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Abstract: We study a population exposed to a lethal infectious disease. Host response is
carried at one locus with two alleles while the pathogen occurs in two variants. Based on
an SI-type epidemic model we derive explicit equations for the dynamics of each genotype.
By assuming small variations in both host and disease, we obtain a separation in time
scales between epidemic and evolutionary processes. This allows us to explicitly describe
the changes in host and disease gene frequencies. The resulting model has a rich behavior
including multiple stable states and oscillations. However, in the oscillatory situation the
model is degenerate excluding the possibility of limit cycles. We show that the degeneracy
can only be removed by frequency dependent selection in the pathogen, for example by
including direct interaction of virus in a free-living stage.
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Slow coevolution of a viral pathogen
and its diploid host

1 Introduction

Infectious parasites and their hosts are expected to coevolve tightly due to the major
impact they exert on each others reproduction and survival (Ewald, 1983). The properties
of parasites and hosts may evolve in an arms race, presumably with the speed of the red
queen, or they may evolve towards benién coexistence. The dynamics of genetic variation
in hosts or parasites is affected by the interaction, and host-parasite interactions may be
a cause for the maintenance of genetic polymorphism (Clarke, 1979).

Starting with the work of Haldane (1949) much theoretical attention has been given to
host-parasite coevolution. The early work generally focused on the gene-for-gene systems
described in cereal crops and their pests (see Levin, 1983 for a review). Later, models
addressing more general phenomena of host-parasite coevolution have appeared (Jayakar,
1970; Yu, 1972; Lewis, 1981). These models utilize the population genetic framework of
Wright (1955) and focus on the dynamics of gene frequencies. Little attention is paid to
the density dependent-effects of the epidemic interactions (Levin and Udovic, 1977)

The interaction of host genetics and epidemiology was first studied by Gillespie (1975).
A continuous time epidemiological model was used to derive expressions for genotypic
fitnesses, and these were applied in a discrete time model of the change in host gene fre-
quency. Kemper (1982), Longlm (1983), and May and Anderson (1983) further developed
this approach. - .

The population genetics of viral pathogens has been modeled in the frame of SIR-type
models for the disease transmission dynamics. These models view the number of hosts
infected by each viral type as an expression of the number of virus particles of each type.
The basic unit of selection therefore becomes the viral subpopulation of each infected
host individual, and viral reproduction becomes identical to infection of new hosts (Levin
and Pimentel, 1981). The approach ignores viral variation and the possibility of selection
within the individual host as caused by mutation or superinfection although the dynamics
within the individual host seems to be important (Knolle, 1989; Sasaki and Iwasa, 1991,
Nowak and May, 1994). With density independent mortality and simple transmission
only the viral type with the highest transmission potential will persist in the population
(Levin and Pimentel, 1981; Anderson and May, 1982; Bremermann and Thieme, 1989).
The transmission potential is given by

BN

R0=p+u, . (1)
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~where N is the population size, u is the mortality rate, v is the rate at which infectious
hosts cease to infect due to causes other than non-disease related mortality u, and £ is
the transmission coefficient. 7 :

Due to the complexity of the problem, few models of coevolution based on epidemio-
logically justified assumptions have appeared (May and Anderson, 1983). We will analyze
a simple SIR-type coevolutionary model and follow the formulation of Beck (1984). The
dynamics of each genotype of the host in each disease class and type will be described
explicitly, and still following Beck, we then simplify the analysis by assuming the the vari-
ation among types is small in both host and pathogen and that the hosts reproduce by
random mating. This leads to the classical weak selection approximation of the evolution
of the system (Norton, 1928; Fisher, 1930; Kimura, 1958; Nagylaki, 1976), in that small
differences in dynamical parameters leads to small fitness differences among host geno-
types and between viral types. The assumption of small differences in fitness implies that
the system will move to a quasi steady state characterized by epidemic equilibrium and
Hardy-Weinberg proportions among genotypes in the host population. The dynamics of
the gene frequencies in host and pathogen along this quasi steady state will be described
by the small fitness differences determined from the dynamical parameters of the model.
The assumption of small variation essentially linearizes the problem, and so we can ex-
clude coexistence of viral types and host polymorphism mediated by density dependent
effects.

Beck et al. (1984) found the slow dynamics along the quasi steady state by a rather
complicated perturbation technique in the case of genetic variation in the host only. Re-
cently, we have obtained the same result by simpler means (Andreasen and Christiansen,
1993). The system of Beck and coworkers was transformed into new variables that focus
on the population genetic description af each disease class, and we develop this approach
in the present analysis of co-evolution of host and pathogen. The ensuing model of
slowly coevolving host and pathogen turns out to be degenerate in a way that prohibits
the appearance of limit cycles in the genetic composition of the populations. The basic
assumptions about disease transmission cause this degeneracy by excluding frequency de-
pendent selection in the haploid virus population. The degeneracy is therefore a general
property of SIR-type models. Frequency dependent selection may naturally occur for vira
with a free living stage, like baculo vira, and we discuss a model where the degeneracy is
broken and complicated dynamics allowed.

2 Coevolution of host and pathogen

We consider a lethal disease with no latent period and assume that transmission is purely
horizontal with no vertical transmission occurring. Following the classical epidemic models
we divide the population into two classes susceptibles S and infectious I (Dietz, 1975;



Hethcote, 1974). The assumption of lethality is included to simplify the presentation,
and the treatment of the model is readily extended to a full SIR-model.

The number (or density) of susceptibles in the population is S and that of infectious is
I with a total population size of N = S+ I. We assume that the population is well mixed
so the rate at which susceptibles get infected is proportional to I; this force of infection is
therefore A = BI. This specifies the well known SI-model with variable population size:

S = bN-puS-pIS

: (2)
I = BIS—pul—-vl
(Anderson and May, 1979). The parameters of the model may depend on the total
population size, i. e. birth rate b = b(N), the mortality rate in the absence of disease u =
p(N), the excess mortality rate due to the disease v = v(N) as well as the transmission
coefficient 3 = B(N) are allowed to be density dependent.

When b(N) is a decreasing function and u(N ) and v(N) are increasing functions |

satisfying u(co) > b(0) > p(0), then the population size will remain bounded by the
disease free equilibrium where St = N* and b(N*+) = pu(N*). In most reasonable
circumstances, in particular when the contact rate S(N)N is decreasing, the system (2)
has at most one endemic equilibrium (S*, I*) where the disease is present (Pugliese, 1990).
The endemic equilibrium exists when the transmission potential at N+,

B(N*)N*
(N*)+v(N+)’

exceeds unity and when the equilibrium exists, it is always stable (Pugliese, 1990). In the
rest of this paper we will assume that the parameters are chosen so this unique, stable
and endemic equilibrium exists. ‘

We now introduce into this model the genetic structure of the host and virus pop-
ulations by explicitly describing the dynamics for the number of each genotype. The
disease occurs in two variants v and V, and we divide the infectives in two classes I and
I comprised of individuals infected with v and V, respectively. We denote the numbers
- in the two classes by I and I. The response of the hosts to the disease is influenced by
an autosomal locus with two alleles a and A and the number in the S-, I- and I-classes of
each of the three genotypes aa, aA, and AA is denoted with subscript 1, 2, and 3, respec-
tively. Mating is random and we assume that birth is independent of disease class and
genotype. The number of aa-births in the population per time unit becomes By = p*bN
where p = (N, + $N2)/N denotes the frequency of a. The population birth rates for the
other genotypes are B, = 2pgbN and B; = ¢°bN where g =1—p = (N3 + %Ng)/N is
the frequency of A. The birth rates may depend additively on disease class and genotype
without causing serious complications (Andreasen and Christiansen, 1993), but to keep
the model simple we assume no fecundity effects.

