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Abstact.

This is mostly a new version of my Ph.D. thesis including changes and correc-
tions. The paper focus on the spin representation of the restricted orthogonal
group and the metaplectic group together with their applications to the loop
circle and the group of orientation preserving diffeomorphism on the unit
circle. In an attempt to make this paper self-contained we also treate the
fermion algebra and the boson algebra, as we include a chapter on the loop
algebras and the Virasoro algebra together with a discussion of the vari-
ous representations thereof. The groups considered are realized as operators
acting on an infinite dimensional separable Hilbert space and the various
representations are mostly in the different Fock Hilbert spaces or subspaces
thereof.

We point out that some of the considered problems originally came from
theoretical physics and that this, beyond the nice mathematics it represents,
has been some of our motivation for studying these subjects. Therefore we
also relate the mathematical theory developed to its natural applications in
theoretical physics.
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... thought Alice, and she went on.

"Would you tell me, please, which way I ought to go from here ?”

"That depends a good deal on where you want to get to”, said the Cat.

"I don’t much care where -” said Alice.

"Then it dosen’t matter which way you go”, said the Cat.

”- 50 long as I get somewhere”, Alice added as an explanation.

”Oh, you’re sure to do that”, said the Cat, "if you only walk long enough”.

Alice’s Adventures.
Lewis Carroll.




Introduction;

Recently there has been a renewed interest in representations in connection
with the study of Kac-Moody algebras, loop algebras, the Virasoro algebra
and the associated groups ([P-S)]; [K-R],[Lu], [G-W], [Ar] and many oth-
ers). These groups appear naturally in quantum theory with infinitely many
‘degrees of freedom, i.e. in canonical quantum field theory, string theory,
statistical-quantum physics and soliton theory. The renewed interest comes
partly from the many fruitful applications in physics and partly, or rather
basicaly, from the mathematical success in dealing with infinite dimensional
Lie algebras. '

Some of the problems in dealing w1th infinite dimensional Lie algebras
are that many of the essential methods known from finite dimensional Lie
algebras can not be suitably generalized. In partxcular such operations as
exponentiating elements of the Lie algebras are not always possible, even
locally ([G-W] and [P S)). o

" The. Ioop group is' the group of smooth mappings from the unite circle S?
" to a Lie group G, and it is denoted LG (sometimes Map(S*,G) or S'G). Tf
the Lie algebra of the Lie group.G is g, then the Lie algebra of LG is S'g
(sometimes Ig or Map(S*,8)), see for example [P-S]. The Lie algebra S'g is
called the loop algebra of g. Hereby the loop algebra gives imformation on
the loop group. The central extension of the loop algebra S'g is denoted the
affine Kac-Moody algebra associated with the Lie algebra g. Sometimes one
need a further extension of an affine Kac-Moody algebra, this is also called
an affine Kac-Moody algebra or _|ust an afﬁne a]gcbra ([K-R]), we prefer the
last nomenclature.

From a mathematical point of view, the Virasoro dlgebta is a relatively
nice infinite dimensional Lie algebra, and its representations are well under-
stood. The Virasoro algebra is the central extension of the complexification
of the smooth real vector fields on the unit circle S!, hence it is a central
extension of the complexification of the Lie algebra of the diffeomorphism
group. The exponential mapping from the Lie algebra of real smooth vec-
tor fields on the unit circle to the diffeomorphism group is neither locally
one-to-one nor onto ([P-S]). It turns out that the diffeomorphism group on
the unit circle Diff{S*) acts as a group of automorphisms on any loop group
and that the orientation preserving subgroup Difft(S') acts projectively on
all the known representations of loop groups ([P-S]). Hence it is natural to




study the Virasoro algebra in connection with the loop algebras.

The loop algebras and the Virasoro algebra combine in the Sugawara
construction, which defines the generators of a representation of the Virasoro
algebra as quadratic expressions in the basis of any representation of the
affine algebra corresponding to the mentioned loop algebra. This turns out
to- be very important in conformally invariant statistical physics ([B-P-Z 1]
and [B-P-Z 2)). .

_ In a standard approach to quantum field theory the states of the physical
system are vectors in a Fock Hilbert space. The precise structure of the Fock
Hilbert space depends on the type of statistics obeyed by the particles it
describes. In case of bosons one uses the symmetric tensor algebra, Fyv(H),
modelled over a "one-particle Hilbert space” H, to describe the physical
many particle states, hence it is sometimes called the boson Fock Hilbert
space. Dealing with fermions, the physical many particle states is described
by the Hilbert space completion, Fa(H), of the exterior algebra over a one-
particle Hilbert space H, it is sometimes denoted the fermion Hilbert space.
The basic one-particle Hilbert space will, in our considerations, always be
separable and infinite dimensional.

The symmetry of the Fock Hilbert spaces (or in a physical language of
the particles) are reflected in the commutation relations. In the fermion
case, the abstract creation and annihilation operators, which generates a
(C*-algebra, parametrized by vectors in a Hilbert space, fulfils the canonical
anti-commutation relations, CAR. This C*-algebra is called the CA R-algebra
or sometimes the fermion algebra. It has a very useful realization on the
anti-symmetric Fock Hilbert space, called the Fock representation of the
CAR-algebra. In the case of bosons, the abstract creation and annihilation
operators generates (only) a *-algebra parametrized by vectors in a Hilbert
space and fulfils the canonical commutation relations, CCR. This *-algebra
is sometimes denoted the boson algebra. However, the boson algebra gives
rise to the Weyl operators, which are unitaries constructed from the creation
and annihilation operators, and they generate a C*-algebra, called the CCR-
algebra. Similar to the anti-symmetric case, there are very useful realizations
of the boson algebra and the CCR-algebra in the symmetric Fock Hilbert
space, called the Fock representation of the boson algebra and the CCR-
algebra, respectively. It turns out that both the fermion and the boson
algebras are unique up to isomorphism, whereby we can (and will) benefit
from the Fock representations of these in the study of certain automorphism
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groups.

The automorphism groups mentioned above are, under certain circum-
stance, unitarily implemented in the Fock representation. These circum-
stances are closely related to the restricted orthogonal group and the re-
stricted symplectic group, in the case of the fermion algebra and the boson
algebra, respectively.- The unitary implementers can be constructed expli-
citly as projective representations of the restricted orthogonal group and the
restricted symplectic group, respectively. It turns out that the loop group,
LSY, can be realized as a subgroup of the restricted orthogonal group and
that the orientation preserving diffeomorphism group can be realized both as
- a subgroup of the restricted symplectic group and of the restricted orthogo-

nal group. This will be used to construct part:cular representatlons of these
groups on a Lie algebra level.

This thesis is an attempt to give a self-contained review of the spin repre-
sentation of the infinite dimensional restricted orthogonal group and, quite
similar, of the metaplectic representation of the infinite dimensional restricted
symplectic group together with their connections to the fermion algebra and
the boson algebra, respectively. Moreover we clarify the connectlon of these

- topics with the theory of loop algebras, Kac-Moody algebx as and the Vira-
soro algebra, which we also discuss in a self-contained menner. Especially,
we apply the representations to the particular loop group LS' and the diffeo-
morphism group Diff¥(S!). Furthermore, we construct var1ous Tock Hilbert
space representations of the Virasoro algebra ' :

Our major tool iri dealing with these topics is functional analysis, working
mostly on a Lie algebra level. We emphasize that we only consider separable
infinite dimensional Hilbert spaces, hence the groups and algebl as appearing
will also be of infinite dimension.

We will now outline the contents of this thesis systematically. Each sec-
tion begins with some coments. Some are historical remarks others are an
attempt to explain the connection between the particular section and the rest
of the contents. Moreover, we bring a list of references on which the particu-
lar section is founded, how will sometimes be explained there but sometimes
the explanation will appear in the content.

Chapter 1 is a survey of mostly known stuff, however, we have rewritten
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the material in a collected form. The results of section 1.6 do not, to our
knowledge appear anywhere else. 7

In section 1.1, we introduce the Fock Hilbert spaces together with some of
its important subspaces. The explicit constructions will be used intensively
in this and the following chapters.

In section 1.2, we describe the, up to -lsomorphlsm, unique C*-algebra
called the CAR-algebra, over a Hilbert space and its Fock representation. Here

- CAR stands for canonical anti-commutation relations. Sometimes the CAR-
algebra is also called the fermion algebra. The CAR-algebra has an equivalent
formulation in terms of the Clifford algebra, which we also discuss. Since the
C AR-algebra, and therefore the Clifford algebra, too, are "unique”, we will
analyse them in their Fock representations. Moreover, we state the question:
For which orthogonal operators is the automorphism, 7(f) — w(T~1f), of
the Clifford algebra, unitarily implementable in the Fock representation ?

In section 1.3, we use the explicit construction of the anti-symmetric Fock
Hilbert space and the Fock representation of the CAR-algebra to discuss
the construction of second quantization (on the anti-symmetric Fock Hilbert
space). This second quantization is essential for our construction of the spin
representation, treated in the next section.

In section 1.4, we construct the so called spin representation of the infinite
dimensional restricted orthogonal group, on a Lie algebra level, by use of the
second quantization in the anti-symmetric Fock Hilbert space and some ge-
neralizations of this ideas. This discussion is closely related to the answer of
the question stated in section 1.2, since the automorphism, 7(f) — =(T~1f),
of the Clifford algebra, is unitarily implementable in the Fock representation
if and only if the orthogonal transformation T belongs to the restricted ortho-
gonal group O;(’H). In fact, this answer was given by Shale and Stinespring
in 1965. However, our methods are quite different from theirs, in that we
construct the representation explicitly on the subgroup consisting of one-pa-
rameter groups in a neighbourhood of the identity in O(H). We finally end
this section by giving an explicit formula for the vacuum functional. Be-
yond giving an explicit projective representation of the restricted orthogonal
group, this section will be used, in chapter 4 of applications, to make an
explicit representation of the orientation preserving diffeornorphism group,
Diff ¥(S'), on the unit circle, on a Lie algebra level, by realising Diff /(S?)
as a subgroup of the (enlarged) restricted orthogonal group on a particular
Hilbert space.
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In section 1.5, we consider the restriction of the spin representation to
the infinite dimensional resricted unitary group, viewed as a subgroup of the
restricted orthogonal group. There are mainly two reasons for doing this. It
is interesting in itself to have a projective representation of the restricted
unitary group, especially docs the expression for the Lie algebra cocycle
become relatively simple. Moreover, we will use the theory derived in this
section, in chapter 4 of applications, to construct a representation in the anti-
symmetric Fock Hilbert space of the particular loop group LS'. Furthermore,
we will use the restriction of the spin representation to the restricted unitary
- group to construct a representation of Diff #(S') considered as a subgroup of
the (enlarged) restricted unitary group, on a Lie algebra level.

In section 1.6, we give the transformation between the particular forma-
lisms we use, the formalism that deals with, what Vershik calls, almost linear
operators, and the formalism that for example Araki uses. The advantage of
our notation is that we are dealing with the physical Hilbert space.. However,
the operators considered become orthogonal operators. In contrast to this,
the other point of view, which Araki represents, prefers to deal with a Hllbelt
space which is twice as big as the physical one, but the advantage is that the
- orthogonal operators, in our formalism, become unitarities which commute
with a certain complex conjugation operator, in this formalism.

Chapter 2 is devoted to the correspondmg symmetl ic case of that treated
in chapter 1. We follow the pattern outlined in chapter 1. Our contribution
is again the rewriting of the material in these elaborated and collected form,
together with the details in section 2.3, which do not appear anywhere else,
although the results are well-known. :

In section 2.1, we consider the object similar to the CAR- algebla in its
Fock representation, however this object suffers from a lack of norm conti-
nuity, hence it is not a C*-algebra, but only a *-algebra, called the boson
algebra. The "exponentialization”, by Stones theorem, -of the self-adjoint
closure of the sum of the creation and annihilation operators in the Fock re-
presentation, gives the unitary operators called Weyl operators. These Weyl
operators generates the C*-algebra called the CCR-algebra. The dicussion
of these section will be used in the following section.

In section 2.2, section 2.1 will be used in the construction of second quan-
tization in the symmetric Fock Hilbert space, by methods similar to those
of section 1.3. The construction in this section will be used in an essential
way in the construction of the metaplectic representation, discussed in next




section.

In section 2.3, the infinite dimensional symplectic group is introduced
and we construct the metaplectic representation of the restricted metaplec-
tic group, on a Lie algebra level, by use of second quantization and some
ideas similar to it. It turns out that we may use a strategy similar to that
outlined in section 1.4. In particular we state the question: For which sym-=
plectic transformations, S, is the automorphism, 7(f) — #(S~!f), unitarily
implementable in the Fock representation ? Similar to the orthogonal case
this question has already been answered. Shale’s answer from 1962 says that
the automorphism is unitarily implementable if and only if S belongs to the
restricted symplectic group Sp2(H). As in the former case our proof is con-
structive. In fact, these unitary implementers are given by the metaplectic
representation of the restricted symplectic group. Beside giving us a explicit
projective representation of the restricted symplectic group, this section will
be used in chapter 4 of applications, to discuss Diff {(S!) realized as a sub-
group of the (enlarged) restricted symplectic group, on a Lie algebra level.
We end this section by deriving an explicit formula for the vacuum functional
in this case.

Chapter 3, is devoted to a general review of the loop algebras and the
Virasoro algebra together with certain representations of the Virasoro alge-
bra, which to our knowledge not have been done before in details.

In section 3.1, we introduce the loop algebra in general. One reason for
doing this is to obtain knowledge on loop groups, of which we study a parti-
cular one in chapter 4 of applications. Central extension of loop algebras are
very important examples of affine Kac-Moody algebras. It is a fact that the
simplest representations of affine Kac-Moody algebras are given in terms of
the spin representation, whereby the connection of this section and chapter 1
is clarified. Another reason for studying loop algebras is that the diffeomor-
phism group Diff*(S!), to be studied in chapter 4 of applications, acts as a
group of automorphisms of the central extesion of loop algebras, or equiva-
lently at the group level, that the diffeomorphism group Diff #(S!) acts as a
group of automorphisms of the central extension of loop groups. Moreover,
we end this section by describing how the loop algebras are related to the
Virasoro algebra, which is the central extension of the Lie algebra Vect(S?)
of Diff (S'), of smooth vector fields on the unit circle, namely through the
Sugawara construction. It simply gives a representation of the Virasoro al-
gebra by expressing its generators as quadratic terms in the basis elements
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of any representation of an affine Kac-Moody algebra.

In section 3.2, we.discuss the Virasoro algebra mentioned above. Its
relation to the loop algebras and groups is described in the former section.
In chapter 4 of applications we construct some representations of the Virasoro
algebra by use of the spin representation and the metaplectic representation,
respectively. However, before doing this, we will, in the next section, discuss
some concrete representations of the Virasoro algebra.

In section 3.3, we construct some explicit representations of the Virasoro
algebra with central charge ¢ = , in the anti-symmetric Fock Hilbert space.
~ It turns out that there are two essential different cases: In the Ramond sector

z_md in the Neveu-Schwarz sector, respectively. These are irreducible unitary
lowest weight representations of positive finite energy. The construction is ‘
also an illustration on how one in principle can construct a lot of representa-
“tions of the Virasoro algebra for central charge larger than one (and, as here
for ¢ = 1), however, t.hese cases become a bit simpler. It shall be pointed
“out that the case ¢ = j is of special mterest since it is closely 1e]ated to the
complicated Ising model :
In section 3.4, we will construct a serie of representations of the Virasoro

algebra with central charge belonging to the discrete serie ¢, = 1— (m—“ﬁ—m,
where m € N U {0}, all in [0,1]. This, purely algebraic, construction is
known as the Goddard-Kent-Olive construction. As in the former sections
we approach the method by more a,nalytlcal means, i.e. we expand the known
method to constructing representations in a Hilbert space, namely the anti-
symmetric Fock Hilbert space. In particular do we obtain a representation
of the Virasoro algebra with central charge ¢ = ¢, =1, form=1.

~ Chapter 4, deals with applications of the former chapters and thereby
it connects the topics considered earlier. The general discussions of the loop
algebras and the Virasoro algebra will especially serve as a background for
this chapter. Many of the aspects appearing in this chapter has been con-
sidered shortly by Lundberg in [Lu 2], we elaborate these considerations and
add some too, which to our knowledge have not been published previously.

In section 4.1, we use the basic knowledge of loop groups derived in sec-
tion 3.1 in discussing the particular loop group LS!, also called the loop
circle. It turns out that it can be decomposed into-a product of the special
loop group SLS' and the charge group. We will realize SLS' as an abelian
subgroup of the restricted unitary group and then use the spin representa-
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tion to make explicit representations of SLS?, on a Lie algebra level. It
follows that the spin representation of the special loop group. SLS? fulfils the
Weyl form of the canonical commutation relations and thereby becomes a re-
presentation of the CC R-algebra, in the anti-symmetric Fock Hilbert space
(indicating the socalled boson-fermion correspondance). Due to the fact that
the elements of the Lie algebra of the charge group fail to be Hilbert-Schmidt
when commuted with a certain projection operator, it follows that we can-
not- use the method developed in section 1.4 or 1.5. So we have to discuss
the charge group by other means. We can nevertheless explicitly construct
unitary implementers, whence the product of the representation of SLS!
and the unitary implementers for the charge group, provide us with explicit
projective representations of the particular loop group LS!.

In section 4.2, we study the orientation preserving diffeomorphism group,
by realizing it as a subgroup of the restricted unitary group, using the spin
representation of the restricted unitary group, on a Lie algebra level. Thereby
we get a serie of positive energy representations of the Virasoro algebra,
with central charge ¢ = 1, in terms of the spin representation on the anti-
symmetric Fock Hilbert space.

In section 4.3, we make considerations analogous to those of section 4.2.
However, this time we will consider Diff *(S') as a subgroup of the symplectic
group on a particular Hilbert space and thereby we may use the metaplectic
representation to obtain a projective positive energy representation, on a Lie
algebra level, of the Virasoro algebra with central charge ¢ = 1 and lowest
weight h = 0.

In section 4.4, we cosider the boson-fermion correspondance, not in gen-
eral, but in the case discussed in section 4.1. The reason why we have delayed
this discussion until now is that we will use some of the considerations arising
naturally in the former sections of this chapter.
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Chapter 5, is reserved for summary, conclusions and outlook.
Chapter 6, contains a summary in danish. At the end we have placed a
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Chapter 1

The Spin Representation of
the Infinite Dimensional
Orthogonal (Metagonal)
Group based on the CAR
Algebra in its Fock |
Representation



1.1 The Fock Hilbert spaces.

In this section we will describe the construction and interpretation of the
Fock Hilbert spaces together with some of its important subspaces. It will
be used intensively in the following.

It was the physicist V. Fock who introduced the Fock Hilbert spaces, as a
working ground of quantum field theory, in 1932 ([Fo}), but it was F. Murray
and J. von Neumann who first gave-a detailed description of finite tensor
products of Hilbert spaces, in 1936 ([M-N}), though tensor products of finite
dimensional spaces were known long before that. This section is based on

[R—S 1], [Fo], [M- N] and [B R 2].

Let H denote a separable complex Hilbert space, with inner product (-, ),
complex linear in the right hand argument. The vectors in H describe the
physical one-particle states of a given quantum physical system. Let @*H
denote the n-fold (Hilbert space) tensor product of n identical copies of H,
- for n € N, where @'H is identified with H. We define @H = C. Thus
the vectors in ®"H, n € N, describes the n-particle quantum physical states,
hence @“H is called the n-particle space. We now define the Fock Hilbert
space F(H) as the (Hilbert space) dlrect sum-of the n- fold tensor products
®"'H nENU{O} ie. .

F(H) = @o(e)

providing a canonical grading of f('H) Thus a vector F' = B F of
F(H) can be viewed as a sequence {F,}22, of vectors F,, € @ H such that
T2 [1Full? < 0o, where the norm is taken in the respective spaces, and

RN = 1@ @ full = il

for F, € @"H of the form F, = fi®--- ® f., with fi,..., f. € H. No-
tice that F(H) is a Hilbert space with the natural inner product given by
(F,G) = T30 (Fn,Gr), where F = {Fo}32, , G = {Ga}il, and (Fy,Gh)
= (fi,;m) - ... - (fa,9n) on product vectors F, = f;® - @ fn and G, =
g1 ® ... ® gn. The linear span of such product vectors in ®"H, n'€ NU {0}
forms a dense set in F(H), by definition. We write F' = @2,F, and F =
{F,}2, interchangeable. The n-particle Hilbert space @"H can be identified
with the closed subspace of F(H), consisting of vectors F = {F,}5, with
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all components except the n’th equal to zero. Frequently we will consider
the closed subspace D of F(H) consisting of vectors F' = @32 5F, with only
finite many non-zero components F,, i.e. D is the algebraic direct sum of the
®"H, and F(H) is the completion of D with respect to the Hilbert space
norm arising from the inner product. Finally we define the closed subspace
D® of F(H) consisting of vectors F = ®%F, such that F, is-zero for
n > k, hence we can identify D*) with ®f_o®"H. Notice that D® s also
a closed subspace of D. The distinguished vector = @2, with Qp = 1
and 2, = 0 for all n € N, is called the vacuum vector, since it describes the
"empty space” corresponding to no particles.

Actually it is not F(H) itself, but rather two -of its closed subspaces,
described below, which are used most frequently. Define two operators on
®"H, the symmetrization operator Pv and the anti- symmetmzatzon operator
P, given on product vectors f; ® --- ® f,€ Q"H by

P»((fl@ ‘® fo) = (nl)” Z xxu(o fa(1)®"'®fa(n)
- 0€Sn

where Py denote either P, or P, and the corresponding index on xx(o) fol-
lows that of Py. The sum is taken over all permutations ¢ in the permutation
group S, of permutations of n elements and xa(o) is the sign of the permu-
tation o, whereas xv(o) is constant 1, and could be omitted. One easily
checks, by direct calculations, that both operators Py in fact are orthogonal
projections. We introduce the notation

AN Ao = (A)EPA(/i® - ® fu)

-1
= ()72 xal0) fo) ® -+ ® forn)
0€ES,

and its symmetric analogue

V-V fa = ( NiP(fi® - ® fn)
= n' 2Zfa(l)®"'®fa(n)

0ESy

Moreover we write A"H for PA(®"H) and V*H for P,(®"H), which clearly
are closed subspaces of ®"H. These orthogonal projections are extended
in an obvious way to the whole Fock Hilbert space, denoted by the same
symbols, by putting

Po(®rlofn) = Onro(Puly) (1.1)
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for F, € @"H. In fact this is done by first extending Py by lincarity, giv-
ing two densely defined operators, both with norm 1, then followed by an
extension by continuity to bounded operators on ®"H, and finally followed
by the extension given above, in formula (1.1). We will write Fx(H) for
PyF(H), respectively. Formula (1.1) gives us a natural grading of Fy(H).
Since any product vector of the form fy V---V f,, with fi,..., f. € H, is
totally symmetric, i.e. are invariant under all permutations of the vectors
fireeoy fn € H, we call Fy(H) the symmetric Fock Hilbert space over H or the
boson Fock Hilbert space, reflecting the fact that its physical states (vectors)
describe bosons (particle obeying Bose-Einstein statistics). Since any prod-
uct vector of the form f; A---A f,, with f,..., f, € H, is anti-symmetric,
i.e. an interchange of any two one-particle vectors in the product vector is
equal to minus the original product vector, we call FA(H) the anti-symmet-
ric Fock Hilbert space over H or the fermion Fock Hilbert space, reflecting the
fact that its physical states descrlbc fermlons (partncle obeymg Fermi-Dirac
statistics).

Alternatively one could define .7-',\(7'() as the Hilbert space completion of
the exterior algebra over the complex Hilbert space H and Fy(H) as the
Hilbert space complet,lon of the symmetrlc tensor algebra over the complex
Hilbert space H. :

The closed subspaces D and D), discussed earlier, give rise to the cor-
responding closed subspaces Dy = DN Fu(H) and 'D(k) DY Fo(H), in
Fu(H) respectively Fa(H). With abuse of notation we suppress the index
and simply write D and D®), respectxvely, when it is clear from the context
in which space we are workmg

Before ending this section we will dlSCUSS the mthonormal basis of the
repective spaces.. i

Let {ek}k , be an orthononmal basns for 'H Then it follows that

{e/q ® - ®(3k kl, . kn € N}

form an orthonormal basis for ®"'H n € N with roqpoct to the inner product
given earlier on product vectors as '

<f1®;"®fn7gl®~--®g11 H fngt

i=1

Hence

{Q}U{c,ﬁ@---@ckn:lc,,...,kT,EN,nEN}

o




is an orthonormal basis for F(H), where we have identified ex, ® -+ - ® e,
with the vector E = @%_oE,, € F(H) such that E,, = 0 for all m € N\ {n}
and B, = e, @--- Qe,.

The restriction of the inner product on ®"'H to A"H gives, on product
vectors fy A--- A f, and g; A - A g,, the following

(7f1 oo A'fmgl ' Agn)':' 3
T = n'(PA(f1® ®fn) PA(1®...®4n)
= Z xa(@){fo) ® +- ®fa(n) n®. ®gn)

gESH
= > xalo) IT (foriyr 90)
0ES, =1

= det({f;, 9i))ii=1,.m

where det({f;, g:))i j=1,..n denote the determinant of matrix ({f;, ;) )i j=1,..n
and we have used that P, is an orthogonal prOJectlon on @"H. It follows
that '

{ek1 /\-;-/\ekn thy << kpy by, .. R € N}

form an orthonormal basis for A®H. Hence
{Q}U{ek, /\---/\ekn !kl < e <L kn,kl,...,k‘n € N,’I’LE N}

is an orthonormal basis for FA(H), where we have used the canonical iden-
tification of vectors in A™H with vectors in F(H), in analogy with above.
The restriction of the inner product to Fy(H) gives

(flv"'vfﬂ,glv"'vgn) = n'(PV(f1®®fn)7PV(gl®®gn)>

= Z (fd(l) Q- ®fa(n)7gl ]... ®gn)
cESy

n
= z H (fa(i)vgx')
€Sy t=1
known as the permanent of matrix ({fj, ¢i))i j=1,...n, where we have used that
Py is an orthogonal projection on ®"H. If (ex,,...,ek,) = (€o(r)s -+ »€o(tn))
for exactly m different permutations o € §,, where m € N U {0}, then it
follows that

n
((3;‘,‘l Veeor V ekn,e,, V-V 6(") = Z H (eki,ea(li)) =
g€ESy 1=1



r;-times
) ‘ —————
If we collect the factors and write ey, for e, V.- Ve, then

(e Voo Ver, e V- Ver) = [[(r)
- =1
~and
' (egV-i-Ve;:,e;’l‘V---Ve,"':)=0
ifel!v-..ve? e'V---Ve™, wheren=r;+--++r =8+ +s,, and
k] kp N ) Im o . 14
the inner product is-taken in V*H., Then ‘ .

{TIer:1)7 - e VeoVer itk <o < knykiyen kg, € NY

=1
form an orthonormal basis for V*H. Hence
ARYULK e Ve Ve b < < k(R (1) € N n € N)

is an orthonormal basis for F,(H), where we have used multiindex notation,
(k)n = (k1,:..,ka) and (r), = (71,...,7,) and the canonical identification
of vectors in V*H with the corresponding vectors in Fv(H), in analogy with
earlier. The normalization constant is given by ' :
Koo =Nl v ver ™= T[(rd)"2
. . . © =1

~ We will sometimes use the notation of multiindex, as meritioned above,
writing (k) for (ki,...,k,) for n € N, where k;'€ N or sometimes k; €
Nu{0}fore=1,...,n. L o

With the intensive knowlege on the structure of the Fock Hilbert spaces we
are able to discuss the, socalled, second quatization and related topics in great
detail, but first we turn to the discussion of the CAR-algebra and its Fock

representation, where- CAR-algebra stands for canonical anti-commutation ’
relations. o



1.2 The CAR-algebra and its Fock represen-
tation.

In this section we will describe the C AR-algebra, which is a C*-algebra,
unique up to *-isomorphism. The C AR-algebra were introduced by Jordan
and Wigner ([J-W]) in 1928 for the purpose of quantizing the electron field
in physics. Thereis a very useful concrete realization of the C AR-algebra
on the anti-symmetric Fock Hilbert space, called the Fock representation,
which is the one physisists use mostly. It was also this representation of the
C AR-algebra J.M. Cook, a student of I. E. Segal, used in his fundamental,
and remarkable detailed, paper ([Co)) in 1953. However the basic ideas goes
back to V. Fock ([Fo]), in 1932, and Jordan and Wigner ([J-W]), in 1928.

This section gives us a nice mathematical frame for handling many prob-
lems in quantum physics with infinitely many degrees of freedom. The section
is based on [Co), [Ar], [B-R 2] and is, in a certain sense, given in a reverse
order of that in [B-R 2]. '

Let ‘H be a Hilbert space over C and A an abstract C*-algebra with
unit. We call A a CAR-algebra over H if there is an anti-linear mapping
a:H — A such that {a(f) : f € H} together with the unit I, generates
the C*-algebra A and fulfil the canonical anti-commutation relations

[a(f),a(g)]l+ = O
[a(f),a(9)*], = (f.9)] (1.2)

for all f,g € H. Here (-,-) denotes the inner product on H and [-,-]; the
usual anti-commutator [A,B], = AB + BA. We will shortly refer to the
canonical anti-commutation relations, given in (1.2), as the CAR.

By use of the CAR, it follows that f — a(f) is an isometry, since

(a(f)*a()* = a(N)* (I£I- T = a(f)*a(f))) alf) = I - a(f)*a(f)

SO

la(HI* = I(a(f)*a(MN? = IIFI* - la(f)*alH] = UFI* - lalHII?

hence |la( f)|| = || ||, where we have used the same norm-symbol to denote to
different norms, one act on the C*-algebra and the other on the Hilbert space.

8



Moreover it follows that a CAR-algebra is unique up to *-isomorphism. Let
A be another C AR-algebra over the same Hilbert space H and let @ : H — A
denote the corresponding anti- linear mapping. Define a *-morhpism (i.e. a
linear, multlplxcatlve mapping conservmg the involution)

a-{a(f),a(f)*-fE’H} {a(f) a(f)*: f € H}

by
a(a(f)) = a(f)

for all f € H. Clearly « is an isometry on its domain, hence it can be ex-
tended, in a well defined manner, to the C*-algebra A ‘generated by {a ( ):
f '€ H}. Moreover its ra.nge is the C*- subalgebra of A, generated by
{a(f),a(f)* : f € H}, i.e. the range is all of A. Then the %-morphism
a is one-to-one and onto, hence a *-isomorphism: So we may speak of the
CAR-algebra, since it is unique up to *-isomorphism. -

~ Let U be any bounded complex linear operator on 'H dnd V any bounded
complex ant1 lmea.r operator satnsfymg S

V*U + U*V 0 = UV* + vU*

and
- U*U+V*V—I-—(/U*+VV* : (1.3)
If this is the case we say that U and V are Bogolzubov transformalions. Notice
that the adjoint of an anti-linear operator V is defined in a different way than
the adjoint of a linear operator, we have (f,Vg) = (g, V*f) = (V*[,q) for
all f,g € M, for a more detailed discussion we refer to section 1.4. Put
a(f) = a(Uf) +a(Vf)*. Then a(f) is evidently bounded for all f € H. It
follows that the mapping @ : f — a(f) is anti-linear, which implies that

@) alg), = (ULVe)-1+TVITg) -1

= U UTIn

=0 ' ‘

and that

a(f),a(9)*), = (Uf,Ug)-1+(V/[,Vg)-I
o (U*U +V*V)f,g) -1
= (fag) I

9




for all f,g € H, where we have used the definition of the adjoint of an
anti-linear operator V. So {a(f) : f € H} U {I} generate a C'AR-algebra
over ‘H. Hence, because of the uniqueness, up to *-isomorphism, of the
C AR-algebra, there exists a unique *-automorphism a of the C AR-algebra,
such that a(a(f)) = a(f), for all f € H, and in this case is o~ '(a(f)) =
a(U*f) + a(V*f)*,_which follows directly by a calculation.

It is easily proved that the C AR-algebra is separable if and only if H
is separable and that the C AR-algebra is simple (for proofs, see [B-R 2, p.
16]). In our case we will only consider infinite dimensional (complex or real)
separable Hilbert spaces.

We now turn to the Fock representation of the CAR-algebra. For each
f € H define the linear operator ao*(f) on the anti-symmetric Fock Hilbert
space Fa(H) by
ag*(f) = f

and on product vectors by

w ()i A A )= FAFLA - A S,

Notice that ag*(f) : A"H — A™1H. Extension by linearity gives a densely
defined linear operator on FA(H). For f # 0 choose an orthonormal ba-
sis {e;}ieN for H such that ¢, = ﬁ‘!% Then one observe that ag*(e1) =
N7 ao*(f) defines a partial isometry with support

K =3span{Q,e, A---Nei, 1 1 <iy <+ <inyly,... 00,0 € N}

and range KENFA(H), since ap*(e1)(e1Aei, A---Ae; ) =0forall i < --- < 2y
and |lao*(e1)(ei, A<+ Aei)|| = ller e, A---Aei || = 1foralll <2y < -+ <.
Hence [lao*(f)|| = ||f]] for all f € H. So ag*(f) is a bounded operator on
Fa(H), then it has a unique bounded ajoint ag*(f)*,which we denote ao(f),
it is given by

ao(f)2 =0

and

ao(f)(fr A=A fn)

n

= S DYLL) A Afict Afia A A fa

i=1
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since

(a0*(91)(92 A=~ Aga)s i Ao A i)
(glAg2/\"'/_\gn1:f1A"'Afn)
= det{(gn fj)}l',j=l,...,n )

and expansion after first row gives

Z( 1)‘+1<91,fe) <92>/\"'/.\'gmflv/_\---/\f,-_l A fin A"'/_\fn)

(92 A---Ang(—l)'ﬂgl,f.-)-fl Ao Afica Afigt Ao A f)
which gives the above formula for ao(f) = ap*(f)* on product vectors, and
evidently is 0 = (ao*(f)Fn, Q) = (Fy,a0(f)9), for any F, € A"H and for
all n € N U {0}, so ao(f)Q = 0. Observe that |[ao(f)]| = llao* (/)| = || fIl-
Moreover, notice that ao*(f) : AVH — A™1H  and that ao(f) : A"MH —
/\"'H hence their names, creation and annihilation operators, respectively,
since they correspond to creation and anmhllatlon of particles in quanturn
physics. Observe now that -

ol £)as* () + aa*(Fao(F) = 11| 1

first on  and on prdduct vectors, hence by lihearity and continuity on all of
Fa(H). From this it follows, again, that ao*(f) and ao(f) are bounded by
| fIl, since both terms on the left hand side are positive. Moreover

a0*(1)ao* () + ao*(f)ac*(f) = 0

for all f € H, due to the anti-symmetry of product vectérs in Fao(H). The
last equation reflects the famous Pauli principle from physics. Taking the
adjoint, we get ' -
SR ao(f)ao(f) + ao(f)ao(f) =0

for all f € H. Using the poldrization identity we get the CAR

[a0(f),a0*(9)) = (f>9) -1

and g
[aq_(f),ao(g)h =0 = [ao*(f), a0*(9)],

11



Hence the concrete C*-algebra generated by {ao(f) : f € H}U{I} is a repre-
sentation of the C AR-algebra, called the Fock representation of the CAR-al-
gebra and sometimes physisists denote it the fermionic field algebra over H,
for obvious reasons. Notice that the vacuum vector 0 is a cyclic vector for -
the Fock representation of the C A R-algebra. .
Now, let P be an arbitrary orthogonal prOJectlon in H. Choose an ortho- -
normal basis_ {ei}ien for H consisting of eigenvectors for P. Then any f € K-
has an expansion as f = Y en (€, f)e;. We may define an operator I' on 'H
given by I'f = Y .en (e, f)ei, where the bar denote ordinary complex conju-
gation. Hence I is a well defined involution on H and it commute evidently
with P. Moreover, [ is anti-unitary, (T'f,[g) = (g, f), for all f,g € H. That
is, for any orthogonal projection P on ‘H there exists, at least, one anti-uni-
tary involution I on H such that [P,T'] = 0. Let I’ be any such anti-unitary
involution on H. Putting U = I — P and V = T'P we see that U and V are -
Bogoliubov transformatlons

U4+ V¥V =T - P+P—]—UU*+VV*
and
VXU +U*V =TP(I-P)+(I-P)rP=0=UV*+VU*

and both U and V are selfadjoint. Then it follows that the C*-algebra
generated by

ap(f) = ao((I — P)f) + a*(TPf)

defines a representation of the C AR-algebra in the Fock space, called the
quasi-free representation, in terms of the Fock representation. Observe that
this represents the physical idea of "filling up the Dirac sea”, since ap(f; )2 =
0, for f, € (I — P)H (representing that the physical states with positive
energy are all unoccupied) and ap*(f-)Q = 0, for f_ € PH (representing
that the physical states with negative energy are all occupied). So 2 corre-
sponds to the filled Dirac sea, in the case of the quasi-free representation.
Note that the definition is, consistent for P = 0, so the Fock representation is
just a special case of this construction. Moreover (2 is a cyclic vector for this
representation of the C' AR-algebra. Whence we have the following theorem.
Theorem 1 The representations of the CAR-algebra given by a(f) — ap(f)
are all irreducible, including the Fock representation.
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Proof. This theorem and it’s proof can be found in [B-R 2, proposition
5.2.2] in the case of P = 0, which we will repeat and use below. Since
ao(f) = ap((I = P)f) + ap(~T Pf) and a3(f) = ap((I = P)f) + ap(~TPf),
any operator T commuting with ap(f) and ap(f), f € H, commutes with
ao(f) and aj(f), and conversely. Therefore we only need to consider the
statement for P = 0, since it imply the case when P # 0. Let T commute

“with ao(f) and a(f) , i.e. [T,a0(f)] = [T, a3( )l = 0, Observe that
Tam = (ag(fi) ... ag(fa)h Tag(gr) - ... - ag(gm)S?)
= (I"Q, ao(fn)-- - ao(fr)ag(g1) - - - - ag(gm)2)

‘is zero for n > m and n,m € N, since we annihilate more paltlclcs than we
create from Q2. Analogously, we get L

Tam = {aolgm) - an(90)a3(1) .- a3(£2)0, T
for n < m. Moreover, for n = m, we have ao(fn) ..~ ao(fi)ag(gr) - - ..

ao(gm)ﬂ = b-Q, where

b= (Ra0(f) ol f)aln) - 3 (9m))
= (@) @) () gm) D)

for anyn=mé€ N So with ¢ = (T*Q Q) = (€, TQ) we get

Tnm =c-(a (fl) a*(fa)%a(g1) - - '(gm)Q)
in all cases, n,m € N. ']nvmlly TnO = TO'n =6, ¢, 5o fm any n,me€ NU{O}

. we have

(fl/\'ll"l/\fm(T_.'c'I)glA"'Agm)=0

where fy A--- A f, and g; A+ A g, means Q for n and m zero respectively.
Hence T = ¢ I on all of H, since product vectors span Fa(H). Then doing
to a well-known theoiéin (see for example [B-R 1, p.47]) it follows that the
representation is irreducible, proving the claim. -l

The C AR-algebra has an equivalent formulation, in term of the Clifford
algebra, which is the analogouq description to that of the CCR- algebra (see
chapter 2). ' :
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Define =(f) by =(f) = 7’;(a(f) + a(f)*). Then a(f) and a(f)* can
be recovered from the w(f) by the formula a(f) = % (v(f) + in(if)) and
a(f)* = % (w(f) — iw(if)). Moreover, it follows from the CAR that

w(xlolly = 5(la(F)alo)l, + [a(f),alo)"],
| +la(f)*, alo)ly +a(/)*, a(0)"),)

5(,0)+ TFraD) T = Re(f,) 1
= T(f’g)'-’

where 7(f,g) = Re(f,g) is a real positive symmetric bilinear form on .
Conversely, the CAR can be recovered from the relations [r(f),7(g)] + =
7(f,9)-1. The orthogonal group O(H) consists of those real linear invertible
mappings T : H — H such that 7(Tf,Tg) = 7(f,g), for all f,g € H.
Consider now the complex Clifford algebra over H, as a real Hilbert space.
Then the above relations become a(f) = 713 (v(f) + ix(Jf)) and a(f)* =
713 (r(f)—imw(Jf)), where we have introduced a complex structure on the real
Hilbert space through the operator J (this is done in detail in the beginning
of section 1.4). For each T' € O(H), define nr(f) by nr(f) = =(T'f),
then is [r7(f),7r(g)], = 7(f,9)-1. Thus the mapping 7(f) — nr(f) defines
an automorphism of the Clifford algebra, and these automorphisms form an
automorphism group. It follows (see section 1.4 below) that these orthogonal
transformations have a splitting into asum T = U 4+ V, where U and V are
Bogoliubov transformations (see formula (1.3) and compare with formula
(1.5) and (1.6) in section 1.4) corresponding to the above mention equivalence
of the CAR-algebra and the Clifford algebra.

At this point it is natural to ask the question: For which T € O(H)
is this automorphism unitary implementable in the Fock representation, i.e.
for which T € O(H) does there exists a unitary operator Uy on Fa(H) such
that 77(f) = Up'n(f)Ur for all f € H 7 This question has been answered
by Shale and Stinespring in [S-S] and is covered in detail by Araki in [Ar]
and Lundberg in [Lu 2]. We return to this question in section 1.4. But first
we will discuss the second quantization, and some of its generalizations.
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1.3 The second quantization in fA(H).

In this section we will describe the second quantization, based on the explicit
Fock Hilbert space construction in the anti-symmetric case, given in section
1.1, and on the Fock representation of the C AR-algebra, given in section
1.2. This section will be used frequently in the construction of a special
representation of the spm algebra and is therefore essentlal for the rest of
this paper.

* The basis idea of this section goes back to V Fock ([Fo]), in 1932. But it
was J.M. Cook, suppetvised by 1. E. Segal, who has constructed the method
called second quantization in details ([Co]), in 1953. The method gave a
nice mathematical frame for handling many problems in quantum physics
with infinitely many degrees of freedom. For anorther exelent, but somehow
more general treatement of second quantization we refer to the book of F,
A. Berezin, [Be], from 1966. The method of second quantization is, shmtly
stated, the method of lifting one-particle operators, on a Hilbert space, to
many- partlcle operators, on the Fock Hilbert spaces, whenever it is possible
(in the case of the CAR- algebra one use the anti-symmetric Fock Hilbert
space). The method of second quantization has been generalized by Araki
in [Ar], Lundberg in [Lu 1] and [Lu 2] and others, in the sence that they
lift trace-class operators and Hilbert-Schmidt operators, fulfilling some ad-
ditional properties, to the CAR- algebra or to operators acting in the Fock
Hilbert spaces. Our method in constructing the second quantlzatlon 1s some—
- how dlfferent from that given by Cook in [Co).

