],I), sep ([HIT],[],T),
ren ([I1U],A,[1-J), ren(A,B,G-[1), ren(B,C,J-G).

The second clause subtracts the distance from the index (using the sep predi-
cate) to get the position G in the action definitions [H|T]. Then the action I at
position G is replaced with the action H at position 0 (i.e. [1) using the predicate
rep given later, so instead of [H|T] we now have [I|U]. Finally we must swap
the indices for the actions at the two positions; we simply do a triple renaming
by the predicate ren using a fresh index J obtained as the number of action
definitions [H|T]. The addition is done using the sep predicate. Temporary
results are kept in A and B, and the final result is C.

5.3 Rename

The auxiliary predicate ren maps actions to actions while carrying out the
renaming of indices given as a pair. In case of a definition we must shift both
indices by the length of the list of actions, hence F becomes P and G becomes
Q, and the renaming of the first action H is straightforward. For the remaining
actions T we use a small trick: we add 1 to the indices and use the predicate ren
again (hence with [_|F] instead of F and [_|G] instead of G).

ren ([1,00,.).

ren ([H|T], [I|U],F-G) :- sep ([HI|T],F,P),
sep ([HIT],G,Q), ren(H,I,P-Q),
ren (T,U, [_IFI-[_IG]).
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Renaming in compositions and unions is just renaming in the head and in the
tail of the list of actions. Nothing needs to be done for incrementation, decre-
mentation and test for emptiness actions.

ren (com([1),com([1),_ ).
ren (com([H|T]),com([I|U]),K) :- ren(H,I,K),
ren (com(T) ,com(U) ,K) .

ren (uni([]1) ,uni([1),_ ).
ren (uni ([H|T]) ,uni([I|U]),K) :- ren(H,I,K),
ren (uni(T) ,uni (U),K).

ren (inc(L) ,inc(L),_).
ren (dec(L) ,dec(L),_).
ren (emp(L) ,emp(L),_).

For the matching indices we just do the renaming. We do nothing if the indices
do not match.

ren (use(F) ,use(G) ,F-G).
ren (use(F) ,use(F) ,G-_) :- dif (F,G).

The check for different indices is done by the predicate dif given later.

5.4 Separate

The auxiliary predicate sep takes 3 arguments and uses the length (but not the
elements) of the list given as the first argument to separate the second and third
arguments, using anonymous variables (it is like the usual list append, except
that all elements are anonymous variables).

sep ([1,N,N).
sep ([_IT],N,[_1J]1) :- sep(T,N,J).

5.5 Replace

The auxiliary predicate rep takes 5 arguments and uses the length of the list
given as the first argument as the position in the list given as the third argument
where to do the replacement. The fourth argument is the replacement result. The
second argument is inserted and the removed element is in the fifth argument
(the elements of the list given as the first argument are not used, since we use
an anonymous variable in the second clause).

rep ([1,I,[HIT], [I|T],H).
rep ([_IF],I,[H|T], [HIU],J) :- rep (F,I,T,U,J).

11



5.6 Differ

The auxiliary predicate dif simply checks for different indices (non-empty lists
differ from empty lists and also if they differ with respect to their tails).

aef (11, [_1_1).
def (L_1_1,01).
dif CLLIF], [L1G]) :- dif (F,G).

6 Conclusions and Related Work

To our knowledge the operational semantics of imperative languages like NIL
has not been given in definite clauses, although it is well-known that it is pos-
sible. We hope to have shown that it can be done in an elegant way using the
approach described here, in particular using the de Bruijn notation and using
substitutions instead of environments. The notion of environment would seem to
be considerably less natural for our long-term aim: to formalize and reason about
specific actions and planning tasks for rational agents, cf. [I5], and we believe
that the simplicity of the operational semantics of NIL is an important advan-
tage here — in particular when we at the same time allow mutually recursive
definitions of procedures and non-deterministic choices in order to “scaling-up”
programming in NIL. Related works on operational semantics, using e.g. higher
order logic programming or logical frameworks, have a different focus [BI4U6I10],
but are of course more general.

Notice that it is not our purpose as such to enhance an imperative language
in order to support declarative programming, cf. Alma-O [3] (except with non-
deterministic choices).

Many important aspects of the operational semantics of various imperative
languages with “while”-statements have been considered in relation to both logic
programs [14] and constraint logic programs [13]).

In future work we plan to describe how the design of NIL makes it possible
to give it a concise declarative semantics equivalent to its operational semantics
(with the integrated possibility of making correctness assertions). We consider
the operational semantics of NIL in definite clauses as the reference semantics
(using logic program and not the specific Prolog search). In operational seman-
tics we specify exactly how actions change the state. In order to validate that the
reference semantics is “right” we have also investigated the denotational seman-
tics of NIL. In denotational semantics we specify only the effect of the change —
not how it is obtained — using various mathematical objects [11]. As emphasized
by [9] the usual use of reflexive domains seems to be an unnecessary complication
in connection with the denotational semantics of imperative languages like NIL.
Instead we translate the actions of NIL into classical higher order logic [1] (type
theory) and since the logic comes with a model-theoretic interpretation, we get
an interpretation for NIL too. An advantage of such a translation into higher or-
der logic is that partial and total correctness properties can be asserted directly

12



in the logic; the result is known as a Hoare logic [TT/12]. We hope to show that
because of the simplicity of the semantics of the imperative language NIL it is
very well suited for the recent approach to program semantics in classical higher
order logic [9]. A similar approach using a translation into higher order logic has
also been used to formalize the dynamics of natural language processing [g].
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