Ro=
i
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The genetic variation is small and its magnitude will be measured by the parameter €.
The genotypic variation in the host is shown by subscripted parameters and the variations
in viral types are marked with ~-and ~. For instance; the transmission of the disease
caused by virus v to susceptibles of genotype aa is described by the transmission coefficient
B+ eﬁl. Variation in the force of infection, however, has two sources. Variation in
the transmission coefficient may be understood as variation in a genotypic susceptibility
factor describing the probability per unit time that infection occurs given the amount
of virus present. The amount of virus particles present in the population may also vary
as a function of host genotypic composition, and we may write the force of infection as
A = 36 where © measures the ammount of available virus,

3 3
6 - Z(l + E‘;',‘)I,' and é = Z(l + E‘T‘,‘)I,’
i=1 i=1
in virus population v and virus population V, respectively. Thus, we obtain the co-
evolution model of Beck (1984) in the form of equations for the three genotypes in the
susceptible class S,

% = By = [p+em)Si — [B+¢eBi)510 - [B+ 5156
%Stz = By — [+ eu)Ss — [B+€62)520 — [B +€5:] 5.0 (3)
%ﬁ = Bs—[u+eus)Ss — [B + €3]S0 — [B + €55]S:0
in the infectious class I,
dd—'zl = [+ £~:[§1]51é — [p+emh — v+ ein)fy
dd—? = [B+¢€B2)S526 — [+ epolFy — [v + €] (4)
-‘% = [B+€Bs]S30 — [+ eualls — [v + eis) ]
and in the infectious class I,
%I;—‘ = [B8+¢€51)510 — [u+emlli - [v+enlh
%’f:- = [B + €B52)S20 — (1 + epg) o — [v + ein) I, (5)
9h (54 elu)S® — [+ emalls - v + ol

The transformation of Andreasen and Christiansen (1993) is used to display the struc-
ture of system (3)—(5). For each disease class Q we change the description from geno-
type numbers (@i, @2, @3) into variables (Q, pg, Fo) that provides the total number of
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individuals in the class, @, the frequency of the allele a, pg, and the deviation from
Hardy-Weinberg proportions as measured by Wrights fixation index, '

4Q,Q; — Q3
(2Q:1+ Q2)(2Q3 + @2)

The total gene frequency is p = (Sps + Ip; + Ip;)/N. The total number of infected
individuals is J = [ + I and we use the frequency 7 = J /I of disease type v to describe
the composition of the viral population. The structure of the terms of order € are not
specified, but enter initially as functions o in the equation specifying Q. The nine
equations of system (3)—(5) then collect in four groups that déscribes the epidemic,

Fo=

% = bN — uS — BSI + eyg,
-d—t = fBSI- (V+lt)+6’l/)1,
the composition of the pathogen population,
dm . '
= = Ty 7
7 =Y (7)
the gene frequencies in the three host classes,
d nl . 1—m)I .
’z%s' = b*g(Pl —-ps) + b( 5 ) (Pr — ps) + €vps,
dp ' . -
= = BS(ps—p1) + ety ®)
di: - .
= = BS(s—p1) + ey,

and the deviation from Hardy-Weinberg proportions in the three classes of the host popu-
lation, .

dF. N — ps)?
Wl (Mu_ Fs)_ﬂ.ps)“w&
Psdqs

dt Psqs

dF: —5,)2 . A

it A ﬁS(@ﬁ#)—(l—F,) ”S"S(Fz Fs))+ewp, 9)
dt Prdr

dFy

(ps — p1)? = psqs v
— = BS|{——(1-F) - F; - F eYr. -
i g ( e ( 1) 1 ( 1 — Fs) | +evr
For no genetic variation in the parameters of the model, i. e. for € = 0, the host
population settle at Hardy-Weinberg equilibrium and no change in the composition of the

pathogen population is expected. The system (6)- (9) therefore contains a two dimen-
sional, attracting mainfold of fixed points,

W(P,ﬂ') = {(Sa Iv”va:ﬁhﬁlyF57FlaFl) = (S')I‘aﬂapvp)p,01010)|0 S T _<_ 1)0 < D < 1}1
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where S* and I* are the equilibrium values of S and I determined from (6) (see Appendix
A). For small variation in the parameters of the model, ¢ <« 1, the model has a two-
dimensional quasi steady-state (Segel, 1988), and we can use the theorem of Thikonov
(Hoppensteadt, 1966) to show that solutions to the model will move ‘quickly’ to be near
the manifold . Once the solution is at a distance of order € to w, all terms in equations
(6)-(9) are of order €, and the terms of order O(e) that describe the effect of genetic
variation becomes important for the dynamics. The convergence to the manifold w is
the ‘fast’ dynamics of the system, and close to = the rate of change is small, and we
have reached the ‘slow’ dynamics of the system. The ‘slow’ dynamics is approximated by
the dynamics on w. The biological interpretation is that the epidemic and demographic
processes will settle at an equilibrium virtually independent of the genetic composition of
the population, that the frequency of a will be virtually identical in all disease classes and
that the genotypes will occur in frequencies indistinguishable from the Hardy-Weinberg
proportions in all disease classes after a short initial transience. The remaining variables
7 and p describe the frequency of v and a, respectively, and the slow dynamics on @
therefore correspond to the slow coevolution of disease and host.

The change in the genetic composition of disease and host along the manifold w is
well approximated by the solutions to '

io= em(l — ) (S{Bi — Bilp} + BS{#: - %: | p} — {¥i — l'/i|P}) (10)
b = era(~tuln) + S5 E0 LB s + 1 - masio)
s+ (- w)f«tm), 1)

on time intervals of the form (0;T/¢) where T may be replaced by oo if (m,p) settles
at a uniform asymptotically stable equilibrium.! The variables S, I, and N in these
equations are evaluated at the epidemic equilibrium, and we have used the notation
(ki|lp) = kip + ko(qg — p) — kag for the average excess of allele a over allele A in the
genotypic values of parameter k and the notation {k|p} = kip? + k22pg + ksg? for the
population average of the genotypic values of parameter k (Andreasen and Christiansen,
1993). Except for minor variations in the parametrization, this result was obtained by
Beck (1984). However, the method in Appendix A is considerably easier than the method
used by Beck.