Let A be a skew-selfadjoint linear operator on ‘H. Suppose for a while
that A is a bounded operator, then we may define the operators U(A), acting
on § and on product vectors in A®H (for arbitrary n € N) by U(A)ef2 = Q
and S o o o
U(A)n(fl A"'/.‘fn)=e'v1f1 /\"-/\e"fn
Notice that ' : |

( (A )n(fl A fa), ( )n (91 A"‘/\gn))
= det{{e Af,,e 9i)}i=t... L
= (]Ct{(f:vg.v)}t,1= 1,an
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= =" (flA"Vf/\fn,gllv\j"’/\gn)

so extension by linearity and continuity gives that. each U(A), is a well-
defined unitary operator on A"H. Then U(tA), is a strongly continuous
one-parameter unitary group (see for example [R-S 1, p. 265}) of operators
on A"H, t € R. Hence, by a transformation of Stone’s theorem (see [R-5 1,
p. 266]) to skew-selfadjoint operators, implies that there ex1sts a skew-selfad-
joint operator dU(A), on A"H such that

(tA) — et dU(A),.

t € R. The closed densely defined operator dU(A),, is called the infinitesimal
generator, or just the generator, of U(A),, since
d
dU(A), = —| U(tA),
| dt|,_,
on its domain, consisting of those vectors F, € A"H such that the limit of
“YU(tA), — IF, exists. Let F, = fyA--- A f, be an arbitrary product
vector in A™H, then is o

U(A),Fa= S fih Afis AAFA fan A A fu (14)
i=1

which is a well-defined finite linear combination of n-particle product vectors
in A"H. Observe now, that the algebraic direct sum D = @4, A"H equals
Dy = AofY, where Ay is the C*-algebra generated by {ao(f) : f € H}, which
is the Fock space realization of the C AR-algebra. Since U(tA)yQ? = Q is
independent of ¢, it follows that dU(A),Q = 0. We may extend dU(A), to
D. Hence dU(A) = &32,dU(A),, is a well-defined skew-symmetric operator,
with dense invariant domain D. Now, consider a possible unbounded skew-
selfadjoint operator A. We then define dU(A), directly by (1.4) on product
vectors in A™H, such that each one-particle vector, in the product vector,
belongs to D(A), we denote these vectors by D(A)*", for each n € N, and
dU(A)Q) = 0. Put dU(A) = @2 4dU(A), on @4, D(A). We will now show
that dU(A) has a dense set of analytic vectors (wrt. the norm topology,
hence also wrt. the week topology), in the case of a general skew-selfadjoint
operator A. First, a direct calculation gives

dU(A)(fi A=+ A fo) = ()P PAdU(A) (1 ® - ® fn)
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for fi,..., fa € D(A), where
d.( ) (H®-- ®fn)—Zfl® ®fal®Afx®f;+1® ®fn

and in the same manner we get

U(AY(fi Ao A fa) = (1)FPadU(A) (i ® -+ @ )

Now if each f;, in the product vector, is an analytic vector for A, then there
exists a M; < oo, for each f;, such that ||Af;|| < M;|f;]| < oo. The skew-
selfajointness of A implies that' D(A) has a dense set of analytlc vectors
(doing to a corollary of Nelson’s analytic vector theorem, see for example
[R-S 2, p. 202]) For product vectors of analytlc vectors for A we have

[V (A ® -+ 8 fu)l* |
= X A5 ALY TL U S + 3 (AL AT TT (s )

‘=1

1,7 1 m=1 . $1=1 m
i#] . ’ m#tJ ‘ L m#t
< MY ] Il =n"- M@ Ll

i,7=1 m=1

where M = max{M1, ,Mn}. I'Ience

U S A=Al S (a)3NAU (A5 @ - @ fu)
< ()intMHIA R @ Ll
and then, for any n-particle product vector fi A+ A fy such that cach f; is
an a,nalytlc vector for A, is : '
- 1 | n- M .
S ghwara-aml < 5860 !
k=0 k=0
s (‘h!)‘fe"'“nf,_ ®- @ ful
< o0

Which means that the set of finite linear combination of Q and n-particle
product vectors .fy A--- A f,; n € N, such that each vector f; is an analytic
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vector for A, form a dense set of analytic vectors for dU(A). We denote
the set of all analytic vectors for dU(A) by D, (for an alternative proof, see
[R-S 2, p. 205]). Notice that in case of A bounded the above M and all
M; may be chosen equal to ||Al|, so D4 becomes all of D (any vector for a
bounded operator A is an analytic vector for A). Then a transformation of
Nelson’s theorem (see for example [R-S 2, p. 202]) to-essentially skew-selfad-
joint, operators, state that the operator dU (A) is essentially skew-selfadjoint
(whlch can also be seen by a quite different argument given, for example,
in [R-S 1, p. 302]). Hence the closure of dU(A), which we also denote by
dU(A), is skew-selfadjoint, and generates a strongly continuous one-parame-
ter unitary group, by a transformation of Stone’s theorem to skew-selfadjoint
operators. We denote this strongly continuous unitary one-parameter group _
- by U(tA). -

The above mapping A — dU(A), mapping skew-selfadjoint operators on
H into skew-selfadjoint opelatms on Fa(M), is called the second quantization

mapping.

Theorem 2 The m.appz'ng of second quantization, A — dU(A), on skew-
selfadjoint operators A in 'H fulfil :

1) U(tA)ao(f)U(=tA) = ap(e*A f), for analytic vectors [ for A and t € R.
2) [dU(A), a0 *(f)] = aoc HAf), for all f € D(A).

3) dU([A, B)]) = [dU(A),dU(B)), at least for A and B bounded and skew-
selfadjoint on H.

Proof. This theorem combines theorem 2 and 5 in [Co]. However we bring
some alternative proofs.

1) On an arbitrary n-particle product vector fi A--- A f, € D4, such that
each f; is an analytic vector for A, we have

UtA)ao*(HUEA* (LA A ) = URA(FAAfiA-- e f,)
= etAf/\fl/\.../\fn
= a*(€f)fr A~ A fa)
hence, U(tA)ap*(f)U(~tA) = ao*(e! f) on FA(H), and the adjoint relation

U(tA)ao(f)U(=tA) = ao(e'*f)

18



on Fa(H), for all skew-selfadjoint operators A on 'H all analytic vectors f |
forAm'HandalltER

2) For each analytic vecto‘r f for A, it follows from 1) that

WAt (N) = S e

d xf tA
p tzoao.(e.,f)

= w*(Af)
on the domain D, of dU(A), giving the desired formula for all skew-selfad-

joint operators A on-H and for all analytlc vectors f for A, dense in D(A),
hence for al] feDA ) ‘ :

LdUA) g *( f)e=tdVA)

3) We give two different proofs for this part, where the first is the more
elegant one. For f E H and A and B bounded and skew selfadjomt 1s

[dU([A B]), a0* (/)
o ([A B]f)
[dU(A), ag*(Bf)] — [dU(B), ae*(Af)]
= [dU(A),[dU(B), ao*(f)]] — [dU(B), [dU(A), a0*(f)]]
= [dU(A),dU(B)lac*(f) = ao*(f)[dU(A),dU(B)]
(14U (A), dU(B)), a0*(f)]

on D. Hence the irreducibility of the Fock representation of the C A R-algebra,
by theorem 1, and the fact that € is canceled by dU(-) gives the desired
formula. We now turn to the second proof of part 3), this proof doesn’t only
give us some information on the Lle algebra level but also on the group level.
Let t,s € R. Since ‘

n

Cr.\

oQ
tA_sB _—tA __ oA —tA
ee*e = Zn' Bm"e
. n=0
o0
"™ 4 e tA
- $ Seneny
n—On'

tAg,~tA
e.9(!5' Be~t4)
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then we have

U(tA)U(sB)U(tA)*ao(f)(U(tA)U (s B)U (tA)*)*
= U(tA)U(sB)aog(e " f)U(sB)*U(tA)*

— d(‘)(etAeaBe—tAf)

= ag(e BT f)

= U(s-e*Be ")ao(f)U(s - e‘ABé'M)*

Since the Fockrrepresentation of the C‘AR-algebra. is irreduceble, by theorem
1, and U(tA)U(sB)U(tA)* and U(e!4s- Be™*4) is unitary it follows that

U(AU(sB)U(tAY* = c(t,s) - U(eAsBe™*4)

‘where le(t,8)] = 1. But, since U(tC)Q = Q, for any skew-selfadjoint operator
C and all t € R, it follows that ¢(t,s) = 1. So, in fact, we have that
U(tA)U(sB)U(tA)* = U(e'As - Be~t4), and for any F' € D we then get

[dU(A),dU(B)|F
d d
&l T
= —(-1- U(tA)dU(B)U(tA)*F
dt],_,

d d
&l @
= i U(e'*Be 'Y F

dtl,_,
= dU([A,B))F

U(tA)U(sB)U(tA)*F

8=0

U(et4s - Be '\F

8=0

from which the desired formula follows, ones more. Alternatively we could
easily prove 2) by direct calculation first on product vectors using equation
(1.4), and then extending by linearity to all of D. In fact we will use this
method in case of the C'C R-algebra which is treated in chapter 2 #

Later on, in section 1.4, we will use this result, but only for bounded
operators A and B. Notice that theorem 2, part 3) gives that the map-
ping A — dU(A) is a Lie algebra homomorphism. The second quantization
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is sometimes called the Fock-Cook quantlzahon mapping or just the Cook
quantlzatlon mapping.-

A standard example arises for A = 21, wherchy dU( YA Afp) =

n-(fi A+ A f), we call —2dU(A) for the number operator N in FA(H),
with dense domain D(N) = {F = @2 4F, € FaA(H) : T2, n? - || Fr||? < oo}
So N(@2oF,) = ®2o(n - I,) for each ®2F, € D(N). Since N is given
in its spectral representation, it is evidently selfadjoint (by von Neumann’s
theorem, see for example [R-S 1, p.-275]), as it should be, because dU(A) is
skew-selfadjoint.

As a historical remark we notice that Cook only conmdered second qua-
tization in the Fock representation, this was generalized by Araki and Wyss
to C*-algebras. In 1964 Araki and Wyss in [A-W] showed that dU(A) be-

‘longs to the C AR-algebra if A is a trace-class, skew-se IfadJmnt operator on
H, and that dU(A), f01 finite rank operators A: f — Af =3, ai(e;, fes,
is given by dU(A) = Y1, aia(e;)*a(e;), where {e *_, is an orthonormal set

- in H {most authors consider selfadjoint operators mstc'ad of skew-selfadjoint
operators, we have translated their statements, as we have translated some
theorems, such as Stone’s-and Nelson’s theorem, used above) In [Lu 1], 1976,
Lundberg extend the second quantization mapping, in a quasifree represen-
tation labelled by T,0 < T < I, to all bounded skew- selfa,djomt operators A
such that Tr(T2 A(I - T)AT%)- < 00, with dU(A) affiliated with the CAR-
algebra. In [Ar], 1985, and [Lu 2], 1990, Araki and Lundberg generalized the
consept of second quantization, in the sence that they lift operators in the
restricted orthogonal group to skew-selfadjoint operators acting in the Fock
Hilbert spaces. We turn to this discussion in the next section. This idea was

first used for the restricted unitary group, by Lundberg in [Lu 1], 1976. We
point out that.the formalism in [Ar] and [Lu 2] is quite different. Finally, we
will mention that Langmann recently has used the idea of quasi-free second
quantization to obtain a current algebra in (3+1)-dimensional quantum field

theory, with the well- known Mlckelsqon Rajeev Schwinger term (see [Ml])

for futher details, see [La] ' ' :
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1.4 The infinite dimensional spin represen-
tation.

- In this section we construct the socalled spin representation of the re-
stricted orthogonal group on a Lie algebra level, by ideas similar to those
of second quantization. This dicussion are closely related to the answer of
the question, stated in the end of section 1.2, for which orthogonal operators
T is the automorphism, given by 7(f) — nr(f) = n(T'f), of the Clifford
algebra, unitary implementable (in the Fock representation). In this section
we will use the former sections 1.1 - 1.3.

Many authors have studied the spin representation of which we only men-
tion a few here, [Ar], [Lu 2], [P-S] and [S-S]. This section is based on these
papers. However, after finishing the first part of this thesis, a very interest-
ing book has come to our knowlegde, namely [V-Z] from 1990, especially the
first article of A.M. Vershik, who deals with some of the same problems and -
in the same formalism as we do. But Vershik consider the infinite dimen-
sional restricted orthogonal (which he calls metagonal, in analogy with the
metaplectic case) Lie algebra and group as the inductive limits of the corre-
sponding finite dimensional ones, in his treatment of the infinite dimensional
spin group.

Any real linear mapping T : H — H can be split into a sum of a complex
linear mappings T and a complex anti-linear mapping 15 as T = T + Ts.
If {ex}ren is an orthonormal basis for the complex Hilbert space H with
inner product (-,-) and we let u; and v, denote e, and zey, respectively, then
{uk, vk }ken form an orthonormal system with respect to 7(-,-) = Re(,").
We call the real span of {uy, vi}ren for the real Hilbert space, H.., of H, with
inner product 7(-,-). Notice that H, and H represent the same set. The
complex structure on H, given by multiplication by the imaginary unit ¢ is
reflected in H, by a (real) linear bounded operator J, given by Ju; = v and
Jup = —ug. Then J* = -1 and 7(Jf,g9) = —7(f,Jg), for all f,g € H,, i.e.
J7 = —J, where J” denote the transpose of J relative to 7(-,-). We say that
J introduce a complez structure in H,. Because of the unique correspondence
between H and H,, given by €, «— u; and iex < vi, we will not emphasize
on which space the operators applies and therefore drop the r-index, unless
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confusion may arise.

Define Ty = {(T'—JTJ) and T; = (T + JTJ), then direct computations
gives that T and J commute, 71J = JT), and that T, and J anti-commute,
T,J = —JT,, which gives a precise mathematical meaning to the statements
that T; is complex linear and that T, is complex anti-linear. So we have
constructed a complex linear operator T, and a complex anti-linear operator
T, such that T = Ty + T,. The subscripts 1 and 2 will in the following refer
to this splitting. Consider the orthogonal group O(H), defined in the end of
section 1.2, and let T' € O(H), with the above splitting T = Ty + T,. The
adjoint Ti* of Ty is the usual adjoint of a complex linear operator given by
(f,Tvg) = (Ty*f,g), for all f,g € H. But the adjoint, which we also denote
by an asterisk as superscript, T* of T is given by (f,T2g) = {g,T2*f), for
“all f,g € H, due to the fact that T is a complex linear mapping H — H*,
where H* denote the conjugated Hilbert space of H, for futher details see
section 1.6 later on. We restate that the adjoint operations, denoted by
the asterisk’s, means different things, corresponding to the subscript of the
operator it is applled to. Since T' ’T is the ldentlly on 'H,, for any T € O(H),
we get T = Smce A

(" f,0) ~ r(J,Tg) = 7(f,Tsg) + r(f, Tog)
’ - = 1(Y*f, )+T(g,Tz*f)—T(T1*f 9) +7(12*f,9)
H(T* + 127 1,9)

il

for all f,g9 € H, where we havc used the exp]u‘lt form of T( -) and its
symmet1 y, it follows that : :

T =TT =T+ Ty
So Ty* = (I'), and Ty* = (T'7),. Moreover

I = T'T=T"7T=(T\*+T*) T\ +Ty)
= (T + T5*Ty) + (Ty*T, + 151

so we get : '
' TI*TI + Tg’_*Tz = ] (1-5)
and 4 ‘ |
Ty *"2+T *Th -0 (1.6)
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since the left side of (1.5) is complex linear and the left side of (1.6) is complex
anti-linear. Hence, from this and an analogous computation, it follows that
T, and T, fulfil the criterion of being Bogoliubov transformations. For later
use, we now define the restricted orthogonal group O,(H) as the subgroup of
O(H) given by :

) 7 - Ox(H) ={T € O(H) : Tz, € Lo(H)}

where Ly(H) denotes the Hilbert-Schmidt operators on H. From above

it follows that Oy(H) is a group indeed. Some authors denote Oy(H) by
"~ 0j(H), due to the fact that it consists of the subgroup of O(H) such that
[T,J] = —2JT, € Lz(H), see for example [V-Z] who call the operators in
O,(H) for almost linear -operators.

The group Oy(H) can be given the structure of a topological group in
several different ways, which is typical for infinite dimensional groups. The
strongest topology is given by the uniform topology on the complex linear
part and the Hilbert-Schmidt topology on the complex anti-linear part. How-
ever, in some applications one has to use a weaker topology on the linear part,
for example the strong topology (see [Ar] paragraf ). In [Ar, p. 77] and in
[P-S, p. 245] it is shown that in both these topologies, there are two con-
nected components of Oz(H), each which is simply connected. For example
in the strongest topology it follows easily that

IT" Mo, = IT* + IT2*llas = ITllo, < o0
where ||T|lo, = ||T1|| + l|T2||us, by definition, that
I8Tllo, < Sull- WTall + 1 S2llms - I T2ll s
+ S -1 T2ljms + 1Sallns - | Talf| < o0

since || - || £ || - |lus, where the HS-index on the norm symbol, means the
Hilbert-Schmidt norm, that

IST — HK|lo, < ISl - |Th = Kil] + |1 — Ha| - || K|
+ |S2llas - | T2 = Kellgs + ||S2 — Hollas - | Kallns

+ 1Sl - 1Tz — IL]|| - || Ko|lars
+ |82l - 1T = K|l + ||S2 — Hollus - || K1
and that
1T = 5o, = |Th* = Si*|| + IT2* — S2*||us

= [Ty = Sl + T2 = S2llus = |IT = Slio,
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proving that O(H) in fact is a topological group in the case of uniform
topology on the linear palt and Hilbert-Schmidt topology on the anti-linear
part.

The choice of topology on (’);(’H) determinates the Lie a.lgebra of Oy(H).
Our choice of "pre-Lic-algebra”. 0(H) is -

02(H) = {A € L(H) : A" = —A, s € Ly(H))

where L,(H) denote the real linear bounded operators on H. The phrase
»pre-Lie-algebra” ‘means that we in some applications have to enlarge the
”pre-Lie-algebra” to allow operators with unbounded linear part (for futher
details see [Ar, p. 81 and 104]). The demand A™ = —A means that
A;* = —A; and Ay* = —A,, i.e. both the linear and the anti-linear part of
A are skew-selfadjoint (in their respective senses). In what follows we shall
in particular consider O,(H) in a neighbourhood of the identity, generated
from o,(H) by the exponential mapping. Notice that the exponential map-
ping from an infinite dimensional Lie algebra to the corresponding infinite
dimesional Lie group, modelled on a general topological vector space, need
not be locally ono-to-one nor locally onto, for example this is the case for
exp : Vect(S') — Diff (S'), [P-S, p. 28]. In cases where the vector space is
a Banach space there is a well-developed theory, which is quite parrallel to
the theory of finite dimensional Lie groups ([P-S, p. 26]).

- We shall' now return, as promised, to the question stated in the end of
section 1.2, for which 7' € O(H) is the m'itomonplvtix'm defined by =(f) —
rr(f) = 7(T=!f), of the Clifford algebra, unitary implementable in the Fock
representation. In fact this question has already been answered by Shale and
Stinespring in [S-S], 1965, as stated in the following theorem.

Theorem 3 A unitary operator U(T'), which implements the automorphism
7r(f) — wr(f) exists if and only if T € (92(7'{) Moreover, the operator U(T)

is umque up to a phase of modulus one.

Proof. A proof can be found in [S-5], we make, however, a construction of
U(T) below, in a neighbourhood of the identity in O(H). B

. Because the unique correspondance between the «’s and the 7’s the irre-
“ducibility of the C*-algebra generated by {ao(f) : f € H} imply that of the
. C*-algebra generated by {w(f): f € H} as well. But U(T'S)"'x(f)U(TS) =
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(UT)U(S) w () U(TIU(S)), s0 U(T)U(S)U(TS) " equals a constant times
the identity 1. Hence :

U(T)U(S) = ¢(T, S) - U(TS)

where ¢(T, S) € C. Now, the unitarity of U(-) force ¢(T, S) to be of modulus
one ' ' :

(f.9) = (UDMUS)f,UT)U(S)g)
= (T, $)I* - (U(TS)f,U(TS)g)
|<(T, S)* - (£, 9)

for all f,g € H, giving that |¢(T,S)| = 1. This means that the mapping
T — U(T) is a projective representation of the restricted orthogonal group

The group cocycle ¢(T, S) depends on the choice of the arbitrary phase in
U(T). In [Lu 2], Lundberg gave an explicit formula for the cocycle ¢(T, S),
by choosing U(T') such that ¢(T,S) is smooth in such a way that U(-) lift
one-parameter groups into one-parameter groups, for T and S close to the
identity. We do this below, by giving a constructive proof of the if-part of the
above theorem of Shale and Stinespring in the case of 7" in a ncighbourhood
of the identity in O,(H) consisting of elements of the form T = e4, with
A € 02(H). This is done by constructing the spin representation, on a Lie
algebra level, that is we construct U(e*4) for A € o0,(H) and s € R, by
const;rt)lcting its skew-selfadjoint generator dU(A), hence U(e*4) is given by
ea~dU A .

Consider first the complex linear part A; of A € 02(H), which is skew-
selfadjoint. In this case dU(A;) and U(e*t) is constructed by the method of
Cook’s second quantization given in section 1.3, where we denoted U(e®*4?)
by U(s - A;). Hence dU(A,) is skew-selfadjoint on D, where D is the dense
set of analytic vectors for dU(A,), given by vectors F = @2 F, € FA(H)
such that only finitely many F, are non-zero, due to the boundedness of A
and then of A,. Observe that dU(A,) : A"H — A™H.

We now turn to the anti-linear part A; of A € 0y(H). The following
construction appcars in [Lu 2, p. 6], however, it is not discussed in detail.
Since A, is a Hilbert-Schmidt operator, there exist two orthogonal sets {u; }:er
and {vi}ie; in H, both spanning the range of A;, such that A, has the
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representa;tion '
- Arf =Y (f vi)u

. ' _ i€l "

for any f € H. Notice that A, given on this form clearly is anti-linear, due to

our convention that the inner product is anti-linear in the first argument. A

direct calculation, using the definition of the adjoint of an anti-linear operator

and the skew-selfadjointness of Az, gives that

z f,v, U = —E fiudv

el i€l

Moreover ||Ag|l};s = Yien | Azeill? = Tier llvill? - Jlwil|®. This means that we
may ldentlfy Az with a ve(,tor A, € A¥H, where

A2—th/\ut \/_ Z‘U,@U,

:GI o el -

Observe that the mapping A2 — A, is not an isometry, but the mapping
Ay — A2 is. We are now able to map A; into an operator on FA(H)
by generahzmg the idea of the creation operator For the rest of this chap-
ter, we discard the 0-index on ao(f), since we shall only consider the Fock
representatlon Deﬁne the operator a (Ag) by L

(M) = A, (1.7)

and ~ - ' '

a*(A2)(fl AAfn):A2Af1A/\fn

and extend by linearity to the domain D. Notice that the vector A; A
iAo+ A fnis well-defined in A"?H whenever A; € A*H takes the form of
a ﬁnlte linear combination of simple product vectors, A; = Z,=1 g1i N gai €

AYH, where N € N. Any vector A, € A?H can be approximate by fi-
nite linear combmatlon of such product vectors. Let A, be an arbitrary

vector in A?H and A N 91N g2; an approximating sequence, i.e.
A; = limy_e A( ), in /\27'( Then we may define A; A fi A--- A f, as
the limit of .A(N) AJiA--Afo, in A"2H, as N tends to infinity. The

~limit depends only of the vector A; (and ofcause of fy A--- A ), but not
on the choise of approximating sequence AgN), since A2 A fi A A Sl <
\/(n +2)(n + 1) [l A2 - ||f1 -+- A fo]| as follows from below. Notice that
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a*(A3) is in general unbounded, since if {ei,,. .., €, }i;<..ci, is an orthonor-
~ mal system orthogonal to span{v;}:cs, which equals the range of A,, then

la*(A2)(es A+ Ae)ll = [AzAen A-sAei]l
= ¢<n+2(n+1> [l 42|

which clearly is unbounded due to the n- dependent factor In fact the for-
mula

la*(42)Fll < /(n + D)(n + 1) - | 4all - | F

holds on any n-particle vector F' = F,, € A™H, which is most easily obtained
first on product basis vectors, hence by continuity on all A»H. Hence the
formula holds for any F € D, since if F, = 0 for n > N then each term
\/(n+2)(n +1) is dominated by \/(N +2)(N +1) and we get the same
formula but with N instead of n. So a*(A;) is well-defined on D, which we
may choose as the domain. The domain D is evidently invariant under the
action of a*(A;), so D form a invariant dense set for a*(Az). In fact D is a
dense set of analytic vectors for a*(A;), since

(N + 2k)!
NT

for any F' € D such that F, =0 for n > N, so

k C
5> B o Fil < 3 Sy ol - 1

k=0 k=0

lla*(A2)*F|| < AN -1

which is finite for |t| < (2||A:]|)~" and F € D, with F, = 0 for n > N, by
use of the ratio test, where ¢(k) = \/L%E

Notice that Asf = Yier (fvi)u; = ZE.el o f)(vi A wi) = 3a(f)A; =
3a(f)a*(A2)Q, so a*(Af)Q = 3a(f),a*(A5)]Q, for all f € H. In fact this
commutation relation holds, not only on €, but on all of D. Let F, =

fih---A f. , then

a(fla*(A2)Fn = a(f)(A: A F)
(a()A2) A F + Az A (a(f)F)
(2a*(A2f) + a*(A2)a(f)) F..
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where we have used the invariance of D under the action of a(f), hence

Sla(), (2] = a*(As) (18)

on D, for all f € H. Observe that a*(A;) : A"H — A"2H. By a(A,) we
denote the formal adjoint a*(A;)* of a *(Az2). It follows that it is well-defined
on D. Since (©,a*(A2)F) = 0, for all F € D, we have that Q € D( (A2))
and a(A2)? = 0. On A'M it follows analogous that f € D(a(A,)) and
a(Az)f = 0, for each f € H. We continue by induction after n € N using the
fact that.a*(A;) increase the number of partlcle by two and using formula
(1.8). Suppose that we have proved that f, A--- A f, € D(a (Az)) for any
f2,-.., fa € H, then, for any f; € H and F € A" 2H, is :

(AN A fu,a*(A)F) = (a (fl)(f2 A fa), a*(A) F)

| (f2 Afm a(fi)a*(Az)F) A

= (A A foy(a ( )(f1)+2(l (A2f))F)
{(a (fl)a A2) +2a(A 1)) (fo A e+ A [, F)

which is well-defined, since f A--- A f, € D(a(Ap)), ie. fi A -/\fn €

D(a(A,)) and a(Az)(fl A fn) = (a*(f1)a(Az) +°“(A2f1))( A fr).
Hence by linearity, it-follows that D C D(a(A)). Let now G = @ —o('n € 7)
such that Gn' = 0, for n > ‘N 'and lct F=@2,F, € ’D Then is

(G, a*(Az)F I<\/N(N-1 ) llell - G- (1)

where we have used the estimate ||a*(A2)F | < \/(n +2)(n + 1)||.A2|| ||F Il
for n < N —2. So '

lla(A2)G|| = sup |(a( (42)G, F)I < NN =1)- || Al el
FeD||Fl=1
since D is dense in ’H Moreover, we get
Nla(42)*G)) < CR) - A - |G|
where C(k ) =0, for 2k > N, and C’(k) ,/(N g for 2k < N, Then
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is finite, for |t| < (2-|A2]])~", due to the ratio test, since the quotient of
the k’te and the (k — 1)’te term converge to 2 - |t| - || Az||, as k — oo, which
is stricly less that one, for |t| < (2-||A3)|)~!. Hence each vector in D is an
analytic vector for a(A;). Observe that a(A;) : AH — A™~?H, yielding zero
for n = 0,1. Since D is invariant under the action of a*(f), the adjoint of

formula (1.8) also holds on D, 1[a(A;),a*(f)]. = a(A:f), for all f€H. SoD

- -is invariant under the action of both a*(A;) and a(A4,).

Define dU (A2) = 3(a (Az) — a*(Az)) on D, for A; a skew-selfadjoint antl-
linear Hilbert-Schmidt operator. Notice that dU(A;) : A"H — A" ?H &
A"?*H. Define dU(A) = dU(A,) + dU(A;) on D, for A = A; + A; € 05(H).
Observe that dU(A) : A"H — A" ?H & A"H & A" H.

- Theorem 4 The operator dU(A) is essentially skew-selfadjoint and fulfils

| (), 7(F)] = #(4f) 19)
onD, foral feH and all A€ 02(7{)7, »
’ (,dUAQ) =0 - (1.10) .
for all A € 0,(H), and
(O, dU(A)V(B) Q) = ~3(4Br) = 5Te(Bpds)  (111)

Proof. This theorem also appears in [Lu 2, theorem 2]. We elaborate the
proof, since it is only sketched very briefly there. Since dU(A) is skew-
symmetric and has D as a dense set of analytic vectors, it follows by, a
modification of, Nelson’s theorem ([R-S 2, p. 202]), to skew-symmetric oper-
ators that dU(A) is essential skew-selfadjoint. From theorem 2 we have that
[dU(A1),#(f)] = n(A1f), on D for all f € H (since it holds for 7 replaced
by a and a*, respectively). For the anti-linear part of A we get

U7 ()] = 5le(Aa),w(] — gla"(Aa),w(S)]

= 27%/(a(Az)a(f)*] + 27 [a(A;), a(f)]
—27%%a*(A;), a(f)*] — 27%/*[a*(As), a(f)]

= 27V24(Asf) + 0 = 0+ 272a*(Ayf)

= w(Ayf)
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on D, for all f € H, where we have used that (f) = 2-12(a(f) + a(f)*),
formula (1.8) and its adjoint, and that [a (Az), a(f) ] = 0 together with the
adjomt relatlon on D. Hence :

[dU(A),=(f)] = [dU(Al),vr(f)H[dU(Az),vr(f)]
3 = w(Auf) +7(Aaf) = n(Af)

on D, for all f € H, proving (1. 9) Moreover since aU(A;)22 = 0 and
a(Az) = 0 it follows that

(2,dU(A)0) = -%(n,a*(m)m 0

proving (1.10). Finally

(9,dU (AU (B)Q) = —<dU( ), dU(B) )
' N 1 1
= —i(z}g,Bz)
= ;Tr(B,A,)

on D, where we have used the anti- symmetrby of dU(A), definmon (1 7) and
in the last equality, the spectral forms of A; and B,, respectively, togethcr
with the definition of the trace, proving (1.11). This will ‘be explicitely done
in the symmetric case (see theofcnﬁ 7. & ' :

We now define the unitary one-parameter group U(e®*) by
' U(esA) — es-dU(A)
At this point we are rather close to have proved the if part of theorem 3 in a
neighbourhood of the identity, but the fact that [/(e’!) create infinite many

particles, is the reason why we first have to prové the following techmcal
lemma, which doesn’t scem to dppear anywhere else.
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Lemma 5 Let G be an essential skew-selfadjoint operator with D as a dense
set of analytical vectors and let B be any bounded operator leaving D invari-
ant, both defined on the same Hilbert space. Then

. 00 s‘n } ’i
e®Be™% =Y —IG, B

o !

b’ﬁ D, where |G, B|® = B, G, B](l) =[G, B] and [é,B](") - [G,[G, B]™™),
inductively, for n € N. 7 , ) 7

Proof. Let f € D, then is e"Gf.well-deﬁned, and so is Be=*f. Let g € D,
then is (e7*Cg, Be~*C f) well-defined, and induction, after n € N, gives

.
dsn

so, by Taylors formula, we get

(é_’Gg, Bé—st) _ (e—ng, [G, B](n)e—st)

G, gy L DA
(e7*“g,Be™*“ f) = Zn! 5| _

n=0

(e—ng, Be—sG’f)
0

= (&3 216, BI))

n=0 """

for all f,g € D, which is dense in the Hilbert space. Then is Be™*¢f €
D((e7*6)*) and e*°Be~*¢ = 72 £[G,B|” on D. N

n=0 ni

The above lemma, with G = dU(A) and B = n(f) (and the substitution

s — —s), gives

Uy (et = 5 S w4y, =)

on D, for all f € H, where we have used (1.9). Hence we have the desired
formula

U(T) ' m(NUT) = n(T7 f) = m1(f) (1.12)
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on H for all T = e*4, A € 02(H), f € H and s € R, where U(T) has been
explicit constructed, such that the arbitrary phase of U(T) has been fixed on
all one-parameteér subgroups of Oy(’H) of the form T = e*4, A € 0,(H). We
call U : T — U(T) the spin representation of the restricted orthogonal group
and we define the spin group Spin, to be the group of all the unitary imple-
menters U(T), T € Oz(H) from Shale and Stinespring’s theorem (theorem
3). This construction is more transparent on the Lie algebra level.

Theorem 6 The elements dU(A) A € 02( ) form a Lze algebra on 'D with
bracket

[dU(A ) )] =.dU([A, B])+w /1 ,B)-1 - (1.13)
and the Lie algebm coqcle is given by '

(A, B) = —§Tr([A2,Bz]) - ——%Im(Ag,Bz) (1.14)

This infinite dimensz_'onal Lie algebra is denoted the spin Lie algebra, spin,(H).

Proof. By use of (1 9) we have

A(AU(B), 7)) = dUAAU(B), ()] + [U(A), =()dU(B)
R dU(A)n(Bf) + n(Af)dU(B)

on D, for all feH. So. |

(iU (A), B ()] = dU(A)(BS)+ n(Af)dU(B)
—dU(B)m(Af) — n(Bf)dU(A)
= [dU(A),x(BS)]+ [x(A[),dU(B)]
= (ABf) - n(BA/)
= W([A’B]f). '
= [dU([A,B)), (/)]

on D, for all f € H, agam by (1.9). Then the irreducibility of {#(f) : f € H}

gives

[dU(A);dU(B)) = dU([A, B]) + w(A, B) -1
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The relation (110) and (1.11) gives us an e;cplicif formula for the Lie z;flgebra;
cocycle, as follows

w(A,B) = (Q,w(A,B)-1Q)
== (,[dU(A),dU(B))2)

. 1 - .
= ~3T(4y, Br])
= —LIm(4y,B;)

where we have used (1.10),(1.11), and (1.13). B

Notice that the trace of a commutator of two anti-linear Hilbert-Schmidt
operators do not vanish, in general, as in the complex linear case. Moreover, it
follows directly from (1.13) that w is skew-symmetric and fulfils the Hochshild
condition ' )

w(AB,C) +w(BC,A)+w(CA,B)=0

for all A, B,C € 0,(H), since [AB, C]+[BC, A]+[CA, B] = 0 for all bounded
operators A, B and C. Then also the Jacobi identity is fulfilled

w([4, B], C) + w([B,C],A) + w([C,A], B) = 0
for all A, B,C € 04(H), hence w is a closed two-form.

Corollary 7 The mapping A — dU(A), A € 0,(H), is a projective repre-
sentation, from the Lie algebra o,(H) onto the spin Lie algebra spin,(H),
with cocycle given by (1.14).

Proof. 1t follows directly from theorem 6. W

This cocycle is studied in details in [V-Z], article 1, paragraph 1.2, and
it defines a non-trivial central extendsion of the Lie algebra o0,(H). In the
special case, when the linear part of A and B are trace-class operators, we
are able to transform the cocycle term away, by a change of phase, as follows.
Put dUp(A) = dU(A) —1-Tr(A;) I, then a straight forward calculation gives
[dUo(A), dUo(B)] = dUo([A, B]), by (1.14) and the fact that } - Tr([A, B],) =
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~w(A, B). So we put l/ "") et do(A) = e=3T(A(¢*Y) for s € R .
close to zero. Then is U(e*®) = e3o(Tr(Cr)- T'(A’) TB Y (e24)U (eB), where
C is glvefl explicitly by the Campbell-Baker-Hausdorff formula, such that
e’C = e*4e*B, for s close to zero, i.e. the group cocycle c(e*4, e*B) is given by

c(esA,esB) — (det( sA; 3316—301))5

for s close to zero, where det(eP) = eT'(D) for trace class opcrators D. Thns
formula is also discussed in [P-S, p.88].

We end up this section by ca]culatmg an explicit formula for the vacuum
functional, given by c(s) = (Q,U(e*4)Q), for A € 05(H) and 5 in a neigh-
bourhood of zero. The following construction was first described in [Lu 2,
p.8], but with very few details. We bring the details below. Notice that c(s)
is analytic at s = 0, since 1 is an analytic vector for the generator dU(A).

Put T = e*4 and consider 2, = U(e*4)Q. Then, by (1.12), we have
(a(T\f) + a*(Tof ), = U(T)a( f)n =0, forall f € H. De [m( the anti-
linear Hilbert-Schmidt operator K by K = T,y where 1 = + Ty, 1y is
“an anti-linear Hilbert-Schmidt operator and Ty is linear and mvextxble for s
sufficient small, by the Neumann ‘serie. Observe that K is skew- selfadjoint
(,19) = (FTT0) = (179, 13%) = (g, (I7)*TetS) = (9.~ f)
= (g9, =K f), for all f,g € H, where we have used that (T;')*Ty* = ——Tle" ,
by formula (1.6) applied to S = 7! 4+ T3*. Then it follows from above that
(a(g) + a*(K g))2s = 0, forallgE'H(f Tl' g).

Now we prove that

Qs = c(s) - e'?“.("')ﬂ ,
Put Q, = ®32,2.(s), where Q) n($) € A"H. Note that Qo(s) = ¢(s) - Q. It

then follows from the abovc that

0 = (o) + (K, |
= a0 @ (O3 (@) (5) + (K g)2ani(5))

So Q4(s) = 0, since a(¢)(s) = 0, for all ¢ € H, then by induction, it
follows that Q;,_;(s) = 0, for n € N." Morcover, since a(¢)Q%(s) = 0 and
formula (1.8) holds, it follows that a(g)(Q,(s)+ la*(l\' )Q0(8)) = a(g)Q(s)+
a*(Kg)(s) = 0, for all g € H, hence Qy(s) = —3a*(K)Qu(s) = —3c(s)K.
Now, induction after n € N gives that Q3,(s) = l( 2a*(K))"%(s). For

n!
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n = 1 we have already proved the formula. Let n € N and suppo;e that
Qan(s) = H(—3a*(K))"Q0(s) then
a*(K)a(g)a*(K)'Q = 2na*(K)a*(Kg)a*(K)"'Q
= 2na*(Kg)a*(K)"Q

where the first equality is a result of the spectral resolution of K and the
second equality is a consequence of [a*(K g),a*(K)} = 0. So n-a*(K g)Qs.(s)
= 3a*(K)a(g)Q2(s) = (Fa(g)a*(K)— a*(K g)) Qan(s), by formula (1.8), and
then Y

(K g)haa(s) = — = - 5a(4)a" (K)¥an(s)

Hence

0 = 0(9)92(n+1)(3) +a (Kg)ﬂzn(s)
_ 1 *
, = (9)(92(#1)(3) + 3 2'1 (K)S2n(s))
for all ¢ € H, from which it follows that

VIR SN
Qantry(s) = m— 1(—'2"’*(1‘ ) Qan(s)
—_ 1 l * n+1
- (n + 1)|( a (1\ )) QO( )
proving the desired formula for n + 1. Thus

1,1
Q = (50" (K))(s)

= By ()
= cfs)e” 2 (K)Q

since o(s) = ¢(s) - Q. This formula allow us to get a differential equation
for ¢(s), as follows

d(s) = ;_S(Q’Q’) = (,dU(A)Q,)

= —(dU(A)Q,Q,) = %(a*(/b)ﬂaﬂs)
- %c(s)(A%e—%a'(K)Q) = —%C(S)(Az,x)

- -;—Tr(KAg) - ¢(s)
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where we have used foxmula. (1.11), the just derived formula for 2, above
and that dU(A)Q = —1a (Ag)ﬂ So ¢(s) is given by the above differential
equation and the fact that c(0) = Q> = 1. Notice that K = T,T;"
= (e*),(e’ ) depends on s € R Put V, = e=*41(c**),, then is

Ly, = A+ e (A
s .
= e (=A)(e) + e (A () + Az(e™)2)
— —3A1A ( sA) C ’ .
and for s so small that Vs is close to the 1dent1ty I and thuefore 1nvert1ble
we get S

d

‘/’—la“/‘g‘ _ (esA)l—lesAlc—sAl A (65.4)2
= () Ag(e) =T AT,
Hence
d r res -1 d -1 m
—Tr(logV,) = lr(V -d—Vs) = Tr(T; " ATY)

ds
' = (AgTzT ) (A 1\) = ]l(]\A )

where we have used that V- i and d % Vs commute (only) under the tlacc
symbol, since both are complex lmea.r operators, as is the case for ;! and
A,T;, and that Tr(K A;) = Tr(A;K), due to (ej; K Aze;) = (e, A2Ke;j), for
an arbltrary bas1s vector e; € H. Then we may write the differential equatlon
as

¢'(s> - ;dimog(v,)) o(s)

which has the solution

o(s) = K- ATV = i TV = & - (deb(V_,)b

since c(-—-q) (s), and we have used that the determinant of V, exists, since

= [y e" Ay(e'), dl is a trace-class operator, because A, and (c!4),
are both Hilbert-Schmidt operators (see for example [R-S 3, p. 322]] or [Ar,
p: 124]). Finally it follows that & = 1, since'c(0) = 1, so

o(s) = (det(V_,)}
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giving an explicit formula for ¢(s), as claimed. We summarize the above as
follows. ‘

Theorem 8 The vacuum functional c(s) = (Q, U(e**)Q) fo;'A € 02(H) and
s in a neighbourhood of zero, where U(-) denote the spin representation, is
simply , T .
I c(s) = (det(V_,))7
where V_, = e*1(e7%4), = 1 — [§ et1 Ay(e7t4); dt.

Proof. A imediately consequence of the above. B

Since the (restricted) unitary group can be realized as a subgroup of
the (restriced) orthogonal group, we may study the restriction of the spin
representation to the restricted unitary group. We do this in the next section.
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L. 5 The spm representatlon of the restricted
umtary group.

As mentioned at the end of the former section, we will now consider the
restriction of the spin representation to the restricted unitary group, partly
because we get a nice explicit expression for the Lie algebra cocycle, which
we will use later on in an application of the theory on-2 loop group. This
is allowed by the fact that we may realize the restricted unitary group as a
subgroup of the restricted orthogonal group. -

The results of this section can be found in [Lu 2, section 6]. We bring a
detax]ed elaboration of this below. Some of the ideas’ can: be found in [P S,
chapter 6] and [Mi, chapter 6] too. -

" Let P be an orthogonal projection on the Hxlbert space ‘H and let U(H)
denote the unitary group on 'H We define the rmtncted umtaly group

Ug('H P) on H by
U(H, ‘P) ={V eU(H): [P, V] € L,(H)}

where Ly(H), as earlier, denote the Hilbert-Schmidt operators on H. We
wish to say a few things about the corresponding ”pre-Lie-algebra”, which
we denote uy(H,P). We demand that the elements of uy(H, P), through
the exponential mapping, define unitary one-parameter groups in Uy(H, P),
in resemblance with .the preceding sections. Suppose A € uy(H, P), and
consider V, = e*4. From the unitarity of V,, it:follows, by taking the s-
derivative at s = 0, that A is skew-selfadjoint, A* = —A (and that A is
complex linear). Of course, it would be convenient if [P, V,] € Ly(H), where
V, = e*4, implies that [P; A] € Ly(H), this is, however, not the case, since
L,(H) is closed only with respect tothe Hilbert- 9clnmdt topology, and not
the uniform topology. We define -

us(H, P) = {A € L(H) : A* = —A,[P, A] € Ly(H)}

where L(H) denotes the hounded linear operators on H, later on we may
want to enlarge our choice of "pre-Lie-algebra” to unbounded operators.

‘It is evident that e*# defines a unitary operator on H, for A € uy(H, P),
so the non-trivial part, in proving that e** € U,(H, P), is to prove that
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{P, e*4] is Hilbert-Schmidt, for any A € uy(H, P). Split A into two parts
B = (I- P)A(I - P)+ PAP

and
o C = PA(I - P)+ (I — P)AP

-such that A = B:4+ C .- 1t follows that both B and C is skew- selfadjoint and
that C is Hilbert-Schmidt, since PA(I — P) = P[P, A] and [P; A] is Hilbert-
Schmidt by assumption. Moreover [P, B] = 0. Define V(s) = e~*Be*4, s € R,
which is a unitary operator. We now show that V(s) — I may be written as
a series, which converge in the Hilbert-Schmidt topology, umformly in s, on
compact sets in R. Observe tha,t

E;V(s) = e_;é(A — B)e;’A
7 = e *BCe
= C(s)V(s)

where C(s) = e™*BCe*B. Integration then gives
V(s) =1+ / “C)V() dt
[¢]
since V(0) = I. Put Vp(s) = I and iterate the equation by putting
Vasi(s) = / C(4)Va(t) dt
o
for n € NU {0}. Then
IV(s)llas < Cllas -1 [ dt] = IIClus - Is
and
Vass@llas = Il [ COValt)dtlns
< 1 [ IC@Va(®llusat |
0
| [ ICOUnsIVa®llnsdt|
0
ICllas -1 [ IVa(Ollusat]

IN
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forn € N, since [|C(t)||us = ”C”HS Assummg that ||V (s)||Hg < |ICiys 2
then '

Y

[Vanr(s)llns < [Cllws | / IVa(®)lusdt |

< OIS - 7p-1 [ e

— n+l |s|n+1
= [IClls O P
Thus - " '
ll Z Va(s)|lns < -Z uv,,(s)u,,s < ellCllas-lsl
So the series 3°°° (s) converges in the H)lbert Schmidt topology, umformly

in s on compact sets in R. Morcover 372, Va(s) is a solution to the integral

equation, determining V(s). Hence V(s)—1= Y5 V,(s) is Hilbert- Schrnidt.
Since [P, B] = 0, it then follows that Pe’A(I P) = Pe*BV(s)(I'- P)

=eBP(V(s ) — I)(I - P) is Hllbelt Schmldt becauso '

”PEM(I—PHHS = |l P(V (s) = (I = P)lus
- = 1P(V(s) - ) ~ P)|us
< V(s) = I||ns
< oo

for s in a compact subset of R. llcncc [P, et] = Pe’A(l P)—(I—-P)es*P
is Hilbert-Schmidt, so e*4 € U,(H, P). :

Now, let I' be an involution on H commuting with P (as in section 1.2
such anti-unitary invo]uti'ons do cxist). Put Ip = I — P + I'P and observe
that IpP = (I - P+ (TP =1-P+ I‘ZP = I, so the real linear operator
Ip is 1nvert1blc on H. Moereover

r(I_pf,ng) = ((1— P)f,g) + (Pf,I'Pg)
= 7((I-P)f,9)+7(Pg,Pf)
= (f,.)

for all f,g € H, where 7(-,), as earlier, denotes Re(-,-). This means-that
Ip € O(H). By use of this, the restricted unitary group Uz(H, P) can be
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realized as a subgroup of the restricted orthogonal group Oy(H). For V €
Uz(H, P) we put Vp = IpVIp, then V — Vp defines a representation of
Uy(H, P) in Oy(H), since Vp evidently is real linear and invertible, in fact.
V! = IpV*Ip, and a direct calculation shows that 7(Vef, Vpg) = 7(f,g),
using the unitarity of V and that I'r € O(H), so Vp € O(H). Finally

Vo = IpVIp = " o .
(I-P)V(I—P)+ PTVITP+ (I - P)VTP +TPV(I - P)
(I — P)V(I — P)+ PTVTP +TP|P,V] - [P,V]TP
= (Vp)i +(Vp):

where (Vp); = (I—P)V(I—P)+PTVIP is the linear.part of V and the anti-
linear part (Vp); = I'P[P,V] - [P,VITP = [TP,[P,V]] is Hilbert-Schmidt,
due to the fact that [P, V] € Ly(H), since V € Uz(H, P). Hence Vp € O2('H).

This allows us to construct the spin representation of the restricted uni-
tary group, and the corresponding subgroup of Spin,(H) will be denoted -
Spiny(H, P). :

Define Up(V') = U(Vp), for any V € Uy(H, P), where U(-) is the spin re-
presentation, defined in section 1.4, U(Vp) is well-defined, since Vp € Oy(H).
Moreover, we put ap(f) = a((I — P)f) + a*(TPf), for f € H, which clearly
is anti-linear, and f — ap(f), evidently gives a representation of the CAR-
algebra labelled by P, since (I — P) and I' P are Bogoliubov transformations
(see section 1.2, just above theorem 1). Then '

r1p(f) = 7(Ipf) = Jﬁ(ap(f) +ar*(f)

for f € H, gives a representation of the Clifford algebra, where we have used
that Ip~! = Ip. By use of formula (1.12) and the fact that IpV = VpIp it
follows that

(V) = n(IpVf)=n(Vplpf)
= U(Ve)r(Ipf)U(Vp)™!
= Up(V)rr,(f)Up(V)™

and then is

ap(Vf) = Up(V)ap(f)Up(V)™
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for feH and V € ng('H P), of course we also have the analogous formula
for ap*(-).

Let A € uy(H, P) and define dUp(A) as the generator of the unitary one-
parameter group Up(e*?) = U(Ipe*#Ip). In the case where A is bounded,
as in the above choice of pre-Lie-algebra u,(H, P),’it follows that Ipe*4Ip =

e*A? and-then is dUp(A) = dU(Ap). For A = il, which is in uy(H, P), is
Up(e®!) = e*dUrliD) = e’du((")”) and (zI) = i(I — 2P), which, in fact, is
complex linear, so : .- o

dUp(il) = dU(('(I ~2P))) - idU(I — 2P)

where the last equahty follows because the generator reduce to the linear
Fock-Cook generator. Then we may deﬁne the socalled charge operator @) as
the selfadjoint operator Q = —idUp(iI) = dU (I — 2P), which is well-defined
at least on D. To discuss the spectrum of @ we define H_ = PH and
Hy = (I-PYH = HZ such that H =H, ®H_ and let {e; : j € My} denote
an arbitrary choice of orthonm mal ba51s for respectively H, and H_. Notice
that this splitting of M into M &™H_ equips H with a polarization, defined by
the unitary opelator J = 1-2P,on H, which is +1 on H and -1 on “H_, since
JP = —P and J(I — P) = (I = P). Hence the demanded [P, V] € Ly(H) is
equivalent to [J, V] € Ly(H), which is the formulation used in [P-5, p. 80]. In
a more physical language, J is a one-particle charge operator- corresponding
to the case where Hy is the space representmg parhde with respectively
positive (+) and negatlve (-) charge, so Jex = qi - ex, where ¢ = %1 for
k € My, respectively, i.e. q; is the sign of the charge of the particle described
by the state vector e;.- Then @Q = dU(J) on D. Now, it follows that Q € D
and Q€ = 0, by definition. Moreover e;, A--- Ae;, € D and :
Qe A--Aej) = D e A Adej, Aee- A,
: . k=1 :

= (Z‘hk (ejy A+ Aej,)
notice that 3"}_, ¢;, € Z. Evidcnt]y, we have

”Q(en “Aej, “ <n- “611 A "Jn“

so D(N) C D(Q), where N denote the number operator, discussed in the end
of section 1.3.- Observe that the eigenvalue correspondmg to e;, A---Aej,
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belongs to {—n,—n+2,...,n—2,n}, where n € N, and all possibilities can
occur, of course dependent of the choice of the eigenvector. This means that
‘the set of eigenvalues of () at least is Z and that the eigenvectors correspond-
ing to a fixed eigenvalues ¢ € Z are all in the subspace spanned by those
product basis vectors, made up of anti-symmetric tensor product of one-pai-
ticle vectors with ¢ particle more from’ Haign(a) than from the orthogonal
complement. Hy:..y = M_sign(q). (here the sign of ¢ = 0 is optional). As a
-consequence, there are infinitely many elgenvectors to each eigenvalue, q € Z.
Moreover, @ is evidently unbounded, since its spectrum is unbounded. Up
to now we have proved that the spectrum of @ include Z, we shall now prove
that the spectrum of @ indeed is 0(Q) = Z. For all s € R is €"'? = Up(e*"!)
= Up(esT(1+27)) = ¢%Q . ¢i27Q then €?"? = I, which implies that o(Q) C Z,
hence o(Q) = Z. Moreover, for A ¢ Z, is the range of  — X dense in Fa(H)
and .
W@=-A-DFY> er- |F

where ¢y = dist()\,Z) > 0, so (Q—X)~" is well-defined with bound ¢;!. Notice
that the spectrum consists of eigenvalues only. For each ¢ € Z = 0(Q), let
H, C Fa(H) denote the eigenspace of @ corresponding to the eigenvalue g.
Then is H, L H,, for ¢ # ¢, both in Z. Hence we are able to decompose
Fa(H) in the following way

]:A(H) = 69quZHq

called the charge gradation of FA(H). If A € uy(H, P), then @ commute with
dUp(A), by use of (1.13), (1.14) and the fact that [Ap, Bp] = Ip[A, Bllp =
[A, Blp, for A, B € uy(H, P), since

[dUP(A),Q] = [dU(Ap),dU(J)]
= dU([Ap, ) +w(Ap,J) - 1
= dU([A,iD)p) — iw(Ap, (iD)p) - 1
= 0 ZTx([(Ap)a, (Ipilp)al) - 1
=0
because Ipilp = ¢(] — 2P) = iJ is linear. Notice that this argument only

holds for A bounded. However, @ does not commute with all operators
Up(V) =U(Vp), V € U(H, P) (as can be seen from the spin representation
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of the charge group C, which will be treated later on). The above charge
gradation and the fact that Q commute with dUp(A), and then with Up(e®4),
for A € uy(H, P), implies that the operator Up(e’4) maps H, into H,. That
the operator Up(e**), for A € uy(H, P), leaves H, invariant, then means that
Up(e*4) conserves the charge. But, since not all operators Up(V), for V € -
Uz(H, P), commutes with @, they-do not leave H, invariant, and therefore
they do not, in general, conserve the charge.

Let us calculate an explicit formula for the Lie algebra cocycle, in the
case where A, B € uy(H, P), by use formula (1. 11) in theorem 4, as follows

(2, dUp(A)dUp(B) Q)
= (Q dU(Ap)dU(BP)Q)

= —Tr((BP) (Ap)2)

- %Tr((l ~ PYBPA(I - P) 4 TPB(I - P)APT)

= ST((I — PYBPA(I - P)) + 5Te(PB(I ~ P)AP)*)
= JT(PA(I = P)BP)+ ;Ti(PA(I ~ P)BP)
= T(PA(I-P)BP) (1.15)

where we have used that

(Con = UsClp)y
= (U=P)OU=P)+TPOTP+ (1 = PYCTP+ TP - P));
= (I-P)CTP +TPC(I - P)

for C = A, B, that T? = [, that Tr(FCI‘.) = Tr(C*), that A* = —A, B* =
—B, that (I — P)BP = [B, P]P and that PA(] — P) = P[P, A] both are
lmear Hilbert- Schmldt oper ators such that ‘ -

Tr ((I P)BPA(I P)) = Tr(PA(] - P)BP)

Hence, from formula (1.14), in theorem 6, we get the following explicit ex-
pression for the Lie algebra cocycle
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w(Ap,Bp) = (Q,[dU(Ap),dU(Bp)]9)
= —3Tr(((Ap)s, (Beal) (1.16)
. 7 = Tr(PA(I P)BP) = Tr(PB(I — P)AP)
so wp(A; B) = Tr(PA(I — P)BP)  Te(PB(I ~ P)AP), where wp(A, B) =
w(Ap, Bp) and the analogue of formula (1.13) then reads o
[dUp(A),dUp(B)] = dUp([A, B]) +wP(A B)- 1 (1.17)

for A,B € uy(H, P). :

We end our treatment of the spin representatxon based on the CAR-
algebra and its Fock representation, by the following diagram, reflecting our
construction. '

/exp

Spiny(H, P)

‘We return to some applications in a later chapter. Before doing so, we will
make an analogous discussion of the C'C R-algebra. However we conclude this
chapter with an appendix-like section on a discussion of different formalisms.
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1.6 A note on the formalism.

We have several times referred to other authors, using another formalism, see
for example [Ar]. This appendix-like section is devoted to the transformation
between our formalism, which is consistent with the formalism used in some
reference papers, such- as [Lu 2], [B-R 2] and [V-Z], and the formalism used
by some other, such as [Ar] and [Ya]. To clarify the discussion, we will only
consider the transformation between the formalism used in tlns thesis and
the formalism used by Araki, in [Ax]. The dxscuss1on of this section doesn’t
seem to appeal anywhele else.

Let H denote a complex Hilbert space and let H* denote the conjugate
Hilbert space, that is H* denote the same set as H, with the same addition
rule, but with the complex conjugated scalar multiplication, C x H—-H
(relative to 'H) given by A 7 f = Af and the complex conjuga,ted inner
product, H x H — C given by (f; g). =(f,g). Yoe = (95 fly- Put K = HBH*
and write an h € K as h = hy + hy, where by € H and h, € H*. Then
(hyh')c = (i hy)sg 4 (hay hY)y. This is the Hilbert space used in [Ar].

Deﬁne a orthogonal projection P onto H on K by Ph = hy, for any h € K,
‘where b = hy + hs refers to the above splitting. We also define a complex
conjugation on K by U'(hi,hy) = (hy,hy), for by € H, hs € H*, where
we write (hy, hy) for h = hy + ha. Notice that ['Ah = XI‘h. We may write
I'= ( (I) é ) Obsé;i/e that P+ FPF'; 1, hence P is what Araki call a basis
projection. Moreover Araki define RerK = {h = (hy,h;) € K : by = hy)
= {h € K : Th = h} and then'is"((h kY, (A, 1)) = 2 Re(h,h'),, for
(hyR),(h',h') € RerK. Then Arakl deﬁne a gencmhze ”Clifford” opera,tor
(relative to our) by . o

mp(B(h)) = a(Ph)*+a(PTh)
| = af(h,0))* + a((h2, 0))
= a(h)* + a(h2)
in the Fock representation (here 7p denote the Fock representation given

by P). However, on: RerK, the generalized ”Clifford” operator match with
our "Clifford” operator 7(k) = a(h)* + a(h), where 7 denote our ”Clifford” .
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operator, defined only on the space RerK, which corresponds to our Hilbert
space (which we in preceding sections denoted H). The advantage in Araki’s
formalism, is that our orthogonal transformations corresponds to unitary
operators, which commute with T, and then one are able to use spectral
theory directly. However, this formahsm pays the price, to deal w1th a Hxlbert
space, twice as big as our physical Hilbert space, Rerk.

A (unitary) operator U on K = H @ H* may be written as

A B ‘
-(28)

The requiremént that A[U, I'} =0, then gives that
B=C=W=PU(I-P)+(I-PUP

and that - ) , . '
' A=D=V=PUP+(I-P)U(I-P)
The unitarity of U then gives

VW +WW =1=VV*+WW*
and _

VW +W*V =0=WV*+ VIW*

which is equivalent to our decomposition of a orthogonal transformation T' =
T, +T,, with Ty =V and T; = W, observe that T = V + W in fact becomes
an orthogonal transformation on RerK and that W : H @ H* — (H @ H*)*

is complex linear, corresponding to a complex anti-linear operator on RepK.

Hence
(T T
v=(7 7 )

explains the connection of the transformation between operators used in the
respective formalisms.
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Chapter 2

The Metaplectic
Representation of the Infinite
Dimensional Symplectic Group
based on the CCR Algebra in
_its Fock Representation =
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2.1 The ‘canonical, commutation relations
and the CC R-algebra.

In this section we will introduce the canonical commutation relations and the
CCR-algebra. Although the CC R-algebra has many properties analogous to
the C AR-algebra treated in chapter 1, there is a lack of norm continuity in
the definition of the C'C R-algebra. This lack of norm continuity is related to
the fact that creation and annihilation -operators in any representation are
unbounded. Physically this reﬂect.s the main difference between fermions,
related to the C AR-algebra, obeying the Pauli principle (see chapter 1) and
bosons, related to the CC R-algebra, which doesn’t obey the Pauli principle.
So in case of bosons. there is no bound on the number of particles which can
occupy a given physical state. This is reflected by the unboundedness of the
annihilation and creation operators mentioned above. Usually one treats the
boson: case from a slightly different viewpoint, than the fermion case due to
the previously mentioned qualitative difference between the two cases:. One
use the socalled Weyl operators which roughly speaking are the unitary oper-
ators constructed from the selfadjoint closure of the sum of the annihilation
and creation- operators to study a bosonic many- particle system. The Weyl
operators fulfil the socalled Weyl form of the canonical commutation rela-
- tions: The canonical commutation relations were introduced by Dirac (see
[Dir]) in 1927 in the context of radiation theory'in physics. However, Cook
(see [Co]) were properbly the-first to give a rigorous mathematical approach
to the subject.. It shall be mentioned that the abstract structure of creation
and annihilation operators has been studied in the 1950’s. In particular did
Segal (see [Se,I.E.]) emphasize the C*-algebraic structure of the CC'R-algebra
and introduced severel new feature and results. .

In the following sections we will use the concrete realization of the cano-
nical commutation relations called the Fock representation of the canonical
commutation relations. We will thercfore focus on this representation. We
include, however, a general discussion of the C'C R-algebra serving as. a na-
tural frame sxmllar to the case of the C'AR-algebra.

This section is based on.chapter 1 in this thesis, [Co], [Lu 2], [Ya] and
[B-R 2]. We will use a notation similar to that of chapter 1, but common
symbols does in general mean something else. :
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Let H be a complex Hilbert space and A an abstract x-algebra. We call A
the *-algebra generated by {a(f): f € H}, if there is an anti-linear mapping
a : H — A such that {a(f): f € H} together whith the unit I generates the
*-algebra A and fulfil the canonical commutation relations

a(f),alg)] = 0
[a(f),ale)] = (fr9)-1 - (21)

for all f,g € H. Here (:,:) denotes the inner product on 'H and [,-] the
usual commutator [A, B} = AB — BA. We will shortly refer to the canonical
commutation relations given in (2.1) as the CCR.

Assume that we have a C*-norm on A, i.e. a norm fulfilling that || A*A|| =
|| A))? for all A € A. The element 7(f) = a(f) +a(f)* € A is selfadjoint with

respect to the involution *. Elements of the form #(f) then fulfil

()79l = la(f) a(g)"] +[a(/)",a(g)]
= ((f,9) = (g, /)1
,= 2. ]m<f7 )

Choose now f,g € H such that Im (f,g) = £ # 0 then [7r(f) 7r(g)] =c-1I.
This is possible since for any f € H \ {0}, we may choose ¢ = if whereby
Im{f,g) = |If])® whence ¢ = 2-||f||> # 0. For an arbitrary k € N we

therefore have that
[x(f),7(9)*] = k- c-m(g)*?

by successive use of (2.1). So

ke lel - m(g)|*

1l

k- lel- ||
[, 7"
2wl - |=(9)¥]
2+ lx(H)Il- I (g)]I*

VAN |

I

where the C*-norm have been properly used repeatedly together with the
selfadjointness of m(g). Hence

>l k< (Dl - ()]
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for all k € N, so at least one of 7(f) and 7 (g) is unbounded contradicting the,
C*-norm assumption. This means that we cannot turn A into a C*-algebra.

It turns out (for details, see [Ya]) that there exists a normalized positive
linear functional ¢ on A, so we may apply the GNS construction to get a
Hilbert space F, a *-tepresentation 7 of A, i.e. a *-homomorphism from A
into the set of linear (generally unbounded) operators on F, and a generating
vector Q). Here F is the Fock space for the Fock representation 7 of A and
) the vacuum vector. By construction ¢(A) = (2, 7(A)Q), for each A € A.
The GNS construction depends on . We will, however, not follow this track,
but rather construct concrete realizations of the creation and annihilation
operators on the symmetric Fock Hilbert space, and then show that it is in
fact a representation of the *-algebra generated by {a(f) : f € H}. We will
thus pursue the idea used in the construction of the Fock rcpresentatlon of
the CAR- algebra (see section 1.2 of chapter 1).

The following discussion is an elaborated mixture of [B R 2, section 5.2.1]
and [Co, part I]. For each f-€ H we define the linear operator a*(f) in the
symmetrlc Fock Hllbert space fv('H) as deﬁned in qectlon 1.1 of chapter 1,
by = '

- “(He=f (2.2)

and on product vectors by

(f)(fl vfn)—fvfl 'vfn (23)

We ought to write aa(f) instead ofjust a*(f) as it is a concrete realization ( *-
representation ) of the abstract x-algebra A (which is shown below). We will,
however, mainly consider this realization, so we discard the 0-indices, as we
did in the case of the Fock representation of the C AR-algebra. Extension by
linearity gives a densely defined linear operator «*(f) from V*H to V**1'H,
for each n € N U {0}. Analogously to the CAR-case, we call a*(f) the
creation operators, for obvious rcasons. The lack of a Pauli principle which
is a consequence of the symmetry of product vectors in Fy(H), in contrast
to the anti-symmetry of FA(H), allows us to have non-zero product vectors
in Fy(H) of the form F,, = fV-.-V f € V*H, the n-fold (symmetric) tensor
product of f € H with itself. In contrast to the anti-symmetric case, the
creatlon opexatms defined by (2.2) and (2.3) become unbounded, since
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(n+1)—times .

et (NFN? = WFV vV FIR

n—times -
= (w4 DI NTVIV VI
= (D) IR '
where we have used the formula of the inner product on Fy(H) (see section
n—times

. st s, .
1.1) and that F, = fV---V f € V*(H). This evidently means that a*(f)
is unbounded when extended by linearity to Fv(H). We will prove that in -
general 1 : , :
la*(Fall < Vr+1-|If]l- |1 Fall - (29)
for all f € H and F,, € V*H where we already know that equality occurs for -
a certain choice of F, € V*H. For f = 0 then a*(f)F, = 0 and the claim
follows trivially. For f # 0, we put ¢; = WfLH and choose an orthonormal basis

{e;}32, for {el}l in H. Then the basis product vectors E( )"‘ =elV--V

ef"':‘, where i; < --- < iy, and Y7L, k; = n, k;j € N, span a dense subspace

in V'H (see section 1. 1) If we thus can prove the claim for all F,, € V*H
of the form 5= . (k). a(‘)m E(k)"' then the claim holds for all F,, € V*H. A

2
straight forward calculation using that “e{-‘l‘ VooV ek"‘ “ = [I7L,(k;!) and
that <ef1‘ -V e:‘"',e;‘l VeV ei-i) =0if e,’-‘l1 Ve Vefm # e" VeV e;-’;,

where ky + -+ + km = l1 + - -+ + |, = n (see section 1.1 for further deta.ils)
gives

@(f)Lafiy e v--velr|
A1 - “Za(k)"' e1 Ve’“'V"'Vef,:'uz
= IS |l { (kat) - (k) forl <y < <in

k1 +1)!(k2')‘(km!) y forl =4 < - -<ip
A2 3 [alm [ (ky + 1) - TTCA3Y

1=1

VAP - Gk +1) - [ S alr ek v v b
< (m40) A IR

1l

IA

il
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proving our claim. Then a*(f), f € H are unbounded operators in Fy(H)
mapping V*H into V**'H. However, a*(f) is bounded as an operator from
V*H onto V**'H. Observe that a*(f) is well-defined on D(NV?) = {F =
B F, : T2 n - ||F,||* < o0}, where N denotes the socalled number op-
erator given by N(G}n_OF ) = ®rLon - Fr. In fact D(N'/?) is the maximal
domain for a*(f) on Fy(H). But in analogy with the anti-symmetric case,
we may choose D = @,,(V"H), the algebraic direct sum, as the dense do-
main of all a*(f), f € H. Indeed, a*(f) is well-defined on D, since given any
F = @2 ,F, in D there exists an N € N such that F,, = 0 for n > N, so
le*(DFIE £ SN ofm+1) - IFI - IEl < (N +1) - I - [P, Moreover
D is invariant under the action of a*(f), since a*(f) : V*H — V™*1'H creates
- one particle, so if F,, =0, for n > N then G, = a*(f)F, =0,forn > N +1,
where G = a*(f)F = @72,Gx. In fact, D'is a dense set of analytic vectors
for all a*(f), f € H. For arbitrary F,, € V*H and f € H we have

(n+k)

ll(a*(f))"Fn" < IIfII NPl

by successive use of the above norm estimate and that a *(f)"F, € VMt H.
So for any F' = & _OF € D there exists a N € N such that F, = 0 for
n > N. Hence .

WL gy

| (f))"FH<Z IIfIl IF <
Therefore
o (a'(f))" (t- f (N + k)!
k§," DI < ey Z ! ¥ (V)

is finite for all ¢ € R, by the ratio test. Since D is an im;ar_iant set of
C-vectors for a*(f), it follows that D is a set of analytic vectors for a*(f).

Now we are able to define annihilation operators a(f), f € H, on D (one
could choose to define a(f) on D(N'?)). We define annihilation operators
a(f), f € H, as the adjoint operators of a*(f), i.c. a(f) = a*(f)*, for f € H.
Since a*(f) is unbounded, so is a( f), f € H, and we have to specify a domain
of a(f). We will prove that we may choose D as domain for all a(f), f € H,
and that a(f) is given on product vectors in this domain by

a(f)=0 (2.5)
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- and

n .

a(f)(fl Voo VEY=S (L f)- AV V fiaV fi+1v"'an (2.6)

=1

- Observe that a(f) is bounded as an operator from V**'H to V*H since
a*(f) s, as an operator from V*H to V**'M. Since (Q,a*(f)F) =70 for
all F € D, it follows trivially that Q € D(a(f)) and that a(f) = 0. Let
f = fi € H be arbitrarily chosen. For F,, = fV++-V foy1 € V'H, n € N,
and Groyy = g1 V. -+ V gny1 € VPHIH it follows that :

(Grni, @™ (1)) = (V- Vg, iV 2V fura)

n+1

= Z (giaf) : <G£:)’Fn>

=1

n+1l .
= <Z (9, f) 1 V- Vgioy - gim V-~Vgn+1,Fn>
=1

where Gg) denotes ¢; V-V g;_1 V giy1 V - V gny1 and we have used the
formula for the inner product on F,(H) (see section 1.1). Hence formula
(2.6) follows. We have thus shown that the operator defined by (2.5) og (2.6)
fulfils that a(f) C e¢*(f)*. We may therefore choose D as the dense domain
of all the a(f), f € H. Remark that the mapping f — a(f) evidently is
anti-linear. Since a*(f) is bounded as an operator from V*H onto V**!'H, so
is a(f) = a*(f)* as an operator from V**!H onto V*H, and we have

la() Ivmesnl® = Ha™(F)lymrell®
= (n+1)- |/
by (2.4). Therefore
la(HYFall < Vo ILF1 - IFall (2.7)

for any F, € V*H and f € H. Observe that the norm estimate for a(f) is
almost the same as the norm estimate for a*(f), except for a factor /2.

We already know that the domain D for a(f) is dense in Fy(H) and since
a(f) : V"H — V™ H it follows that D is invariant. In fact D is a set of
analytic vectors for all a(f), f € H, since for any F = @2 ,F,, € D there

exists a N € N such that F,, = 0 for n > N. Therefore (a(f))*F = 0, for
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k> N. Hence

o« JathrF] $ et krn

which evidently is finite for all t € R;. We call a(f), f € H, for annihilation
operators, for obvious reasons. As in the case of the creation operator, we
could define a(f) on D(N'/?) which is the maximal domain of a(f) on Fy(H).

We will now verify that a*(f) and a(g), f,g € H fulfil the canonical
commutation relations on D. In fact 'we merely have to prove the claim on
product vectors and the vacuum vector, since a [inite linear combination of
these spans a dense set of Fu(H). Let n € N be mbntramly chosen and
cons1der any F, € V"'H of the form = fiv-i-v fn Then

(g)a AV an) é (g)(fo1 -V f)
= (ng+ng )y GY)

1_1
where GO = fV V.-V fiy v f.‘+1'V “V fa, for i = 1,..:,n. On’the
other hand .- o L _

() (S t0. 0 2 ’)

1=1

@’(f)a(g)(frV an)

{9, f:) G"

ﬂ
1=1 .

where F =fiV---V fiy Vg VeV fa, for i=1,...,n and G) is as
above Thcn 1t 1mmed1ately follows that S ‘

[a(g)?a ' ]= (q'»f) |

on V*H. Moreover, we have a(g)a‘(f)ﬂ = (g, /) and a*(f)a(g) =
a*(f)0 = 0. Hence it folvl.ows that L '

[al9),a" (/)] = (9, 1) - 1
on D. Finally we have )
[a*(9),a*(FNAV - V=gV VAV -V fa=fVgVAV -V =0
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by the symmetri, hence also [a(g), a( f ) = 0 on D. TriQiaily [a(gi), a(f )]Q = 07
and [a*(g),a*(f)]2 = 0 as well. Thus

[a*(g),a*(f)] = 0 = [a(g), a(f)]

on D. Whence the commutation relations g,lso hold on the maximal domain
D(N'/?). We summarize this in the following theorem.

Theorem 9 The unbounded creation and annihilation operators on the sym-
metric Fock Hilbert space F (H) with domain D or 'D(Nl/z) as constructed
above have D as a dense set of analytical vectors and fulfil the canonical
commutation relations and thereby give-a *-representation of the x-algebra

generated by {a(f): f € H}.

Proof. A direct consequence of the discussion above. However, most of these
statement are also discussed and proved in [B-R 2, section 5.2.1]. B

We call this *-representation for the Fock representation of the -algebra
generated by {a(f) : f € H}. Observe that the vacuum vector  is a cyclic
vector, since each product vector fiV---V f, is of the form a*(f1)-...-a*(fn)Q2.

Define |
m(f) = E(G(f)’*’ a*(f)) (2.8)

for all f € H, with domain D. Following [R-S 1, p.209] the operator =(f)
is called the Segal field operator and the mapping f — =n(f) is called the
Segal quantization over H. Hence a(f) and a*(f) can be recovered from =(f)

by the formula a*(f) = %(r(f) —w(¢f)) and a(f) = %(w(f) + iw(if)).
Accordingly there is a one-to-one correspondence between the two points
of view, and we may therefore consider the *-algebra generated by {=(f) :
f € H}. Notice that the mapping f +— =(f) is only real linear. From the
above it immediately follows that € is a cyclic vector, i.e. the linear span of
{(r(f) .. 7(f): fi,..., fa € H, n € N} is dense in Fy(H). Moreover,

the canonical commutation relations for a(f) and a(g), f,g9 € H, gives

[x(f),7(9)]
= i-]m(f,g)-] (2.9)
= ZO‘(f,g)I
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on D, where o( f,g) = Im (f, g) is a non-degenerated symplectic bilinear form
on M as a real Hilbert space. The restriction of m(f) to V*H is bounded,
since both a(f) and a*(f) are, in fact

Ir(NE < % (la(f)Fall + lla(£) Fall

< V2 (A DIS-IE | (2.10)

Then by induction after k € N we get

e < 24 ~,"°” I I
. , n!

where we will use that #(f) : V'H —‘>' V*1H @ V**!'"H and the equations
(2.4) and (2.7). Assume that "7r(f)"Fn" <23 . \/Q%)—! MFNE - I Fall then

IN

[xym] < 2 (Infnm] + st nm))

_1-__ n+ k+1 ,
< \/————l TReRTY

proving the formula for k 4+ 1. Notice that the formula, na.turally also holds»

for k = 0 and is proven above for lc = 1'
Therefore ' '

Z S VTR

>l

is ﬁmte for all t € Ry, by the ratio test Then each F, € V*H and each

B32oFn € D is an analytic vector for 7r(f) Hence 7(f) is essentially selfad-

Jomt on D, for each f € H, by Nelsons analytlc vector theorem (see [R-S 2,

.. p- 202)), since w(f) is indeed a symmetnc opel ator. Notice that the mapping
f - 7r(f) is stlongly (,ontmous by

I(x(f) - () FII=|I7r f—-g)Fllsﬁ-llf—gll-”(Nfl)%F”

for F € D, where N denotes the number operator mentioned above.
The *-algebra generated by {x(f): f € H} is usually denoted the Fock
representation of the corresponding abstract *- alg( sbra.
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.We will now use the selfadjoint og;eratd}s 7(f), the closure of the es-
sentially selfadjoint operators n(f), to.construct the Weyl operators W(f),
f € M, as the unitary operators on Fy(H) given by

W(f) = e (2.11)

for f € H. Henceforth we will just write 7(f) for the selfadjoint closure 7r( fi)
of w(f). Therefore 7(f) denotes two different eperators interchangeably, the

one operator is the close extension of the other. If it is not evident from the
context to which operator = (f) actually refers, we will explicitly mention it.
We then get the following proposition, which probably is owing to. E. Segal.

Proposition 10 Let f,g € H. Then the Weyl operators W(f) and W(g)
defined above fulfil

1) W()W(g) = W(f +g)e-bivts)
2) W(f) is strongly continous in f
3) (Q,W(F)Q) = e~

Proof. This proposition can also be found in [B-R 2, theorem 5.2.4 (p.13)
and on p.25). However, our proof is different from theirs.

1) From equation (2.9) it follows by induction for arbitrary f,g € H
that ‘ ‘

SN = ¥

k+l42-m=n

1 1 11 "
G T @) o (-5 i)

on D, for any n € N U {0}. For n = 0, both sides evidently gives I. For
n = 1, the right hand side gives x(f) + n(g), which obviously equals the left
hand side. Assume that the formula holds for any n = N € N. This implies
that
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= (1)) + (o)) 37+ (() + (gD
= G(D+ate) T g grief o (giothe)

k+l+2-m=N "~

1 1 1 /1.
- k;@m (7',"”’“_ 7o) o (g ieth)
A o) (=5 o)

' m+1
ke —~7r(f)"f1 : ll—!-fr(g)' ' % 2 (,—%.'i-a(f,g)) )

m

k!

_where.weha\./e qsedequailon (29) together with a(q, f) = ~o(f,9), whereby
e = 2(_% i-o(fg ) w1y |
on D, for every k € N. Hence we et |
;,k () + 2 ))”_“,'_ - | |
Y ,1—, f(g)’-mi!--(—l‘

k' 2"
1- e 1o 1 1 "
+me g a () goate) o (g fg’) ).

' - I e | 1 (1 m
= WD) X g gl = (=5 i0U9)
S k#l+2§-_—N+1 kU m!\ 2 :
from which the desired formula immediately follows for n = N+1, by dividing
by N+1, whereby the induction is completed It follows by Cauchy-Schwarz’s
1nequa11ty tha,t the double serics

> L (x(g)G,n(NPF)
k=0 - & - :
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converges absolutely for any F G € D. Now the results given a.bove implies
that

(W(f + g)G F)

= §<—(w(f)+7r( )G, F)

n=0 k+l+2 ‘m=n

= (e 5 grrF) 3 o

1=0
= (W(9)G, W(f)F) emielia)
= (W(H)W(g): e TG, F) 7
for all F,G € D. Since D is dense in H it follows that
W()W(g)=W(f+g) et iara)
for any f,g € H, proving 1). Notice that we, as a corollary have obtained
W(f)W(g) = W(g)W(f)- "oV
on H and that W(—f)W(f) = W(0) = I, for all f,g € H.

= i 2. (tl'”() ’u"(f) > 'nlz_,(_%w(f’é))m,.'
1
2

2) For any F € D there exists an n € N such that F, =0, forn > N,
where F = @324 F,. The previously derived norm estimate

|=(s LRIy

then gives tha.t 7r(f "FJL< 25 . . If,',k' WA - IIFIl, for any f € H. For
any f € H and any F € D we therefore have

V() -DF = % gr(h)*F
< T2 e




- which converges 'by the ratio test, with a limit less than the convergent

series Y52 & .25 \/M times £l - IF}l, for f in the unit ball. Hence -
WW(f) - 1)F|| — 0, as f — O i.e. W( ) is strongly continous at f = 0 on
D, and then on all of H. N

For arbitrary f,9 € ’H we obtain the followmg

W) -w )Fu

= nW(g)( ~g)W f)—l)FII

< |- eieua 1) A

< W - g)—l JFIl+ |1 = etkictra)]. 17
- 0 asg—f

by use of 1), the strong continuity of W(f) at zero, the contmmty ofa(f,g9) =
Im (f,g) and the fact that rf(f f) =.0. Hence VV(f) is strongly continous in
-‘fE'H proving 2). . : . :

3). We first notice that [a(f) m(f)] = 71; ||f||2 1, by equation (2.1) and
(2.8). ThlS 1mphes that T ; SRR

ol ] = ke P 50 212
for all k € N? on D. For.n 2> 2 we get :
@.x(pr0) = (xR0

=l .‘ % <a.(f)g’ : )n—lQ>
; : = \/.<Q (l )n 19)
W 1 5 1 n-2
- S{0.m=03 1 try0)

29, ( ey (2.13)

where we have used equation (2 12 ) for k=n-1.

Observe now that (2, 7(f)°) = (Q,Q) = 1, (2, 7(/)Q) =<Q,:}5f>=
(@, 7(F70) = In(AQU = FII° and (,7(1)°Q) = (LI Q+ FV f) =
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0. So iteration by use of eqliationi(2.l3) -and the récentlil derived properties
gives us that

, formn odd

@ 7(f) Q {("——1%27';9— IflI* , for n even

Rewriting (2n —1)(2n—3) +...- 1 as 22 gives us that

<Q, 7,‘,(f)2n+l.s'.2> = 0

and

(Qr(na) = 2Ly e

for n € N U {0}. Since Q is an analytic vector for #(f), we may use the
following expansion

N

@WHR = 3 L@ ()

!
n=0 n.

_ o=t (2n)
- ,2, (Qn)l 22n.
- )_:0 =50y
= -iliI?

I

by use of the formulas derived above, proving 3). We notice that claim 2)
also follows from 3) by direct calculation. #

The concrete C*-algebra, generated by the Weyl operators W(f), f €
H, is called the Fock representation of the CC R-algebra. For completeness
reasons, we will briefly discuss the (abstract) CC R-algebra below, though it
is of no need for the argumentation to come. We will, however, state some
propositions first.

Proposition 11 The Fock space *-representations a(f) and n(f) are irre-
ducible, in the sense that any bounded operator T on F,(H) commuting with,
the x-algebra generated by a(f) and 7(f) respectively is trivial i.e. T is a
scalar multiple of the unit operator.
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Proof. Since a(f) = #_;(w(f) +i7(if)) and a*(f) = %(r(f) —in(if)), any
operator T' commuting with «(f), f € H, commutes with a(f) and a*(f),
and conversely. Therefore we only need to consider one of the statements,
since they imply each other. Let T commute with a(f) and a*(f) on D, i.e.
TD C D and [T,a(f)) = [T,a*(f)] =0, on D. Then the rest of the proof is
quite snnmllar to that of theorem 1 0

Corollary 12 The Fock representatzon W(f), f€ 7'(, of the CC R-algebra
ts trreducible. -‘ K :

Proof. For a proof, see [R-S 2, p. 232] It seem that the algument of the proof
in [B-R 2, p.13] fails. B

Analogously to the treatment of the C' AR-algebra (see section 1.2 and
1.4), we may consider H as a real Hilbert space, equipped with a non-degen-
erated symplectic bilinear form ¢, i.e. o(f,g) = —o(g, f), for all f,g € H,
and if f € M \ {0} there exists a g € H such that o(f,g) # 0. Notice that

- the o previously defined in (2.9), is an example of such a form. We are now
ready to define the (abstract) CC R-algebra (following [B-R 2, p.20]).

Definition 13 Let H be a real Hilbert space equipped with a non-degenérated
symplectic bilinear form o, then the CC R-algebra is the C*-algebra generated
- by non-zero elements W(f), f € H, satisfying that W(—f) = W(f)* and that

W(f)W(g) = e"7%°U9) . W(f + g) for all f,g € H. .

Notice that the previously constructed concrete C *.algebra, generated by the
Weyl operators, fulfils the condition in the definition of being a CC R-algebra.
Observe that we indicate some uniqueness by use of "the” instead of "a” in

"the CC R-algebra”. This is justified in the following theorem.

Theorem 14 Let A, and A; be two CC R-algebras, then there ezists a unique
*-isomorphism a : A, — A, mapping the generators Wy(f) of A, into the
generators Wy (f) of Az, for all f € H. Thus the CC R-algebra is unique, up
to x-isomorhism. Moreover, W(0) = 1 and W(f) is unitary, for all f € H.
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Furthermore, if S is a real linear invertible operai;r on '}'{, leav%ng o invari-
ant, i.e. o(Sf,Sg) = o(f,g) for all f,g € H, then there ezists a unique
x-automorphism a on the CC R-algebra, such that a(W(f)) = W(S~1f), for
all f €EH.