IAn equilibrium yp is uniform asymptotically stable if the deviations y(t) — yo can be uniformly
bounded by a decaying exponential function over all initial conditions in the ball |y — yol.




3 The dynamics of weak selection

Equation (10) resemble the classical equation for the weak selection approximation in
diploid population genetics. To emphasize this we introduce the genotypic fitness coeffi-
cients in a population infected only -by the v virus:

(b-B9)1/S, _bl/S
BS+bI/S '~ BS+bI/S"

A

§i=—p + i=123,

and we assume similar definitions, 3;, i = 1,2, 3, for the V virus. These fitnesses depend
on the epidemiology in a complicated way (Andreasen and Christiansen, 1993). The
genotypic fitnesses in the classical sense are s(7r.§,- +(1- 7r).§.~), i = 1,2,3, but we may
drop the factor € and refer to the coefficients 7§; + (1 — 7)3§;, 1 =.1,2, 3, as the genotypic
fitnesses. The classical form of equation (10) is then

p = epg(nd; + (1 — )&i|p). | (12)

The corresponding homozygote fitness excess relative to the heterozygote are 7, = 3; — 32,
73 = 83 — 82, 71 = §; — &2 and 73 = §3 — §,, and the average excess growth rate of allele a
is

7p) = (&ilp) =Ffip—7Fsqg and  F(p) = (&lp) = F1p — Taq (13)
in a host population exposed solely to virus type v and type V, respectively. The dynamics
of the gene frequency in the host therefore is determined by

p = epg(n#(p) + (1 — m)7(g))- (14)

Equation (11) has the structure of the equation for the selection in haploid population
genetics. The excess in fitness of virus v over virus V in a population comprised entirely .
- of individuals of genotype i is

¢ = (Bi— Bi)S+ (7 — 7)BS — (s — ), i=1,2,3,

which is similar to the relative fitness excess above. These parameters bring equation (11)
on the form _ _
T=en(l— 7r)‘(c1p2 + c22pq + caqz) . (15)

Thus, at any time the change in frequency 7 of the viral haploid v is determined by the
average excess in fitness of v in the mixed host population, ¢;p? + ¢32pg + cag?.

The transmission potential Ry given by equation (1) is a measure of the competitive
ability of a viral type, and in analogy with the competitive exclusion principle, one can
show — under strong assumptions about the linearity of mortality and disease transmission

_-' that the type with the highést value of Ry will outcompete all other types. For a



population comprised of only one genotype, the fitness parameters ¢; indicates the same
since to first order we have

_ _(B=BN+(G=7BN _(?-D)BN ’
6( p+v (o +v)? )+O(E)

((B-B)S+ (= 7)BS - (7= 5)) + O(?)

Ro- Ry

1
= € RO# 5
where we used the equilibrium condition S = u + v. Therefore, from the definition of ¢;
we get that )

Ro~Ro _ e

Ry B+

and we see that ¢; measures the relative difference in transmission potential for the two
virus types per ‘pathogen generation time’ (u + v)~.

The detailed model and the weak selection model are compared on the basis of nu-
merical solutions. The models are integrated using a fourth order Runge-Kutta algorithm
with adaptive step-size. We assume that the slow variables (7, p) do not change signifi-
cantly during the initial transience in the detailed model, so the same initial values for =
and p are used in both models as conventional in quasi-steady state approximations.

=+ 0(¢’),

3.1 Phase plahe analysis

The weak selection model given by equations (14) and (15) is a special case of the general
coevolution models studied by, e. g., Levin and Udovic (1977). The present model is den-
sity independent and it has a specified structure in the type of frequency dependence, so
more can be said about it than about general models. For instance, at a polymorhic co-
evolutionary equilibrium (7*, p*) the heterozygote cannot have intermediate fitness (Levin
and Udovic, 1977). In our case this follows immediately from the form of equation (12)
where the genotypic fitnesses at equilibrium enter exactly as in the classical slow selection
equation.

The 7 = 0 isoclines of the system may number 0, 1 or 2 in addition to the two trivial
null-isoclines 7 = 0 and 7 = 1 which always exists in a population genetic model without
mutation. The non-trivial isoclines are from equation (15) of the form p = p*, where p*
is a root of the polynomial on the right side of equation (15) given by

C3

B ~(c2—c3) £ \/c% — s

and subject to the constraint 0 < p* < 1. Similarly, the dynamics of p has two absorbing
states with only one allele present, namely p = 0 and p = 1. The remaining dynamics of
p is determined by the two linear functions 7#(p) and 7(p) in (13) that give the average
excess fitnesses of a on the two boundaries 7 = 0,1. The sign of p is determined by a

»

p

(16)
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Table 1: The number of internal # = 0 isoclines for various values of ¢, the excess in
fitness of virus v over virus V in a population comprised entirely of individuals of genotype
i.

c; >0 c3<0

ca > —\/ccz: O
G >0 2 1™ 1
cy < —, /cic3: 2

c2 > 4/acs: 0
<0 1 ' 2 1"
. CQ<\/01C3:2

convex combination of #(p) and 7(p) in the interior. Thus for fixed p at most one point

given by ’
. —7(p)

mp)= "

. P = - ) -

has p = 0, and this defines the p = 0 isocline. At most one point -has p = 0 for fixed =, so .

the p = 0 isocline is also defined by

(17)

VTA37T+7~'3(1 - 7!’)
(Fr+ 7))+ (F1+73) (1 —7)
Therefore, the system can have 0, 1 or 2 internal equilibria, at most one at each of the
# = 0 isoclines, and an internal equilibrium with p = p* given by equation (16) has 7 = 7*
where 7* = 7*(p*) from equation (17). Because 0 < 7* < 1 the equilibrium exists if and
only if 7(p*)7(p*) < 0 from (17). '

An internal equilibrium with gene frequency p* is present when the average excess in
fitness of a is of opposite signs in individuals infected by virus v or by virus V in a host
population with gene frequency p*. That is, the two virus types should induce the highest
average fitness for different alleles. Equation (16) determines one valid frequency p* when
cica < 0 and otherwise zero or two internal # = 0 isocline exists as shown in Table 1.

The stability of an internal equilibrium (7*,p*) can be investigated by a standard
linear analysis giving the following linearization '

(2)-»(2)

D=( 0 iZW‘(l—w;)m )

p* (1 —p*)(#(@*) = #(»*)) p*(1 —p*)((F1 + 73)7* + (F1 + 73)(1 — 7))

p'(m) = : (18)

9



1.0

0.0 : *
0.0 2.0 4.0 6.0
t

Figure 1: The solution of the approximate model (solid curve) and of the full model with e = 0.2
(broken curve) and 0.5 (dotted curve) in a situation where a fixes in the host population and V
fixes in the virus population. The parameter values are b= 0.2, p = 0.1 and v = 8 = 1. The
genetically determined parameter perturbations are y; = —pu3 = 1.0, B = —f = -1.0, and
) = —i3 = —2.0 while all other perturbations are 0.