Proof. We, will not prove this theorem, except for the last part, since we won't
need it throughout this thesis. For a detailed proof of the entire theorem
consult [B-R 2, p. 20-22.]. However, the last part follows directly from the
first part, with Wy(f) = W(f) and W,(f) = W(S™'f), f € H. Such real,
linear, invertible operators S on H leaving o invariant, are usually called
Boguliubov transformations. A

The last part can be shown directly, though We only have to show
that W,(f) = W(S™1f) fulfils the Weyl form of the canonical anti-commu-
tation relations, given in 1) of proposition 10. We get W(ST )W (S g) ="
W(S~!(f+9)) o~ Hio(571:570) = W(S™'(f+g))-e"77U9) that is Wa(f), f €
H, form a CC R-algebra by definition 13, so the mapping W(f) — W(S™1f)
defines a unique *-morphism. #

The generalization of the Fock representation of the C'C R-algebra above
is somehow very slight. Let o be a non-degenerated symplectic form on a
real Hilbert space H,, for example, ‘H considered as a real Hilbert space.
Then there exists a real linear operator J on H, such that J?> = —I and
o(Jf,g9) = —o(f,Jg) for all f,g € H,. In fact, if {ur,vi}ren is a symplectic
basis for H,, i.e. o(ug,u) = o(vk,m) = 0 and o(uy,v) = by, for all
k,l € N, then we put Ju, = v, and Jvy = —u;. Extension of J by (real)
linearity and continuity gives us an operator with the above properties on H,
(one can always choose an symplectic basis for an even or infinite dimensional
space, see for example [Arn, p. 220]). Such an operator J introduce a
complex structure on H,, and reflects the complex structure of a complex
Hilbert space H. The correspondence between H and H, is then given by
er +> ug and ¢ - e & vy = Jug, where {ex = ui}reN is a basis of H,
and (f,g9) = o(f,Jg) + io(f,g) is an inner product on H. Observe that
a(f,g) =Im(f,g), for all f,g € H, and H, is H considered as a real Hilbert
space. '

We now turn to a construction called second quantization in F,(H), which
we will treat in the next section.
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2.2 The second quantization in fv(H)

In thls section we. wﬂl deqcrlbc the second quantlzatlon based on the ex-
plicit Fock Hilbert space construction in the symmetric case, given in sec-
tion 1.1, and on the Fock *-representation of the x-algebra generated by
{a(f) : f € H}, given in section 2.1, following the pattern outlined in the
anti-symmetric case, given in section 1.3. This section will be used frequently
in the construction of the socalled metaplectlc representatlon to be treated
in the next section. » '

'As mentioned in section 1. 3, the basic idea of second quantization does
go back to V. Fock ([Fo]) in 1932. However, it was J.M Cook ([Co]) who
in 1953 made the construction in details. The construction is a method of
lifting one-particle operators on a Hilbert space to many-particle operators
- on the Fock Hilbert space, whenever it is possible (in the symmetric case,
one uses the symmetric Fock Hilbert space). It gave a nice mathematical
frame for handling many problems in quantum physics with infinitely many
degrees of freedom. The idea of this method, called second quantization, has
. been somewhat generalized by’ Lundberg in [Lu 2]. Our treatment of second

‘quantization is somewhat different from those glven by Cook in [Co} and by
Bratteli and Robmson in [B-R 2J. -

Similar to section 1.3 one define a strongly continuous one-parameter
unitary group of operators U(A), on V*H, for any bounded skew selfadjomt
operator A, glven by U(A)OQ Q2 and

U(A )(f1 .an)—e"‘flv.'..Ve"fn (2.14)

on product vectors fi V...V f, € VM. The mﬁneteamal gencrators
dU(A). = d%' - (tA)n on 1ts domain fulﬁls

~ and become
FnA Zfl Vi VALY fin V..V fy (2.16)
on product vectors Moreover, dU(A)2 = 0.
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Similar to our preceding notational conventions, we let D denote the
algebraic direct sum @,y V" H. It then follows that each dU(A), leaves V*H
invariant and that dU(A) = &% ,dU(A),, is well-defined on D. Observe that
dU(A) is skew-symmetric with a dense invariant domain D.

Consider now possible unbounded skew-selfadjoint operators A. We then
define dU(A), directly by dU(A)eQ = 0 and by (2.16) on product vectors
in V"M, such that each one-particle vector fy,..., f, belongs to the domain
D(A) of A. We denote this set of product vectors by D(A)Y", for each n €
NU{0}. Then is dU(A), wcll-defined on D(A)¥". Put dU(A) = ®L,dU(A),
on the algebraic direct sum @q,D(A)¥".

Completely analogue to the anti-symmetric case one shows that
< S s sl 2
= (n!)%.' eMNAR - fll

< 00

> 7:7 |y (fiv...v £)

on any product vector of analytic vectors for A. This means that the set Dy
of finite linear combinations of £ and n-folded tensor products f; V...V f,,
n € N, such that each one-particle vector f; is an analytic vector for A, is a
set of analytic vectors for dU(A).

We observe that D4 is a dense set, since the analytic vectors for A in
D(A) form a dense set in H. Then Nelson’s theorem (transformed to essen-
tially skew-selfadjoint operators) state that the operator dU(A) is essentially
skew-selfadjoint (this is shown by other arguments in (R-S 1, p. 302]). Hence,
the closure of dU(A), which we also denote by dU(A), is skew-selfadjoint
and generates a strongly continous one-parameter unitary group by (a trans-
formation of) Stone’s theorem. We denote this strongly continous unitary
one-parameter group by U(fA). Notice that in the case of A bounded, the
above M may be chosen equal to [|A|| and D4 becomes all of D (all vectors
in H is an analytic vector for A bounded).

The above mapping A — dU(A), which maps skew-selfadjoint operators
on H into skew-selfadjoint operators on JFy(H) is called the second quanti-
zation mapping. Remark that we will use the commutator [B, C] to denote
BC — CB, even for unbounded operators, of course one has to specify on
which domain the commutator is defined. In our case the two operators have
at least D as a common invariant domain, so the commutator is well-defined
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on D. However, one have to be very careful, since a vanishing commutator
on a dense set does not necessarily mean that the unbounded operators do

commute (see'for example [R-S 1, p. 272-273 and 2 306-307]). -

Theorem 15 The second quantization mapping, A — dU(A ), on skew-
selfadjoint operators A in H fulfils -

1) U(tA)a(f)U(—tA) = a(ettf) on D, for analytic vectors f for A and
' teR. : Lo T
2) [dU(A),a*(f)] = a*(Af) for all f € D(A).

3) dU([A, B]) = [dU(A),dU(B)], at least for A and B bounded and skew-
'  selfadjoint on H. : S o -

Proof. 1) “The proof is similar to that of theorem 2 part 1), since for each
analytic vector f; for A is also e“‘f‘fj an analytic vector for A. In addition
. oné have .to contro]e the domain,'which is easily"done.

2)  Follows by conmderatnons completely ana]ogue to those of theorem 2
. part 2). ' : ' o

3) . In this case the proof of theorem 2 part 3) fails, however the following
~proof could as well have been used in the earlier case, theorem 2 part 3),
. with obvious- modlﬁcatlons For A and B bounded and skew- selfadjomt on

'H is
dU(A)AU(B)(fiV ...V fn)

= iifl‘v-;;vfi—lVBf;Yfi+lV”-.ij—lvA‘ijfj.,_lV...an

J:l l:=l
I#1

=1

and |
[4U(A), dU(B))(f1 v oV fa)

Zﬁ W VI[ABYfiV...V [,

= dU([A,B])(flv...an) |
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where fiV-...V fa € VVH is chosen 'a,rbit;rarily, hence
[dU(A),dU(B)] = dU([A, B))

onD. 1

Later on in section 2.3, we will use this. result, but only for bounded.
operators A and B. Notice that part 3) of theorem 15 gives that the second
quantization mapping A — dU(A), is a Lie algebra homomorphism. '

A standard example arises for A = ¢ - I, then dU(A)(fL V...V fn) =
in-(fiV...V fa), we call N = —idU(A) for the number operator on Fy(H),
with dense domain D(N) = {F = @2 F, € Fy(H): T2, n? - ||Full? < o0}
So N(B:2oFyn) = @3Lo(n - F,) for each @2, F, € D(N). Since N is given
in its spectral representation, it is evidently selfadjoint, by von Neumann’s
theorem (see [R-S 1, p. 275]), as it should be, since dU( A) is skew-selfadjoint.

In the next section, we will use the method of second quantization to
construct a metapletic representation, i.e. a representation of the restricted

metaplectic group.
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2. 3 The infinite dlmensmnal metaplectlc re-
presentatlon.

In this section we mtroduce the symplectic group and construct the so-
called metaplectic representation of the restricted symplectic group on a Lie -
algebra level, by ideas similar to that of second quantization. We will follow
a strategy parallel to that outlined in section 1.4 in discussing the orthogonal
group and the spin representation, and use section 1.1 mtenswely

Many authors have studied these sub_]ects however we will only mention
a few [Lu 2], [Ya], [P-S] and [Sh]. We follow [Lu 2] where some of the resultq
are present but without proofs. :

We continue with the earlier notation, exept-that we will use H to denote
both a complex Hllbert space, as usually, and the correspondmg real Hilbert
space (if necessary we put an r- index on H, in the last case, to avoid con-
fusion). Moreover o denotes the exphcnt, non- degenerated symplectlc form,
o(,)=Im{,"),on H,. : : :

We define the‘.sympletw group Sp(H) as the group consisting of those real
linear invertible operators S : H — H where o(Sf, Sg) = o(f,g), for all
f,g9 € H. This definition is analogous to the definition of the orthogonal
group given in section'1.4. As in that case we may introduce a complex
structure in the real Hxlbmt space ’H (see also’ the.dlscusswn in the end of
section 2.1). . ' ' '

If {ek}kEN is an orthonormal basis of H and we let u; and v; denote
er and 17-eg, respectlvely, then {uk,vk}ren form an orthonormal basis for
‘H, with respect to 7(-,-) = Re(,-) and the complex structure of H is then
reflected by a complex structure operator J on H,, which is the real linear
bounded operator, discussed in the end of section 2.1, given by Ju, = vy
and Jup = —u;, and fulfilling that J2 = =T and o(J f,g) = —o(f, Jg), for
all f,g € H,,i.e. J° = —J, where J? denote the transpose of J relative to
o(-1-). S o _ ‘

Because of the unique correspondence between H and H,, given by ¢, «
ui and 7- e, > v = Juy, we will not emphasize which space we consider and
therefore drop the r-index, unless confusion may arise:. It now follows that -
any real linear mapping S : H — H can be split into a sum of a complex linear
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" operator S; and a complex anti-linear operator S; as S = S; + S, by putting
$ = 3(S—-JSJ) and S; = 3(S+JSJ), as.in the case of the orthogonal group.
Notice that [S;, J] = 0 and [S;,J]+ = 0. As in the earlier case, the subscripts
1 and 2 will refer to this splitting in the following. The adjoint S} of S; is
the usual adjoint of a complex linear operator, given by (f, S1g) = (S} f,g),
for all f,g € H. In contrast to_this, the adjoint S} of the-anti-linear operator -
S is given by (f, S29) = (g, S3f), for all f,g € M, as the usual adjoint of a
complex linear operator S; from H to the conjugated Hilbert space H*. So
the adjoint operation means different things, corresponding to the subscript -
of the operator it is applied to, even though we use an asterisk to denote it
in both cases. ,

Since S°S is the identity on H,, for any S € Sp(H), we get that S~ = §7.
Direct calculation gives - '

o(8°f,9) = olf,S19) +0(f,5:9)
’ = o(57f,9) + (9,53 f)
= o((§1 - 52)f9)
for all f,g € H, where we have used the skew-symmetry of the form o(-,-).

Then it follows that
S‘I=S"’=S;‘—S;

Notice that we then have that S} = (59),, but S; = —(57),. Moreover

I = §'§=5°S
= (51 —-52)(51+ 52)
= (518 — 5552) + (S’{Sg — 5551)

where each term is complex linear in the first bracket and cbmplex anti-linear
in the second bracket, so

S151 =838, =1 (2.17)
and

5152, - 5351 =0 (2.18)

Naturally 5157 — 5257 = I and 5357 — 51S; = 0, in a similar manner.
We will call §; and S, fulfilling these criteria for Bogoliubov transforma-
tions. From the last part of theorem 14 we know that such Bogoliubov
transformations determinates unique automorphisms on the C'C R-algebra,
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by W(f) — W(S~'f), for all f € M, where W (f) denote the Weyl operators
(we use the word automorphisms synonymously with x-automorphisms). We
will give an alternative proof, in our case, in a form we will use later on.

Since [7(S~1f),7(S"'g)] = o(S~'f,S'g)-1 = o(f,g) I, we observe
that the commutation relations, on this form, are invariant under the ac-
tion 7(f) — ws(f) = w(S7'f), S € Sp(H). .By the construction of the
Weyl operators it follows, once more, that the Weyl form of the canonical
commutation relations are left invariant. As in the case of the orthogonal
group, there is a natural question to ask; for which S € Sp(H) is the auto-
morphism given by 7(f) — 7s(f) = #(S~1f), and then the automorphism
given by W(f) — Ws(f) = W(S7'f), unitary implementable (in the Fock
representation), i.e. for which S € Sp(H) does there exist a unitary operator
U(S) on Fy(H) such that =s(f) = U(S)* 7r(f) (S), for all f € H, where
rs(f)==(S7f). - |

Before answering this questlon we have to define a subgroup Spy(H),
cal]ed the restrzcted symplectzc gmup, of Sp('H) : )

sz(’H) = {5 € S(H): S € Ly(H)}

where Lz(H) as before denotes the Hllbert Schmidt operators on H. It
follows that Spg(H) really is a group, since (S7'); = —S; and (.S'T)2 =
S1T, + S,T, are Hilbert-Schmidt operators for all S, T € Spg('H)
. The restricted symplectic group can be given the structure of a topological
group in several different ways, in complete analogy with the restricted or-
- thogonal group. The verification'in the case of the strongest topology, which
is the topology glven by the uniform topology on the linear part and the
Hilbert-Schmidt topology on the anti-linear part, ||5]|s, = ||51|| + ||S2]| g is
the same as in the case of the restricted orthogonal group, given in section 1.4
(except that we should write a Sp,-index on the norm symbol instead of the
O,-index). However, the restricted symplectic group is probably connected,
but we are not aware of any proof of this.
N The choice of topology on Sp,(H) determine the Lie algebra of Spy(H).
7 Our choice of "pre-Lie-algebra” is the simplest one, we choose

spy(H) = {A € L.(H) : A° = — A, A, € Ly(H)}

where L,(H) denote the bounded real linear operators on H. -The phrase
"pre-Lie-algebra” means that we in some applications have to enlarge the.
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"pre-Lie-algebra” to allow operators with unbounded linear part. The de-
mand A’ = —A means that A} = —A, and A} = A,, where the adjoint is
taken in their respective senses. 7

In the following we will consider some particular S in Spy(H) in a neigh-
bourhood of the identity, generated from sp,(H) by the exponential mapping.

We return to the question, for which S € Sp(H) are the automorphisms,
defined by W(f) = Ws(f) = W(S~!f), unitarily implementable in the Fock
representation, or equivalently, is there a unitary operator U(S) on Fy(H)
such that 7s(f) = U(S)~'n(f)U(S), for all f € H, where ns(f) = 7(S~1f)..
In fact this question has already been answered by Shale in 1962, as stated
in the following theorem. ,
Theorem 16 A unitary operator U(S), which implements the automorphism
7(f) = 7s(f) exists if and only if S € Spa(H). Moreover, the operator U(S) -
is unique up to a phase of modulus one.

Proof. A proof can be found in [Sh], however, we make a construction of
U(S), for particular S in a neighbourhood of the identity in Sp2(H) below.
] .

In the following we will construct the unitary operator U(S) for S in a
neighbourhood of the identity in Sp,(H) in such a way that U(-) lifts one-
parameter groups (near the identity) into one-parameter groups, whereby the
phase is determined. We emphasize that this particular choise of fixing the
phase is different from Shale’s choise (see [Sh]). The following construction is
analogue to that in the corresponding anti-symmetric case, however, there are
some minner but essential differences. Below, we bring the details, pointing
out the difference mentioned above.

Since

U(TS) ' =(HU(TS) = (UTU(S))™" =(f) (U(T)U(S))

for S,T € Sp,(H), by a direct calculation, and the *-algebra generated
by {(f) : f € H} is irreducible, due to proposition 11, it follows that
UTMUS)U(TS)™ is trivial, i.e. U(T)U(S)U(TS)™! = ¢(T,S)- 1, where
¢(T,S) € C. Hence

U(T)U(S) = ¢(T, S) - U(TS)
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with ¢(T,S) € C. But the unitarity of U(-) forces ¢(T,S) to be of mod-
ulo one, i.e. |¢(T,S)| = 1. This means that the mapping § — U(S) de-
fines a projective representation of the restricted symplectic group Sp,(H).
The group cocycle ¢(T,.S) depends on the choice of the arbitrary phase in
U(S). In [Lu 2], Lundberg gave an explicit formula for the cocycle ¢(T, S),
by choosing U(S) such that ¢(T,S) is smooth in such a way that U(-) lift
one-parameter groups into one-parameter groups, for S and T close to the
identity, completely analogous to what we did in the orthogonal case (see
section 1.4). We do this below, by first giving a constructive proof of the
if-part of theorem 15, in the case of S in a neighbourhood of the identity in
Spa(H) of the form S = e, with A € sp,(H). This is done by first construct-
ing the metaplectic representation on a Lie algebra level, that is we construct
U(e®?), for A € sp,(H) and s € R, sufficiently small, by first constructing
its skew-selfadjoint generator dU(A), hence U(e**) is given by e*?V(4).

Consider first the complex linecar part A; of A € sp,(H), which is skew-
selfadjoint. In this case dU(A;) and U(e*#1) are constructed by the method
of Cook’s second quantization given in section 2.2 (where we denoted U (e*4)
by U(sA1)). Hence dU(A,) is skew-selfadjoint on D and D form a dense set
of analytic vectors for dU(A,), since A and then A, are-bounded.. Observe
that dU(A,) : V"H — V*H. S o :

We now turn to the anti-linear part A, of A € sp,(H). So A; is Hilbert-
Schmidt and selfadjoint (in contrast to the orthogonal case). Due to the
Hilbert-Schmidt condition of Ag, there exist two orthogonal sets {u;}i¢s and
{vi}ier in H, both spanning the range of A,, such that A, has the represen-

tation :
' Af = Z‘(f, v;)
el A
for any f € H. A direct calculation, using the definition of the adjoint of an
anti-linear operator and the selladjointness of A,, gives that

Z(}’"‘)i‘i = Z(f,ui)v.'

t€] ©oiel .

Notice that this equation differs from the analougous equation in the ortho-
gonal case, by a minus sign. So we identify A, with a vector A, € V¥,

- where

A=Y uVu=v2-Y u0u

- i€l : el
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Observe that || ;Ao = [Sies v ® wll = Tier el -l

We have chosen A; such that the mapping A; =~ 71—A2 becomes an
isometry with respect-to the Hilbert-Schmidt norm on A,. In fact, ||Az||}s =
YieN ”Age]” where we may choose the orthonormal basis such that e; =

-—'—’ for 1 E I, then

Z ):5_, oill® - flucll® = 3 ot - flusl|®

jeNiel iel

Z (€5, vi) u

€l

||A2“§{s = Z

JeN

Notice that the self-adjointness of A; mentioned above, is the reason why the
above construction gives us a vector A, € V¥H. In the orthogonal case A,
was skew-selfadjoint reflecting in the sign difference mentioned above, and
the analougous construction gave a vector in A?H. :

We are now able to map A; into an operator on Fy(H) by generalizing
the idea of the creation operator, as we did in the orthogonale case. Define
the operator a*(A;) on product vectors by

a*(Ag)Q = .A2 | (219)

and
a"(A;)(f;VVf,,)=.A2Vf1Van (220)

Notice that the vector A, V fi A--- A f, is well-defined in V**2H whenever
A, € V?H takes the form of a finite linear combination of simple product
vector, A; = Zﬁl g1V g2; € V¥H, where N € N. Any vector A, € V*H
can be approximate by finite linear combination of such product vectors.

Let A, be an arbitrary vector in V*H and A(N) =N §1:V g an ap-

proximating sequence, i.e. A; = limy_,o .Ag ), in V?H. Then we may de-
fine A,V fiy A--- A f, as the limit of A(zN)Vfl Av A fo,in VTPH, as N
tends to infinity. The limit depends only of the vector A; (and ofcause of
fiN---A f,), but not on the choise of approximating sequence .AgN) , since
AzV fin--Afo]l € \/(n +2)(n + 1) - ||Az|| as follows from below. More-
over it also follows that a*(A;) is an unbounded operator, with D a dense
set of analytic vectors for a*(A;). However, we will first prove that a*(Az)
as an operator from V*H into V**?H is bounded, for each n € N U {0}.
Even that the resulting bound is the same as in the anti-symmetric case, the
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calculations become more complicated in this case due to the actual symme-
try. Notice that ||a*(A2)Q] = || A2]| = || A2]} - ||©]], so we may extend a*(A,)
by linearity and continuity to a bounded operator from VO into V2*H and
bound |[a*(Az2)|,ey| = || Azl|.- Now, let n € N and consider a*( A,) from V*H
into V™*2H. Since {v;};es is an orthogonal set, which spans the range of A,
in ‘H, we may choose an orthonormal basis {eJ }JEN for H such that e; = m,
~for ¢ € I. Then

A; = Z ”Ui” e; Vv Z (ej, u,-) €; = ZZaije,- Ve;
i€l j€l ' i€l jelI
where iy = (€;,u;) - [lvi]| and we may choose a,J = «;i, due to the symmetry.
So [l A2|I” = 2- Eijes IatJl '

Now any normalized n-particle basis V(,(.tOI‘ F((k;"' G V*H, w1th YT =
n, may be written as

| Efgn'= Ky - € V-V ein
‘where we have used our conventxon of multiindex and our choice of ortho-
normal basis (and, normallza.tlon) given in the end of sectlon 1. 1 especially

1S I((,.)m = H,_ (1’[ ) Then

(")m
12
= ZZI&(,)m a,Je,VeJ Ve ' VeiVoen
' 1€l JEI
= ¥ ¥ ma ,tls(, e Ve V‘eﬁ V. Ve;"',e, Ve Ve Ve Vern)
hielstel

By use of the inner product formula derlved in section 1.1 we get

(r)m

<eiVejVe Veeeven ,eé,Vqu,C V- Vern —K -c”
where ¢}’; =0, for {1, ]};é{s t} and fors—zandt_] weget |

N 1 fori,j ¢ J and i # j
' 2 fori=j5¢J
c':'J:=J r,+1 - - forigJandj=k,€J
" ro+1 fori=k,eJand j¢J
(rp+1)(rg+1) fori=k,eJ;j=k,€Jandi#j

[ (rp+2)(rp+1) fori=j=k,€J
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where J = {ky,...,kn}, hence for all i,j € I we have

i < (f: k,,r+ 2) (i I;q + 1)

=1 =1

= (n+2)(n+1)q ‘

In case s=j and t =1 we get, completely analogously, that B
(:Z’j <(m+2n+1)

by a symmetry consideration. Then

T)m _— -u. ' -_ ‘1‘. ’
Az)E((k),..” = Y (o @5 il + oi - - )
i,j€l
2
= 2 lal* e
iger

since aj; = aj; and where ¢;; = ¢ + l.
Hence ,
2-(n+2)(n+1)- ) |oxi;
ijel
= (n+2)(n+1) [ 4|’
Tim 2
= (n+2(n+1)- 14l |ED:]

(B

IN

We notice that this upper bound is actually reached 1 1n certain cases, for

example for I = {io} and ¢}} -V er = e} is E(k) = (nl)” 3 - e},

a*(A, E(‘:,mll = {4, n (n!)7" = [|A,]|* &2 =

(n +2)(n + 1) |4 - | ED]

an operator mapping V*H — V*?H, by linearity and continuity getting a
bound operator denoted by the same symbol,

n+2

Consequently we may extend a*(Az), as

la*(A2)Full < /(n + 2)(n + 1) - | Ao| - || Pl

It is remarkable that we get thc same bound as we did in the orthogonal
case (of course the operators act in different spaces), remembering that the
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creation and annihilation operators were bounded in contrast to the actual
case. Of cause a*(Az), as an operator on Fv(H), is unbounded (in the above
example is “af(Az)(n') zel " (n+2)(n +1)-||Az|[, which tends to infin-
ity as n do). Now it follows that a*(A;) defines a densely defined unbounded
operator on F,(H), with D as a dense set of analytic vectors, by completely
similar reasons as those used in the anti-symmetric case (see section 1.4).
Moreover, a*(Az) : VPH — V"2H. '

Consider (a*(f1)Fy, As), for arbitrary fi € H and for any product vector
F, € V*H,n € NU{0}. It is evidently zero for n # 1. For n =1 we put
F = f2, whereby : '

(@ (f)farda) = (fiV o, Aa) o
- = Z((fhvi)‘(f%ui)+(f1,'lti)(f2,v,'))

el

=§;hmMm+mMX)

= (f232A2fl)
| Smce (F 2A2f1) = 0 for F g V! 'H we have

{a (fl)f' Az) = (F, 2A2f1) '

for all product vectors F, hence for all Fe 'D Thcn Az € ’D( (f)) and
(f)Az -—2A2f Then s

a(f)a"(A2)Fn = a(f)( AV Fy) -
| = (@A) V Pt AV (a(f)F)
= (2a'(Aaf) + a(Ar)a(])) Fu

for any Fn =fiv:---V f, € V'H, where we havo used that D is invariant
under both «(f) a.nd a (A ). Hence: : :

3 [a()a ()] = a*(42)) (221)

- .

on D, for all f € H.
We denote the formal adjoint a*(A2)* of a*(A,) by a(A;). In a similar
manner as In the symmetric case it follows that a(A;) is well-defined on D
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" and that it is'inductively given on productvectors f1 -V fn E D(G(Az))

by ,

a(A)(fi V-V fa) = (a*(fi)a(As) + 2a(Azf1))(f2 - Vifa)
and a(A3)Q = a(A2)f =0, for f € D(a(A;)). Observe thatwa(A) : VM —
V™?H, yielding zero for n =0,1. :

- Moreover, it follows that D is a dense set-of analytic vectors for a(4z),
the proof -of the anti- symmetrlc case .carriesover to'thes spresent case without
‘trouble. ¢
Since D is mvarlant under the actlon of a*(f) the adjoint of formula
(2 21) also holds on D, i.e. 3[a(Az),a*(f)] = a(Az2f), for -all f € H. Thus D
is invariant under the action of both a*(A,) and a(A;). =~ -+

Define dU(A;) = i(a(Az) — a*(Az2)) on D, for any selfa,djomt anti-lin-
ear Hilbert-Schmidt operator A;. Notice that dU(A,) is skew-symmetric by
definition and that dU(A;) : V"H — V" ?H @ V*"+*2H. Define dU(A) =
dU(A:1) + dU(A;) on D, for any A = A; + Ay € spy(H). Observe that
dU(A): V"H = V" ?H G V*"H & V*HH : o

Theorem 17 The operator dU (A) is essentmlly skew-selfad]omt and fulfils

[dU(A), m(f)] = =(Af) (2.22)
on D for f € H and all A € sp,(H), 4
(,dU(A)Q) =0 (2.23)

for all A € sp,(H), and
(Q, dU(A)AU(B)Q) = _i (A, B) = —% “Tr(ByA;)  (2.24)

Proof. Since dU(A) is skew-symmetric and has D as a dense set of analytic
vectors, it follows that dU(A) is essentially skew-selfadjoint, by a modification
of Nelson’s theorem ([R-S 2, p. 202], modified to skew-symmetric operators).
From theorem 15 we have that [dU(A,),7(f)] = 7(A;f) on D, for all f € H
(since it holds for 7 replaced by a and a* respectively).

For ‘the anti-linear part of A we get, qulte analogue to the proof of (1.9)
in theoren 4, that

U4, w(1)] = sla(A2), 7] = 5l (A2, 7 ()]
= w(Asf)
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and

[AU(A), () = [dU(A),7(F)] + [dU(Ay), x(f)]
= m(Aif) + 7 (Aef) = n(A))

on D, for all f € H, proving (2.22). Moreover, since dU (A, )Q = 0 and
a(Az)Q2 = 0, it follows that (f, dU(A)Q) = —3(R,a"(A42)Q) = 0, proving
(2 23) Fmally A

~ (@A), dU(B))
~ 3@ (A, 0 (B
1

= —4_ (Az,Bz)

» 1
= —3Tr(By, M)

(Q,dU(A)dU(B)Q}

on D, where we have used the anti-symmetry of dU(A) and (2.19). The
spectral forms of A, and Bz, respectlvely, give the last equa.hty as follows

.Put
A2f Z f,vt _Z(faui)vi

1€l K ¢€l .

an,dv

B?f Z f)xj ".Z(fayj)

]EJ » . ]GJ :

such that Ay.= Yy vi Vu; and By = el z; V y;. Choose an orthonormal
‘basis {ey}ren:for H such that ¢; = "—L[ for : € I. Then :

B = 5T v

. 1€l jeJ
= E Z v"xJ un"/]) +. (?)i’ ?/j) (“‘i’xj))
el jed - 4
= ) (<ue,£ (vi, z;) ?/j> + <us»2 (vi, y;) ’L:>)
1€l JjeJ : JEJ
= 2. Z (ui, Byv;)
i€l
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By u; = Azm‘:*ﬂ; and A,e; = 0 for & ¢VI, we get 7

A By = 2. <A _‘L,BL>
Haba) = 2 LA\ B -
= 2 Z (Aggk, BZ?I:) . PR e
kGN o : T
= 2.3 (e, ByAsey)
keN
= 2.Tr(ByA)

where.we also have used the definition of the adjoint of an anti-linear operator
B, together with the self-adjointness of B, proving equation (2.24). B

We now define the unitary one-parameter group U(e**) by
U (e) = e=dV4) (2.25)

At this point we are rather close to have proved the if part of theorem 16 for
§ = ¢4, A € sp,(H), in a neighbourhood of the identity. However, the fact
that U(e*#) create an infinite number of particles and that 7(f) is unbounded
complicate the last part of the proof. Now, since

(O =U ()P = U)o () - 1) F

— U(e™)dU(A)F

for F € D, as t — 0, it follows that the left hand side also converges, SO
U(e**)F € D(dU(A)) and dU(A)U(e**)F = U(e**)dU(A)F (remembering
that dU(A) also denotes the skew-selfadjoint closure of the corresponding
(preclosed) essentially skew-selfadjoint operator, denoted by the same sym-
bol).

We will show that U(e*)x(f) = n(e* f)U(e~*4), however, the right hand
side is not immediately well-defined. But

w(g) 3 gdU(—A)"F

n=0 "**
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is well deﬁned for F € D and g € H arbitrary, since dU(—A)D C D. The
serles Zn—O S1(g9)dU(—A)"F converges in norm. In fact

nw(g)dU( "Fu<\[ (N+2n+1)- ugu |V (=A)F]

by formula (2.10), where N have been chosen such that Fi = 0, for k> N and
we have used that dU(=A)"F € ®+*V!H. Moreover, ", & 2| dU (= A F||
converges for s sufﬁcnently small, since F' € D is an analytlc vector for -
dU( A) S0 o

s lldU(- )"“Fll
n+1l | dU(—ANE|-

for |s| less that some so € Ry (or clU( A)"F =0 for n larger that some
N € N). Then also , .

—0 asn— oo

s [2AN+2m+3) JlU(=A)HFY
ntl \2(N+2n+1)  [[dU(=A)"F

s \/ N . ”dU(_A)n+1F||

T 41 "N+2n+1  |dU(=AF|

tends to zero as n tends to inﬁniﬂy for || less that sp € R, giving the
norm convergence of the series w(g) Y, 2:dU(—A)"F for arbitrary g € H,
especially for g = e™*4 f. Hence by the closedness of 7(g)

m n m n

Jim n(g)i—'dU(_'A)"F = (g) lim S—(IU( —AVF = n(g)U(e*4)
T %nm0 M e R -
proving that 7(g)U(e**) is well-defined on D for all g € H, especially for ¢

of the form g = e* f, where f € H. (Notice that 7(g) denote the selfadjoint
closure of the essentially sclfadjoint operator W(a(g) + a*(g)) ).
- To continue, we will show the formula -

dU(— Z( ) A NdU(=A)"*

_on D, for all n € N and k = {0,...,n}, by induction. For n =0 (k = 0),
“the formula is trivially true. For n =1 (k = 0,1) we get by (2.22) that
dU(—=A)r(f) = n(f)dU(=A) + ©((-A)f), which clearly equals the right
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hand side, as it should. Assume that we have shown the formula for ai‘giveri:
n € N. Then ) ) , . ]
WA = A ( )r((—A)"f)dU(—A)"""

- i k=0 ’ '

' — k=0 - E : "

n

4 2 (A pav-ap

k=0

by the assumption and formula (222) By separating out the first term
(k = 0) in the first sum, the last term (k = n) in the second sum and
moreover make the transformation k — k — 1 in the rest of the second sum,
we get

WA
= (§)rtarnaocars + (7)r(-arenav-ay
+ 3 (7)r-arna-ayo-s
+2( ) ((=A)* f)dU(—A)"+1-*

k=1

By the Pascal triangle (or direct calculation) (kfl) + (2) = ("“) and the

fact that (8) = ("3’1) = (:) = (:ii) = 1 we finally get the desired formula
forn 4+ 1,

n+1 n
dU(—A)"'Hﬂ'(f) = Z ( -]: I)W((—A)kf)dU(—A)’H'l—k
k=0

and the induction is completed.
Using the just derived formula we have

U (e) n(f)F

= ,,y_r.rgoZ——dU( A)yx(f)F

n—O
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= ,.!L“QOZ n, Z ( ) f)dU( AR
T (e“’" f) U(e ) F

s" d
J=J%Emﬂ

where we have used that 7(f)F € D, for any F € D, and that m(e=*4 f)U(e~*4) I

s well-defined and C*™ with respect to s € R for any F' € D, in fact

. ) .
() U (e F

v : i (Z)"' ((_ )ke—aA‘f) dU(fA)n_kl(J (e-sA) F
s= 3 (’;) (90) U (e7*) (dU(=A)"*F)

v k=0

.is clear ly well-defined inductively by the argument above and where g, =
(=A)esAf, since dU(— A)" ‘F €D for all k E {0 .,n}. Again by the
-same argumcnt we get - o : :

() ()

- n=0 n - lg=0
- e

. proving that U( = M\r(f) = n(e” ’Af) (e~*4) on D, forall fe M, all A€
spy(H) and s in a sufficiently small nelghbourhood of zero
- We thereby get the fmmula

i U(S)"?W(f)U(9) =m(STf)=7s(f) (2.26)

on D, for all S = e A€ sp(H), feHand s€e Rina neighbourhood of

-zero, where U(S) has been explicitely constructed, such that the arbitrary
phase of U(S) has been fixed on all oné- palamot(r subgroups of Spg(H) of
the form § = €™, A € spy(H).

We call U : S — U(S) the metaplectic 7eprescntatzon of the restricted
symplectic group. It turns out that the elements dU/(A), A € spo(H), form a
Lie algebra mp,(H), called the metaplectic Lie algebra corresponding to the
metaplectic group Mp,(H) defined as the group of all unitary implementers
U(S), S € Sp2(H) from Shale’s theorem (theorem 16). ‘

CUE) e = i S0
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Theorem 18 The bracket in the metaplectic Lie algebra is 'givenrby
-[dU(A),dU(B)) = dU([A, B]) + w(A,B)- 1 - (2.27)

on D, for any A, B € sp,(H), with the Lie algebra cocycle given by

: w(A,B) .= %Tr([Am BzD

‘ = —%ImL (A2, Bs) " (2.28)

So A — dU(A) defines a projective representation of the Lie algebra sp,(H)
of the restricted symplectic group onto the metaplectic Lie algebra mp,(H),
in Fy(H). ' ' ' :

Proof. From (2.26) and (2.11) it follows that
o U(STHWNU(S) = W(S™')
for all f € H and S € Sp,. Then -
U U(eP)U (e YW (U (U (P U(e™*)

= W (ctAesBe—tAf)

= W (es~C(t))

= U (eCO)W(f)U (e=*°W)
for all f € H, where A, B,C(t) € Sp2(H) and C(t) is given from A and B
by the formula C(t) = e!4Be~*4, derived in the proof of theorem 2 part 3),
of chapter 1. Thus the irreducibility of the CC R-algebra shown in corollary

12, gives
U(e)U(e*B)U(e*) = b(tA,sB) - U(e*°®)

Of course this result also follows by consideration of the irreducibility of *-
algebra generated by {x(f) : f € H} instead, using proposition 11. The
unitarity of U(-) implies that |b(tA,sB)| = 1. Moreover, from the defining
equation it follows directly that 5(0,sB) = b(tA,0) = 1. Now

b(tA, (s +7)B) U(e~C+CW) = bt A, sB)b(tA,rB) U(e (+7C®)
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by the above and the one-parameter group properties. That is s — b(tA, sB)
is a homomorphism. Furthermore t— b(tA sB) is analytic. Then it follows

that we may write
b(tA,sB) = e(t4: +5)

where c(tA 0) = ¢(0,sB) = 0, t — c(tA sB) is analytlc and c(LA sB) is
llnear in s, so c(tA sB)=s-¢(tA,B),i.e. L

b(tA,sB) = e><(4B)

Then. .

| Ue)du(B)U (e "‘)"
= &, et )
_ d (e“(ms)U _,cm))'
- (t 1, B )vlvwlLdU( (t)) |

on D, and |
“’)[dU dU(B)|U e "A)

= 2 (U( “)dU(B)w 20

- "’—- (c(tA B) T+ du(c( ))
= c_(tA,B) I+dU(e“‘[A Ble~t4)
on D, where we have used that ‘%C(t) = e‘A[A,B]e" and ¢(tA,B) =
£¢(tA, B). Hence, fox t =0, [dU(A),d ( )] = dU([A, B]) + w(A,B) - I on
D where w(A, B) = dt lt=0 c(tA, B).

" Taking the vacuum expectation va.lue of this equation we get

w(A,B) = (Q,({dU(A),dU(B)] - dU([A, B))Q)
= (Q du(A )dU(B)ﬂ) (9, dU(B)dU(A)9)
= ——11(32/\2) ;-T r(A;By)

= §Tl [Az,AB2]
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where we havc used (2.23) and (2 24). . Since 1Tr(Ang) - ~Tr(B2A2) =
3 (B2, A2) — 3 (A2, B2) = —1Im (A;, By), all claims of the theorem is proved.

We remark that the commutator of two ant1 linear Hilbert-Scmidt opera-
tors does not generally vanish. Moreover, it follows directly from (2.27) that
w is skew-symmetric and fulfils the I’IOChSChlld condition '

w(AB,C) +w(BC A)+w(CA,B) = 0
for all A, B, C € spz(H) Then the Ja.cobl 1dent1ty is also fulfilled
([A B] +W([B cl, A) —w([C A, B) = 0

for all A,B,C € spg('H) by which w is a closed two-form. In the special
case, ,when the linear part of A and B are trace-class operators, we are able
to transform the cocycle term away, by a change of phase, as follows. Put

dUo(A) = dU(A) + ;Tr(A,) - I. Then a straight forward calculation gives

il

[dU(A), dUo(B)) = [dU(A),dU(B)]
dU([A, B)) + w(A,B) - I

= dUo([A, B])
since w(A, B) = JTr([A, B]1) by

Tr([A,B) = Ti([A1, Bi] + [A2, By))
0 + Tr([Az, BQ])
= 2-w(A,B)

So we put Up(e*4) = e>Wold) = 3+ TA)[/(¢24), for 5 € R, close to zero.
Then
( sC) = e? s(Tr(C;) Tr(A;)~ Tr(Bl))U(csA) (esB)

where C' is given by the Campbell-Baker-Hausdorff formula, such that e5¢ =
e*Ae*B for s close to zero, i.e. the group cocycle c(c**,e*B) is given by

C(esA, esB) — (det(esAlesBx e—sCy))%
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for s close to zero, where det(e )= eT'(.D ) for any trace class operator D, by
definition. :

- We conclude this section by calculatmg an exphcnt formula for the vac-
wum functional, given by c(s) = <Q Ule* )Q> for A € sp,(H) and s in a
neighbourhood of zero. Excactly as in the anti-symmetric case we arrive with

0, = ¢(s) - €74

where K = S;57" and § = e*4 for s sufficiently small. This formula allows
us to get a dlffelentxal equatlon for c(s), as follows_

‘o) = dim,n» = (Q,dU(4)Q,)
= (~dU(A)9,0,) = 5 (a"(4)0,0,)
b

= 2els) <A2 e-ia.(mn> - f%c(s)(Ag,IC)
= 3 THKAs) <l

where we have used formula (2.25), the formula for €, deri;led above, and
the fact that dU(A)Q = —3a*(A2)Q. So «(s) is given by the differential
equation above and the fact that ¢(0) = ||)|*> = 1. Notice that we have the

- opposite sign than in the corresporiding ‘anti-symmetric case. Remark that

K= 8,87 = (63-‘4)2(6""4);1 ‘depeAn'dfsk_ on s € R. Put V, = e~*41(e*4); then

diTr(log Ve), = Tr(KAg)

Completely as in the antl symmetrlc case. We may now rewrlte the differen-
tial equatlon as . - o

c(s) = -—lzds-Tr(log V.,) - ¢(s) |

which has the solution

1

c(s). =K-e 2T'('°5V) . (det(V,))_i =K- (d.et(V..s))_%

since ¢(—s) = ¢(s). In the previous paragraphs we have used that the deter-
minant of V, does exist, since V, — I = [Je M Ay(e tA)g dt is a trace-class
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“operator, because both A, and (e!4), are Hilbert- Schmidt operra.torsi(see for
example [R-S 3, p. 322] or [Ar, p. 124]). Finally it follows that x = 1, since
c(0) =1, whereby

o(s) = (det(v.a))-%

giving an exphcxt expressnon for the vacuum functional, as claimed. Notice
that-this formula describes another power-law than in the similar expression
for the spin representation: As a historical remark, we-notice that ¢(s) # 0, so
Shale’s choice of fixing the phase by demanding ¢(s) > 0 was indeed possible
(see [Sh, p. 157, theorem 4.1}). However, Shales choice is different from ours
which fixes the phase by demanding that U(S) should be a one- parameter
group if S is one. We summause the above as follows. .

‘Theorem 19 The vacuum functional c(s) = (Q,U(e )Q) for A € sp,(H)
and s in a neighbourhood of zero, where U(-) denote the metaplectic repre-

sentation, is simply
R 1

c(s) = (det(V_,))"2
where V_, = e*41(e™*4); = I — [J et Ay(e™t4), dt.

Proof. A imediately consequence of the above. W

The metaplectic construction, derived in this chapter, will be used in
chapter 4 -of applications, to construct some special representations of the
diffeomorphism group Diff t(S!) and of the Virasoro algebra in the symmetric
Fock Hilbert space. But before.doing so, we shall consider the loop algebras
and the Virasoro algebra in general. Moreover, we'll construct som special
representations of the Virasoro in the anti-symmetric Fock Hilbert space.
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Chapter 3

Loop Algebras and the
Virasoro Algebra
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3. 1 Loop algebras.

In thls section we mtloduce some basic facts on loop algebras and related
subjects. The reason for doing so is partly to give a useful frame for the Vi-
rasoro algebra, which is considered in the next section, and partly to obtain
knowledge on the loop group, which will be studied in a later chapter. We
notice that the diffeomorphism group Diff {(S!) act as a group of automor-
phisms on loop groups and algebras and that the central extension of the
Lie algebra Vect(S?!) of Difft(S') indeed is the Virasoro algebra. Moreover
the central extendsion of the loop algebra, together with the further exten-
~ sion, discussed below, are nice example of Kac-Moody algebras, in fact they
 are socalled affine Kac-Moody algebras (see [K-R,p.93-98], [P-S,p.76-78] and
[Mi,p.21-23]). Futhermore, the simplest representation of the Kac-Moody
algebras is given in terms of the spin representation, for details we refer to
[Ar,p.124] (see also [Ve,p.1]). Hereby the connection between the spin re-
presentation-and the loop algebra is seen. There is an analogue connection
between the metaplectic representation and the Virasoro algebra, however
the analogue construction is more cumbersome [Ve,p.1]. In chapter 4 of ap-
plications we w1ll show, in’ details, how these sub]ects are related for. some
particular cases.

Since 1984 a huge number of papers have appeared on these subjects. The
“reason for this increasing interest is related to the important and succesful
‘'use in two dimensional conformal:theories and string theories in physics, see

[L-T}, [Mi], [M-S] and [C-T], see also the sub-introduction in section 3.2.