3.2 Analysis of equilibria

When the polynomial ¢;p? + ¢22pq + c3¢* has no roots between 0 and 1 one strain of
virus has the highest growth rate for all host populations. Therefore, 7 is monotonically
increasing or decreasing in the open unit square and one of the lines # = 0 and 7 = 1
will be attracting. On this line the dynamics is determined by selection in the host
population exposed to just one viral type, the situation discussed by Andreasen and
Christiansen (1993). The equilibrium attracts all solutions starting in the interior of
the unit square at an exponential rate and the full system will remain O(e)-close to the
approximate solution for all time. Figure 1 shows an example where the only stable
equilibrium is fixation on genotype aa and virus type V. The approximation seems to
work quite well for perturbations as large as £ = 50%.

The case c;c3 < 0, with one internal # = 0 isocline at p = p*, includes most of
the interesting coevolutionary behavior of the system, and we discuss this case in some
detail. When ¢;c3 < 0 one virus type will have the highest growth rate in a monomorphic
population consisting of aa and the other viral strain will be most fit in a population
consisting entirely of AA. We may assume that v has an advantage on aa, and that V
grows the fastest on AA, i. e., ¢; > 0 and ¢; < 0. This means that 7 > 0 for p > p* and
# < 0 for p < p*, and that the appropriate solution in (16) uses the minus sign in the
denominator.

The existence of the internal equilibrium and its local stability depend on 7(p*) and
#(p*) as indicated in Table 2. If #(p*)7(p*) > O then p is monotone and the system
will possess one stable equilibrium with monomorphism in both host and pathogen. We

10



Table 2: Existence and stability conditions for the internal equilibrium in model (14)-(15)
when ¢; > 0 and ¢3 < 0, i. e., when one internal 7 = 0 isocline exists (Table 1).

7(p*) > 0 7(p*) <0
#(p*) >0  no equilibrium focus
(p*) <0 saddle no equilibrium

will not discuss this situation further and focus on the cases where 7(p*) and #(p*) have
opposite sign. We distinguish between two situations. First, the situation where 7(p*) > 0
and #(p*) < 0. Then at equilibrium allele @ has the higher average fitness on v and A
the higher on V, and the combinations a with v and A with V provide the higher fitness
for both host and pathogen. The internal equilibrium is a saddle according to Table 2.
Second, we consider the situation where #(p*) < 0 and #(p*) > 0. Then at equilibrium
allele a has the higher average fitness on V and A the higher on v, and the higher fitness
for host and pathogen is obtained in different combinations. The internal equilibrium
produced is a focus.

3.2.1 Polyinorphic equilibria of the saddle type

The internal equilibrium is unstable in this situation, so monomorphism in the pathogen
always result. We first consider the case where a has the higher average fitness for high
frequencies of v and that V and A also induce high fitnesses for each other, i. e., #(p) > 0
and 7(p) < 0 for all p, 0 < p < 1, and not only for p = p*. In the phase portrait (Fig. 2)
the p = 0 isocline passes from the line p = 0 to the line p = 1 (the solid curve in Fig. 2).
The equilibria at (0,0) and (1,1) are asymptotically stable while the equilibria at (1,0)
and (0,1) are unstable, and the stable manifolds S of the internal equilibrium separate
the basins of attraction for the two stable equilibria with (1,0) and (0,1) € S. The system -
-will go to monomorphism in both pathogen and host, a with v or A with V, with the
outcome depending on initial conditions.

Disease induced polymorphism in the host may occur if #, = #(1) < 0, but #(p*) > 0,
because this implies that 73 < 0. Therefore, the host show overdominant selection with
only virus v, and the equilibrium with frequency p! = 73/(7, + 73) is stable as long as
virus V does not occur in the population. The p = 0 isocline bends to the right and
crosses the line 7 = 1 at p = p' (broken curve in Fig. 2). When 7, = 0 the p = 0 isocline
passes through the equilibrium at (1,1) which bifurcates and exchanges stability with the
equilibrium (1,p') as 7, becomes negative. For p' > p* the ‘equilibrium (1,p') remains

11



Figure 2: Phase portrait for model (14)-(15) with #(p*) > 0 and #(p*) < 0, where the internal
equilibrium is a saddle. The solid curve shows a situation where monomorphism prevails in a
host population that is infected only with one virus strain. The broken curve shows a situation

where polymorphism in the host is possible in a population only infected with virus v.

stable, and at p' = p* the equilibrium fuses with the internal equilibrium and looses its
stability. For p' < p* the internal equilibrium does not exist, (1,p!) is unstable to the
introduction of V and (0, 0) is the only stable equilibrium. Similarly the equilibrium at
(0,0) may exchange stability with an equilibrium corresponding to host polymorphism
in the state where only V is present. The two equilibria with host polymorphism and
pathogen monomorphism may exist and be stable simultaneously.

The comparison between solutions to the full model and the approximate solutions
is somewhat delicate when the internal equilibrium is a saddle (Fig. 3). For solutions
starting far from S, one of the fixation states is uniform asymptotically stable, and the
two solutions remain close in both a quantitative and a qualitative sense. For solutions
starting close to the stable manifold the approximate and the full solutions may differ
in two ways. They may simply fall in different basins of attraction because of a small
difference in the position of the stable manifolds in the full model and in the approximate
model. Even when the curves remain in the same basin of attraction, one trajectory
may be slower than the other. The trajectories are stalled in the neighborhood of the
saddlepoint, so curves that come close to the saddle slow down compared to curves that
stay farther away, therefore near S we obtain only qualitative correspondence between
the solutions. With these reservations we conclude that the approximate model is a good
predictor of the coevolutionary behavior in the full model.

3.2.2 Polymorphic equilibria of the focus type

Again we first assume that the average excess fitnesses of allele a have the same sign for
all gene frequencies, i. e., we assume that 7#(p) < 0 and #(p) > Oforallp, 0 <p < 1.
Thus, a has the higher average fitness for high frequencies of V and A is favoured for high
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Figure 3: Behavior of the coevolution model in a situation where the fixed point for coexistence
is a saddle. Trajectories for the approximate model (solid lines) and the full model (broken
lines) may separate if initial conditions are near the stable manifold of the fixed point for
the approximate model (thin lines). The parameter values are the same as in Figure 1. The "
genetically determined variation in parameters for aa is u; = 0.00125, &, = —-; = 0.25, and
pr = -B1 = 0.22. For AA the deviations of v and 3 are I3 = —3 = —0.13, and Bs = =P =
—0.11 while pu3 = u;. Deviations for the heterozygote are set to zero. The values correspond to
tr D = —0.0625 and det D = —0.5. .

-frequencies of v. The phase portrait of this situation is shown in Fig. 4, and the p =0
isocline passes from the line p = 0 to the line p = 1 (the solid curve in Fig. 4). All four
corners are saddles, and the edges connect these four saddles in a heteroclinic orbit, +,
strung between the saddle points in I' = {(0,0), (0,1),(1,1),(1,0)}. The solutions will
rotate clockwise around the internal equilibrium. _ e
The stability of the internal equilibrium is determined by the trace condition tr D <0
which is '
(f'l + f3)7r'~ + (’f'l + f'3)(1 - 7!") < 0. (19) .