We will base this section on a few of all the appearing papers, namely

[P-S], [K-R], [Hu], [Mi]; [G-W 1] and [G-W 2], as follows. The introduction
of the loop algebras and the affine Kac-Moody algebras given below is a com-
pound of the considerations given in [K-R, chapter 9], [G-W 2, paragraph 1],
[G-W 2, section 1] together with [Mi, chapter 2]. The discussion concerning
the Casimir operator and its generalization is a result of [P-S, section 9.4],
[G-W 1, paragraph 2] and [K-R, cha.pter 10]. Moroovm we w1ll sometimes
refer to results from [Hu].

Let g be a finite dimensional simple Lie algebra over C, ie. it is a
non-Abelian finite dimensional Lie algebra  with no rion- trivial ideals. We
denote the Lie bracket on g by [+, ]0 Let C[t,t7] donolo the ring of Laurent
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polynomials in t € C and t~' € C and puﬁ
po=p®Clte]

If B C g denotes a basis for g, then we denote the element z ® t" by z(n),
where z € B and " € C[t t7l,n € Z is in the canonical basis for Clt, = 1]
Then

{z(n)-m@t" .z €B, nEZ}

form a basis for §,. Notice the abuse of notation, since :z:(n) is not the image
of a point n under a mapping z, however, the used notatlon is qulte common
~in this context.

- We are mainly mtexestcd in the restriction from ¢ €C \ {0} tot e S* =
{z € C: |z| = 1}. In this case we sometimes write t = €, where 8 € [0,27],
as we write g (without the index t) for the span of {x(n) =zQ® en : €
B,n € Z} where ¢, = e™.

Sometimes one benefits from viewing g as the space of smooth mappings
S'g, which is called loops, from S! to the Lie algebra g, i.e. we identify §
with S'g. Notice that S'g is naturally an mﬁmte-dlmensmna] L]e algebra
through the pointwise commutator :

[z(m),y(n)ln = [2,¥lo(m + n)

Here S'g is simply a vector space by pointwise addition of loops and natural
multiplication of loops with scalars.

The above identification is in fact responsible for the name loop algebra
for § = S'g. Furthermore we may identify f € § with ¢z zne™ where
, in g tends to zero as |n| approach infinity, hence we may write f in § as
a Fourier series with coefficients ,, in g. If g is the Lie algebra of a group
G, then § = S'g is the Lie algebra of the loop group LG, consisting of all
smooth mappings from S! into G (see for example [P-S, p. 27]). As above we
may identify §, with the space of all formal Laurent mappings from C \ {0}
to the Lie algebra g and we may write an element f € g, as

= Z T,t"

ne?

with z, € g.
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' .N.ow let (-,-)o denote the Killing form on g, i.e. (-,-)o is the bilinear
symmetric invariant form on ‘g given by '

()0 = Tr(ad(z) 0 ad(y))

here ad(z) is giiren by (ad(z))(z)=[z,2], in the adjoint representa.tlon for
further details see for example [Mi, p. 4] or [Hu P 21] :
" Here invariance means that

([, ¥lo, 2)o = (2, [3, 2]o)o

forallx y,zeg :
. We may then défine a skew-symmetrlc bilinear form w on §, by

(fa ) reso (j{vg)

for f,g E gt, whele reso donote the res1due at zero. . Then for arbitrary
T,y € g we have : ' .

w(@(m),y(n) = m- (z,y)o- resot™ !
" _=, m - (z, y)o 5m+n

observe that w is in fact skew symmetrlc and bilinear on 8,- Alternatively for
arbitrary f, g € g, we may use the mtegral formula to calculate the residue

- (1)

From the i invariance and th(, symmetry of the Killing form (-,-)o on g, it
follows tha.t w deﬁnes a two cocycle, by use of the above formula

0 (ol o) 2)1) (4, 2080, =0m]) + 0 (80 ), o)),
= ( ( €, [y7 ZJO)O + n- ya [Z, m]O)O ‘+ k- (Z, [IL’, y]O)O) m+n+k
=0 . “ o -

- provmg our clalm There is essentially no other cocycle on g, than w [P-S, p.
40]. The above constructioii also holds for the restriction of ¢ to S!. Notice
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that the twoscocycle w is invariant under the action of the group Diff*(SY)
of orientation preserving diff'eomorphisms of the circle, as

1 w(fdngcb) = w(f,g)

where f; = fo ¢> and gy = go g for ¢ € Dzﬂ+(51) We return to a dlscussmn 7
~of Diff *(5?) later on. However this means that Diff *(S*) acts as a group of
automorphisms of the extended Lie algebra; which we study below, since

[B(z(m)), $(y(m))].. = $([z(m), y(n)].)

by direct calculations, it follows that ¢ is a isomorphism: and then an auto-
morphism of S'g because ¢7(:1:(m)) € S'g.

Define §, = §,®C-cand § = §@ C-c as the central extensions of
8, and § respectively. Both are Lie algebras with respect to the bracket or
commutator given by

[f,c] = 0 .

for f,¢ € g, respectively f,g € g. The element c is of course central. Ex-
pressed in terms of basis vectors this gives

1

[z(m), y(n)] = [z, yo(m + 1) + m - bgn - (2,7)0 - €

for ,y € g and m,n € Z. Here [z,y)o(m + n) denotes [z, y)o ® ™" by our
notational convention. The Lie algebras §; and §’ are called affine Kac-Moody
algebras associated with g. Note that § is generated by {z(—1),z(0),z(1) :
z € g} and that the mapping z — z(0) is a Lie algebra isomorphism from g
into §; i.e. it is invertible, linear and conserves the commutator operation.
Naturally the same holds for §' instead of §;, since the first is the restriction
of the second to t € S'. |

We will 1dent1fy g with its image in §;. We can now extend the Killing
form from g to §; by defining

(f,9) = reso (7 (F(t), 9(t))o)

n

= ()0 (), a0
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and
| (fie) =(c,e) =0
for f,g € §,. Notice that the form is indeed symmetrlc, invariant and bilinear,

but degenerated due to ¢ € §,. On basis vectors z(m),y(n) € 8, we get
(z(m),y(n)) = (2,¥)o - bmsn. Moreover we may decompose ﬁ: as

g = éBpezﬂ(n) ®C-c

where g(n) is spanned by {z(n) : z € g}, identifying g(0) with g, whereby
g; is genela,ted by g(— 1) @ 9(0) & g( ). Of course, we get the same picture
if we use §’ instead of §;. S :

As mentioned above §; and §’ are both degenerated with respect to the
extended Killing form, due to the central element ¢. To avoid this incon-
venience we ‘will extend g, and g once more. Thls is done in the followmg
paragraphs o i
- _Let b be a Caltan qubalgebra of g (for further details see for example
[Hu p. :80] or [Mi; p. 5]); whexe A is the correspondmg root system, At is
" a system of positive roots, A~ = —A* implying A = A*UA~ and A, C A*
"is a systems of simple roots. ‘The elements of A* can be written as a sum
of elements from A,.- Now let 9. denote the (one-dlmensmnal) root space
corresponding t6 the root o € A. Choose z4 € g, \ {0} and y. € g_,, \ {0} -
for.every, a € A*. The commutator on §; respectiyely‘v@" theréfore gives

R T T T P D T

| [h,xa(n)] = [h 10,]0(0+n +n- 6n (h aca) .
RRCE = [h Talo(n) '
= _ (h.)'f"'a(n)

and similar

[k yaln)] = [hyyalo(n)
—a(h)ya(n)

1l

We also have that

feza()] = fega()] = [e,h] =0
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“for h € h. If we define a Cartan subalgebra of respectively §) and §' as
be) C-c, then each root a has infinite multiplicity. To avoid this, we extend;
g; respectively g8’ by joining an element d, to obtain )

B =9,6C d=§®C-c0C-d
and the analogue without the t-index ,
§=§®C-d=§@C-c0C:d

- Both extensions become Lie algebras with réspect to the commutator given
by the old one on §; respectively §’ and in addition

[d, 2(n)] = n - 2(n)

and

[dye] =0

df (t)
[d, f()] = t=—
for any f € §; respectively f € @', since this formula holds on basis vectors of
the form z(n). In the case of §, the new element d has the following tangible
realization, d = zdo This leads us to a definition of the Cartan algebra for
g, respectively @, as

It follows that

| h=haC-coC-d
We may write the roots in component form as (o, 0, n), corresponding to the
above decomposition of h. For example is (e, 0, n) the root of the root vector
zo(n). So the above extension has reduced the root multiplicity to at most

one, for a € A\ {0}.

For a = 0, the roots (0,0,7) where n € Z\ {0} have ‘multiplicity dim(¥),
since the vectors in h(n) span the root subspace corresponding to the root
(0,0,n). We choose to define the set of positive roots as

+ = {(,0,n) : @ € A,n € N} U{(a,0,0) : a € A*}
and the set of negative roots as |
A- = —At

so that A = A* U A~ as in the case of finite dimensional (semi-) simple Lie
algebras.

98




. Proposition 20 The affine Lie algebras @, =§,®C-dand §=§®C-d
carries both a non- degenemted symmetrzc, invariant bzlznear form (+,-) given
: by

(F(t),9(t)) = reso (¢ (£(2), (1))
= 5 / (1e)9(e), a0

= (C, C) = 0,
(e,d) = 1- "
and
(d, d) = s

' for f,9€8, respectwely f,g €p and s E C.

Proof. « This proposition is a generalxzatxon of [K-R, proposition 9.1], where
s = 0. We extend their proof to the case of s # 0. In this proof we only
-discuss the case of §, since the case of § follows in a completely analogous
manner. Notice that the form reduce to the old one when restricted to .
Since the old form was symmetric and bilinear the same properties evidently
hold for the new form, however, thé degeneracy of the old form is apparently
eliminated by the demand (c,d) = 1., ‘Consequently the 'e'xtended form is
non-degenerated so. the only thmg left to prove is the invariance of the form.
We: know that the rcqtucl ion to B is invariant, ‘and since [c,d] = 0 we just
have to prove that ' .

([1(m), d]7 ?/(n)) = (:zz(m), lda y(n)l)

This follows from a (luect calculatlon: .

([w(m d),y(n))

(=m - z(m),y(n))
= -m (.’L‘, 3/)0 : 6m+.n

and .
(a(m), [d,y(n)]) = (2(m),n-y(n)

= n: (:L',y)O : 6m_+n
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from which the claim follows. B

Corollary 21 If(-,-) is an invariant form on §,, then it is a positive multiple
' of the form defined in proposition 20

Proof ThlS corollary and a sketch of the proof can be found in"{Mi, propo-
_sition 2.2.3]. We present the proof in details. The invariance of the form
yields '

n.-(:zra(n.),ra:g(m)) = (([d,za(n)), z5(m))
: : = ((za(n), [d, z5(m)])

::. —-m - V(Qa(n')a (Dﬂ(m))

SO S ‘

, (n +m) - (2o(n), z5(m)) = 0 ‘

i.c. (z‘a(n )s28(M)) = qop * bnins where qop = q(,ﬁ(n) depends on n. If we
.choose an orthonormal basis with respect to (-, -)o instead, then the structure
constants, given by [z4,zslo = X, ¢hsT,, obey that

g = Zagp zu»m'v)o
= Za‘w (2o, zy) 0= ag.,
Hence it follows that
Gop = @Gy = af:a
Moreover the anti-symmetry of the commutator gives a); = —ajp,, whereby
we have the identities
Y =B — —
Gop = agw = lyy = —aga - _agv - _af;ﬁ
We shall especially use that a5 = ~a}, and that a]; = —a},. The invari-

ance of the extended form yields

anu'afy‘ﬁ = Za-yﬁ o(n), z,(—n))
m
= Zaa'y ‘T# n Zaa'y qllﬁ
m
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Then

anu.q Z ya * dub

B L [T
since aby = —af, and a% = —a4,.
If we put A, = { } and Q = {qus} 5 then the above equatlon reads

QA, = A,Q. Now, the a,d]omt representatlon with respect to the canonical
basis {z,} is represented by A,, since

(ad (2,)) (z9) = lom, 0]y = 3 g

Since the adjoiht rehresentation 1s irreducible for a simple Lie algebra and Q
commute with all A, it follows, by Schur’s lemma (see for example [Hu, p.
26)) that Qisa mu]tlp]e of the umt matrlx Iie Q={gup(n)}as=gq(n)- I

glvmg .
(ma(") zp(m)) 9( )'6n+m5a B

Further use of the mvarlance “of the form glves W
o n + 1) = Zaaﬁ (zu(n +1),24(=(n + 1))

L = q(n)—aaﬁ a(m)

where we repeatedly ha.ve used
(120 1), 26(m)], 22(K) = ({2 28ly (m + ), (k)

Consequently q(n+l) = q(n) =q. Hence( ( )sxa(m)) = q-bppm-b4-p and
a renormalization of the form, by a constant factor gives (24(n), z5(m)) =
6m+n - 8a—p, agreeing with the above deﬁmtlon of the extended form in the
proposition. Notlce that ' ‘

n- (Ca .’IIa(TL)) = (01 [da ‘Ta(n)]) : ([C’ d]a Tﬁ(n)) =0

and .
n: (d,'fl?a(??.)) = (dv [d’ a:o,(n)]) = ([da d]aza(n)) =
according to whieh (¢,f)=(d,f)y=0forany feg, 1
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To complete this section on loop algebras we will state some fundamental- .
results, but first we will define the Verma module for loop algebras. In fact
what follows holds for arbitrary affine Lie algebras, we denote it §.

We split § into subalgebras fi,,f_ and l) where i, and n are spanned
by the positive and negatlve roots, respectively, i.e.

C Cp=h_@bod,
and '
fiy = span{z,(n):a € At,n e Z})

which corresponds to a redefinition of the previous choise of negative and
positive roots for the extended affine Kac-Moody algebra dlscussed earller in
connection with the loop algebras.

Let A € l) be an arbitrary linear form on l) We then define the Verma
module as in the finite dimensional case, by

V= U/

where U(g) denote the universal enveloping algebra of § (see for example [Hu,
p. 90]) and I, is the left ideal generated by n, and the elements h — A(h),

where h € . Let g € B\ {0}, then it is a weight of V\ if there is a v € V)
such that h-v = u(h)- v, for all h € . I ¢ is a weight we define

Vi) = {v € Vi : hv = pu(h)v, for all h € 6}

corresponding to the weight p € lk)‘\ {0}. Then we have the following
theorem.

Theorem 22 The following holds for the Verma module V\ of g (wzth the
above notation):

1) dimVi()) =

2) The set of weights u of Vy are of the form pu = A — Yi_, ria; where

3) Vi is a direct sum of ils weights subspaces Vy(p) and any invariant sub-
space respects this decompostition.
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4) dimVi(n) < o0
Proof. This theorem is a generalization of that in [Mi, theorem 1.5.4], where
the Lie algebra considered is finite dimensional and semisimple, and the proof
given there is modified acconding to the present case. Let v =1 + I, € V)
_and let ¢ denote the representation of § on V) given by the natural action,
e plz)(u+ ) =zu+ 1), forz € §and u € U(8). Then is ¢(z4)v =0 in
Vi, ¢(h)v = A(h)-v in V) and ¢(U(@))v = V4. So v is by Jefinition a hlghest
weight vector of weight A and ¢ is the hlghest welght representatlon of § on
Vi, given by its natural actlon

Now let fiy, Ai_ and § be spanned by Tgi, Yp;» where + € N, and h;,
1 =1,...,1 respectlvely Notice that the roots f; are of the form (o,0 n)
a € A+ and n € Z. From the Poincaré-Birkhoff-Witt theorem (see [Hu,
p.92)) it follows that any ordered monomxal in U(g) can be written as a
ﬁnlte product of the form

'IL—HJ Hh’Hz

If any pk ;é 0 then uv =0, 1f any 8 # 0 then h;’v = A%v. So any element of
V\ can be wnHon as a’ lmcar coml)matlon of vectom of the form .

w—Hy

ie. V,\ is gencrated by linear combmatlons of elements of the form U( _)v.
Subsequently a dlrect calculatlon gives that ' '

o I“/g—Jg( -r ﬂ( ))
‘whereof

= #Tvse
= (M) (1-gnea).
_ (U y;,;;) (x(h) -Sn ﬂ;(h)) v
- (- Xre ﬂf(/;)> (I}'yz:iv)

= p(h)w
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Hence each, w = [J; f'v is an eigenvector of each h € b with eigenvalue
p(h) = A(h) - T;ri - ,B,(h) where r; € N U {0}, proving part 2). .

Notice that A = g if and only if all r; = 0, whereby Vy(}) = span{v} and
dim V4 ()) = 1, furnishing a proof of part 1).

Moreover each basis vector of the form w = [J; yﬂv in VA belongs to
precisely one Vi(u), giving that Vs = GB,,V,\(p) proving the first part of 3).
Noticing that the number of vectors w, such that A—3", ;- §; equals a given p,
is finite and that these vectors span Vy(p), we observe that dim Vy(p) < oo,
proving part 4). o o

We now turn to the last part of 3). Let W be an invariant subspace of
V) and choose an arbitrary w € W. Then w can be written as a direct sum
of finitely many elements vi € (i) \ {0}, with mutually different u,’s, i.e.

w = Zv: € 619,_11/;\(#,)

i=1

Consequently h w= Z,_l (v for each n E N U {0} whence

w 1 1 1 v A
hw 1 B2 v ftm vy
ko =] w1 - ph v3

hm=lw ppmtopptt e et Vm

Since the matrix is a Vandermonde matrix it is invertible, due to Wi F i,
for 7 # j, in fact its determinant is given by

det{/\;°1}i,j=1,...,m = H(Hi — 1) #0

i<j

The invariance of W under the action of & € b and the invertibility of matrix
{A\'}; j=1,...m then implies that each v; € W. Hence w € &%, (W N Vy(1)),
ie. W =@, (WnV\(u)), proving the remaining part of 3). 1

We now turn to the existence and uniqueness of irreducible highest weight
representations of g, in Verma modules.
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Theorem 23 .The Verma module V), contains a unique mazimal invariant
proper submodule M), moreover Ly = Va/M) carries an irreducible highest
weight representation of § with highest weight .

Proof. This proof is identical to [Mi, theorem 2.4.1] and the proof is simply an
expansion of that in [Mi]. Let M be any proper invariant subspace of V). By
the above theorem we may write M = @, M(u), where M(p) = M N Vy(p).
Then M()\) = {0}, since otherwise the highest weight vector v € V) would
belong to M(A) and Vj = U(8)v C M()) C' M contradicting the property of
M. Now put M, equal to the union of all proper invariant subspaces of Vj.

" Then M, becomes a maximal invariant subspace, by construction, and M,
is proper, since it doesn’t contain the highest weight vector v € V. Moreover
"M,y is evxdently umquc Therefore Ly = V,\/M,\ contains no invariant proper
~ subspaces and the xepresentatlon of § on L, glvon by the natural action is
obviously irreducible. :

' The hlghest welght vector in L,\ is given by Ux= v + M), since

h(v+M\)—)\(v+M)

for any h € b, : 4
. Bz )(v + My) = My

for any z, € f, and o
| U@+ M) = Vit by

_where we have used that v=1+ Iy is the hlghest weight vector for V,\, with
- highest welght A:-Hence A is the hlghest ‘weight and vy = v+ M) is the
hlghcst welght vector fox g on L)‘ N | :

[
.

Finally we will define the Casimir operator Q for § as a generalization
and by use of the Casimir operator Qg for the finite dimensional simple Lie
algebras. Further generalizations of the Casimir operator § provide us with a
highest weight representation of the Virasoro algchra through the Sugawara
. construction (see for example [G-W 1, p. 82]). The Virasoro algebra will be
discussed in the next section. '

Choose an orthonormal basis {z;} for the finité’dimensional simple Lie
algebra g relative to (:,-)o and let );; denote the structure coefficients of y
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and z; ie [y,zilo = I; Aije; and =Xy = Ajq (éumr}lhtioh over i’s and J’s
without index sets here means summation over the finite basis index set).
Let y € g and m € Z be arbitrary chosen and consider first 3°; z;(—n)z;(n), -

giving ,
[y(m), " a(~n)ai(n) | |
= Yol — () 4 By - 24(n)
4 2=y 2ido(m 4 1) £ - Bpgn(y,21)o - ¢ 1(~n))
= g Aij (zj(m — n)zi(+n) + zi(~n)z;(m + n))

Do bl + (4, 7)o - ¢ 2i(m)
=it Z ,\,;J- (x'j(m - 11)_,,31,‘(_'_”) - $j(—7i):c,-(m + n))

“4m-y(m)-c 5|,,1|;:|ng
= X_ppm =Xy +m-y(m) -'6|'!m|_|,,| -

where X, = ¥, . Aj;z;(n)z;(m — n) and we have used that
[y(m), 2(n)] = [y, zlo(m + 1) + m - 6 - (y,2)o - €

as given earlier, and that y = Y°,(y, z;)z;. Define O as the formal sum

% =-% T ail-n)zn) - 5 X (0))?

+ neN H
thus
[y('m’)vﬂll

= - % [y, Sat-ma(o)] - § [stm), 200
neN i i

= - Z (X—f.H-m—X—n)—m'y(m)'C— %(Xm"XO'*‘O)
neN

= "(%Xo‘*‘Xl+"'+Xm—1+%Xm)—m‘3/(m)'C
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1‘he <;kew symmctry of /\,J mlpllcs that
Xt Xk = 5% la3(4),2:(m — b))

; Z [[y, 1'1]0’ :E,]o ( )

- ((Z(ad(m;))z) (y)) (m)
= (R(y)) (m)

for any k € {0,1,...,m}, where Qo = }; (ad(z;))? denotes the Casimir
operator in the adjoint representation of the finite dimensional simple Lie
' algebra g (see for example [Hu, p. 27] or [G-W 1, p. 78]). _

‘Tt is well known that Qg commutes with every element of g, whence it
be Iongs to the center of gand thcncfore acts as a multiplication by a constant
,whlch we denote 2Q) for later use. The above remark gives in addition that

lml

| [y(m)’Q‘] : T3 Z (X(c +Xm k) m-y(m) - ('

= :(naﬁ() my(m) -
= —m(Q +.c)y(m) -
= ~(@+9dyem)]

singe [d, y(m)] = my(m) Hence is
[ (m) Q1 (Q+C)d] 0

for any y E g dnd any m G Z mcamng that Q = Q. — (@ + ¢)d commute
with all of g." It is in this sense that the Casimir clement () generalize (.
Observe that Q'is, in fact, independent of the choice of basis since £y and
¥ zi(=n)zy(n) are independent of this choice (see for example [P-S, p. 183]).

We will now geneéralize the Casimir operator above, but first we will have
to introduce what Kac (see [K-R, p. 107]) calls an admissible representation.
We define a representation of § on a vector space V, or equivalently a §-
module V, to be admissible if for all z € g and every vector v € V there
exists a N € N, where N = N(v), such that (z(n))(v ) 0, forn > N.
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For z,y € g 4nd k,n € Z we define the normal ord;eringr z(k)y(n): of z(k)
and y(n) (in agreement with, for example, [Ml p. 174], [K-R, p. 108] and
[G-W 1, p. 79]) by | N

- d(K)y(n) for k < n
2(k)y(n): = { Lz (R)y(n) + y(m)e(K) o k = n
ympa(k) 0 fork>n

Thé following formal infinite sum

=—ZZ :z:(kx, n—k):
keZ i

n€Z reduce to a finite sum on any admissible space V', where {z;} still
denotes an orthonormal basis for g with respect to (-,-)o, ¢ = 1,...,dimg.
This is so because for any m < 0 there is only a finite number of terms zi(m)
to the right due to the normal ordering and given any v € V there is only a
finite number of indices m > 0 such that z;(m)v # 0, due to the admissibility
condition. This also follows by rewriting of T'(n), without normal ordering
as

T(n)=%2(2} zi(k)zi(n — & +Za:,n—— :c,(k))

then for ¥ < n — N(v) the first term gives zero acting on v -€ V and for
k > N(v) the second term gives zero actingon v € V, ie.

(T(n) () |
= %Z ( Z z;(k)zi(n — k) + Ti(n — k):v,(k)) (v)

i \n-Ng<k<in in<k<N
{1 )
= (5 > 3 mik)zi(n—k) :) (v)
i n—-N<k<N

Moreover since [z;(k),zi(n — k)] = [zi, z:]o(n) = 0 for n # 0 (because then
the term & - éxyn—k - (@i, 2i)o - ¢ vanish), it follows that we may discard the
normal ordering for n # 0. Moreover, since k € Z we may also rewrite T'(n)

T(n) =Y :zi(—k)zi(n + k):
keZ
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Observe that I"(n) is homogeneous of degree n relative to d, i.e.
| | [d,T(n)] = nT(n)
when applied to a v € V. This follows since [d, z;(m)] = mz;(m) so
dai(k)zi(m) = z(h )(d+ k)zz(m) = zi(k)zi(m)(d + m + k)

hence [d, z;(k)z:(m )] = (k+ m) (k):c,(m) and for k +m = n, the claim
follows.  Notice that 7'(n) is mdependent of ch01ce of orthonormal basis,
since y_; z;(k)zi(n — k) is. :

.Since T'(0) is closely related to the Casimir operator, in fact —T'(0) equals
the previous defined operator €2, we call the operators T( ), n € Z, for the
shifted Caszmu opemtors due to the followmg lemma:

Lemma 24 Fm 1/ E g and m,n E Z are
lym) (n)] - m(Q + Sy(m +n)

as operators on V (admzsszble) where 2Q denotes the ezgenvalue of the ordi-
narJ Caszmzr opemtm Qo in the ad]oznt represenlatmn ofg. '

Proof ThlS lernma is almost 1dent1cal to [G W 1 lemrna 2.1] and [K-R,
. proposition 10 1] However, their proofs are dlferent from our. We use the
same.idea as we did when we considered the Casimir operator. But first we
notice that the commutator of : z;(—k)z;(n + k): with any element y(m) is
independent of the normal ordering, since it only differs from z;(—k)z:(n+k)
by a constant multiplied by c, whlch commute w1th J( )- ‘Furthermore, we
observe that . Ceoaee : : : B

Z [[ya 3':]0(77), 37:'(([)] = Z [[Ja T ]0’ T ]0 p+ Q)

(Qo(y)) (P + q)
2:Q-y(p+9q)

I H

for any p, q € Z, since the term

D 6P+q [J?lt]ov )0 c=p- 6P+q (y [THTl]O =Q
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Due to 7tl'1§e.a,’(:imiss:i:bilityrof the repres,enté,ﬁon on V all infinite sums re-
duce to finite sums, when acting on V. Alternatively one could use a cutoff
procedure (see [K-R, p. 16]) and consider

T(n——zg k):c,n+k) x(e-k)
. t k€ - .

which is a finite sum, since x(z) ; 1 for |:1:| <1land x(z) =0 for |z| > 1, and
subsequently letting € approach zcro. We use the first approach, though.

[y(m), T(n)] |
= [ Z Z zi(—k)zi(n + k) ]

i kel

= 3T (et = Fal 1)+ (R4 )

+ keZ

,+§ m-c- ( Zy,z)ow,(n+k)+5m+n+k Zy, :)093( k)
keZ i

\__/

= %Z( o+ X ) [y, zilo(m — k)zi(n + k)

F k> m-—n k< m—n

+5 Z ( X+ X ) 2~ )y sdolm + 1+ E)

i k>— _f_ k<_m.%t_'1

+5omeely(ntm) +y(m +n))

where the first sum term has been split into sums which are normal ordered
(for k > =2 respectively k > —2£2) and sums which are not normal ordered
(for k- < %—3 respectively k < —24%). By use of the above commutator
relations we turn the sums of the not normal ordered terms into sums of
normal ordered terms. Then

[y(m),T(n)] = "ZZ y,x,]o(m k)z;(k +n):

i keZ

+5 ZZ 12(—k)ly, zJo(m + n + k)

1 keZ
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X Quymtn)- ¥ Q-ym+n)

k<R k<-mtn

+m- yn+m) c

Observe that Q- J(m+7z) is mdepvndent of k, so the sums involving this term
simply reduce tom- @ - y(m + n). Hence by the tramformatlon k— k+m,
in the first sum we get : : '

[()Tmn-;-

—ZZ ([y> @ido(~ w.(k+m+n)+z( k)ly, zilo(k +m + n)):
i keZ : o

+m<@+a-m+m>

Now the terms in the sum cancel out when summmg over 7, since for any
yED and p,q € Z we have that ’

‘§:<nwuo)=_zx P) [y, 7o, 23)o (0)
o = X bl 5(0)
;5—Zu4m )4
% s Zly, 2Jo(p)

where we have used the i mvauance of the Klllmg form F mally we obtain the
des1red formula Coa : : : o

) TG0 = m (Q+d y(n+m)

proving the lemma. - -

- Theorem 25 Under the same hypotheszs as in the above lemma we have
that

3 _
E———-‘—n--dirng-c-(Q-i-c)

(T (), T(m)] = (@ + €) - (0~ ) Tagn + B
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1

Proof. This theorem connects [K-R, theorem 10.1] and [G-W 1, lemma, 2.2].
However, our proof utilizes the admissibility of the representation, which
seems more appropriate in the present context. As in the above lemma,
since we consider an admissible representation, the infinite sums appearing
below becomes finite, when applied to any vector. It follows that

[T(n), T(m)] = —}:Z[.r( k)zi(k + n), T(m)}

i keZ
= ‘ZZ%( k)@ + c)(k + n)zi(k + n +m)
' i keZ |
+3 LS (@ + (k)i —k + m)ai(k + )
't keZ

Using the commutator relation to normal ordering the terms which are not
already normal ordered, i.e. for k < —TJ;—" in the first sum and for k < ﬂ;—ﬁ
in the second sum. Then we get

[T(n), T(m)]
‘(Q+C)ZZ (k+n):z{(—k)z;(k+n+m):

t keZ

+ '2'(Q +c) > (k+ n)(—k) 6 kikansm - dimg-c

k<_‘L

+ (Q-{—C)ZZ —k) :2i(—k + m)z;(k +n):

t kel

FEQHO) X (—R)k4m)Spympign - dimg -

T —
k(-T"'

Making the transformation £ — k + m in the third sum gives

[T'(n), T(m)] =

—(Q + ¢) Z Zz(n - (—=k)zi(k+n+m):
t ke .
+ (Q-f—c) c-dimg-bpym (Z kk+n )+ D k(- L—n))
k<o k<—n -
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Hence

3

[T(n), T(m)] = (Q + €)(n ~ m)Togon + buym =" - dimg - (Q + <)
where we have used thét the last sums reduce to Sicik(n — k) = "36‘"

proving the theorem. W ‘

In any représentatidn the operator ¢ act as multiplication by a scalar
which we also denote ¢. Let us consider any admissible representation. If
¢ # —Q it is customary to consider ' - ‘

| L=~ . T(n)
=—-—T(n
@4 T

instead of T(n) The L,, n € Z then fulfil the commutation relations

n3—n c-dimg
12 - Q+c.

s b = (0= 1) Lo+ by

and
 (Ln,zm)] = ~m- a{m +n)

for all m € Z and = € g. Beware that ( depends on g (see [K-R, p. 111]).
: The construction above is known as the Sugawara construction and as we will
see in the next section it provides a representation of the socalled Virasoro
-algebra (since it fulfils the commutation relations, of the Virasoro. algebra).
The loop algebra and the loop group have been studied intensively in the
latest few years, and there is a lot more to be said about these subjects, than
we will do here. For further reading we refer to [Jg], [Mi], (P-S], [G-W 1],
“[G-W 2] and [K-R]. However we will notice that the algebra of smooth vector
fields on the circle S? has a natural action as derivatives on the loop algebra,
~“and the central extension of the algebra of smooth vector fields on the circle
~'S§' is in fact the above mentioned Virasoro algebra, which we will consider
in the following section. o
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3.2 The Virasoro algebra.

The Virasoro algebra was probably first introduced by the physicist M.A.
Virasoro in 1970 ([Vi]). It is a relatively nice infinite dimensional Lie algebra,
which can be obtained. as the central extension of the complexification of the
smooth real vector fields on the unit circle S'. Hence the Virasoro algebra can
be viewed as the central extension of the complexification of the Lie algebra
of the diffeomorphism group. However, the exponential mapping from the Lie
algebra of real smooth vector fields on the unit circle to the diffeomorphism
group is neither locally one-to-one nor onto (see [P-S, p. 28]).

-+ It turns out that the orientation preserving diffeomorphism group on the
unit circle Diff t(S') acts as a group of automorphisms on any loop group
and that the orientation preserving subgroup Diff*(S?) acts projectively on
all the known representations of the loop groups (see [P-S, p. 5]). Finally we
will mention that the Virasoro algebra plays an important role in theoreti-
cal physics, such as conformal field theory (see [B-P-Z 1)), string theory (see
[C-T] and [L-T]) and statistical physics (see [B-P-Z 2]). We return to some
of these questions in the end of this section. However, we will briefly explain
how the representations of the Virasoro algebra (and Vect(S?!)) are relevant
to physics. Yet, we emphasize that we are far from experts in dealing with
these physical applications. Somehow physics is the science concerning with
symmetries of nature. Since symmetries of a given physical system form a
group, representation theory are of interest. In the study of crystals the
relevant groups are the finite or discrete ones, for example certain transla-
tions with the distance given by the lattice length. In the study of atomic
spectra it is the finite continuous groups, such as the group of rotations in
three dimensions, SO(3), which are used. Since space and time are (sup-
posed) continuous, one expect continuous (Lie) groups to enter physics too.
In quantum physics one usually expresses the symmetries naturally through
a Lie group of Hermitian operators acting on an a priori Hilbert space, leav-
ing the physical system (i.e. the Hamiltonian) invariant. Thereby one is
led to consider the Lie algebra of generators of the Lie group. For example
do the angular momenta generate SO(3), hence they define an interesting
Lie algebra. The simplest class of infinite dimensional Lie algebras, gener-
alising the properties of finite dimensional Lie algebras naturally, are the
affine Kac-Moody algebras and as mentioned in the former section, there is
always associated with each affine Kac-Moody algebra a Virasoro algebra.
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During the last twenty years an increasing number of physical models and
theories have been presented using one or both of the above mentioned infi-
nite dimensional algebras in an essential way. We will now give some explicit
examples of physics where the Virasoro algebra enters. The first example
appears in two-dimensional conformally invariant quantum physics, see for
- example [B-P-Z 1] or [L-T] where more details can be found. Introduce com-
plex coordinates z and Z in the two-dimensional Euklidian plane, z = z + iy
and Z = z — iy. The infinitesimal conformal transformations of the plane is
given by the infinite number of generators L, = 2"*19, and L, = 74,
where 0, = —z and 3z = £. In conformally invariant systems with periodic
boundary conditions the generators L, and L, appears as coefficients of the
Laurent expansion of the component of the energy-momentum tensor (see
below). Symmetry and tracelessness of the energy-momentum tensor implies
that it can be described by two independent components. In the (z,Z)-co-
“ordinates we may choose T = Ty, + T, and T = T, — T, as independent
" varibles, where the primes indicate that it is in the old coordinates. Then
the conservation (or- contmulty) equation implies that 3;T = 8,T = 0, hence

= T(z) and T:. = T(Z) are both holomorphic in z and Z%, respectlvely
' The energy- momentum tensor is then descrlbed in terms of the holomorphic
components

PT T()  and S T=T()

e
Ty

which we may Laurent expand as

Z 27" 2Ln ' end 'VT_(E) = Z T

neZ 7 neZ
- where ’
| L — —-}—f j;(Z)Z"l'“ dz  and '. L = —l—f T(z)z"* dz
n 271 Jz=0 - , " 2wt Jr=o0

L-The selfadjomtness of f and T implies that L* = L_, and I, = L__ and
“it follows that each of the family of generators fulﬁ]s the commutation rela-
~ tions of the Virasoro algebra. In quantum field theory one usually describe
the conformally invariant systems in terms of the correlation functions of
the primary fields ¢ (i.e. fields fulfilling the particular transformation law,

¢(z) — f(#(2))*#(f(2)), under conformal transformations f in contrast to
secondary fields). These fields satisfy [Ln, 4] = 2"*'0.¢ + h(n + 1)z"¢ and
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the similar with z,I, and % instead of z, L, and k, respectively, where A
and h is the (energy) eigenvalue of Ly and Ly, respectively, corresponding to
the eigenvector ¢(0)Q (here  denotes.the vacuum vector).. Thus it-can~be
shown that the two-point function, describing the field-correlation between
point 2y and z;, becomes |

(2, 8(21)$(22)Q) = r2A+Re=2A-R1(Q2 4(0)$(0)R2)
where z, — z; = re'?. The first factor r~2(**+%) comes from demanding rescal-
ing (dilation) invariance and the second factor from demanding rotation in-
variance. The h + h is called the scaling dimension and is clearly related
to the energy and h — & is refferred to as the conformal spin of the field
¢. Hereby one reads the power law of the spatial separation, i.e. that the
correlation function decay with separation as the separation to the power
—2(h + k). The next example is a continuation of the first. In the case of
-statistical physics, one often uses lattice models as follows. Consider a two- .
dimensional lattice with a spin variable at each vertex site, for example the
Ising model (which is used to decribe such physical phenomena as feromag-
netism of materials as ion). In a manageable approximation one supposes
only interaction between nearest neighbours. At a certain critical point, for
example a temperature point, the physical system can make a second order
phase transition (i.e. the entropy is continuous as a function of temperature
but its derivative is discontinuous), whereby it changes its physical state.
It turns out that the lattice spacing becomes irrelevant, giving a scale in-
variant theory. In the conformally invariant case the theory, or model, is
controlled by the Virasoro algebra, whose representation theory determines
the critical exponents of the transition (see [B-P-Z 1]). As mentioned above
the critical exponents specifies certain power law behaviours in spatial seper-
ations, which is measurable in the laboratory. The final example concerns
the way the Virasoro algebra enters the theory of strings through the diffeo-
morphism group (following [Se,G., p.336]). As a crude oversimplification one
can say that one wants to describe unparametrized strings but finds it more
convenient to describe parametrized strings. The group of diffeomorphisms
act on the Hilbert space of states of parametrized strings by changing the
parametrization. Following G. Segal [Se,G., p.336] a string is a one dimen-
sional object, a mathematical curve on a manifold, i.e. it is the image of a
smooth map (z : [0,1] — R®). When it moves it sweeps out a "wold-surface”
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(z : [0,1] x R — R*) in Minkowski space-time. .The points of which the
string is made up are regarded as indistinguishable, so the parametrization
has no physical significance (see also [Mi, chapter 9]). '
The connection of the Virasoro algebra with the spin representation and
the metaplectic representation will be shown for some particular cases in
chapter 4 of applications. :
~In this section we will introduce and discuss the Virasoro algebra, with
its applications in mind. We will in addition construct some representations
of it, in the anti-symmetric Fock Hilbert space. This section is based on
[G-W 2], [K-R], [P-S], [J¢] and [Mi], in that our preliminary discussion of
the Virasoro algebra mostly follows that in [K-R, chapter 1]. [P-S, section
4.2] and [J¢, section 8.5] have been used as well. The subsequent discussion
follows [Mi, section 7:4].. We will frequently refer to [G-W 2] and others.

Let Vect(S*) be the set of all smooth real vector fields on the circle $?,
i.e. X € Vect(S') has, in local coordinates, the form X(8) = f(6)Z where f
is a smooth real valued function on $! with period 2m. Vect(S!) is organized
as a vector-space by pointwise addition and natural multiplication by ‘scalars
(from R). A direct calculatlon shows that the Lie bracket, also called the
commutator glven by ' - :

rf(e)(—;’;,h(e);—"al;{ OR(®) = FOHO)

where f'(6) = £ f(0) and h'(0) = h(0) turns Vect(S?) into a Lie algebra
(it is only the Jacobi identity- Wthh is not completely trivial).

A smooth function f on S!is always square 1ntegral)le and a ba,31s can be
taken as {1, cos nd,sin nG}nGN So a-basis over R for Vect (S!) is given by the |
vector fields 3, cos(nf)& and sm(nﬂ)do, n € N. Instead of considering the
Lie algebra of smooth real vector- fields on the circle S, we could consider
the Lie algebia of smooth complex vector fields on thc c1rcle S1, with bas1s
given by the vector fields ™ £ n € Z.

This complex Lie algebra agrces with the complexification of Vect(S?!),
the complex linear span of (basis) vectors from Vect(S'). We denote this -
complex Lie algebra by 0. 1t follows that we may consider d,, =7 - e”‘o d =

¢™d, as a basis for 0. These basis elements satisfy thc followmg commut,atlon
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relations.

[dm,dn] = (m —n)- dm+n, m,n €Z

_The Lie algebra Vect(S') can be considered as the Lie algebra of the group
G of orientation preserving (real) diffeomorphisms of S, i.e.

, G Dzﬂ+ SH = {7 y(e '9)—e‘¢(9) forsome¢€M}

where ¢ € M means that ¢ is a smooth real 27r-per10dxc functlon with
¢'(6) >

The product of two elements ¢,7 € G is glven by the composition of
mappings (£,7)(z) = €(n(z)) for each z = ¢’ € §'. We can define a repre-
sentation 7 of G on the vector space of smooth complex valued functions f

on S! by
m(Mf(z) = f(v7'(2))

It is clearly a representation, since-

m(nom)f(z) = f(v{f(“r('(z)))'
= (fon?) (')
= (r(m) (for")) (2)
= m(m)(r(n)f)(2)

(m(m)m(72)) £(2)

notice that m() is invertible for every v € G, since v~ € G and %r(fy)"l =
7(y~!). We may write the d,.’s in the z-koordinate, z = €, as d,, = ——z"“;d;,
n € Z. The Fourier expansion then gives ' '

() Y(z) ~ 2= 2"

< neZd

where €, denotes the (n 4 1)’th Fourier coefficient of €(z). Normally one take
~ close to the identity, whence

YN 2) >z — Z €z}

neZ

118




‘where ~ means equal up to first order in the ¢,’s. Then

m(V)f(z) = f (z - Z e,,..zn+1)

nGZ
"z ~ 3z n+l 1(2)
] neZ ’
= (1 + Y €d ) f(z
4 . nEZ .

ThlS shows that the d,’s form a basis of the complexnﬁcatlon of the Lie
algebra of the group G. : : :

In the following we will consider Vect(.S'l) as a subalgebra over R con-
sisting of real elements of the complex Lie-algebra 0. The real elements of
0 are those which are skew-invariant under the complex conjugation, which
maps d, lnto d_n That is, deﬁmng an antl lmear antl mvolut10n aon?d by

cy(d,,) — d—_n'

and o | . _
| e (X hds) = 3 Ra(da)
where? A, € C, then L
 alldmda]) = (=),

a o : .i:_[d—m, d—n]
=" [a(d ) a(dy)]

for all z,y'€ d. Hence Vect (.S'l) C 0 consists of elements invariant under the
action of —a. : '

- Let V be an albltrary vector space with an Hermitian form (-,-), which
" in our case almost always will be an inner product. ' Consider a unitary
representation of G = Diff *(5') on V. If we suppress the representation
symbol and identify the elements in G with the corresponding operator on
V, that is, we orgamze Vasa G module, then

T (v, () = (u,v)

-
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for any u,v € V and v € G. On tile Lie algebra level, this means that
(a(u),v) = = {u,2(v))
for x € Vect(S!). Since x = —a(z) for any z € Vect(S!), by construction of

a, we see that
(z(u),v) = (u, a(l‘)(v))

for any © € Vect(S!). In general we say that a Hermitian form (,) 18

contravariant if (z(u),v) = (u,a(z)(v)) for all z in a Lie algebra g and all v

and v m a representatlon space of g, where a is an anti- lmea.r anti- 1nvolut10n
on g. : '
In the case where the form is non- degenera,te this means that z* = a(:v) K
for all z € g, where z* denote the Hermitian adjoint with respect to the -
non-degenerated ‘Hermitian form. We call the representation unitary if the
contravariant Hermitian form, in addltlon is positive definite. :

In [K-R, p. 7] concrete irreducible representanom of G on the density
spaces are constructed. A

" It appears that some of these density spaces carries non-degenerated Her- -

mitian contravariant forms and that all these representations are unitary. We
will not make this construction here (a detailed treatment of this is given in
[K-R, p. 7]), but rather consider the question of central extension of 9, giving - .
the Virasoro algebra.

The Lie algebra d admits a non-trivial two-cocycle w, namely

m(m? - 1)
12

4

w(dm)dn) = 6m+n :

where w has been normahzed to vanish on the sl;-subalgebra spanned by
{d_1,do,d}. (The factor 35 is a convention, see below). :
By a direct calculation, the two-cocycle property follows:

w(dk, [dm, dn]) + w(dm, [dn, di]) + w(d,, [dy,d]) =0
In general for X = f(e?)& and Y = h( e?) L it reads

w(X, Y) — 2417”- '[)2” (fn(em) + f(cw)) h’(e‘”)de

as a direct calculation shows.
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with w,, = Wrn,—m and wg = 0. The a,nti-s:ymmetry of the corﬁmutdtor gives
that w_, = —wp,. If we use the Jacobi identity for di, d,, and d, with
k+m+n =0, we get

0 = [dka [dmv dn]] + [dma [dm dk]] + [dﬂ’ [dk’dm}] ' !
= (= "oy = (20 + M)+ (20 + )

for all m,n € Z. Putting n = 1, this gives
(m —l)wm+1 (m+2) (2m+1)

for every m € Z. This is a linear recursion relahon ‘and since w; and w;,
determinate all wy,, for m > 3, and then-all w,, for m € Z, due to the fact
that wy = 0 and w_,, = —w,,, the solution space is at most 2-dimensional.

Observing that w, = m and w,, = m3 both are solutions, it follows that
the general solution is given by wm =a-m+ 3 -md If § =0, we may define
the transformation do— by = dp + a cand d, = b, = dy, for n # 0. Then
are [by, b,] = —nb, and [by,b,] = ( — n)byntn, wWhich is an algebra without
central charge, i.e. ¢ = 0 and w,, is a coboundary Hence the algebra for
B = 0 is equivalent to ?. :

For a non-trivial central extension 3 # 0, we notice that the transforma-
tion dy — by = dg + 2(a +8)-cand d, = b, =d,, forn ;é 0, transform the
commutation relations into [by,, bn) = (m=n)byyn+O(by, by )-c with the two-
cocycle &(bm,b,) = bmyn - - m(m? —1). This transformation corresponds to
a translation of the spectrum of do by 1(a+ 8)- cin any representation (so it
is bounded from below if dy were). Physically it is nothing but a translation
of the energy scale and have therefore no physically significance (see below).

The factor a can therefore be chosen arbitrarily. Conventionally one
selects a = —f such that w,, = #(m? — m). By rescaling ¢, we can choose a
fixed value for 8. By convention 8 = 11—2 is the value of choice.:

Hence we arise with the above nontrivial two-cocycle

m(m? — 1)
12

<

w(dma dn.) = Omin*

The extended Lie algebra with basis {c,d, : n € Z}, fulfilling the commuta-
tion relations




~ and. ) (m?—1)
[dnsdn) = (M — n)dmin + bmin - — 15 ¢
is the most geheral central extension of 9, and it is called the Virasoro algebra,
denoted 'Vir . In fact we have proved above that every non-trivial central
extension of the Lie algebra 3 by a one-dimensional center is 1somorph1c to
~ the Virasoro algebra. - :
Returning to the Sugawara construction discussed in the end of section
3.1, it follows at this point, that the operators L,, n € Z defined there,
give us-a representation- of the Virasoro algebra with central- charge given

b %i;m—a where this ¢ is'the va,ltie‘ wrt the considered representation of the

central element giving the extended loop algebra §' = § @ C - c.

It is also-interesting to notice, that there is a natural action of 0, and
then of Vir by:letting. the. central charge act trivially, as derivations-on the
. loop algebra’ §; whlch hfts to g by actmg trivially on: the central element

‘givenby - -
| dia(m) = z(n 4 £)

foranyzEg,knGZ .

It is interesting to- consider representations of the Vlrasoro algebra, or
equivalently -projective representations. of 3 with non-trivial-cocycle.-let p,
“be a representation of Vir', on a representation space V, with pc(: Y=c¢-1,
where ¢ on the left hand side denote the central charge and the c'on the rlght
hand side denote a complex number. . : :

Then we may:consider a pro jective represcntatlon P of [ w1th commuta—
tion relatlons ' '

'[p(_X;),'p(Y)]% LY + (X, V)61

for X,Y € 0, where the eomrﬁilt.ators inVol\/ed act on the respective Lie
algebras, so the new one appearing on the left hand. side is the.common
commutator of operators on V. -The two representations are related by

pelX +X-c) = p(X) +Avc- 1

and

XY =X Y] +e(X,Y) e
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" Usually, one call p a highest weight representation if there exists a complex

. number h such that the operator Dy = p(dp) diagonalizes on V with eigen-
values of the form (h—n), n € N\ {0}, each of the corresponding eigenspaces
.- Va=n is finite-dimensional and such that.dimVj = 1. The pair (k,c) € C?,
or sometimes just b € C, is called the highest weight of the highest weight
representation p and we may choose a non-zero vector v € Vh to be named a
heighest weight vector. -

It is well known that for each ¢ € C and h € C there exists an irreducible
highest weight representation p = Phe,on V = V(h,c) which is umque up to .
equivalence (see [G-W 2, p. 303] or [K-R, p. 24]). %

Let L,, n € N, denote the basis generators of a unitary representation of
the Virasoro algebra. In physics Ly usually denote the energy operator and
is therefore required to be bounded from below (it is selfadjoint due to the
unitarity of Lo and so its possible eigenvalues are real). If ¢ is an eigenvector
of Ly with eigenvalue A, i.e. Loy = Ay, then is LoL,y = (A — n)L,, for
n € N, by use of the commutation relations for the Virasoro algebra. Hence
L. is an eigenvector of Lo with eigenvalue A — n or L% = 0. Since the
spectrum of Ly is bounded from below there exist a lowest eigenvalue h € R
and a corresponding eigenvector v. Thén is Lyv = hv and L,v = 0 for all
n € N. Thus we arrive with highest weight representations. In physics one
seek unitary representations, if possible, and one focus on the irreducible ones
(since such representation can be decomposed into a direct sum of irreducible
ones, of which there are fewer and they are easier to handel). This is roughly
the reason for seeking irreducible unitary highest weight representations and
in fact it is the highest weight demand which put restrictions on the possible
value of the central charge and the lowest energy cigenvalue. Let L, be such
a unitary highest weight representation of the Virasoro algebra with highest

weight vector v and corresponding eigenvalue k, such that Lov = hv and
L,v =0, for n € N. Then

|L-avll® = (v,LnL_nv) = {v,{La, Lonlv)
_ _1_ 2 2
= (Znh + 12n(n 1)c) vl
wherefrom it follows that also ¢ has to be real and in.fact it follows that

1 .
2nh + —n(n® — 1)c >
n +12n(n De>0
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for all n € N. Especially for n- =1 we'get h > 0 and. for n "large” we get
¢ > 0. This condition is necessarily for the representation to be a unitary
highest weight representation. However, it is not sufficient, since not all
values of (c,h) in [0,00[ x [0,00[ provide us with unitary hlghest weight
representations. :

In the case (h,c) € R,z, V = V(h,c) admits a unique (up to scalar
- multiple) non-zero contravariant Hermitian form. (see [G-W 2, p. 303]). It
also follows that if, in addition & is non-negative and ¢ > 1 then the highest.
weight representation is unitary (see [K-R, p. 26 and 27]).

' We will not dwell at this point, but refer to [K-R] and [G-W 2]. However
we will now consider the case 0 < ¢ < 1 briefly, using the Sugawara con-
struction, and in the next section we will focus on the case ¢ = 2, by other
methods. We'return to the former case in section 3:4 where we treat it in all
. details by. use of a gener alization of the Sugawara construction.

- Consider any admissible representation of an arbltrary finite dimensional

31mp]e Lie algebra g ‘with basis {z;}, i = 1,...,dimg such that {z:}, 1 =

.,dim} form a basis for a subalgebra b C g suchithat b is simple.

The Lie algebra g could for example be the extended loop algebra studied
in section 3.1 (where we denoted it §). Let 2Q ‘and 2Qg denote the eigen-
" value of the Casimir operator of b respectlvely g in the adjoint representation
of b respectively g. We then define the Vlrasoro operators by the Sugawara
_ conqtructlon for b respectlvely g, le. :

1 dnmb

b — Y tai(k)zi(n — k)

and
) 1 dim @

Remark that that the operator ¢ in.the considered rcpresentation act as
multlphcatlon by a scalar ¢ different from — Qb an(l —Qg such that we may

divide by Qb + ¢ and Qg + ¢, lespectlvely Put L, = L9 = Lb resulting in
the followmg theorem. :

Theorem 26 The L, ’s satisfy the Virasoro commutation relatz'oné with cen-
tral charge ¢ = cg — cp-



- Proof. This theorem can be found in {K-R, theorem 10.2] and [Mi, theorem
7.4.9], we follow their proofs From the end of sectlon 3.1 we know that -
[L,?,, zi(m)) = —=m. zi(m + n)

4

fore=1,. dlmg and
(L), zi(m)] = —m-zi(m+n)

fori=1,...,dim} for all n, me Z. o oo
By subtractlon we get [Ln,m (m )] = 0 for i = 1,...,dimbhand alln,m e

Z. Then it follows that [L,,,Lm] =0, for all n,m € Z since the Lb s are -

~constructed from the z;(m), with ¢ =1,...,dimb, and
dlmb
L= LT Y Ln,zac Jei(m = k)] =0

2 keZ i=1

due to the fact that
[Ln, zi(k)zi(m — k)] = 24(k) [Ln, zi(m — k)] + [Ly, zi(k)] zi(m — k)

Writing L8 = Lb — L, the commutator [L9, L8] splits into two picces, so

nr’'m

(8,L8) = wh iy +0.,L)
n(n?-1)

N A T S
- (’I’L Tn)Ln+m+ n+m 12

- cp + [Ln, Lm]

and since

n(n? -1
(L8,L8] = (n - )L,g+m + bngm - ——l—é—_) ‘cg

1t follows that

n(n®-1)

[Lny Ll = (n = m) Lpym + S - “{cg — Cb)

implying that the L,,’s satisfy the Virasoro commutation relations, with cen-
tral charge ¢ = cg — ch |
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At this point we will mention ‘that ‘the above considerations could be
done for a finite dimensioual semisimple Lie algebra g =g, ® g, --- D g,
where for ¢ = 1,..., ¢ the g,’s are simple algebras. Hence we can construct
a Virasoro algebra associated with g from a highest weight representation of
8, @ - @ g, simply by taking the sum of the Vn'asoro algebras.

Deﬁne L(b

L8 =1L +.. +L£’

‘then it follows that the terms in Lg commute with each other, since the
different algebras commute. Therefore the Lg’s fulfil the commutation rela-
tions of the Virasoro algebra, with central charge simply the sum of central
-charges (which may all be different from each other).

As an example take g, = g, = su(2), the Lie algebra consisting of all
2 x 2 traceless anti-Hermitian matrices, correspondmg to the group Su(2 )
of unitary 2 x 2 matrlces w1th determmant 1. The dlmensmn of g, and g, is
3. - '
Let b be the suba,lgebla. of g =9,D9, consmtmg of the dlagonal ie.
(z,y) € b if and only if z = y. Let §, and 92 be the respective central
extensions with central char ge ¢ respectlvely c2. Then the central charge of
the a]gebra qpanned by the Ln s'in the thcorem abovo is glvcn by

3 C] o3 Cz 3 (C]+Cg)
2+Cl' 2+Cg 2+(Cl+('2)

since the sum of the first two terms is the central charge of § = 3, ® g, and -
the third term is the central charge of b (we have chosen the eigenvalues of -
the Casimir operators to be 2, by normalizations). If we had chosen ¢; and
c2tobec; =k€{0,1,2,...} and ¢; =1 then- ' ' :

:
T (k+2)(k+3)

~where k = N U {0}. The serie of representations giving this serie of central
charges will be constructed exphcntely later on by other means (see section
3.4). . :
From this example it appears that we have constructed a series of repre-
sentations of the Virasoro algebra with central charge ¢, forming a discrete
““series, 0 < ¢, < 1. In fact it is shown in [K-R, p. 129-138] that, the irre-
ducible representations.of Vir in the highest weight. representation V/(h, c)
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is unitary if and only if ¢ is of the above ‘fro>rmwand h is of the form

((k+3)r — (k+2)s)* - 1
4(k + 2)(k + 3) -

where r,5 € N U {0} such that 1 < s <r<k+1and k =0,1,2;... or
if ¢ > 1 and h > 0 (this formula will also be discussed later on in section
3.4). It appears that this result is very important in.two-dimensional sta-
tistical mechanical models (see [B-P-Z 1]). To be more specific, in [B-P-Z 1,
section 2] (and [B-P-Z 2, p.766-767]) the authors shows that the corservation
of the stress-energy tensor, of some conformally invariant two-dimensional
statistical system with critical points (described by massless quantum field
theories), ‘give rise to Virasoro operators (these are the coefficients appear-
ing in the Laurent expansions of the two independent components of the
stress-energy tensor), which satisfy the commutation relations of the Vira-
soro algebra, see also the sub-introduction in this section. Moreover, they
discuss the so caled minimal theories (in section 6 and on p.769-776, respec-
tively) and that the central charge ¢ have to be on the discrete form. The
first few values of ¢,, has been confirmed by physisist in the sence that ¢; = %,
Cp = {5, c3 = g and ¢4 = gcorresponds to the Ising model, the Tricritical
Ising model, the 3-state Potts model and the Tricritical 3-state Potts model,
repectively, which all are well-known models in statistical physics.

As a another application of the above theorem we’ll mention the socalled
quantum equivalence theorem, which states that if ¢ = eg ~ cp = 0 then

h(kr,’s) =

L8 = L,’? for all n € Z (for a proof sc [Mi, p. 185]). The quantum equivalence
theorem has important applications in string theory (see [Mi]).

In this section we have introduced the Virasoro algebra, shown some
natural connections with the loop algebras and discussed representations
theory of the Virasoro algebra. Furthermore we have endeavoured to do this
in a self-contained manner. Finaly we repeat the wery interresting fact, both
from a mathematical point of view and a physical point of view, that all the
irreducible highest weight representations of the Virasoro algebra are known
({Mi, p.174]) and that these are unitary if and only if ¢ > 1 and h > 0 ([K-R,
p.88-89)orc=cr =1— m, and h € {h" :r.s e NU{0},1<s <
r <k+1}, for k € NU{0} ([K-R, p.129-138]).

In the following section we will consider some special representations of
the Virasoro algebra with central charge ¢ = 1. To our knowledge the fol-
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lowing constructions had not been discussed in details before, however, it is
proposed by Kac and Raina in [K-R]. In section 3.4 we construct a seie of
representations with central charge ¢ running through the above serie, all ¢
in [0,1]. ' o Co : '
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3.3 Representation of Vzr W1th c= 5

In this section we will construct some exphclt representatxons of the Virasoro
algebra Vir , with central charge ¢ = 2 As representation space we will use
the anti-symmetric Fock Hilbert space FA(*H), as discussed in chapter 1.

~ To our knowledge_these constructions-have not been-considered in-details
earlier. However, it is suggested by Kac-and Raina in [K-R, p.29]. As basis
material for the idea of this section we mention [P-S, section 9.2], [K-R,
chapter 2 and 3 together with corollary 12.1], [G-W 2, section 1] and [Jg,
definition 8.5.1] beyond chapter 1 and sections 3.1 and 3.2 in this thesis.

Consider the socalled férmibnic oscillator algebra genera,tea by
{zx in€ z,}

where Z, denote the set Z +gq,1.e. n € Z if and only 1f n—gq¢€ Z fulﬁllmg
the anti- commutatxon relatlons

[mm’ mn}-}- = TpTn + Ty = 5m+n

for m,n € Z,. We will only consider ¢ = 0 and ¢ = %, giving the two
essential different cases. In the case ¢ = 0 we talk about the Ramond sector
and in the case ¢ = ,:-, we talk about the Neveu-Schwarz sector. The essential
difference between the two cases is, that in the Ramond sector, ¢ = 0, the
index m = 0 € Z, is allowed (as is the case for arbitrary ¢ € Z), but in the
Neveu-Schwarz sector, ¢ = 1, the index m = 0 ¢ Z, is disallowed (as is the
case for arbitrary ¢ € Z). This is essential, since a possible element zo, which
appear only in the Ramond sector, is a distinguished element because of the
anti-commutator relations. In fact, 2z¢ = [z, o]+ = 1 implies that o = 1
In the following we will construct a representation in the fermionic Fock
Hilbert space Fa(H), modelled over a given Hilbert space H, and thereby
construct a representation of the Virasoro algebra with central charge c = 3.

Let {ex}neN, denote two orthonormal bases in the Hilbert space H, where
N—N0=NU{0}f01q OandN_Nl_N0+—f0rq—1i.e.

2
N, = Nj + ¢. We define the representations (lmea.r homomorphisms of the
algebra into an algebra of linear operators) m, by m,(x,) = a(e,) for n € Z,

positive and m(z,) = a*(e_,) for n € Z, negative. Here a(-) and a*(:)
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denote repectively the annihilation and the creation operators in the Fock

- representation of the C AR-algebra, discussed in section 1.2 of chapter 1.

In the Ramond sector ¢ = 0, we moreover define
. . 1
To(To) = 7 (a(eo) + a*(eo))

For notational reasons we introduce the abbreviation a, = a(e,) and a}, =
a*(e,), where n € N,. By the anti-commutation relations of the C AR-alge-
bra, [am,a}]+ = (em,en) J=bpp-Tand [am, aq)y =0 = [am, axl+, it follows
that the mappings indeed define homomorphisms and therefore representa-

: tions of the fermionic osc11]atox algebras, conserving the antl commutator

relatlons, as they should. "
‘We may define an anti-linear anti-involution « on the fermionic oscilla-
tor algebras by a(z,) = z_,, whereever n € Z,. It is consistent with the

. ipvolution on the C AR-algebra,

Ty(@a)” = 05 = 7y(z-0) = my(a(z))

for n € Z, positive, - .

mo(2a)" = (a1,)7 = a-p = m(en) = Wq(a(-’rn))

for n € Z, negative and i in the case of the Ramond sector
. . L R |
7fo(xO) = ﬁ(ffo_»* ag) = 7r0(~?o_) = mo(a(z0))

Let (:,-) denote the innet:product on Fa(H). Since the inner product is a

.positive definite contravariant Hermitian form with respect to-the Hilbert -

space adjoint, as the anti- ]mear antl involution, the representations become
unitary. - .

In the following we discard the representation symbols 7, and simply
write zj for m (), hence we identify a; with zy, af with z_; for k € Z,
positive and in the case of the Ramond sector ﬁ(ao + af) with zo.

From another point of view, we merely rename. the operators, calling a;
for ‘2, af for z_y, for k € Z, positive and in the Ramond sector -\}-;(a0+a5) for
zo. Notice that we eventually have z; = 2_;. So we consider (a modification
of) the Fock representation of the C AR-algebra and could have started our
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construction here. However, the above discussion provides somehow a better -
understanding of the construction, in view of our treatment in section 3.2 and
the analogous construction for the bosonic oscillator or Helsenberg algebra
(see for example [K-R, p. 12]).
In agreement with the anti-symmetry in Fa(H) we define normal ordermg
:xjxk: of Tk by 7
j ' z;rr for 3 < k
LTk = { —xiz, for:;' >k
for j,k € Z,. Notice that this defines bounded operators on Fa(H), since
both the annihilation and creation operators are bounded on FA(H). Now
for any k € Z we define the Virasoro operators on Fa(H) hy

1« . 1-2.4
Lk = 5 Z J T4k +(5k . T
i€Z,
where the last term also may be written as 6 - 0,75 and ¢ = 0 5 as usual.

Notice that indices on the L;’s are always integers mdependent of g. It turns
out that these Virasoro operators are unbounded on F,x(H), for which reason
we have to specify their domains. .

The product basis vectors e;, A...Ae;,, 4 < -+ < i,, n € N (see section
1.1 of chapter 1), form together with Q a basis of FA(H). Collect the basis
product vectors with the same index sum in M,, where M, is Ny for ¢ = 0
and N1 UNp\ {1} for ¢ = 2, i.e. for a given m € M, \ {0} put

k=1

Bm=span{e.-,/\--~/\e,-":Zz’k=m,»neN}

and for m = 0 put By = span{Q} for ¢ = }, and By = span{fQ, e} for ¢ = 0.

Observe that the B,,,m € M,, are mutually orthogonal and spans all of
FA(H), moreover each B, is finite dimensional by construction. So we have
a grading of Fa(H), as the Hilbert space direct sum of all By, m € My, i.e.

' -’FA(’H) = @mEMq‘Bm
Moreover we define Dy as the algebraic direct sum of the B,,, m € M, i.e.

DO - @alg Bm
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Then D, is evidently a dense subspace of Fa(H), which we call the finite e-
nergy subspace of Fa(H), since it turns out below that vectors in Dy represent
particles in FA(H) with finite energy.

We choose Dy as the common domain for all the Ly, ke Z. Though it
is obvious that Dy = Dy(q) depends on g in the same way that B,, = B,.(q)
does.” The reason for this choice of domain is that all the inﬁnite sums
appearing in the definition of the L;’s reduce to finite sums on Do. Notice
in this connection that the normal ordering in the definition of Ly does not
in general change the product for k # 0. In fact : z,]m”k = T_;T4k, for
j 2> -% and iz jzip = gty = T Tk — by for j < —% where we
have used the anti- commutator relations. So for k € Z \ {0} is '

Z ] -"3—1"31+k

Jezq

However for k= 0, the normal ordering contrlbutcs forma,lly with an infinite
sum, -but on Dy it ‘reduces to a finite sum.. -

‘For any F'i in Dy, there exists a M e M such that F,, = 0 form > M,
where F @meM Fm, w1th each F € B, Then for any k € Z will"

LkF = 3 Z .7 x—JxJ+k - Z J- z1+kx—1 F
| T \ix-4 i<-f K
=5 - Z ~,J‘$—j$j+kF—§ Z VREIFTSANY A
LT —EgigMek -M<i<-4 S

- since each Fy,, in F' = @neM,Fm may be written as a limit of linear com-
bination of the basis product vector e;, A... Ae;,, with S, ¢4 = m € M,
made up of (one- pd,l't.l(ll(;‘) ba,sm vectors e,, w1th indices 4 € N, less that or
equal to m. . : -
: In the previous pala.graphs we have used that T;+k = a(ej+x) annihilate,
for j > M — k, and gives zero when applied to F,,, and that z_; = a(e_;)
annihilate, for § < —M, and also gives zero when applied to F,,. Observe
that Ly : B,, — B4+ and then leaves D, invariant. So we have shown that
the formally infinite sums in the definition of the Ly, k € Z, reduce to finite
sums on the dense invariant domain Dy. In the special case where k = 0 we

133




have -

1 . 1-2¢q
) Lo = 5 Z ] m—]TJ Py Z ]m]x"]+4 16
JEN —jeN ’ )
- -7 J
JENg 16

We wxll call Ly the energy operator since the elgenvalues for Lo is given by
h, + m, with the corresponding eigenspace B,,; where h, = -%—1 Observe
that Lo is unbounded, but bounded from below by #,, since its spectrum is
bounded form below. Notice further that Dy consmtq of phymcal states with
finite energy, hence the name. - '

Our goal is to construct representations of tho Varasoro algebra. If the
Ly’s fulfil the commutation relations of the Virasoro algebra, then we have
some positive energy representations (h, > 0) which are also finite energy
representations on Dy (for general definitions see [P-S, p.171]).

Below we show that the Ly, k € Z, indeed fulfil the commutation relations
of the Virasoro algebra.

Lemma 27 The operators Ly, k € Z, fulfil
1 ,
[.’llm, LL] = (m + '2"k) Tm+k
on Dy, for allm € Z,.

Proof. From above it follows that all formally infinite sums appearing below
.reduce to finite sums on Dy, and that the normal ordering in the definitions
of the Ly, k € Z only contributes for k = 0. For k € Z \ {0} we have

[Tm, L] = —ZJ [Zm, T-jTipk]
JEZ _
=5 ZJ([xm, Z_i) Tisk = T; [Tm, Tipk], )
JGZq

= 5 D J(Bmj ik — i Eiymys)
j€Zy
1
= 3 (m-Tppr+ (M + k) 2pys)

1
= (m + -2-k) * Ttk
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where we have used the anti-commutator relations and the ermula
[Zm, 2n21] = [Ty T 421 = TalTm, T4

for all allowed indices m,n 'and l. For k =0 we get

[om, Lol = 3 5 ([omsa—il, 75 — 25 [om, 2,1,
K . j€N,

= 2 (bl =7 T ;i bi4m)

- jeN, B

= Z 7 Tj Om-j |

Lol i€, '

= m .’Itm
where we moreover have used that the scalar term (times the unit operator)
appearmg in 1/0 doesn 't mfluence the commutator )

We shall use the abdve lcmm.a to prove the proposition below. .

PI‘OpOSlthIl 28 The Lm, m € Z, fulfil the commutator relatzons of the

. Vzrasoro algebm wzth centml charge c=1, Le.

[Lm,Ln] = (m—n)- Lo +‘6m+n :
forallmneZ.
Proof. Aé in the above lemma all sums appearing bhelow reducé tb finite sums
on Do. In the case of ¢ = 0, all the indices on the e;'s will belong to Ny and

all other indices belong to Z, i.e. the indices on the z,’s and on the LL s. In
the case of ¢ = 7 all the indices on the e;’s will belong to N1 =N -7 and

the indices on the z; ’s will belong to Zx Z-1 but the mdlces on the Ly’s

will belong to Z.

Remember that the normal ordering in Lm =13z J iT—jTjym: doesn’t
contribute unless m = 0, since :Z;T;4m:= T_;Z;4m — Om. :

Since it is trivial that [Lo, Lo] = 0, we can treat the case of m = 0, for
n'eZ \ {0}, by [Lo, Ln) = =[Ln, Lo]. This gives that,_ the case for m = 0
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" follows directly from the general case, since our treatment will not concern
the normal ordering appearing in L,.
For arbitrary m € Z \ {0} and n € Z will -

. 1 . .
(Ln, L] = :.2‘ Z J- (x—j[zj'!-m’ L]+ [m-j’ Ln]mjﬂ-m)
i€z, x

il

le— . (o, 1y
3 Zz J- (J +m+ 5”) T-jTj+min
€L, ' ) i :
1 . |
+5 S (—J + 5”) T_jtnTitn
<z,

Put —j +n = —i, such that j =i +n and j +m =i + m + n, and write j
instead of 7, in the second sum, i.e. we make the transformation j — j + n,
then

[Lons L)

1 . 1 N o
= —Z:@-O+m+-@—%rﬁﬁQ+~ﬂ)Lﬂﬁmm

2 5 2 2

1 . n?
= z(m—n) 2 J T Tihman = T 2 ToiTitmtn

€2y €2,
1 . n?
= (m—n) Lngn—(m~— n):?' E 7 bmyn — 1 Z T—jLj4+m+n
i€l J€Zq

where we in the last equality have used that : z_;z;im4n = T_jT;4mn for

j = =2 and that : T_;jTjymin 1= —TjminT—j = T jTjtmin + Omen foOr.
: min
J< ==

Notice that we are only summing over a finite set I;, in the second term,
since only finitely many terms in } ¢z j - T-;T;4m4n are non-vanishing on
Do. We have that

s g
—(m“n)523'5m+n= —Omin -M - ZJ
J€lq J€ly

Moreover the last sum also reduces to a finite sum. . In fact using that
ToiTitmin + Tijtm+nT—j; = Omin and Ejezq T iTitmen = Zjez,, Tjtmtnt—j
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due to the transformation Jj— .—( J +~m'—+ n), we get

Z $—1$1+m+n = = Z (x—1x1+m+n + -7"J+m+n$-1)
€24 . JEZ : _
- 1
= 5 Z bmin = Emin - Seard(Jy)
' ]e-’q ’

where Jy is a finite subset of Z,, since dez T-jTjtmtn reduces to a finite

sum on 'Do So the cardmahty card(J,) of J, is ﬁnlte Hence for m,n € Z

we have : ' ’ '
[Lmy Ln] - (m - n)Lm+n + 6m+n Cm(q)

where ¢, (q ) € C is determined by
em(q) = (9, [LmaL—m] - 2mLg) Q)

It fOIIOWS immediately that co(q) = 0 and c_,.(q) ‘= —cm(g). Therefore we
- only need to calculate rm(q) for m € N. S .
Observe that o

1-2 1—2q |
T Le-Q= _ Q= 0
N ENJ‘” 16 1

since j - z]Q =0 f01 Jj 2 0. Moneover for m € N we th( that
= ( Z J- '—J"‘“J+m - Z K $J+mT—J) Q—_' 0
=2 R ' :

} since Tj4mQ =0 for J 2 —-% and x_JQ =0 for j < —%. It follows that

- em(q) —IIL-mQII ~(1-2g) 'g

form € N, where we _Have used that L = L_p,, which follows from

<G, Z :I}_j:pj+mF> = < Z '1:61:_j_m:EjG,‘F> = < Zm_ja:j_mG, F>
-3 S \i2-% 27
. and similarly

(6. F) = (5 onrsi

J<—— J<—-

137




on.all G, F € Dy.
We now- calculate L_,,Q for m € N We have

iz )

j<;—'.:,3

Fon > m. 1s»:1:1 m =0 and. for: 5. <.0:is m_]Q = 0i. Hence the sums; become
ﬁml’e as-they. should and: -

LE_,, ( Z J T T m. Z Ji T ma:_]) 9

T<Ligm 0<i<

Transform J into m — j(€ Z ) in the first sum, such tha,t —j = j —m,
J —m — —j and the summation over j-such that Z < j £ m becomes &
summation over j where 0 < j: < 2. Hence we get -

L_mQ— -~ Z (m — 2§)z, Tj_m®_;§) (3.1)

0<J<"‘

In:the case of m even; we should add the term. . 2t-zz_mQ = zem A em =0,
so- it vanishes and therefore is disposed of. For further treatment we have
to divide equation (3:1) into the two separate cases of the Ramond sector
(¢ = 0) and the Neveu-Schwarz sector (¢ = 1) and moreover subdivide these
cases into the separate subcases of m even and. m odd.

Consider first the case of the Ramond sector, where ¢ = 0. Here we get

L_,.Q= % Y (M= 2§)em_j AE;

0<i<F

where &, = 2eo and €; = e; for 0 < j < Z. The largest value j can obtain
in the sum 1s different due to the parity of m. For m even Z — 1 is the
largest value of j allowed in the sum and for m odd 2=1 is the largest value
of j allowed in the sum. First, we will consider the subcase where m is even.
Observing that the product vectors appearmg in the sum are forming an

orthogonal system with ||é,, A é&|* = 1 and each other normalized. Then
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R 1 1 m
L*_mﬂz = - . —2.2 _ e e—
|- 4j_§(m. N+ 5
m_q .
112 m?
= -2 2+ —
15 8
_ ?—‘1jz+in_2‘
j=1 8

where we have used the transformatlon J—= -3 + 2 Now for m € N even is

ny

’z: = m? — 3m? + 2m
j=1. - 2.4 '
by mductlon So
m® — 3m? + om m? . m + 2m
L_ = - =—F
for m € N even. Hence . : '
A m3 —m
() - ”L-mQ" - q =: %

" form e N even. ‘ .
Consider now the subcase where m is odd (stll] in-the case where ¢ = 0) ;
As above the product vectors, in the sum of L_,Q, form an orthogonal

system, each normalized, except for j = 0, where [|é,, A &l|> = L. Therefore
we get 4 '
: - “ .. _"—1__1 St . -
' ' 1 & \ 1. m
L = - —-25)2 4= —
1@l = 32 m=2)"+ 755

3
L

NI

: -
(2j—1)2+"%

> -

1

.
I

due to the tra.nsformation J 4—'> —j'-i- 12*-1- Now for m € N odd is

=1

3

Nl

L, m®—3m?42m
](J ) T

,
Il
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by induction. So

1 m®—3m?+2m mz;m3+2m

2 — e — T
”L-mQ”* 4 6 : 8 24
for m € N odd. Hence A
I . :3 _
_ 2 _ E — m- —-m

for m € N odd. Notice that the final formula for ¢,,(0) is independent of the
parity of m. In the Ramond sector (¢ = 0), we have

.

m- —-m
m 0) =
for all m € N, hence for all m € Z, since ¢g(0) = 0 and c_‘n;'(O) —em(0). .,
We now consider the Neveu-Schwarz sector, where q= , whlch we treat
in a similar way. Here we get - : ’ e
Lm@= 2 3 (m=2)em; Ac;
2 0<i<3 -

since j € Z 1 Observing that the product vectors 'appearing in the sum form
a orthonormal set. Then

IL-nQ)* = Z (m - 2j)°

0<J< n

As in the former case where ¢ = 0 we split the further treatment of this case

g = } into two separate subcases - one for m even and one for m odd, since

the largest value of j allowed in the sum depends of the parity of m € N.
Consider first the subcase of m € N even. We get

15 R
a1 > (m = 23)" = 1 3-(2k - 1)
]_._ k=1

where j € N%, but k=2 — (] - %) € N. It is well-known that

u|§

Y (2k-1) = (m3 —m)

k=1
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by induction. Hence

. 1 ‘_ 11, 4
.cmﬂ(—) - nL_mnn =g =

for m e N even. - | :
Consxder now the qubcase where m is odd We have

+

IIL-'mQII2 =

-1 m—l

(m — 2] 2(2]6 E

k=1

n|3

D]

.,
-

| where jE Nl, but £k = '"——1—4 (] - %) eN. It easily follows that

3

=1

”I

3
, mM—m -

. kf = :
.24

=1 .

o=
g

by induction. _Hence
| S e miom
| l.c’n?(§)A—l‘|L-AmQII =T

for m € N odd. W
As in the case where q = 0 it turns out that the final formula for eml3)
is mdependent of the pa,uty of m. In the Neveu- Schwarz sector we ha,ve

C (1) miim

eml=)= o

SN2/ 24
for all m € N, hence for all m € Z, since co(2) =0 and c_n(L) = —cn(3).
Observe furthermore that ¢, (0) = cm(;) = ¢y, 1s independent of the sector
considered, q= 0 . That is, in both sectors we end up with the commutation

relatlons

m? —m

24

RS | [‘Lm’L"] = (m —' n)Lm+n + 6m+n .
forallmneZ. B '

Hence we have constructed some positive and finite energy representations
"p, of the Virasoro algebra Vir = G}nezC d, ® C : c in the anti- symmetric
Fock Hilbert space, by S

Pq(dn) =1L,
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"where ¢ = 0,%: However, it turns out that these representations of Vir
are reducible. In fact, the orthogonal subspaces F(H) = &2 ,(A*™H) and
Fi(H) = n_o(/\z"“'H) consisting of respectively an even and an odd num-
ber of particles, are both invariant due to the fact that each Ly, k € Z, either
create or annihilate two particles or conserve the number of particles. Hence
each Li, k € Z, conserves the parity of the number of particles in a given
“physical state. It turns out that the subrepresentations p -of the Virasoro
algebra in F(H), respectively, are irreducible, we return to this question
below. Naturally the subrepresentations are still positive and finite energy
representations, with the common domain

'Doﬂf/{:(H)z

for all the unbounded Virasoro operators Ly, k € Z. o

We now modify the previously given definition of highest weight rep) e d
sentations of Vir (following [G-W 2, p. 303] or [J@, p. 238]) to lowest weight®
representations, trying to include our interesting cases. We call a representa-
tion p of Vir = ®,zC-d,®C ¢, with a dense domain D, = ﬂnezD(p(d )
in a Hilbert space K, a lowest weight representation if;

1. the operator p(dp) diagonalizes on D, with eigenvalues of the form
h+n,n € Ny (except for a few n € N) and each of the correspondmg
eigenspaces Vj4, 1s finite dimensional;

2. especially dimV}, = 1;

3. p(c) = c- I, where c denotes both the central element and a complex
number.

We remark that the bracket in demand 1 is also a modification relative
to [G-W 2] and [J¢]. This modification is necessary in our case (see below).
Usually the pair (h, ¢), and sometimes just A, is called the lowest weight and
a non-zero normalized vector Fy in Vj, is called a lowest weight vector. The
lowest weight vector is not necessarily cycllc Observe that if p is unitary, as
in our cases, since

(F,LnG) = {L_nF,G)

for all m € Z and all F,g € Dy, then the lowest weight & is redl, h =
(Fo, Lur()) (Lol‘ Fg) = h
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b}

~ Consider first py, where K = F}¥(H) and D, = Df. We have L,, =
p§ (dm), m € Z. We have shown that Lo diagonalizes on D¢, with eigenvalues
of the form A, + m. . - - : B
CIfqg=0is hy = 160 1 € FF(H) and LoQ = hoQ2, and m € Ny \ {1,2},

since e; € F¥(H) and e; Ae; = 0. : ‘
- Ifg=1is hy =0, again Q € F}(H) and LoQ = hiQ, and m € N\ {1},
since we have an even number of particles or none and er ANer = 0. The
corresponding eigenspaces are finite dimensional, V,,,, = ém, m € N.

“In both cases ) is-a lowest weight vector and V}, = span{l} = BoNF}(H)
is one dimensional. o : v o ' ,

.Consider next Pq» Where K = F(H) and D, = D;. Again, Ly = Py (do)
diagonalizes on Dy, with eigenvalues of the form hey +m. ,

Ifg=0,is ho = %, eo € FA (M) and Loeg = hoeo, and m € N,. Here €o
is the lowest weight vector, V, = By N F5(H) = span{ep}, and Vyym = B,
formeN. Ifg=1,1is _h_;_ = 2, since ey € F7(H) and Loe%: h%e;_, and
m € No. Here"'e% is the lowest weight vector, Vi = B% = span{e%} and
Vitm= Byt R

" Hence it '_tl_lrris out that the representations pflh, q =0, 3, are lowest weight

representations of ‘the‘Viraépro algebra, with central charge ¢ = 3. Notice
that all encrgies, except for the lowest are greater than one. _ -

*As promised earlier we now ‘return to the question of showing the irre-
ducibility of p;t, g =0, % It is possible but tedious to show directly that
L, Ly L_;;,0<i< .- < tny.applied to the actual lowest weight vec-
tors, span the corresponding represeritation spaces. We will only sketch the
proof here, since we are giving an alternative but more elegant proof below.,

From [Lo, Ly] = —k- Ly, k'# 0, it follows that I, gives zero, when applied
to the lowest weight vector, for £ € N (otherweise its energy eigenvalue would
be lower than the lowest weight, which is a contradiction). It also follows that
the energy of L_; ---L_,, ~L_;, applied to the lowest weight vector is h, +
' 2j=1tj, where h, denote the energy eigenvalue of the lowest weight vector.
Now, direct calculations shows that Loy Loy L.y, 0<4i< .- <4y,
applied to the lowest weight vector gives a linear combination of product basis
vectors of the form ex, A- - -Aey,, such that Z§‘=1 kj = 3%, i; = m. Moreover,
the product basis vectors span a dense set in B,. Hence L_;, ---L_;, - L_;
applied to the lowest weight vector span a dense set in Fa(H).

We now turn to the more elegant proof. Suppose that one of the repre-
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sentations p is reducible, then the corresponding representations space would
have a invariant subspace not containing the actual lowest weight vector.
This: subspace then contains a singular vector, i.e. a vector of lowest energy
of the form A + m, > 1 (or equivalently a vector Gy such that E,,Go = 0
for all m' € N).. This singular vector generates a unitary representation: of
Vir , with central charge ¢ = } and lowest weight % 4+ m, >.1, contradicting.
the fact that unitary representations of Vir with central charge ¢ = L have:
lowest. weight either 0, 1 or ;¢ (see [K-R, p. 139]), which we will discuss in
section 3.4.
We summarize the above discussion in the following theorem.

Theorem: 29 The representations pi :d, — L, of the Virasoro algebra in.
FE(H) with common domain DZ, as constructed above, are irreducible uni-
tary lowest weight representations of positive and finite energy of the Virasoro
algebra, with central charge ¢ = 1.

"In the Ramond sector, ¢ = 0, with lowest weight hy = hy =
corresponding lowest weight vectors §¥ and ey respectively.

In the Neveu-Schwarz sector, ¢ = L, with lowest weight hf = 0 and
2

1

16 and

21
hy = % and corresponding lowest weight vectors € and c1 respectively.
7 2
Proof. A direct consequence of the above discussion. B

So we have constructed some nice representations of the Virasoro alge-
bra in the anti-symmetric Fock Hilbert space, using the fermionic oscillator
algebra. Usually one constructs representations using the bosonic oscillator
algebra, corresponding to the symmetric Fock Hilbert space. In the next
chapter of applications, we give some examples of representations of the Vi-
rasoro algebra, in both the symmetric and the anti-symmetric Fock Hilbert
space, when discussing the diffeomorphisms group. This is not surprising in
view of the socalled boson-fermion correspondance, to be discussed in section
4.4, see also [K-R, p. 49-64] or [Mi, p. 193 - 202] for futher details. However,
we first turn to the construction of a serie of representations of the Virasoro
algebra in the anti-symmetric Fock Hilbert space, in the next section, by
other means.
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3.4 Represeﬁt'ations ‘of Vir with ¢, € [0, 1]

There are briefly speaking three essentially different "algebraic” methods to
construct unitary representations of the Virasoro algebra: The Sugawara
construction, described in section 3.1 (giving representations with central
charge c larger than or equal to 1), the "oscillator constructions”, described
_in section 3.3 in the case of the fermionic oscillator algebra (glvmg repre-
sentations with central charge ¢ = }), and finally the Goddard-Kent-Olive

" construction, which generalize the Sugawara construction and which we will

. deal with in this section (giving representations with central charge ¢ be-
~ longing to a discrete serie in [0,1[). Moreover, there are some ”analytical”
methods, described in chapter 4, to construct umtary 1epresentatlons of the
- Virasoro algebra (with central charge c=1). =

For an excelent, but purely algebraic treatment of the Goddard-Kent-
Olive construction we refer to [K-R, chapter 4 and 9-12]. As in the other
cases we intend to approach the method in a self-content way, dealing with
representations in the Fock Hilbert spaces. More precisely of how to construct
unitary highest weight representations of the Virasoro algebra. in the tensor
products of subspaces of some anti-symmetric Fock Hilbert spaces. This con-
struction will explicitely make use of unitary highest weight representations of
the Kac-Moody algebra of s1,, the complex Lie algebra of traceless 2 x 2 ma-
trices, which itself uses some explicitely -constructed unitary highest weight
representations of some particular infinite matnx Lie algebra,s together with
there loop and Kac-Moody algebras. :

This section is based on' sections 3.1 and 3 2 together w1th the above
mentloned part of [K-R].