Thus, the polymorhic equilibrium is stable when the denominator in the equilibrium
gene frequency in the host, equation (18), is negative. This happens when fitnesses
78 + (1 — 7*)3;, i = 1,2,3, are overdominant at equilibrium, i. e. when the fitness of
the heterozygote at equilibrium is larger than the fitness of either homozygote (Levin and
Udovic, 1977). Equation (18) simplifies the stability conditions (19) to

'f'17"3 < 'f‘lf's. (20)

When condition (20) is satisfied damped oscillations occur, and a Hopf-type bifurcation
is expected to take place at tr D = 0 when the polymorhic equilibrium becomes unstable.
However, the system given by equations (14) and (15) is degenerate, in that the third
order terms that determine the nature of the Hopf-bifurcation vanish.
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Figure 4: Phase portrait for model (14)-(15) with #(p*) < 0 and #(p*) > 0, where the internal
equilibrium is a focus. The solid curve shows a situation where monomorphism prevails in a
host population that is infected only with one virus strain. In this situation the edges form
a heteroclinic orbit. The broken curve shows a situation where polymorphism in the host is
possible in a population only infected with virus v.

The system undergoes a global bifurcation at the heteroclinic orbit v simultaneously
with the Hopf bifurcation. Solutions near v will be attracted to v when B < 1, where

)
B=115 @)

and X,(q) and A (q) are the stable and the unstable eigenvalues of the linearization around
the saddle point ¢ € I' (Guckenheimer and Holmes, 1983). Evaluating these eigenvalues
we get 5 i o

p=faha_%h

C3Ti1C1Ts  TiT3

Thus, B < 1 if and only if condition (20) is not satisfied, and so the boundary orbit
7 is attracting exactly when the internal equilibrium (#*,p*) is repelling. The internal
equilibrium and the heteroclinic orbit are therefore neutrally stable at tr D = 0, and in
passing through tr D = 0 the system goes directly from solutions spiraling slowly into
(m*,p*) to solutions spiraling slowly away from the equilibrium and onto the heteroclinic
orbit.

When tr D < —0O(e), the polymorphic equilibrium is uniform-asymptotically stable,
damped oscillations occur, and the solutions for the full and approximate models stay
close for all time (Fig. 5). The system does not have a uniform-asymptotically stable
solution, however, in the case of undamped oscillations when tr D > O(e) . The full
and approximate solutions will diverge over time, but the divergence is essentially due to
differences in the period of the undamped oscillation. The solutions oscillate out onto the
heteroclinic orbit, and we maintain a qualitative correspondence between the approximate

and the full solutions.

[y
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Figure 5: Solutions to the approximate model (broken curve € = 0.1, dotted curve € = 0.2) and
the full model (solid curve) in the situation where a stable double polymorphic coevolutionary
equilibrium exists. The parameter values are the same as in Figuré 1. The genetically determined
parameter perturbations are y; = u3 = 0.5, ﬁl = —[31 = —ﬁ3 = (3 = 84, and i = -0 =
—P3 = 3 = 8.8 with all other perturbation equal 0. The values correspond to tr D = —0.25 and
det D = 0.25. '

When tr D = O(e) neither the quantitative nor the qualitative behavior of the full
system is determined by the approximate model. The approximate model change from
damped to undamped oscillations through a critical Hopf bifurcation, but the full system
undergoes a usual (sub- or supercritical) Hopf bifurcation giving rise to a limit cycle which
disappears through a global bifurcation at the heteroclinic orbit (Fig. 6).

As before the p = 0 isocline may bend, as indicated by the broken curve in Fig. 4.
. This gives rise to an equilibrium with polymorphism in the host for one or both of the
monomorphic virus populations, (0,p*) and (1,p'). If 1 > p' > p* then the equilibrium
(1,1) is locally stable, and when the internal equilibrium exist (0 < p* < p*), it is unstable.
Thus, the system cannot have two stable equilibria when the unique internal equilibrium
is a focus.

3.2.3 Two polymorphic equilibria

When two 7 = 0 isoclines exist the phase portrait essentially consists of combinations
of the situations described above. When two internal equilibria exists, one is a saddle
and one is a focus. A heteroclinic orbit cannot exist, and a stable boundary equilibrium
always exists. The essentially new phenomenon that may occur is simultaneous stability
of the focus and a boundary equilibrium with one virus type and either monomorphism
or polymorphism in the host.
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Figure 6: The dynamics of the of the full model is sensitive to small changes in € when tr D =
O(e). The fixed point at ( -;-, -;—) undergoes a subcritical Hopf bifurcation at £ ~ 0.0092 spawning
an unstable limit cycle that disappears in a global bifurcation at the heteroclinic orbit for
€ =~ 0.05. — Top diagram: £ = 0.0095; bottom diagram: & = 0.014. — The parameter values
are the same as in Figure 1. The genetically determined variation in parameters for aa is
p1 = 0.00075, &y = —i; = —0.13, and B = =B, = 0.12. For AA the deviations of v and § are
U3 = —i3 = 0.05, and B3 = -,@3 = 0.05 while u3 = u3. Deviations for the heterozygote are set
to zero. The values correspond to tr D = 0.0375 and det D = 0.25.



3.3 Degeneracy

The local stability of the double polymorphic equilibrium (7r P ) need to be studied in
more detail to understand the biological origin of the degeneracy in the model. The model
given by equations (14) and (15) has the form

7 = w(l-m)f(p;9),
p = p(1-p)g(m,p9),

where ¥ is a bifurcation parameter. The function f(p;¥) is independent of 7, i. ., f; =0,
and the function g(7,p; ") is linear in p and =, i. e., gy, = 0 and g, = 0. For simplicity
we focus on a single bifurcation parameter ¥. At the bifurcation value 19 = 190 we find
that a pair of complex eigenvalues A(¥) of the Jacobian

D(’l9) — ( 0 (1 - ﬂ‘)f”,(p';'ﬂo) )
p*(1 = p*)gr(m*, p*;90) (1 — 7*)gy(m*, p*; o)
passes through the imaginary axis. In other words we have that

' d\
A(d) = i —
(Po) = fiw | and Re T

# 0. (22)
do .
Thus, the second diagonal term of D vanishes at the bifurcation point, and we have that
9 =0. |
It is well known that under conditions (22) a Hopf bifurcation occurs at (7*,p*; ¥),
and this may be of three types:

Supercritical Hopf bifurcation: a stable periodic orbit occurs when the eigenvalues have
positive real part and no periodic orbit exists when the eigenvalues have negative
real part.

Subcritical Hopf bifurcation: an unstable periodic orbit occurs when the eigenvalues have
negative real part and no periodic orbit exists when the eigenvalues have positive
real part.

Critical Hopf bifurcation: the effect of the third order terms vanishes and the dynamics
is determined by higher order terms.