~ Let the algebraic direct sum V = @4span{v;} denote an infinite dimen-
sional complex vector space with basis {v; : i € Z}. Any vector u € V
may be written as u = (u;);cz with respect to the above basis, where only
a finite number of the u;'s are non-zero, whereby we may identify V with
C>. Let d's, denote the (Lie) algebra consisting of elements a = (a; ;)i jez
such that a;; = 0, whenever |i — j| > N for some N € N. The elements
a = (ai;); ez are-called infinite matrices and they have a finite number
of non-zero diagonals, (a;4k)icz,k € Z. By the ordinary matrix product,
ab = (T;ez aijbjk)ikez, it follows that ab € a’y,, whenever a,b € a’,. No-
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“tice that only a finite number of terms in the sum contribute, hence the sum
is finite. With the ordinary matrix commutator as Lie product a’s, becomes
a Lie algebra. Let gl denote the subalgebra of a’.,, consisting of elements
‘a such that only a finite number of entries are non-zero. It is a Lie algebra
with respect to the ordinary matrix commutator. We notice that the unit
matrices e;j, i,). € Z, with 1 entry at.the (z,5)’th poqmon and zero entry
elsewhere form a bams for gl,. Moreover -

€ii€mm = 0;_mCin

and A .

[eijs m n] = 6] m€in — 5i n€m,; 7 _
There is a natural action (representation) of @'so and of g[ ‘on V in terms
of the unit matrices, given by

€ijVk = 05— kv:
Then the shift operator s, on V| k € Z, given by
SEVi = Vi—k

may be written as ,

' S = Z €iitk
Y/

Therefore, s, acts as the matrix with 1 entry on the k’th diagonal and zero

elsewhere, hence s; corresponds to an element in a’,, which we denote s;

too. The elements s;, k € Z, form a commutative subalgebra of a’,, since

[sk,s1] = 0, for k,l € Z. We also notice that {s; : k € Z}v; = {v; : j € Z},

for any 1 € Z.

Let gl, denote the Lie algebra of all 2 X 2 matrices with complex en-
tries and sl; the Lie subalgebra of all traceless complex 2 x 2 matrices. At
this point we notice that one could easily consider the corresponding n x n
matrices instead, for any n € N, and that the following considerations also
holds in general. However, we will limit ourself to the case when n = 2, since
it is sufficient for our purpose. Of course both the Lie algebras above have
natural actions on C2.

Let gl, and 51, be the loop algebras, as defined in section 3.1, corre-
sponding to gl, and sl;, repectively. If the matrix units for gl, and sl; are
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denoted by e; ;, 1,7 € Z (they arei2'x 2 matrices, but they may be identified
canonical with e;;, ¢;7 € Z in gl ,, why we use the same symbol) then -
| eij(k) = e;; ®1*

for 1,7 = 1,2 and k € Z, form a basis for gl2, as e, i j = 1,2, for gl,. The
multiplication in 912 is glven by :

€ J(k)em n(l) =€ Jem n & tk+l = 0;-m€, n(k + l)

" on ba51s elements, whereby g[2 forms an assocnatlve algebra The Lie bracket
on g[ becomes’

le:;(k);em n(l)] = 6-_me;,n(k + l) - 6;_ne¢‘j(k + 1)

as it should, due to section 3.1.
Con31der now the natural action of gl, on C? w1th standard basis {uy,u,}.
- Then the loop- algebra gl, acts naturally in Clt,t™')’ = C?@Clt, t™"], where
C[t,t7!] as earher denotes the ring of Laurent polynomlals as follows. The
vectors ' : :

' | Vzktj = U ® t_
form a basis of C[t,t1]* over r C, where the mdex i =2k +j€2Z,sincek€Z

and j = 1,2. Hereby we identify C[t,t~1}? w1th C=. Smce e,,(k) =€i; ® tF
and Vantj = Uj ® t~™ it follows that

eij(k)vzn+j = ( tlu]) ®tk° = ®t —‘Uz(k n)+i
This action allow us to determine the correspondmg matrix 7(a(t)) in @'y

of any element a( ) € gl For the basis elements’ 1t is simply defined as -

(ehJ Z €2(n—k)+i,2n+j
) nEZ
where 62(n—k)+: 2n4; denotes the matrix units in aoo ‘and e,] “those in gl,

(n,k € Z and 4,5 = 1,2). For a general a(t) € gl, it follows that the
corresponding matrix in o'y, takes the block form :

T(a(t)) = | - ' a.r a0 @
a_1 Qg
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" where a(t) = Zkez ax ® t* and each a; € glz Thus 7 is an injective homo-

morphism of g[ as an associative algebra and then also as a Lie algebra. The
image of a(t) = Yxez @k @ t* under 7 is evidently a strictly upper trlangular

matrix if and only if a; = 0, for ¥ € —N and qq strictly upper triangular. -

Moreover, if a* denotes the usual Hermitian adjoint of the 2 x 2 matrix a
and we define an anti-linear anti-involution-w on-gl, by

w(a(k)) = a* @ 1% = a*(—k)
then it follows directly that
T(w(a(k))) = 7(a(k))

where 7(a(k))* denote the usual Hermitian adjoint of 7(a(k)) in @’y. Fur-
thermore :

Sp=T ((61‘2 +6€.10 t.)k) = (r(er2) + (€21 © "))k.

k
= (Z €2n+1,2n42 + Z 62(n—1)+2,2n+1)

neZ nez

. k
= (2(92n+1,2n+2 + 62n,2n+1))

n€Z

neZ

k
. .
= (Z en,n+1) = 8 = Sk

Suppose for a while that we have a projective representation of a’,, with
two-cocycle a(a,b),a,b € a’,,. This can be made into a linear representation
of the central extension do, of 0’ i.e.

0=00C-c
with ¢ in the center of a,, and the new bracket given by
la,b] = [a,b]y + a(a,b) - c

where [a, b], = ab — ba now denotes the usual commutator in a’,. Since al,
can be realized as a subalgebra of a’,, thereis also a projective representation
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of ’gvl2, by the restriction (we still suppose that there is one of a’y). Then
there is also a linear répxesentation of the central extension ﬁ\l; =glL®C-c
as a- suba,lgebra, of Ao Moreover, since sl, is a Lie qubalgebra. of gl, we
may define sl, and 5! as subalgebras of gl and glz, respectively, in an
obvious manner. Then we may consider 5[ as a subalgebra of 4, too. We
emphasize that s, = 7 ((el 2(0) + e2.1(1)) ) € 7(gl,). But syeqy € 7(s13) and

S2k & (5[2) since

‘ 2k . :
01 S
(€1,2(0) + €2(1))* = ( ' 0 ) =t I=1@t ¢sl,

and ,
(e1,2(0) + €2,1(1))%**! = tk. ((t) (1) ) € sl,

This will be important later on. However, we first have to discuss the repre-
sentatlons of @', supposed above. :
:Let Fa(H) denote the anti-symmetric Fock Hilbert. space, where {ei: i€
7} denote an orthonormal basis for the one pa,rt,lde Hilbert space H (e; with
i € —N describe the fermionic anti-particles).
" Define operators. E; ;,4,j € Z, on fA(H) by

| a*(edale) ot d,j >0
E . = a*(ei)a™(e;) yfori 20>
Y a(ei)a(e;) - 7 Jforj>0>4

a(ei)a™(e;) = 8ij = —a*(e;)ales) , for 0 >4,

where a*(ex) and a(e;) denote the creation and annihilation operators, re-
spectively, in the Fock representation, described in section 1.2. For each
t,) € Z1s E‘j obviously well-deﬁned -in fact, it is a partial isometry on
Fa(H).:

" The commutator [E, iy Em n] can be ca.lculated dlrectly usmg the CAR.
For 7,5,m n>0weget :

EiiEmn = a(e)a(ej)a’(em)alen)

= a’(ei) (6;-m — a”(em)ale;)) alen) )

= bj-ma"(e;)a(e,) — a”(em)a(e:)a(en)ale;)
inbj—m — a”(em) (8i=n — a(cn) (c.)) a(e;)
,n5]_m E,, ;6i- n+EmnE,J '

E;
E;
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50 [E; jy Emn] = Einbj—m — Em j6i—,, follows. In completely the same manner
one obtains exactly the samme commutator relations for all the other cases
except for i > 0> jandn > 0> mand for j >0>iand m >0 > n. For
these two exceptional cases one arise with

[-?i,j,EIn,n] = E:',néigi—m - Em,j§i—n :t 6j-—m6i—n .

where the + sign holds for j (and m) non-negative and the — sign holds for
7 (and m) negative. The results are obtained by calculations similar to those
above, for example '

*(e:)a* (e;)alem)alen) |
“(e1) (6j-m — alem)a’(e;)) alen)
‘(ei

Ja(en) = a(em)a™(ei)a(en)a™(e))

Ei;E,. . a
a
= bj_ma
= Einbj_m —alem) (6i—n — ale,)a*(e;)) a*(e;)
= Einbjom — B jbicn = 6jombicn + B n B

for 2 > 0 > j and n > 0 > m, whereof the desired commutation relations
follows. Define a on @', by bilinearity and

1 L,forj=m>0andi=n<0
aleij,emn) = -1 ,forj=m<0andi=n>0
0 , otherwise

= Sjnbion (x(=)X( +1) = X(=)x(i + 1))

on the matrix units, where y denotes the indicator function for N. Thereby
af+,-) defines a two-cocycle sometimes called the Kac-Peterson two-cocycle
([Mi, p 179]). Then we get a projective representation 7 of @'y, in Fa(H) by
putting w(e; ;) = E;; together with linearity. Thus

[t (e )m(emm)] = 7 ([ecs, emn]) + aleis, emn) -1

Of couse we have to check that the extension of 7 to all of @/, is well-defined
by linearity. Notice first that any element in a’,, may be written as a finite
linear combination of elements of the form

ar = Y Nieiitk
ieZ
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due to the fact that any element of a’,, has a finite number of non-vanishing
diagonals. The above \; € C are arbitrary. So the extension becomes well-
defined on a’., if there is a well-defined extension to elements of the form a.
. Observe that 3 ;cz A\ Eisx can be split into four sum-terms corresponding
toie {jeNU{0}:j>—k},i€ {j € NU{0}:j < —k} which contribute
only for k < 0,i€ {j € =N:j< —k}andi € {j € -N:j > —k}
which contribute only for k > 0. Each of these sum-terms reduces to a finite
sum on  and on basis product vectors (where we utilize the term —6;_;, for
Ci=73<0). Espec1allyforz_z+k<0(1e k=0) weget

S NEii(e A Ao Aey) = ) (A)( - Ae)

i€z C o iEldin)

on an arbltrary bas1s product vector (m this section we use the conventlon
that j; > -+ => jn for product vectors). Hence we may extend the represen-
tation 7 to all of a’, in a well- dcﬁned manner by lmeanty, since the formally
infinite sum reduce to a finite sum. » a3

As mentioned earlier we may turn the projective representation con-
structed -above into a linear Lie algebra representation. Define the central
exfension Ao =.0'o0 €B C-c of a Yoo, where c denotes a central element. with
the new bracket ‘ :

[a,b] = [a, 8], + q(a, b) ¢

where [a,b], =. ab — ba now denotes the old bracket on a’y, given by the
ordinary commutator. We extend 7 from a', to @, by putting 7(c) =
1. Thus we have a Lie algebra representation of a,, in FA(H) given by
7, constructed above. The Hilbert space inner product (:,-)then defines a
contravariant Hermitian form, since (r(a)F,G) = (F,w(a*)G), for all F,G €
.7:,\(7‘{); where a* denotes the earlier defined anti-linear anti-involution on

. Thus is m a unitary reprcsentatlon since thc inner product is posmvely
deﬁmte by definition.

The charge opera.tor @ is defined by RN =0 and

Qej, A+ Aej,) = (E]«) (ejy A" Aej,)

=1

on basis vectors. It extends to all of D by linearity, where D denote @,y A" H
(it is even well-defined on D(N), where N denotes the number operator).
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Considerations as those in section 1.5 shows that ( has spectrum Z and that
Fa(H) may be decomposed as

fA(H) = ®QGZHQ

where H, denotes the eigenspace of @ corresponding to cigenvalue ¢ € Z.
Obviously, each E;; conserves the charge -of any basis product vector (or
yields zero), hence it leaves :each charge sector H, invariant. Thereby Ty =

Ty, defines a unitary representation of @', in 'Hq, for each q € Z.
Define By = span{2, ¢} and

VBm=sp>an{ej, - Aej, Z|]|—m nEN}

i=1

for any m € N. Then we may decompose Fa(H) as a Hilbert space direct
sum

‘ ]'-,;\(H) = ®m€NU{0}Bm

Mdreover, we define Dy as the algebraic direct sum
D0 = @algBm

Thus Dy is a dense subspace of Fo(H). We now define an energy operator
H on Dy by
HF, =ml,

for any F,, € B,, and linearity. Notice that the spectrum of H indeed is
N U {0} and that FA(H) decomposes into a direct Hilbert space sum of
eigenspaces of H corresponding to eigenvalues m € N U {0}. Observe that
HQ =0 and

H(ejl A"'AeJn (Z |.71) eJl ’Aejn)

on basis vectors. We define the sector vacuum €, in each sector H, to be
a distinguished vector, namely the unique vector with lowest energy m = -

-1 N---ANejAe ,forq§0
Ny=1 e1AeyA---Ae, ,forg<0
2 ,forg=0
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A direct. calculation shows that

' 1
. HQq = '2"1(‘1 - 1) 'Qq

(the calculations are similar to those we will present in details later on, in
section 4.2 in a particular case). Moreover, it follows by straight forward
calculations that ' :
o Efl.jt Teee Eimanq

span a dense set in H,."

Below we will need the following decomposition of each H, into sector-
energy subspaces ' C
' 7-{q = 63mENU{O}”"(z(,m)

where '}{gm) denotes the eigenspace of the sector Hamiltonian H ln,—39(q—1)
corresponding to the sector-energy eigenvalue m, which equals the eigenspace
of the energy operator corresponding to energy eigenvalue m + 2q(g—1),ie.

H(('m) = Hq nUB’"’*'ilz‘q(?‘l)

for each q € Z.
We know that cach H, is invariant under 7(a’y,) and that 7(a’e) (2, form
a dense set in H,. Then it follows that = is .irreducible. Suppose that U
is an invariant subspace of H, then H, = U @ U*, where the orthogonal
complement U of U is taken in H,. Then the decomposition H, = U @ U+
also respects the sector-energy decomposition which can be proved quite
similarly to the proof of theorem 22 part 3, i.e. we may write '

U= @mENU{O}Um. and . U-L = @mGNU{O}UnJ{

where Uy, = UNH™ and U = Ut n H{™. Since H{® = span{f,} is one-

dimensional, Q, belongs to either Uy or Uy, say Q, € Up, but 1, generates a

dense set in H, under 7(a’s,). Due to the invariancy of U = DmeNuio)Un it

follows that U = M, and U+ = {0}. Hence =, = 7|n, is irreducible.
Observe that _ L

| E; /H{™ ¢ Mt

which easily follows by checking the four possible cases of E; ; directly. This
inspires us to define the degree of ¢; ; € gl_, as :

deg(e;;) =t —j
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Ty
N
. »‘H&f

SR

Futhemore, we define the degree of an element a € gl_, to be deg(a) = k if
a is of the form a = ¥ A;e; ;1x, where the sum is over a finite subset of Z.
We may decompose gl as a direct sum of homogeneous components g, 1.
subspaces of elemenets in gl with fixed degree k € Z, as gl = Brezg,. It
then follows that . ' L

(@) H™ € HmH

and tl;at ,
m(9)Q =0

whenever k < 0, since E; ;Q, =0, for i < j. Since E;; = n(e;;) € w(gj—i)'if’
follows that - :

> (k) Te(8r,) R

ki+-4kn=m
[ T knENU{O}

form a dense set in 'Hg"‘).
Put
Ny = Br<oBs

such that any a € n, is a strictly upper triangular matrix in gl_. Then
Te(ny )y =0

and
Wq(ci_;)Qq = E.',,'Qq = /\;Qq
with
1 L,for0<i:<q¢g—-1 (¢>0)
Ai=¢ =1 [forg<i<0 (g<0) (3.2)
0 , otherwise

Summarizing the above we get

Theorem 30 For each q € Z do m, defines an irreducible unitary highest
weight representation of gl in H, with the sector vacuum vector Q, as the
highest weight vector and A(q) = {); : i € Z}, where \; is as in formula
(3.2), as the highest weight.

Proof. Notice that this definition of a highest weight representation follows
that in [K-R, p 41]; a collection of numbers A = {); : ¢ € Z} is called a
highest weight of an irreducible representation 7y in a vector space L()),
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called a highest weight representation; if there exists a non-zero vector v, in
L()), called a highest weight vector, such that

(Mg )va = 0

and o
S 7!',\(6,",')1/.,\ = /\,'l/,\

We note that £()\) is determined by A. Putting A = A(q), £(\) = H,,
vy = Qq, which is allowed ‘due to the unique correspondance between ¢ and
{Xi : ¢ € Z}, given in (3.2). Thus it follows directly from above that =,
defines an irreducible highest weight representation of gl in H, with highest
weight vector 2, and highest weight A(¢). The unitarity of m, follows, since

the representation 7, of /o, is unitary. #® - .

The tensor product of two irreducible unitary highest weight representa-
tions with highest weight vectors v1 and vy, respectively, gives a irreducible
unitary highest weight representation in the highest component of the tensor
product of the representa,tlon spaces, i.e. in the vector space generated by the
highest weight vector 1; @ v,. Therefore we may construct irreducible uni- .
tary highest weight replesentatlons 7y of gl in a vector space L(A) with
highest weight A = ky -A(q1) + -+ kn - A(gn), and highest weight vector-
=08 @ .. Q0% whereQ =0 ®Qq , k;j times, j = 1,.
ky,.. kEN,ql,.,qnGZandnEN

Returnmg for a while to the commutatlve subalgebra spanned by the shlft 3
operators in @'y, we have ‘ : :

(S

[Wq( n) To(sk)l = a(sn,s:c) 1

where 4 _
a(sn,sk) = Z E al€; g4 eJ k,]) o
' i€Z jeZ
= 33 binibisn-iiok) (X(—D)x(E + 1 + 1) = x(6 + 1)x(—i = n))
i€Z jeZ : :
= Z 6n+k - E 5n+k
-n<i<0 - 0<i<—n
=n '6n+k
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" One recognises this as the commutation relations of the fermionic oscillator
algebra, also known as the Heisenberg algebra (see for example [K R, P 12]).

Furthermore F
(s0) = D_ ma(ei) ZE,,rqI
. i€Z i€Z
when applied to any vector in H, and
"q(sk)ﬂ; =0

for k > 0. Moreover, the vectors

Tg(S—ky) - o To(5-ka)

where k; > -+ > k, > 0, are linearly independent and those with 3°7_, k; =
m belongs to ’Hg’"), in fact they do form a basis for ’Hg"‘). This can be seen as
follows. There are obviously p(m) linearly independent vectors of the given
form in ’H("‘), where p(m) denote the number of partitions of m € N into
a sum of positive integers Y-, k; = m. But p(m) is the dimension of H(m)
(this is shown in details in the proof of theorem 34 in section 4.4, in a snnllar
case). So there are dim(H{™) numbers of linearly independent vectors and .
thus they form a basis of 'H(’") Then 7, is an irreducible representation of the
commutative subalgebra, since each 'H is indeed invariant under {m,(s) :
k € N} and the linearly independent vectors my(s_,) - ... Tg(S—k, )Y, With
ky > --- >k, > 0 span a dense set of H,, hence the irreducibility follows by
a proof similar to that used in the case of a'y, earlier. ‘

We now return to the the loop algebras. Following the approach of section
3.1 we may, as mentioned earlier, extend the loop algebra gl, with a central
element c giving -

gl =gl,®C-c

with respect to the Kac-Peterson two-cocycle, which becomes

a (T(ei.j(k)),T(em,n(,l))) = 6i—n6j—m6k+l -k .
By linearity we get

a(r(a(k)), 7(b(1))) = bk41 -k -Tr(abd)
for a,b € gl, arbitrarily, and for general a(t), b(t) € gl, we get

a (r(a(t), 7(5(t))) = reso (Tr(a'(2)b(1)))
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where a ( ). denote the deuvatwe of a( ) and resg the residue at t = 0.
. The Lie bracket on gl2 is then given by

h%%déo

and C ' .
[a(k), b)) = [a, Bk + 1) + k -Sess - Tr(ab) -c
for arbitrary a(k), b(!) € gl, and where [a,b], = ab ~ ba, as earlier.
"The Killing foijm (a,b)o = Tr(ab) on gl, gives a bilinear form on gl, by

(a(k), b(1)) = b4/ Tr(ab)

which extend to all of g[ by Imearlty as
(aft), 1)) = rgs°( ‘Tr( (1)b(1)))

It is evidently a symrbétrlc ‘invariant, non- degerierated bilinear form on az,
which is verified by d]rect calculatlons The form extends to gl by putting :

(c gl,) = 0 and'(c,¢) = 0. On gl the form is of course degénerated, but
it is still symrnetuc invariant ‘and bllmea.r As in section 3.1 we therefore
extend g[2 further, by a gcnexator d, as '

ffyq;J"gg,gQ@Cd
with the old commbtatot on gl together w1th .' ‘
| | " [d? d= 0
and

[d,a(k)) = k -a(k)

giving an affine Kac-Moody algebra. It follows that Elz carries a non-degen-
erated, symmetric, invariant bilinear form ( -) given as in proposition 20 of
section 3.1, with s = 0 (and (a(t), b(t )) = Tr(a(2)b(t))).

Recall that al, isa subalgebra of a’s, and that the anti-linear anti-involu-
tion w on gl coincide with the one induced from 0. If we define w(c) = ,

then the central extenslon gl of g[2 is a subalgebra of the central extension



G of a'o, too: We define r(c) =c. Since s = T((el’z(O);l-eg,l(l))k) € T(a\[;)
and 7, remains irreducible when restricted to the subalgebra spanned by the
Sk, k € Z, it follows that 7 (7(-)) defines an irreducible representation of EI;
in H,. Moreover A

mo(7(a(?)))y =0

whenever a(t) = Yy50 ax ®tF with ao a strictly upper tria}lgular matrix, and.
To(7(€,i(0))R = D Enkrizesi = (Y Aaksi) D
keZ keZ ‘
where
1 ,for0<j=2k+i<gq
Mi=dppi=1¢ -1 ,forq<j=2k+i<0
0, otherwise
As earlier is my(7(c)) = 1.
" Then we are ready to discuss representations of sl; in details. Repeat-
~ Ny ~ P
that the loop algebra sl,, the Kac-Moody algebras sl, = sl, & C -c and sl, =
sl; @ C -d are Lie subalgebras of, and defined similar to, the corresponding
Lie algebras az, a; and az, respectively. Put

T=€.,2 , Y=ez1 , h=€1,1—€2,2

and .
n,=C.z , n_=C.y , bh=C:h

The Cartan subalgebra is one-dimensional, in this case. Subsequently we
write the simple Lie algebra sl; as

Then define
ﬁ+ = n+ & (5[2 ® tC[t])
and
i_=n_@& (512 ® t"IC[t"])

where C[t] and C[t~!] denote polynomials in ¢ and t~!, respectively, tC|t]
and t~'C[t™"] those with vanishing constant term, respectively. Thus 7(a) is
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a strictly upp(,r triangular matrlx (in, a ) if and only if a € 1, where 7 is
the injective homomorphlsm of gl mto @’ o, dlscussed earlier.

The Cartan subalgebra § of 5[2 is spanned by hy = e 1(0) — e 2(0) c
and d, however we will usually plefer the basis {ho = c—hy, hy,d} for h. We
may write

. 5[2 = n+ &) b GB n_
The linear functlonals wg and wy on b glven by
wj(hi) = - 8ij
and L ,
w;(d) =0

for z,] =0,1, a.‘xv'e“ilsual called the flihdameﬁtal Weights. Observe that

m(r () = (my(r(era(0))) - mo(r(c 22(0)) 9
= (D0 A — ) /\2/;+2

keZ - keZ
? w(qmodZ)(h!)Q
: i;—}"j “’p(hl)ﬂq

where p =p(q) (q mod ‘)) € {0,1} and

mo(T(ho))Ry = (Wq(C) = my(7(h1)))
= ()R,
= wp(i‘O)Qq '
That is
7o(7(he)) = wy(he)9,
where p= qrnod2 If we put 7rq( (), =0 (as it follows later on that we

may) then is 7 (7 (h))Q = wy(h )Q for all & € b.

Following [K-R, p 101] we define A € §" to be a highest weight and 7, a
highest weight representation of the Lie algbra s, if the representation space
L(A) contains a non-zero vector v, such that = is irreducible and fulfils

.A

ma(Ri)va =0
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together with ) )
7r,\(h)1/,\ = /\(h)l/,\ )
for h € . The distinguished vector v, is called the highest weight vector.

It immediately follows that for ¢ € Z, the above constructed representa-
tion m,(7(-)) of sl, fulfils that m,(7(f,))Q, = 0 and 7,(r(h))Q, = w,(7)Q,,
where p-= gmod 2. So-we are rather close-to have constructed a highest
weight representation of sl, with ), as highest weight vector, but m,(7(:))
is not irreducible. However, each H, does have a proper invariant subspace
H;, containing §2,, which does not itself allow any proper invariant subspace
containing {),. Thereby we will arrive with a highest weight representation
of sl;.

Recall that m,(7(-)) of ﬁ\l; in M, is irreducible, since T(f;\l;) contains the
shift operators si, k € Z. As shown earlier is sqr & T(E:[;) but spk41 € 7‘(3[,2),
which leads us to define ' ‘

H; ={F € H,: my(s2)F =0,k € N}

It follows that M, is invariant under wq(r(gllz)), because [sgk,r(s:[;)] =0, as
shown earlier. Observe that '

7r9(3—2k1+l) Teeet Wq(3—2kn+1)Qq

with ky > --- > k, > 0, span a dense set in H,, since

To(S2k)ma(5-4,) + -+ - Tg(5-5.)

= (8- ) -0 To(8_ja)T(526)

2 B Whmgl) o My VT3 si) - o550

1=1
Thus we have the following theorem.

Theorem 31 For each q € Z, , is a unitary highest weight representation
of sly with highest weight w,, p = gmod 2, in H;, and highest weight vector
0 ‘

q°

Proof. An immediately consequence of the above and the fact that the inner
product defines a contravariant positive definite Hermitian form with respect
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to the anti-linear anti-involution given by the restriction of that on g[2 and
by w(c) = ¢ together thh w(d) d 0 ‘

Due to the fact that the highest welght appearing in the theorem 31, are
fundamental weights, we will call the corresponding highest weight represen-
tations for fundamental representations. Since there in the present case are
two possible different fundamental weights, wy and wy, it follows that there
exist ‘only two essentially different. fundamental representations mo(7(-)) and
7r1( 7(+)), because if p = qmod 2 then w(pmdg) = w(qmodz) and the mapping
given by Q- Qpand -

' Wq(3—2k1+1)'---" ' (3—21~:,.+1)Q *Wp(3—2k1+1)' - p(S-2kn+1)Dp

extends by linearity and contmuxty to a umta,ry operator U from H; onto H),,
50 7r,,(7'( )) and 7rq( (+)) become umta.rlly equlvalcnt 7r,,( ( )) = U7rq( ()U*.

Corollary 32 The 7ep1esentatzons T = mo(7(: ))®"0 ® 7r1(7'( N)®* | of sl,
in L(A) = my(s1,)(02% @ Q%) where A =. kowo + kyw; and (ko k1) €
(N'U{0})*\ {(0,0)} are unitary highest weight rf’prescntatzons wzth hzghest.
weight A and hzghest wczght vector Q®k° ® Ok, o S

Proof As mentloncd earllel the tensor product of unitary highest weight
representations (which are irreducible by definition) defines a unitary high-
est weight representatlon in the highest component, i.e. the vector space
generated by the tensor product of the highest weight vectors, with highest
weight given by the sum-of the hlghest welghts correspondmg to the involved
representations. N .

The converse of the above comllary is 1nc1ud(‘<] in the following proposi-
tlon g

. Proposition 33 The highest weight representations my of sly in L(A) s
unitary if and only if A(h;) € N, fori=10,1, and A(d) € R.

Proof. The if paxt follows directly from the ahove corollary, since we may
subtract A(d) from d giving d = d — A(d), thus A(d') = 0.
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The only if part follows since we may identify sl; Vnatufrally with the
subalgebra generated by

z(0) = e12(0) , y(0)=e€2.(0) , A(0)= by =7€1,1(0) — €3,2(0)

of sl,. The restriction of the unitary representation ) to sl is'still unitary.
Moreover, it becomes irreducible in {my(y(0))*vy : k € N U {0}}, where v,
denote the highest weight vector, because my(x (0))1/,\ = 0 and my\(h(0))vy =

A(h(0))vy. Thus 7, is an irreducible unitary highest weight representation in

the above space. In what follows we will suppress the representation symbol™

. So the action of sl; in {y(0)*vy : k € NU{0}} is irreducible and unitary.
Direct calculation using the commutation relations gives that

z(0)y(0)kvy = 'Zy y(0)]y(0)*~*"'uy + y(0)*z(0)v
— Z:y O)k — 1
and o
R(0)y(0)" vy = y(0)" (h(0) — 2n) v,

y(0)" (A(A(0)) — 2n) vy
(A(R(0)) —2n) y(0)" v

by repeatedly use of

h(0)y(0) = [~(0),y(0)] + y(0)A(0)
—2y(0) + y(0)1(0)

y(0) (h(0) - 2)

I

So

z(0)y(0)*vs = Zy F(AR(0) = 2(k — i = 1)) y(0)Twy

i=0

k-1
= 2 (A(h(0) — 2(k — i — 1)) (y(0)*'vn)

=0
1

= (EXRO) - 254k~ 1)) (4(0)*'13)
= k(MA(0) ~ k+1) (y(0)" ')
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Then for A(h(0)) ¢ N U {0} is all-y(0)*»)# 0, by iteration, and because
y(0)*vy, k € N U {0}, are linearly independent, since different vectors cor-
responds to different eigenvalues of h(0), by the above calculation, it follows
that {y(0)xvx : k¥ € N U {0}} span an infinite dimensional space. But the
only unitary irreducible representations of s, with the given involution are
the finite dimensional ones. Since the compact real form is the real sub-
space {a € sly': a* = —a}, which in fact equals su(2,R), and the unitary
irreducible representation restricted to su(2, R) exponentiate to a unitary ir-
" reducible group representation of the corresponding Lie group Su(2,R), the
claim then follows, because all unitary irreducible représentations of Su(2,R)
are known and are finite dimensional, because Su(2, R) is a compact group
(see [Dix, corollary 15.1.4]). Thus is /\( (0)) € NU{0} and then also A(k;) €
N U {0}, since hy = ~(0).’ We emphasize that if A(h(O)) =n-1eNU{0}
then the representation, space become {y( ) :k=0,1,...,n — 1}, which
has dimension n € N. '

There is another copy of 5[2 in 5[2 than the one consxdered above, namely
the Lie algebra spanned by the e]ements

$1 = 62,1(1) s, N1 = eI,Z(_l) y b = [xl,?/l] = C—:ill = ilo

since _ L
. ) [}11,131] = 2IE1 - and - [h],yll =—2y1

by direct calculation using the earlier derived commutator relations (on al)

[a(k),b())] = [a, blo(k +1) + kéi41Tr(ab) -c and that [z,3;] = hy by definition.

Now, by considerations as above it follows that A(k;) = A(ho) € N U {0}.

" Then is Ac) = Mhy) + A(h(O)) € N U {0}, since hy = h(0). Hereby the
proposition is proved. B . '

Since unitarity of an irreducible representation of sl, gives that Me) €
N U {0} and that this distinguished value somehow characterizes the repre-
sentation (see below) it is sometimes referred to as the level of the particular
representation.

We will now demonstrate how the Goddard-Kent-Olive (GKO) construc-
tion gives a recipe to construct a series of unitary representations of the
Virasoro algebra with central charge running through a discrete subset of
[0,1[. The GKO construction uses the Sugawara construction, described in
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“the last part of section 3.1, together with theorem 26 of section 3.2. To ob-
tain the above mentioned serie of representations, the GKO construction will
be build on s:l’ and we therefore limit ourself to this case in the following
considerations. However, the GKO construction does have meaning, when it
is build on an arbitrary simple Lie algebra. : -
Put g = sl, ®sl, and consider two representations of 5[2 in vector. spaces
L) = ’H' for some ¢ € Z and L(p) = H, for some p € Z with levels
my = Alc ) and m, = p(c), respectively. n what follows we will suppress
the representation symbols, as we have done before. Then the action of

§' = sl, @ sl in £(A) ® L(u) is given by
(2(r) ® y(m)) (v @ w) = (2(r)(v)) & w + v @ (y(m)(w))

for any v®@w € L(A) ® L(p) and n,m € Z. Then the Sugawara construction
(see section 3.1) of the representations z(n) ® 1 and 1 ® y(m) provides us
with Virasoro operators Lfc)‘) ®1land 1 ® Lfc”), respectively, hence

L} = L‘”®1+1®L“"

Q+m\ ZZ Jailk = 1)) @1

leZ =1
1 ,
* ngﬁ; 1® (:yi(Dyi(k —1):)

defines a representation of the Virasoro algebra in £(A) ® L£(p), with central

charge
my my,
cg=c¢y+c, =
g (Q+mx Q+mu)
since
| - 3 _n mydim(sl,)
L8,L8] = (n—k)LY) Spphm— 2 2
[ no k] (n ) n+k®1+ +k 12 Q+m,\
n3 dim(sl,)
— k) () —nm, 2
+(n—-k)1QL +k+5n+k B O+m,

nd —n

12 °8

(n— k)Lg+k + Ontk
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and the dimension of sl; is 3. However, there is also a level my + m, repre- = .
sentation of s:[; (2{zQye gl; ® sA[;':‘x =y}) in L(A) ® L(p), namely the
restriction of the former to the diagonal (or z(n) — z(n)®1+1®z(n)). B

the Sugawara construction of this representatlon, we arrive with the followmg
Vlra.soro operators :

(Q+n1 T )22 (@) @ 1+1® (1))
Bl 1eZi=1
(= (k—l)®1+1®z(k-1));

R e DI

H1® (aiDailk = 1)) + 22() © milk — 1)

L

' with central charge ¢ = 30—7:%1—15;—, since dlm(ﬁ[lg)':'z '3." Thus theorem 26

glves us Vlra.soro opera.tors R

L = L,?—L;A

— b 1 : 3 |
- (Z(Q'me) (Q+nu+mu))1€z§ : e l))®
S s o
+(‘(Q+mu) 2(Q+m,\+m“)):{2§1®(£(l zi(k - 1):)

._Q+7nA+m“ZZ ‘ Qx, l)

IeZt 1

Hereby we get a repxesentatlon of the Virasoro algcbra, in L(A)® L(p), with
central chauge C e . _

o= —c—3( my my __ my +m,
8 , Q +m, Q+mu_ Q+my+m,

" One can calculate Lo explicetely. Notice that Qy = 2(Q + my)d + 2T(0)
commutes with every elements of sl,, where

7(0) = 1 3w (0)ni(0) + X Yo ri(~laull)

i=1 ‘ . leNi=1
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see section 3.1, and Q, is the Casimir operator of s:lz in £L(X) since
[d,Q.] = 0 + 2[d, T'(0)] = 0

and ' ' EE

[z(n), ] = =2(Q + my)nz(n) + 2(Q + my) nz(n) =0

by direct calculation using the various commutation rélationsﬁi on sl, given
in section 3.1 together with lemma 24. Trivially [c), )] = 0. We have the
similar relations with g instead of A and for the diagonal representation too.

Then : Q
Y = T(0) = ———2— —d,
° Q + my (0) 2(Q + my)
0
L(#) = [ _ (l
° T 2AQ+m,)
and 7 ‘Q’ - )
L =  _d®1-1@d
0 2(Q + my + mu') ® ® a

where € is the Casimir of sl, in £(\) ® £(g), whenever we are considering
admissible representations, as the highest weight representations indeed are.
We therefore get the following expression for Lg

— __Q’\_.___ L_
Lo = (2(Q+mu ")®”1®(2(Q+mu> ”’)

— —d®1-1®d
(2(Q+mx+mu) ®i-le )

_ l(()\,A'F?P) (B +20) o
2\ Q4+ my Q+m, Q+my+m,

where we have used that the eigenvalue of Q, is (v,v + 2p), for v = A\ p,
and p is the sum of fundamental weights (see [Hu, section 22.3] or [K-R,
section 10.1-10.2}). However, we will not really need the expression for Lo,
but rather focus on the possible value of c. We therefore return to the Cartan
subalgebra b of sl;. Choose {b = h; = €;,1(0) — e22(0),c,d} as a basis for F),
hence ) = C-b@ C -c¢® C -d. The bilinear form on E[z (from proposition
20, with s = 0 and (a(t),b())o = Tr(a(t)b(t)), a(t), b(t) € gl,) restricts to a_
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bilinear form on s, and become non- degenerated when restrlcted further to
. In fact is - ' '

(6,6) .= Tr((ena(0) - 62.2(0))(61.1(0) — €2,2(0)))
Tr(e1,2(0) + _62,2(0))’.= 2

and - .
‘ (¢,d) = (d,c) =1
all other eva,luatlons of the form do vanish. Then we may identify b with the

dual space h" via this form. In’the highest weight representation £()) of sl,
the actlon of b on the hxghest weight vector vy Is. given as :

h(va) = A(h)in = (A h)va

for b € b .With the above choice of basis the fundamental weights become
wo—(d )_dandwl i(]b )= b smcew.(h)-& 5yt =0,1, ho = ¢
and hy = b. As earlier does p denote the sum of the fundamental weights,
= wp + w = ~d + b . ’ ’ '
‘We know from p10pos1tlon 33 that the represcntatlon in £()\) is unitary-
if and only if A takes the form : -

/\=m-d+%n-_b+r-‘c

where r = Md) € R, m = Ac) € NU {0} and n = A(b) € NU {0}. So -
c(vy) = A(c)vy = mwvy and L(A) becomes a level m representation (my = m).
Choosmg the standard basis {z,y, h} for sl,, it follows directly that z’ =y, .
y' = z and h/.= 1h defines the dual basis with respect to the trace form,
(a, b)o = Tr(ab), restrlcted from gl,. ' :

By use of the commutation relations on sl it follows that the Casimir
operator becomes - -

lh"’-{-y:): = %h.2+h+2ya:

Qoixx'+hh'+yy’=xy+2

and in the adjoint representation

e = (ad:z:)(ady) (adh)(adh‘)+(ady)(adx)
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which has eigenvalue 2Q = 4, since it is known that it acts as a scalar 2Q)
and it follows directly that (Q((,ad))(h) = 4h. So Q) = 2. We now choose some
particular weights i = d (correspondingtom =1, n =0 and r = 0y and A =
md + 1nb (corresponding to r = 0) with m, n € NU{0}. Thus thepreviously
introduced GKO construction for sl provide us with unitary representations:
of the Virasoro algebra, with @ =2 and m, = p(c) = (d,c) = 1. It becomes
a highest weight representation in the highest componcnt.. The operator Lo,
dependent of m and n, becomes

L = 1 (md+%nb,md+%nb+2d+b)+(d,d+2d+b) -
° T 2 24 m | 241 24+m+1
inf+n o n(n + 2) o

1m+2) T T ame3) " AmA2) 2Am+3)

where m,n € NU {0}. The interesting central charge in this particular case
becomes : : ' '
' m 1 m+1 6
ot st <1
¢ 2+m+2+1 24+m+1 (m+2)(m+3)

where m € N U {0}.

Hereby we have succeded in constructing a serics of unitary highest weight
representations of the Virasoro algebra in the highest component of £(A) ®
L(p) = H, ® H,, generated by VA ® vu(= Q, ®Q,), with central charge given
by the above discrete series ¢,, € [0,1[. We emphasize that for m = 1 is

1
C1 = 2- .

It shall be pointed out that the eigenvalue h € R of Ly also belongs to

a discrete series (here h doesn’t denote an element of h or h). In fact, for a

given m € N U {0}, or equivalent a given ¢y, is the 3(m + 1)(m +2) numbers

(m+3)r — (m+2)s)* -1

hm(rs8) = = T 2)(m 1 3)

where 7,5 € N such that 1 < s < r < m + 1, the only possible value h
can take. We will not dwell at the proof for this result, but mention that it
is based on the celebrated Kac determinant formula (see for example [K-R,
chapter 8-12]). From this formula it follows that for m = 1, or equivalently
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¢ = %, is the only possible value.of h:giving unitary representations those
where : ' : 3
1 1
hzhl(l,l) =0 ., h =h1(1,2) =§ ’ h=h1(2,2)= -1—6

.a result which we have used earlier in section 3.2.
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~-.,«Ch'apter 4

o Applicati_ons
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| 4.1 The Loop group LS1

In this sectlon we con51der the partlcula.r loop group LS? viewed as an abelian
subgroup of the restricted unitary group, discussed in section 1.5. We will, in
particular, use the infinite dimensional spin representation, treated in -detail
- in sections 1.4 and 1.5, in our discussion of the particular loop group LS?,

also known as the loop cxrcle Section 3.1 on loop algebra,s will serve as basis
knowledge. '

The loop groups has been studied intensively in the, already fameous,
book by Pressley and Segal [P-S] from 1986. IIowevér their approach is
slightly different form ours. Anyway [P-S] will serve as a foundation of this
section. The loop circle has also been considered by Lundberg in [Lu 2], we
will follow this approach. Severel others have studied the loop groups (see
[P S] for further references), but we will only add.[Mi] to the list, though.

“ The applications of loop groups is various, for example do loop groups
appear in two dimensional- quantum field theory and more recently they
have been put to extensive use in connection with the socalled completely
‘integrable systems of partlal dlffcrentlal equat:ons (see [P-S] and [Ml] for
further dctalls) S :

Consider the complex Hllbert space H = L,(S5') of 'squared- integrable
functions on the unit circle S1 "The inner product on H is given by

2r

)= & [ Ta(0)0

o
for any f,g € H.

We' may choose {ex € H : k € Z},ex(8) = ¢*%, as an orthonormal
basis for . We then have a canonical splitting, or polarization, of H as
H = H, & H_, where H, = span{e; : k£ > 0} and H_ = span{e; : k < 0}.
We denote the projection onto H_ by P.