The details of the bifurcation are determined by the third order terms which can be
found by computing the normal form of the equation (Guckenheimer and Holmes, 1983).
However, Liu et al. (1986) provide a formula that allows us to compute directly a critical
parameter C, the sign of which in combination with the derivative Re)X'(1) determines
the type of the bifurcation. The assumptions about f and g, fy = gr, = gp, = 0 in
particular, make C vanish and the bifurcation is critical.
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This degeneracy implies that the model given by equations (14) and (15) is structurally
unstable, i. e. even small changes in the vector field may give rise to significant changes
~ in the phase portrait (Guckenheimer and Holmes, 1983). The model is based on a. series
of simplifying assumptions, and we will discuss how the model may be modified in order
to remove the degeneracy.

The model is obtained as a first order approximation to a larger system of equations, so
higher order terms may remove the degeneracy. Numerical solution of the full model (3)-
(5) show that the Hopf bifurcation and the global bifurcation at < are indeed separated
in parameter space. A sub- or supercritical Hopf bifurcation occurs at the polymorphic
equilibrium and gives rise to a limit cycle that undergoes a global bifurcation at the
heteroclinic orbit, but both events happen for parameter values with tr D = O(e). The
transition between the two dynamical states of the model therefore occurs within a tiny
area of parameter space. Thus, the model is structurally unstable in the sense that small
changes in the vector field may alter the dynamics significantly if the changes outweighs
the higher order terms in .

This return the focus to the approximate model given by equations (14) and (15).
From our analysis the degeneracy depends on three properties of the model:

1. f; =0, no frequency dépendence in the fitness of the haploid pathogen.

2. gy, = 0, no frequency dependence in the genotypic fitnesses of the diploid host (the
allelic fitnesses are linear in host gene frequency).

3. g/, = 0, the genotypic fitness of the diploid host is linear in the type frequencies of
the virus population.

The selection on the variation in the host and pathogen populations is frequency depen-
dent in the full model (3)-(5). The frequency dependence, however, is weak in the sense
that, e. g., the frequency dependent effect in the host is of order €2 which is an order of
magnitude lower than the effect described in the fitnesses £s; of the approximate model.

The first property appears to be quite fundamental to SIR-type interactions which
implies that the model allows for no direct frequency dependent selection among viral
types. The expression for f comes from the equation for the change in # which from
equation (28) of Appendix A is of the form

dm _ 1/:’1 'Jf
dt—ew(l 1r)<I. I.),
where 12)1 and ¥; denotes the order e-terms of di /dt and di /dt evaluated at the slow
manifold . The term +;/] is independent of x since © in the infection rate and [ in
the removal rate are proportional to / = nJ. Thus, latent period, immunity, or density-

dependence do not affect the degeneracy provided a quasi-equilibrium exists where the
distribution of infections follows the frequencies of v and V in the population.
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If disease transmission is determined by heterogeneous mixing among hosts, like the
mixing characteristic of sexually transmitted diseases in man, the infection rate is more
complicated. However, frequency dependent selection among viral types still does not
occur if exchange among groups is sufficiently strong and if reproduction is by random
mating in the total population. To illustrate this assume that the host population is
divided into two subpopulations X and Y with contact rates cx and cy. If the mixing is
proportionate (Babour, 1978) the rate of new v-infections for genotype i in subpopulation
X becomes R X

Lxi= (B +€ebi)cxSa cixl\lfi :Z?’;
(Hethcote and Yorke, 1981). Births are divided among the two subpopulations in fixed
proportions and otherwise the model is the SI-model of Section 2. The coordinate trans-
formation in Section 2 for each subpopulation yield the dynamics of the type frequencies
mx and 7y in subpopulation X and Y:

. cxcCy Iy,

Tx = ﬂsxcxNx+cYNyI (my Wx)f*'€¢1rx,
- cxcC I

iy = BSy—2 X (rx — 7y) + €y

exNx +CyNyT

If the model has a stable endemic equilibrium then (mx,y) settle to the slow manifold
(w,m). At this quasi-equilibrium the infection rate Lx; again is proportional to 7 and
frequency dependent selection among viral types is excluded. More complicated mixing
~ patterns such as preferred mixing (Jacquez et al., 1988; Blythe and Castillo-Chavez, 1989)
do not affect this conclusion.

4 Frequency dependent selection in the virus :

Direct interaction among viral types may cause frequency dependent selection in the viral
population. To illustrate this we analyze a modified version of a model of phage-bacterium
coevolution (Levin et al., 1977; Levin and Lenski, 1983; Stuart and Levin, 1984; Levin,
1988). In the phage-bacterium system a free living stage of the phages attack uninfected
as well as infected bacteria, and in Levin’s model genetic variation in attack rates allow
for structural stability in the coevolutionary model.

A similar situation occurs for baculo vira infecting insect larvae. Baculo vira repli-
cate rapidly and fill the entire body of the larvae with virus capsules with a protective
proteinaceous cover. This shield allows the virus to stay active in the environment for
as long as ten years. Infections primarily occur when larvae feed on leaves contaminated
with virus capsules (Fraenkel-Conrat, Kimball and Levy, 1988)..
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The pool of free virus capsules W plays a central role in the transmission dynamics of
baculo virus, and Anderson and May (1981) included it in the SI-model:

S = bN —uS-BSW
I = BSW - (u+v)I ' - (23)
W = M -pBNW — oW,

where N = S + I is the total number of larvae. The amount of free virus produced per
infected host that survive the infected stage is A/v. Larvae meet virus capsules at the
rate SW, and the amount of virus in the environment is measured in units of the amount
ingested by a susceptible larvae to become infected. The term SNW reflects the fact
that both healthy and infected larvae eat and remove virus particles from the pool of
free virus. This phenomenon induces a direct interaction between infection types because
virus eaten by an already infected larvae is less likely to reproduce.

The disease persist in the population only if the number of infective doses produced
by an infected larva, A/(v+ u), times the probability that the virus is consumed by larvae
BN/(BN + p) exceeds unity in a population where all larvae are susceptible, i. e.

A BN

> 1.
u+v BN +p

- Ry=

With this threshold condition satisfied an endemic equilibrium exists, and it may be stable
or spawn a stable limit cycle through a Hopf bifurcation. To simplify the discussion we
assume that the model has a stable endemic equilibrium. The non-stationary case can be
handled in a similar way by using suitable time averages (Andreasen and Christiansen,
1993).

The full coevolutionary model with two viral types and two alleles to determine host
response is given in Appendix B. After transformations, like those used in Section 2, the
slow coevolution of host and pathogen is described by

— 2 .
i = enlr=n) (=22 G~ i) - - )
85 o iia
+ /\I/W-i-ﬁSW/I{/\i—/\i'p}—(Q-Q)
b P (x{fu = Bulp} + (1 = W) {Bvi — Builp}) ) (20)
3 + BT " (P = Pulp vi—Builp

p = et p)(~ulo) + ey (riSle) + (1= m)ASIR)

b1/S
t BSW/TI+bI/S

(r(odp) + @ = m)(ap) ). (25)

(3%}
<o



" The transmission rate § vary with genotype and viral type in both susceptible and infected
larvae. The deviation from £ for susceptible larvae of genotype i as before is described by
B,- and f; for infections of v and V. The deviation from 3 for larvae of genotype i infected
with virus type v is described by ﬂ:,,- and (,; when the lavae meet virus capsules of type v
and type V, respectively. The rate deviation for larvae of genotype ¢ infected with virus
type V is described by By; and By ‘

Compared to model (14)~(15) the fitness of the virus now includes a frequency de-
pendent term proportional to 7{Gy — Builp} + (1 — 7){Bvi — Bvilp}. Thus, frequency
dependent selection occurs in the viral population if Bv;' — Bvi # B,,,- — Bui, i. e., if the
two viral types induces different search behaviour in the infected hosts and if they differ
in the amount or distribution of virus capsules produced. For example, if the feeding
rate of lavae infected with strain v is reduced and in addition the spatial distribution of
virus is heterogeneous in that lavae infected with v are more likely to encounter v-virus
particles than V-particles, then genuine frequency dependence occurs and the degeneracy
is broken. ,

The structural similarity between model (24)-(25) and model (14)—(15) is exposed by
the introduction of aggregate parameters:

# = en(l-m)(cp® + ca2pg +csq® — (8 — 8) + m(dip® + da2pg + daqz))
p = epg(m(frp— fsq) + (1 = 7)(F1p — F3q)). o

We need not analyze the system in general to argue that the degeneracy is removed.
Rather, we consider a highly symmetric situation, where the variation in encounter rates
for infected individuals is independent of genotype, d; = d, and where the fitness:of hosts

and virus are symmetric in that ¢; = —c3 =¢, ¢ =0, 7, =3 = —a, 73 = 7; = 1 and
0—0=0,wherec>0and a > 0: ‘
o= en(l- 7r)(c(p -q)+ d7r) | T (26)
p = epg(~m(ap+q)+(1-7)(p+ag)). (27)

For d = 0 this corresponds to ¢;¢c3 < 0, 7(p) = —(ap+¢) < 0 and 7#(p) = p+aq-> 0, which
is the focus case depicted in Fig. 4. We restrict attention to the case where —%c <d< %c.
This ensures that Fig. 4 still represents the phase portrait with the existence of exactly
one internal equilibrium of focus type and a heteroclinic orbit with clockwise flow (the
# = 0 isocline is still a straight line, but it is no longer horizontal). The trace condition
for stability of the internal equilibrium (7*,p*) is

dr*(l-7)+ (1 -a)p*(1-p") <0,

while the heteroclinic orbit is attracting when

< 1.
c+d

«a
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Figure 7: Bifurcation diagram for the symmetric model (26)-(27) describing a baculo virus.
The parameter ¢ describes the component of viral selection induced by the host, and it is fixed
at ¢ = 4. The parameter d on the abscissa describes the frequency dependent fitness component
of viral selection. The parameter a on the ordinate gives the strength of selection induced by a
viral type against the host allele preferred by that viral type relative to the strength of selection
against the other allele. The curve tr D = 0 shows where the internal equilibrium changes
stability while B = 1 indicates where the heteroclinic orbit v undergoes a global bifurcation. In
the absence of frequency dependent selection (d = 0) the bifurcation is degenerate.

The two bifurcations now occur for different parameter values and the internal equilibrium
undergoes a usual sub- or supercritical Hopf bifurcation, as indicated on the bifurcation
diagram in Figure 7.

Therefore, direct viral interaction can break the degeneracy of the coevolution model
(14)—(15). This may occur even if this effect is minor as suggested by field workers (Dwyer
and Elkinton, 1993). Phenomena like superinfection may have a similar effect, and we
conclude that the outcome of the coevolution will depend on such subtle aspects of the
interaction. Thus, the occurrence of sustained coevolutionary cycles in models of phage-
bacterium systems (Levin et al., 1977) probably is due to phenomena that is not usually
present in models of viral diseases.

5 Conclusions

Genetic variation with a small influence on the dynamical parameters of the interaction
between a diploid host and a haploid pathogen leads to slow coevolution of the two species
well described by a weak selection approximation. This process can end in various states.
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- Selection may cause the pathogen or both the host and the pathogen to loose variation and
end up monomorphic. Variants of a virus can only coexist when variation in the host is
present. Selection may maintain stable polymorphism in both the host and the pathogen,
but only if the host show overdominance in fitness at the stable equilibrium. Finally,
selection may cause the host-pathogen system to cycle in a heteroclinic orbit where one
of the species are nearly monomorphic while the other species goes through a trancient ‘
polymorphism. This cycling state is maintained by a steady flow of rare mutations in
both host and pathogen. |

Small changes in the dynamical parameters may change the end state from stable
polymorphism in both species to a heteroclinic orbit when the dynamics is based on an
SIR-model. In this sense we conclude that the evolutionary interaction between a diploid
host and a haploid pathogen is degenerate in SIR-models. The abrupt change in dynamics
eases as the genetic influence on the dynamical parameters becomes larger, but the range
of parameters where limit cycles may exist is still very limited. We do not expect stable
limit cycles in the genetic composition of the populations to be a prominent feature of
the model unless the genetic variation has a significant impact on the dynamics.

The classical way of maintaining a two-allele polymorphism by selection is overdom-
inance in survival. Selection in the host occurs through differential viability of the host
genotypes, and the general result is that stable polymorphism occurs only when over-
dominance in fitness prevail at equilibrium. Thus, variation in the host is maintained
when the heterozygote show more resistance against the disease than either of the two
homozygotes. Situations where a stable genetic limit cycle that maintains variation by
freqency-dependent selection without an obvious heterozygote advantage are virtually
absent or extremely rare in models based on SIR-descriptions. f

Variants of a virus cannot coexist unless the host varies, and the virus contributes
to.the maintenance of host polymorphism only in special circumstances, as we just saw. -
Therefore, variation is not expected to build up in the virus, and coexisting endemic
vira has to be sufficiently different to overcome this version of the competitive exclusion
principle.

A crusial assumption of the SIR-models is that the virus only has a existence of its
own within-the host or during the immediate transmission from one host to another.
If this assumption is relaxed, then the degeneracy may be broken and non-trivial two-
species polymorphism result. We analysed the condition for non-degenerate behavior in s
simple symmetric model, and there a rather pronounced level of qualitative interaction is
required to produce stable genetic limit cycle for weak selection. However, this will have
to be analysed in models of a wider scope before a general description is reached.

Competihg equilibria occur in many situations in the SIR-based model. Stable two-
species polymorphic equilibria may coexist with monomorphic equilibria, one species poly-
morphic equilibria may compete with monomorphic equilibria with the other virus, and
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monomorphic equilibria may be stable simultaneously. Of particular interest is competing
equilibria where different virus types and different host alleles are represented, because the
existence of these equilibria allow two-species polymorphism in a collection of semi-isolated
local populations, a metapopulation: For instance, if two monomorphic equilibria which
differ in both host and pathogen are stable simultaneously, then every isolated population -
will end up monomorphic. For other reasons, maybe historical, the populations may
have fixed at different monomorphic equilibria, and so the metapopulation show a stable
two-species polymorphic equilibria. Such equilibria, slightly modified, still exist for a low
ammount of genetic migration between the local populations, and with migration even
the local population will be at a stable two-species polymorphic equilibrium.

The maintenance by metapopulation effects of variation in virulence and resistance is
interesting in its own right, and for the study of this phenomenon SIR-models are good
and simple tools. SIR-models, however, are problematic for the study of host-parasite
coevolution in more panmictic models.

A Multiple time scales
In this appendix we sketch how the motion along the quasi steady state
T.U(p,ﬂ') = (S,I,ﬂ’,ps,ﬁ,ﬁ, F37 Fy F) = (S"I‘a"rvpapvl%()aoao)-

can be determined. Our first step will be to show that w(p,n) is a stable steady state
when £ = 0. i

The system (6) is autonomous for € = 0, so by our assumptions S and I settle to
an endemic equilibrium (S*,I*). The variable 7 is stationary from equation (7), and
the system (8) contains a one-dimensional singularity ps = p = p = p. This manifold is
attracting, i. . (ps, p,p) — (p,p,p) for t — oco. To see this, study the variables &, = ps—p
and & = pg — P, and observe that

% = - (TS—I + ﬂS> &1 — M-mI ;W)I §2,
dEz _ l_)_?f_{ b(l - 7T)I
% - S & — (———S +ﬂs> &

Obviously this system has a unique fixed point at (£;, &) = (0,0). Since the trace is nega-
tive and the determinant is positive, and both are bounded away from zero for sufficiently
large t, we have £ (t), &(t) — 0 for t — oo (Coddington and Levinson, 1955, p. 315).
Once (8) has reached ps = p = p, the deviations from Hardy-Weinberg proportions Fg
goes to zero when pg # 0,1. At pg = 0,1 the right hand side of (9) is discontinuous and
we will need additional arguments. Andreasen and Christiansen (1993) show for a similar

24



model that if p # 0,1, Fp — 0 as t — oo on the fast time scale so that Fp = 0 is also
stable in situations where a or A are fixed. We will not pursue this question further, but
simply conclude that (6)—(9) contains a 2-dimensional stable manifold = of fixed points
parameterized by (m, p). Therefore for € > 0 a short transience will bring the system close
to the attracting manifold w.

The dynamics of # on @ can be determined directly from (7) by evaluation of ¥, at
w(p, ) and we get

dr _df1l  dIl _ (Yr g+ _ 1
dt il "dtz‘e(f 7 )_E((l 7 WI)’ (%)

Since ¥ is to be evaluated at @, we get ¥; = {B;Sflp} + {'f';ﬁSflp} - {u,f+ ;1 |p} where
{ki|p} = k1p* + k22pq + ksq?. Simple algebra now gives

# = en(1— ) ({8 - Bilp} + BS{# — 719} — {&s — wilp}).

The dynamics of p on w can be determined by noting that according to (8) the variable

brl ‘+b(1-7r)I .
s P s P

n=BSps+
follows the equation

dn _ brl ~ b1 —-m)I .
dt =€ (ﬁs¢p5+ S ¢p+ Twp) .
Siﬁce on w we have n = (3S + bI/S)p, this observation may be used to determine the
value of p =7/(8S + bI/S) on w. Evaluation of the 1s on @ now yields.(10)-(11).
The choice of » may be seen as a special case of the projection method of Beck

et al. (1984), for further details on this we refer to Andreasen and Christiansen (1993).

B Model with free living stages

A coevolutidnary version of the Anderson and May (1981) model with free living stages
(23) is obtained as in Section 2:

%‘j-‘ = B;—[p+ew]Si— [B+eBISW — [B+eBSW, i=1,2,3,
dl; o ath : PO

Et_ = [ﬂ + Eﬂ,’]SiW - [[1: + Eui]Ii - [V + EVi]Ii, 1=1,2,3,

dIv,' > H ¥ ~1F .

EZ- = [ﬂ + Eﬁ,’]S,'W - [,u + Eﬂi]]ﬁ - [V + EV:']I:', i1=1,2,3,
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pT Z[A + GS\j]ij - ;[ﬁ + Est]SjW

7
-2 B+ Bl W = Y (B + eBv) ;W = (o + ed)W,
j 3
= = Z['\ +el)l; - Z{ﬂ +&Bs;]S;W
- Z[ﬂ + EﬂVJ]I W — z[ﬂ + eBv; )W — (o + ed)W.

"The detailed description of the interaction between larvae and free virus is discussed in
Section 4. Transforming this 11 dimensional system into total abundance, gene frequency,
and deviation from Hardy-Weinberg as in Section 2, we get

%‘:: — BN — uS - BSI - BSI +eys

dl

5 = BSW — (v + p)I + ey

dWw

S = M—oW —BS+DW +epw

d SW

c;rt] = ﬂI (Tw — 1) + €¥nr

d Al

% = W(WI - 7TW) + Ewﬂ'W

d I, . 1-7)1,.

s (g ps) + 085 51 ) + v

dp SW

% = b (ps — P1) + ¥y

dp SW

B o P2 o5~ p) + ¥y

@Fs _ N (gp—ﬁ)—(l Fg)- 2L )+€1/1Fs

dt S\ psq PS

dE; BSW [ (ps — p1)® > PsqS y
= 1-Fy) - Fy - F,

dt I ( prd ( 2 (I 9) +evr
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dFy  BSW ((ps—91)*,, =\ Dsds,z p

o bi ( 14 (l—Fj)—EE(F}—Fs) + eyYr

where 7; and mw denote the frequency of virus type v in the infected class and in the free
living stage, respectively. ‘

The model contains a stable two dimensional singularity,

w(m,p) = .
{(S’IamﬂI’WW:pSaﬁlaﬁlaFSaFl,F‘I) = (S',I',W',7l’,7r,p,p,p,0,0,0)|0 _<. w S 1)0 S D S 1}1

The variables 7, and 7,, where

Al BSW
M = ‘u_/ﬂ'l + 7 w,

BSW wbl . (1 —m)bl
T]p = T Ps + S Pr+ = S DI,

are slow variables so that

il = & (%,{%1 + ——-ﬁs;wlbnw) / (£ + ’BSW' ) ’

dt W
o (BSW abl » (1 —m)bl - BSW  bI'\
a “'5(1'/”’”5%“r g ”/ I t5)

The coefficients 1) need only be evaluated on the slow manifold, and we find -

Yo = (1-— w)w{(ﬁi - B:)SW/I — (b; — &) IP}

Yow = (1= m)m{(s = NI/W = (B = B)S — (B = Bus)I = (Bvs = Brs)(1 = m)I | p)
: —(1 - m)m(o- &) |
Yps = —p(1— P)<Hi +BWn+ W1 —m) IP> .
¥ = p(1- p)<,[§,~WS/I - U= P>
U = p(1—p)(BWS/T -5 - u|p).

The weak selection model (24)-(25) now follows.
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