- The loop group LG is the group of parametrized loops in the group.G,
i.e. LG is the group of smooth maps (loops) from the circle S! into G In
the present case we only consider G = $'. Hence LS! consist of smooth -
endomorphisms of S!. Then any element in LS! can be written in the form
e'F', where F is a smooth function from S! into R such that F(8 + 27) =
F(0) + 27 - np, for some integer ng, which is the winding number of ' (see
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for example [P-S, p. 59]). Notice that ef : §1 — 51, eF(6+2m) = ¢iF(0) and
e'F is certainly smooth.

Due to [P-S, p. 79] we may realize the loop group LS as multiplication
operators of the form M(e'F) on H, i.e. (M(eF)g)(0) = &F© . ¢(0), for any "+

g € H. In the following we simply write e'F for M(e'F'), whereby we identify
the multiplication operator M(e‘F) on ‘H with the group element e'F e LS.
In the present case it appears that it is sufficient to demand that the real
valued function F on S'is C', i.e. F'€ C*(S?), and not necessarily smooth.
If we put fr(0) = F(0)—np-0 then fr(0+27) = fr(0). Hence frr € C1(S")
is real and invariant with respect to the shift § — 0 + 2r. Therefore fr
can be expanded .as a real Fourier series fp = ;—Wzkez fr - ex, where the
Fourier components f, are given by fi = (ex, fr) = & [o™ fr(0)e*? db.
Separating out the zero-Fourier component fo = 5= 27 fr(0) d6 € R we may
write fr = fo+ 51; ZkeZ\{o} fi- ex, where e,(0) = ¢*® and f_, = fi (since fr
is real). Put f(0) = 2" zLeZ\{o} fr - ex(0) = fr(0) — fo, and notice that the
mean value of f is - 2" £(0) d0 = 0. We finally come up with the followmg
splitting of I

F6) =np-0+fo+f(0)

where np € Z is the winding number of ¢'F, fy € R is the mean value of
F(0) — np -0 and f € C'(S") is real and has zcro-trace, f2" f(0)d0 = 0.
If we put Fy(0) = np - 0 + fo, such that FF = [+ f, then ¥ € LS! can
be factorized as €' - ¢'/. The subgroup of LS! consisting of elements of
the form e'/ will be called the special loop group, denoted by SLS?, and the
subgroup of LS! generated by elements of the form e''® will be called the
charge subgroup of LS, denoted by C. Thus LS! may be considered as the
product group SLS! x C.

We consider the case of the special loop group SLS! first. Below, we will
show that SLS! may be considered as a subgroup of the restricted unitary
group U,(H, P), studied in section 1.5, where P is the projection onto H_.
Furthermore, we study the explicit spin representation, which is a projective
representation of positive energy of SLS?.

According to the results in section 1.5, we only have to verify that of €
uy(H, P), whence e/ € Uy(H,P). Evidently (if)* = —if. The Hilbert-
Schmidt stipulation of [P,7f] is equivalent to that of Pf(1 — P) = P[P, f],
since [P, fl = Pf(1— P)— (1 — P)fP and Pf(1 — P) is Hilbert-Schmidt if
and only if (1 — P)fP = (Pf(1 — P))* is. Thercfore it is sufficient to prove
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that Pf(ll — P)is Hilbent Schmidt.” Let x denote the indicator function of
N u {0} ie. x(lc) = 1 for keNU {O} and zero otherw1se Then

(6k,Pf(I PfPek ZX —1Xn+k) |fn|
" neZ )

' by dlrect calculatlon using the Fourier series for f (and the fact that f_
fn, since f is real). Hence

T,r(Pf(I—P)fP) =3 (ek,P-f(I—P)fPek)

keZ

2 Y Y xRk — 1) [

. keZ neZ

= Y Yxn—k)-|fl
‘ , kGNnGZ_ '
=2 nlfal

‘neN

where we have used Fublms theorem to mterchange the summation since

Yahf € Yt lhf

nEN . ‘ neZ

Y
- 5/0 F(O)° db
oo ' 4

due to the fact that f € C'(S?). We then conclude that Pf(1 — P) and
then [P,if] is Hilbert-Schmidt. - So if € uy(H, P), whence ¢/ € Uy(H, P).
Evidently SLS' can be realized as a subgroup of /,(H, P) (for an alternative
proof see [P-S, p. 82-83]). Notice that we may associate the Lie algebra slS?,
- consisting of skew-selfadjoint multiplication operators, i f, such that [P, f]
is a Hilbert-Schmidt operator, with the special loop group SLS!. Hence the
special loop algebra sIS' generate SLS! through the exponential mapping.

Due to the above inclusion of s/S into uz(H, P) and SLS! into Uy(H, P),
the spin representation, constructed in sections 1.4 and 1.5, is well defined
and gives a projective representation of SLS!. We will now show that this
spin representation is, in fact, of positive energy. lii order to achieve this,
we have to construct a Ha.milton operator (to apply some meaning to the
statement).
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" Let dy denote the generator for rotations in H = Ly(SY), ie. dy = j—g
on its maximal domain D(dy) = {f € H : dof € H}. It follows, by partial
integration that dy is skew-selfadjoint. Even though do is unbounded, its
commutator with P still makes sense. Since [P, do)ey = Pdoes, — doPe; =
0, [P, do] does vanish on D(dp), hence it makes sense and vanishes ®fi" “all
of H (as long as we do not consider other unbounded operators, we won’t.
get into trouble). We definc a Hamilton operator # on Fa(H) by H =
—idUp(dp) with the dense domain D(H) given below. Note that [P, dp] = 0
and [I,dp]+ = 0, where I' is a given involution on H commuting with P (see
sections 1.5 and 1.2). It follows that

H = —idUp(do) = —idU((do)p)

where dU((do)p) is defined by the Fock-Cook quantization mapping (see sec-
tion 1.3), since the skew-selfadjoint unbounded operator dy is linear. Notice-
that (do)per = do(I — 2P)ex = t|k| - e, for all k € Z, due to the polar-
ization operator J = I — 2P (which have eigenvalues £1 and corresponding
eigenspaces Hy). Hence on arbitrary basis product vectors ex, A--- Aeg, In
A"H,n € N, is

H(ekl A ---/\ekn) = chl A A t':’k]__1 A —i((l())pekj Aek:-ﬂ AN /\Gk"

i

(Zl’» |) (e, A -+ Aex,)

j=1

Moreover, HQ} = 0, so the eigenspace corresponding to the eigenvalue 0
is spanned by © and eq, and the eigenspace corresponding to any m € N
is spanned by basis product vectors ey, A --- A e, with 37, |k;] =
Observe that these eigenspaces are of finite dimension (each k; € {—m,—m+
1,...,m —1,m} and n < m). The spectrum of H is o(H) = N U {0} and
evidently II > 0 (so the representation is indeed of positive energy). Notice
that H indecd is unbounded and that the maximal domain

D(H) = {F € FA(H): HF € FA(H)}

for H consists of particles (vectors) of finite energy. D(H) is evidently dense
in Fo(H), since it includes the algebraic direct sum of the energy eigenspaces
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and Fa(H) is the (Hilbert space) direct. sum of the energy eigenspaces, i.e.
Fa(H) is the completion of D(H)..Since f € C*(S"), ||if]l,, < oo and the

multiplication operator. M (i f) which multlply with ¢ f is bounded. Then we

define ¢(f) to be the selfadjoint closure of the essential selfadjoint generator
—tdUp(zf), for if € .slSl C ug('H P). From the commutation relations
(1. 17) we get : : : -

[¢(f),¢(9)] = —[dUp(if),dUp(ig)] !
o = —dU([(: f)P’(’g)P])"w((zf)Pv(zg) )1
= —wp(if,ig)- I

on D since {(:f)p,(ig)p] = [zf, zg]p = 0 and where the Lie algebra cocycle
wp(zf, zg) = w((zf)p,(zg) )i 1s.g1ven by (1.16) as

(zf,zg) = w((if)p, (ig)r)
= T(Pg(l - P)P) = T«(P/(I  P)gP)

for all if,2g € sIS'. This means that we have constructed a representation
of the CC R-algebra (see (2.9) and. definition 13 of chapter 2) in the anti-
symmetric Fock Hilbert space FA(H), indicating the socalled boson-fermion
correspondance We return to the- boson ferrmon correspondance in section
44. - . :

From section 1.5 it follows that the charge operator Q = dU(J — 2P)
commutes with every AUp(A), A € uy(H, P). This holds especially for A =
if € 8IS, ie. [i¢(f),Q] = 0 on D. Hence W(f) = €*) commutes with
the charge operator Q on D, and the (corresponding) representation of the

CC R-algebra is highly le(luc1ble since each charge sector H, (see section -

1.5) is invariant.

Now .we complexify the mapping f — ¢(f) by puttmg &(f) = é(f.) +
19(fi), for f = f, +ifi'in CY(SHe = CY(SY) 4 iC*(S?) such that both
fr and f; are real and have vanishing trace. Then this extended é(f) is
no longer selfadjomt however, f — &(f) is a "*-quantization mapping”,
ie. ¢(f)* = 4(f), on D, since ($*(f)Fn,Gm) = (Fr, (8(f,) + i¢(f:))Gr) =
(($(f) = i¢(f) Fa, Gm) = ($(F) Fu, Grn ), for any F, € A"H and Gy € A™H.
Moreover, each f.€ C'(§')c can be uniquely decomposed as f=f+of

where fi = 3 en(er, f)ex € Hy and fo = Tpe_n (e, f) ek € H_. Recall
that fo = 0 due to the vanishing trace, notice also that (fe, f-) = O ‘Then
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é(f) = ¢(f+) + ¢(f-). The observation
f2) = X (e flee= ), <e_k,7>e_k

ke-N ~keN
Z <6k,7> ee = (f)+
keN )

implies that (f_) = (f)y = fy in case f is real (notice that fy and f_
may be non-real even though f itself is real). Hence ¢(f-)* = ¢(fy), for
if € siS", and [|(/)QI° = (2, 6(f+)8(/)Q) = Te(P/,(I - P)_P) =
Ym0 Lonco 2kez fm fax(—k — 1))\(k+") m4n = Zn<02k<0 |fn| x(k+n)=
0, then ¢(f-)2 =0, for if € slSt.
* We will now compute the cocycle wp(z f, 1g) explicitely. With the earlier
notation we have Pey = X( k—1)eg, so -

JPeL > gax(—k = Dengs

nEZ
and
fUI=P)gPer =3 > fmgnx(—k = 1)x(k + n)ersnim
meZ ned
Hence

(Pf(1 P)gP)

= Z (Pex, f(I — P)gPey)
keZ

= 35N fagux(—k = D)x(k +n) - b

keZ meZ neZ

= 3 Y fug-mx(k—m)

ke-NmeZ

= Y Y Fagux(k+n)

ke-NneZ

= 3 nfugn

n€N

where we have used Fubini’s thecorem to interchange the summations, since
- Lo 172 2
n: ‘fnl gnl < 5 n-- lfnl + |gnl
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for n € N, and

S 1».
|fn| |gn = EZ

2 1
+ 5 Z |gn|2
nEN neN )
. 1

= —/ £ (O)F d0+—/()2”|g(aj|2do

/\ .

: 47
which is finite, because f,g € CY(SY). Hence .

wp(if,ig) = 3 n- (fu 32 = To - 0n)

: n'eN ‘ .
for if,ig € slS1 where f,, = (en, f) = 211r 2 f(0)e~d. Furthermore
. ,
| ( f, 29) o J f "(0)g(0)d0
for if,ig € sIS?, since .
[ f(9)g(0) = Tehem.
: = Zn.(fn."q:_f—n.gn)
. neN o

because fO = go = 0, f’(0) = Znez annen(g) a'nd nfn% = nﬁg-—n =
—(=n)f-ng-n = —kfigr, for k = —n and n negative. Notice that wp(,")
evidently defines a non-degefierated symplectic form on slS? x sIS?, since
e ST P |
wp(if,1g) +g1p(zg,zf) = -—-/ (f(0)g(0))'db

2m

= =If (

27rz
=0
giving the anti-symmetry of the form, and [” f'(0)g(0)d8 = 0, for all ig €
s1S?, implies that f'(6) = 0 so f(0) = fo-= 0, giving the non-degeneracy of
the form. g ’
The socalled two- pomt functlon becomes

(8NP9I = —(Q,dUp(if)dUP(ig))
= —-Tr(sz(I P)zqP)
= Zn fngn

neN
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by use of formula (1.15) derived in the end of section 1.5 and the above trace
formula.

The functions in i-s/S?, considered as real functions on S whose integral
wanish, are completely determined by their positive Fourier compenents. In
fact, the Fourier transformation F : f — (fi)reN 1s an isomorphism. On the
space of all these Fourier transformed (fk)keN, f€ei-slSis

((fk)kEN’ gn nGN Z k- fk Ik

keN

evidently a complex inner product, whereby F(i-slS') hecomes a pre-Hilbert 7
space. Hence we may turn 7 - sIS! into a real pre-Tlilbert space, with inner
product given by the real palt of '

1/2 Z kfk 9k

keN

for f,g € i-s15'. We denote the corresponding real Hilbert space by H?2.
Furthermore, we let H'/? denote the corresponding complex Hilbert space
defined by introducing the ordinary complex structure on the Fourier com-
ponents. We remark that the index and superscript 1/2 used above, serves
to indicate the analogy with the Sobolev space of a "half time” differen-
tiable functions (in generalized sense). Observe that we then get the identity
wr(if,ig) = ~2i-Im (£, ), o

The spin representation of the special loop group SLS?!, is given by
Up(e'!) = e®). Tt leaves each charge sector M, invariant and it fulfils
the Weyl form of the canonical commutation relations

Up (/) Up (¢9) = ez, ((i+0)).

for all f,g € H}/2, as we will show below. Later on we will show that these
representations on different charge sectors H,, are unitarily equivalent.

Recall that D is a dense set of analytical vectors for ¢(f) = —¢- dUp(if),
and since 1t is closed, by dCﬁl]ltIOIl it is selfadjoint. Let F,G € D be arbi-
trarily chosen, then

(616, F) = 3= (016, Lot )

n=0

-y <G, C L 60610) 4 0 9 r(i i) F >

n=0
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where we have used the selfadjointness of ¢(g) together with the fact that
[#(9), 6(f)"] = n- wp(if,1g) - #(f)""! due to the commutation relations de-
rived above. Consequently P L

(#(9)G,F)

= S (Seure.sa)F) + (6, —ie “ap(i, )

= (G NYlg) — i - wr(if,ig)F)

Since ) s bourided, in fact it is umtary, it follows that ¢(g)* = ¢(g) is
well-defined on e~ F and #(g)e ““’(f)F = e“‘”(”(qﬁ( )—t-wp(if,29)- I)F
for any F € D Thus :

| 6(9) e IF| < lglo)F | + fwr(if,i0)l - I

where the unitarity of e=**\/) has been used. Since D'is a core for ¢(g),
Le. ¢(g) l'D ‘¢(g),-any F € D(4(g)) can be approximated by a sequence
' {Fk}keN C D, such that Fk — F and ¢(g)Fk — ¢(g)F. Then :

i
= ||¢( )F, — F)||+|wp(zf,zg)l | Fr — FII

— 0 asmn—+oo

showing that {¢(g)e"¢(f)Fk}k€N form a Cauchy sequence and hence con-
verge. Therefore e=E € D(4(g)) and #(g)e N F, — ¢(g)e7*DF.
Thus D(¢(g)) is invariant under each e~**() and the formula ¢(g)e ") =
e~ U (@(g) —.i - wp(if,ig) - I) extend to all of D(#(g)). Then, for any
F € D(¢(9)) -

4 iso(1) giodlo) ~ise(S+9) p

ds , .
e*?Neiot9); . (¢(f) 4 ¢(g) — ¢(f + g))e ¢U+IF
+ Ui (i - wp(isg, if))e et p
= s-wp(if,ige isd(f) pisdlg) o~ isd(f+9) P
since wp(ig,if) = —wp(if,ig). Notice that all of the products above are

well-defined. Integration then gives the following identity between bounded
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operators

e f) gitla)g—idlf+e) — 4 /1 dswp(if,ig) - s - e2¢()is#(9) =is6(/+9)
- JO

This equation can be solved by iteration as follows. Put Vu(f,g) = I and
recursively Vo41(f,9) = B d.s wp(if,ig)-s-Va(sf,sg), forn € NU{0}. Then

wP(7 f» Zg)
2

Assume that V,(f,g) = ('“ﬂ;j—’iﬂ)n~ 21, then Vi (sf, .s'() sV, (f,g) and

Verfog) = [ dswp(ifiig) s s Vn(f,g)

(wp(if,ig))"“._ 1
2 (n+1)!

So induction gives that the formula above holds for all n € N U {0}. Define

V(f,9) = lim Z Vo(f,g) = ezwrifio) .

n—O

Hence V(f, g) is the unique solution to the integral equation

V(o) = S Valhho)

n=0
1 (e 0]
= 1+ [ ds-wplifiig) s+ 3 Vari(sf,s0)
n=1 o

= I+Al dswp(zf,zg) -s-V(Sf,Sg)

whence
¢ gid(9) g—id(f+9) — V(f,9) = ezwplifig) | 1

and

) idla) —  Fwp(ifig) | Lid(f+9)
e“’P('fl'g) . e“b(‘q)(:tqs(f)
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for any f g € i-slST.
We end this treatment of the special loop group by calculating the vacuum

functional. The formula ¢(g)¢(f)™ = ¢(f)™¢(g) + m-wp(if,ig)$(f)™!, on
D, almost holds with'g = f_, éven though f_ is complex, since it holds for its’

real and imaginary parts f7 and [, both in C‘(S‘),, where fo=fr4i-fL.
Thus dlrect calculatxons give

BUVBIF = (B(f2)+i-$(f)S(f)"F

| H(BUT) +i- S(F)F
+m(wp(ifyifT) +i- wplif,if ) $(f)"'F
BT H-)F +m | o)™ F

where ||f||1/2 ( f)I/2 Especxally forF Q we get
IR =m- Il 40

since ¢(f'_) =0. Because Qi is an analytlc vector for ¢(f), we have
(0,00 (¢) ) = (9, e“"‘”“)
- St s
: n=0

. We obtain immediate]y : .
= (0,(6(f+) + (/- )¢(f)’f.‘,‘.9> |
= (¢ (J2)0, (7)) + (2, 8(7-)6(£)92)
= 04+(2, (=) £l 6(H"20)
= (=1l (80 °0)
- Hence by induction we have

| (.6(/)0) =0
for n € N odd, since (Q ¢(f)Q) =0, and

()" = (n=1)(n=3)-...- 1Sl

n!
W 1132
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for n € N even, since ((2,Q) = 1. Thus

e e

(0.0 (<1)0) = & ).,f.“ W,
= 5 )"
_ e_;nfu,n

giving the vacuumn functional.

We now turn to the charge subgroup C, of the loop group LS?, generated
by elements of the form €', where Fy(6) = ng - 0 + fo, with ngp € Z and
fo €R. - A

The charge group C has infintely many disconnected components, as a
subgroup of LS!, and these components are labelled by an integer ng, the
winding number for eF. ‘

The shift operator s on H given by s(ex) = ek+1, i.e. (sh)(0) =e” - h(d),
for any h € H, is evidently unitary.  So s € U(H), in fact, s € Uy(H, P)
because [P, s] is a Hilbert-Schmidt operator, since [P, s]es, PeH] —sPe =
—8k41 - €0, 50 [P, s] is the rank 1 operator f — — (e_y, f) eo. -However, the
shift operator s is not generated by any element in the Lie algebra us(H, P),
since its generator 0, commuted with P, does not fulfil the Hilbert-Schmidt
condition. We will show that [P,6] has an infinite Hilbert-Schmidt norm.
Let b(9) denote the function § ~ 8, on [0,27]. The Fourier series is given by
b(0) = Trez brex(0), where by = 7 and b, = £,, for k 3 0. Hence

[P,0le, = P 5k6k+n — Y bregpnx(—n — 1)

keZ ked
= ) beryn - (x(- k—n~l) x(—n —1))
keZ )

Lokc—nbrlhin for,n >0
~ Lk>—nbreryn ,forn <0

where x denote the indicator function for N U {0} defined above. So
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S 1P, blea

117,01 15

ned
= X Y+ X X
neNu{0} k<-n ne- Nk>-—n
= ¥ Yt Y
neNu{o} k<—n . ne- Nk> -n
' 1
=225
neN k>n '
> 2- Z/m—%d.z:Q Z l
neN "™ LB : nENn :

which is a well-known divergent series. Therefore [P,6] is not a Hilbert-
Schmidt operator, ‘as claimed. This means that we cannot use the method
developed in chapter 1 to find a unitary operator Up(s), such that

ap(sh) = U_P(S)‘JL_P(h)‘UP(s)“l

for all h € H: In this case one can nevertheless explicitely construct such a
unitary operator Up(s). Notice that ap(er) = a((1 — P)ex) + a*(PPe;) = -
x(k) - a(er) + x(—k — 1) - a*(ex), so ap(ex) = a(ex), for k >0, and ap(e;) =
a*(ex), for k < 0, and then ap(sex) = ap(exy) = aferyy), for k > —1, and
ap(sex) = ap(er1) = a*(ex41), for 'k < =1: Hence, our demand to Up( ) is
equivalent to the claim that it has to fulﬁl - '

UP(S)G(CL-)UP(S) = a(ers1) |

for £ # —1 and
| ~ Up(s)a(e-1)Up(s)™" = a(eo)

Define an operator S on .7-',\(7'{) by its action on product basis vectors
SQ =eg, Se_1 =Q, S(ex, A... Aek,) = €k 41 A: .. Aeg, 41 Aeg, provided each
’Cj # —1,for j=1,...,n, and S(eh Ao heg, ANeoy) =exa N A€y,
where each k; # —1, for j = 1,...,n. Extension by linearity and continuity
gives a bounded operator S on Fx(H). From above it follows that S is a
surjective isometry, whence it is unitary. Let @ be the charge operator on
Fa(H), with-domain D, defined in section 1.5.- From the action of S on
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product basis vectors, which be]ongs',t:o D, we immediately see that S maps
the ¢’th charge sector H, into the (g+1)’th charge sector H,y1. Then (QS — -
SQ)(ex, A...Nex,) = (g+1—q)S(ex, A...Aex,), where ex, A:..Aey, denote
an arbitrary product basis vector in H, (it also holds on @ € H,). Then we
get the following commutation relation [Q, S]'= S on D, or equivalently

es=s@Q+n. - ..

By direct calcula.txon it follows that S’ satisfies our demand to U p(s) and we
may put Up(s) = S. Hence we have constructed the unitary operator Up(s)
such that ap(sh) = Up(s)ap(h)Up(s)~", for all h € H. Notice that s™ acts
as the multiplication operatox ¢, 'We therefore define Up(s™) = S™, hence
ap(s™h) = S"ap(h)(S)" = Up(s™)ap(h)Up(s™)~},forall h € Hand n € Z.
Then we have handle the first term ng - 0 in Fy. We thus turn to the second
term fo in Fy = np -0 + fo.

Consider ¢, with f, € R, which trxvmlly bolongs to the restricted uni-
tary group Uz('H P). Then' the unitary operator Up(c'f0) on FA(H) is ex-
plicitely given by Up(e'fe) = eUr(ifo) = fodUr(il) — e'f°Q where () is the
change operator, discussed in section 1.5. E

Combining the above discussion of the two tcrms in Fy, we are lead to
define Up(e'f*) by

Up () = ebih@gnr ding

Then Up (e‘ﬂ) is unitary and Up(e'™)ap(h)Up(e'F0)™! = ap(e'fth), as it
should be. We will now calculate an explicit formula for the associated
cocycle. For arbitrary n € N U {0}, is QS™ = S"(Q + n- I) and Q%S =
S™(@ +n-I1)* on D. Then *235" = §"eM@+"D) on D, for any n € N U {0},
hence any n € Z, and any A € C, since D is a set of analytic vectors for Q
(see section 1.5), which is invariant under S. Hence

e%ifoQSﬂG = S"Ge:}ffo(Q+nG) - Snce%ifer%‘ifonG

and then
S"F o5i90Q — o3i900Q GnF o~ FigonF

which implies that
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Up () Up (¢90) = edii@ GrF e 3i10Q g }i80Q Gna ,isoQ
- c%ifer%t'ger— Figonr SnF Snce%ifer%iger%ifonc
e%i(fonc—yoﬁr)e%i(.fo+yo)Qs(ﬂP+nG)e%i(fo+go)Q
c (e"F°I, eiG°) -Up (ei(F°+G°))
whereof we see that the cocycle is given by |
' c( :'F‘o' iGo) _ eéi(fonc%yonr)
Thus we have constructed a pro;ectwe umtary representation of the abelian
charge group C. :
We will now show that Up(e /) and Up(e***) commute for all if € slS?

and efo ¢ C. This is a consequence of the fact that the unitary operators
Se"’s(” and V, = e““f)S lmploment the same automorphism. We have

arfar(e) = Vaar(g)Vi = Upl(s)ar (¢g) Un(s)
| = dp (e?e’q) = ap (e-(f+0)g)
and§hat - ‘ - S .
o euerle) = Vaurlo) = Up () artag) (&)
= a'P( 'fe'ag) =ap (e‘(f+9)g) S
50 az(ap(g)) = az(ap(g))- Since the representation of the CAR-algebra, la-

- belled by P, isirreducible, it follows that V; = (Vl, V2) V2, where ¢o(W1, V2) €
. C and has absolute value 1, due to the unitarity of V; and V,. That is

Se"”(f) — cO(f) . mS(f)S

with [co(f)] = 1, for all f € H. We wme co(f) as ¢“(), with c(f) real. Then
the umtar]ty of S glves '

BN+ = = St g1 = giset)s™

~on D, since S leaves D invariant and D consists of analytic vectors for ¢(f).
Put f =1 g and take the derivative at ¢t = 0 to get

#(g) +clg)- I = S¢(g)5“
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where we have used that ¢ — ¢(tg)is linear. By taking the vacuum expecta-
tion value of the equation

clg) - I =¢(g) — S7¢(g)S

we get ' o
c(g) =19, 6(9)2) — (52, $(9)5Q) = 0 = {e0, (g)e0) - -
by (1.10). Then L |

el9) = —(eoidUpligles) |

since it is only the linear part of (ig)p which contribute, due to dU(((ig)p)z)eo €
A*H L M, and dU(((ig)p):) is given by the Foch-Cook generator. Hence

i - "

= _(60{.(]30)"—0'
_ 0 A

c(g) = —((I - Peo,g(! *P}eo) + (29T Peo, ' Pey) |

for any g € M, since go = (eg, geo) = 0. Whereby .
¢(f)S = Sé(f)

on D, and
NG = Geidlh)

for any f € H. Thus
Up () Up (6P) = elehif@gnreting
- e3+0Q GnF o 51/0Q Li4(/)
= U (™) (o7
due to the fact that @, ¢i¢(f)] = 0, on D, shown in section 1.5. Hence we put
Up(e'F) = Up(efo)Up(e'!), which is the declared projective representation of
the loop group LS!. Notice that all representations of SLS', in the different

charge sectors, are unitarily equivalent, S"‘qS(f)]ﬁq S = ¢(N)ly,,,, since
S Hy — Mgy is unitary,
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We have constructed a represenation of the canonical commution rela-
tion in each charge sector H,, by use of the mapping f — ¢(f), on the
anti-symmetric Fock Hilbert space. All these representations are shown to
be unitarily. equxvalent and are moreover unitarily equivalent to the Fock
representations f. — 7(f) in the symmetric Fock Hilbert space (modelled
over. 'Hl/ %), discussed in section 2.1. However, we dela,y the proof of the last
,claxmed eqmvalence until sectlon 4 4 '
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4.2 The diffeomorphism group szff+(5 ) as a ”
unltary group.

In this sectlon we will study the group consisting of orientation preserving
diffeomorphisms of the unit circle S*. We will do this by reahzmg Dzﬁ'+(Sl)
as a subgroup of the restricted’ umta.ry group, usmg the spin representation
on a Lie algebra level.- Tt turns out that we get representations of the Virasoro
algebra in terms of the spin representation, whereby the connection of chapter
1 and chapter 3 appear. However, this is not the only possible realization of
Diff*(S"). ~

In section 4.3 we will realize Dzﬂ+(51) as a wbgroup of the restricted
symplectic group, using the metaplectic representation on a Lie algebra level. -
Thereby we construct positive energy projective representations of the Vira-
soro algebra. The Lie algebra consists of unbounded operators, which com-
plicates the subject. We consider -therefore only rclative simple problems. -
From this also the connection between the metaplectic representation and
the Virasoro algebra will becomme clear.

There is a large number of litterature on the Virasoro algebra, however,
the following is mostly based on section 1.5, 2.3 and 3.2 of this thesis together
with [P-S], [Ne] and [Lu 2], but also [K-R] and [Mi] is of interest for this
subject.

Let Diff ¥(5') denote the orientation preserving diffeomorphism of the
unit circle S, i.e. an element ¢ € Diff *(S?) is of the form (e“’) =)
where €% € 5!, ¢ is a smooth real function such that ¢(6 + 27) = ¢(8) + 27
and ¢'(6) > 0.

In this section we consider the case where Diff *(S!) is realized as a sub-
group of the restricted unitary group. ‘

The diffeomorphism group Diff*(S') can act on H = Ly(S?) in more
than one way ([P-S, p.91] and [Ne, p. 411]). The action becomes unitary if
we choose it as follows o

(ug£)(0) = £(4(0)) - |4'(0)|*

for any f € H. Notice that |¢'(8)| = ¢'(6), so we may omitte the absolut
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value symbol if we want to. Ev1dently

(st yusg) = 5= [ THDa(9(0)) - 16(0)] do
¢(0)+21r '
= 5 /m) " £(B)g()dd
= (f’g>'

for all f, g€ H, since ¢(0 + 27) = ¢(0) + 27 and ¢'(6) > 0. So uy is indeed
unitary, i.e. ug € U(H). Notice that the corresponding diffeomorphism in
Dzﬁ'+(51) is given by 9(e?) = &*7'(®). It follows that Y — ug defines an
anti- representatlon of Drjf+(51) since -

(uga(ugi (1)) (0) . = wp, (£(2(0))) - |65(0)]?
= [ ($1($2(0))) - [41(43(0))¢ (fm%
= [((¢1062)(8)) l($r04)(O)]2
= (Wae(£)O)

Introduce the Spl]ttl}lg, or polauzatlon H= - H, EB'H-, asin section 4.1, when -

considering the loop group LS*, and let P be the orthogonal projection onto

H_. It follows that u, € Uy(H, P) That is, we have to prove that [P, uy] is--
a Hilbert-Schmidt opelatm

The action of uy is represented by the kernel 5( (0) - a) ¢’(9)2 where
6 denote the Dirac deltd function .

[ 6(600) - o) #(0) laddr = 11610 S0}t

The polarxzatlon operator JonH = “Hy @ H_, given by Jfy = + fi, for
f+ € Hi, 1s represented by the emgular integral operator

00 = 5PV [ K(0.0) ()

where PV denote the principal value of the integral
f-c 2n

PV [ K(6,4)()dp = lny ( [ )1&’(0,90)1’.((9)490

g4
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~ and the Kernel K(0,¢) is giver; by

- K(0,9) = 'Z'eik(o-w);z es(;(e_w)

k20 k<O .

= 1+4i-cot= (0 go)

~ which clearly is smgular on the dlagonal 0 = ¢. Then the kernel K[% 5 of
- the commutator [u,, J] is given by - : : .

[ da (5(600) ~ o) 40 - Kiws8) ~ K0,)- 66(6) — B) - ¢

N

= ¢'(8)7 - K((9), B) — K(8,67(8)) - (471)'(8)

([us, 910 (6) S
= [ do (6( 80) =) 60 (= PV [ K(a9)1(8)45))
5PV [ da (K(e &) ([ (6t ~ B) () f(8)d8)
PV /"dﬂ da
(6(¢(0> ~ a)¢'(0)7 K(, B) — K(0,0)8(¢(c) — B)¢'()?) £(8)

Notice that K(8,p) = 14i-cot 3(6 — ) is indeed a smooth function in both
variables except possibly on the diagonal, in fact

K(0,¢) =

2.1 )
0 - y P
where S(0,¢) = S1(3(0 — ¢)) is the smooth function
i i

S](:E)——l—gz—zg.'lf et

Evidently is K, 5 smooth off the diagonal, 8 # ¢, however, K7, 5 is smooth
on all of S x S'. We only need the continuity of K., 5 across the diagonal,
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to guarantee that the kernel K[y, 5 for [u,, J] becomes square integrable on
S! x S. By a Taylor expansion to first order in (¢71)(B), for B sufficiently
close to ¢ ( ), it easily follows- that -

()%-1<<¢(0> — K(0,71(B))- (671)(B)* -
_ ¢'(0 (- )'(ﬂ)l -'
$0)—B 0-9¢-1(B))

0—
+4(6)} - S(6(0),8) - S(6, ¢“‘(ﬂ)) (671)(B)?
- .
)

N

(9)
(6790

@6 |
O( - 8(0)) + $(0)% - S(4(6), 8) — S(0,67(B)) - (67 (B)?

which clearly is a bounded continous function for |8 — #(8)| sufficiently small.
Here O(z") denotes terms in x of order n € N. This means that the oper-
ator represented by the kernel for [ug,J], which naturally is [ug,J], is a
Hilbert-Schmidt operator, since its kernel is squaxc integrable on S x S1.
Furthermore, since [P, uy] = —[ug, 3(I = J)] = [u¢, J] it follows that [P, ug)
is a Hilbert-Schmidt operator, as claimed.

The associated Lie algebra dzﬂ*(S‘) on LZ(S )s which is given as the real
span of the ba51s vectors - - - : » —

= l

d,:=cos(k—9)~d0—%-k-sin(k-ﬁ)

k € Z and :
. dt=sin(k—0)-d0+§fk-cos(k-0)
k€ Z\ {0}, where
. L d
=
in generalized sense in Ly(S'). This is in fact a realization of the Lie algebra
Vect (S!) discussed in section 3.2, but with a different choice of basis.

However, it ‘is a bit easier to work with the complexified Lie algebra
diff *(S)c given by the choice of basis vectors

o 1 1
dk = ‘?k do + —2-7,IC ek = €k ((l()'+ §1k)
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where k € Z and dy is as above. Notice that these (basis vector as) operators
in Ly(S!) are all unbounded, but all with the same maximal domain given by
Duax = {f € L2(SY) : Tuez n*:1ful? < o0} = {f € Ly(S") : f' € Lo(SY)},
where f,,, as usual, denote the n’th Fourier component of f. Moreover,
d} = —d_i, since it holds on basis vectors e, and e, in Ly(S?), for arbitrary
m,n€Z '

(emdien) = i(n+ %k) nhin =i (m %k) Bmobom

= (—d-kem,€n)

Observe that di = J(di — d}) and df = -zl—i(dk + dy). Furthermore wel_giet the -
following commutation relation o

o [dmydn) = =i(m = n) dpyn

" on Dpax, which can be verified by a straight forward calculation. This relation
is rather close to the corresponding one for the complexification 9 of Vect(S?),
see section 3.2. Finally we have that the di’s, k € Z, fulfil the Jacobi identity
(again by a straight forward calculation). So the algebra spanned by di,
k € Z, is indeed a Lie algebra.

Let uy(H, P)c denote the complexification of ux(H, P). We will show
that dj belongs to the enlarged Lie algebra of u,(H, P)c, allowing unbounded
operators, i.e. that [P,d,] is Hilbert-Schmidt or equivalently Pd_. (I~ P)d, P
is of trace-class, for all £ € Z. However, since we later on will need the more
general fact, that Pd_x(I — P)d,, P is of trace-class, for all k,m € Z, and
then especially also for m = k, we will show this. Let x denote the indicator
function for N U {0}, as earlier. Then d,,Pe, = x(—n — 1) -i(n + 5 )ensm
and

d_i(I = P)dnPe, = .

X(=n=Dxtn+m)- i (n+2) (n+m _ g) S

giving that
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(ens Pd_s(I =P)dmPen)

k) _
=7 (n + %l_) (n - §) . X(_n - 1) ) X(n + m) : (emen+m—k)
. k)2 | S -
= - (n + 5) . x(—n = 1) x(n+k)-bns
for arbitrary k,m,n € Z. Hence

Te(Pd_y(I = P)dnP) = 3 {en, Pd_y(I — P)d,,Pey)
= BinP) = 2,

=—Zn+ "mk X(k)

n—;k

= = m—k'X(k)'E ("—5)
' : n=1 .
= (K + 2k) - 8 - x (k)
12

which obviously is finite, for all k,;» € Z, and only non-zero, and then
negative, for m = k>0, proving the claim. Hence [P, di] is Hilbert- Schmldt
and considerations a.na,logous to those in section 1.5 then gives that [P, e ]
are Hilbert-Schmidt.

The spin representation of the (up till now only real) Lie algebra, provide
us with a positive energy representation of the Virasoro algebra (see section
3.2). It is of positive energy due to the fact that H = —idUp(dp) is non-
negative, since H(} = 0 and on an arbitrary product basis vector ex, A... Aeg,
is ’

. H(_eklA...Aek")z_z:lkjl(eklA...Aek")

because ~i(do)per; = —ido(1 — P)ey, +idoPey; = |k;|-ex;. Since H evidently
is an unbounded operator in F5(H) we have to specify the domain. Obviously
its maximal domain are those vectors F' € FA(H), where ||HF|| < oo, we
call these vectors for finite energy vectors. We choose the algebraic direct
. sum of all the one-dimensional spaces spanned by the product basis vectors
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and  as the domain D(H) of H, evidently D(H) C D. As in section 3.3
this give us a natural N U {0}-grading of FA(H)

Fa(H) = GB:;OBm

where B, is the energy eigenspace corresponding to the eigenvalue m =
L |k;|. Of course the domain D(H) is dense in FA(H). Moreover D(H) is
the algebralc direct sumof the B,,. Notice'that H is zero only on span{(2, e}
This construction is very similar to that of the special loop group. ,
We now complexify the mapping B — dUp(B) which until now only
is defined for skew-selfadjoint (real linear) elements B € uy(H,P). Since
an arbitrary A € uy(H, P)c may be decomposed as A = A~ + iA*, with
- =1(A—A") and A* = (A + A*) both in uy(H, P), we define the com-
plexification of the mapping B — dUp(B) by putting dUp(A)c = dUp(A™)+
i-dUp(AY), where A = A~ + 1. A*. Then we may define the unbounded
operator Dy = dUP(dk)C Of course one have to specnfy the doma,ms ex-- -
plicitely. : ‘
A direct calculation shows that

Di(er, Ao Aex,) =
Z (k + - k) sign(k; + k) (ek, cANeg_y Nekj Neky Ao A ekn)
o \ _

So

|1 Dk (ex, Ao Ae )|l < (Z |k;| + —n |L|) - |lex, A,” Aer |l

j=1

- "(H+ on |k|> (er A-.. Aer,)

where the upper bound can be reached, for example when n = 1 and k; =
k € N. So the maximal domains for all Dy on FA(H) is equal to each other
and equals the set of finite energy vectors, since H = —:Dy. As common
domain for all the Dy, k € Z, we choose D(H).

Thus D} = —D_, on D(H) by use of the above complexified mapping
and the facts that dZ, = df and d}, = —df. lence, by use of the trace
formula derived above, we get
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(D, D) = (Q,-D_ D, Q)
o = - (QadUP(d—k)CdUP(dm)CQ)
= =Tr(Pd_(1 —P)d,P)
1 ,
= 35 (K +2k) 6ni- x(K) |
where we have used the complexification of formula (1.15) in section 1.5,
which can be dohe by first complexi_fying-in the A-argument,
(9, dUp(A)cdUp(B)Q)
= (Q,dUp(A™)dUp(B)R) +i- (n dUp(A+)dUp B)Q)
= Tr(PA(I-P)BP)+i:Tr (PA+(1 —.P)BP) .
= Tr (P(A +iA*)(] ~'P)BP)
= Tr(PA(I - P)BP)
and the quite similarly complexify in the B- argu.ment whence the formula

follows. Recall that x(k) = 1 for k € NU{0}, and that x(k) = 0 for k € —N,
thus DO = O for all k <0, since

HDAW (P+2@ x(k)
Then the associated Lic algebra cocycle becomes
w(di,dp)e = Tr(Pdi(I — P)d,P) — Tr(Pd (I — P)d,P)
,=-1Gﬂnwwumx(m+&wfﬂm>
- (ks + 2k) S |

where we have used the,complemﬁcatxon of formula (1.16) in section 1.5,
again due to the linearity in the arguments and the earlier derived trace
- formula. Then the commutation relations of the Dy’s is given by

Dy, D) = [dUP(dk)CadUP( m)C]
= dUp([dy,dn])c + w(dr,dn)c - I

= =i(k - m)Dxym + D (k + "’k) 6k+m
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where we have complex:ﬁed the formula (1 16) in sectlon 1.5 (or formula
(1.13) in section 1.4), due to the lmearlty in the arguments. L

It is this commutation relation which shows us that the representa,tlon is-
rather close to be a representation of the Virasoro algebra studied in section
3.2. In fact we can add a particular constant h to the energy operator H
such that the cocycle takes the form £k (k* — 1), where c is a real constant,
and hence we get a representation of the Virasoro algebra. Since the cocycle
vanish for m # —k, we only need to consider the case m = —k, whence the
commutation 1ela,txon may be written as -

[Dk,D_k] = —z2LDo + 3 (k3 +2k) = 2kH + 5 (k3 + 2k)
Let H, = H + 'h. Then we may rewrlte the commutation relation as follows

[Di,D-i] = 2k(H+h)—2kh+I1§(k3+2k) '

! Lo (2
= 2th+12L(k +2(1—12h))
For h = } we get -

1 2
Dy, Di) = 2kHy + 5k (k2 —1)

and the associated cocycle w1 (d,dm) is

1
wy(diydn) = S5k (K 1) - b4

and obviously ¢ = 1. Hence our representation is labelled by the pair (k,c) =

(%, 1), because (2 € D(H).

Before ending this discussion of Diff ¥(S') as a unitary group, we will
analyse the energy operator H, and thereby H), by use of the unitary op-
erator S, defined in section 4.1, which raises the charge number of each
charge-eigenvectors by one.

It follows that [H,S] = SQ, on D(H). This is trivial on Q and e_;. For

~1 & {ky,...,ko} is
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[H, S]_(ek, A

LA ekn) ’

= H(Ck‘._-*_l/\.../\ek"‘.*.l/\eo SZIkIekl ./\ekn

(Zlk+1l+0 Zlkl) (e, Ao Aew,)

= Z q] ekl ‘ A ekn)

= SQ(E};, .../\ekn) $L

since each k; has the same sign as k; + 1 (the éign of 0 is + by definition),
so |k; + 1] — |k;| = £1 = ¢;, for 51gn(k ) = £1, where g; is the charge of ¢;;.

For'kn+1 = —1;1s

l[H?S](ekl A

o Neg, A = ) -

= H (6k1+1_ AL A ean (Z lk I + 1) S(ekl Aeg, A 6_1)

3=1

= (Zlkj+1|+0—z:|kj|—l)S(ekll\.../\ek"/\e_l)

= 5Q (ekl

(Z 9 — 1) ekl N A e, A e.—l)

../\ekn/\e_l)' '

since each kj, j = 1,...,n (j # n + 1) has the same sign as k; + 1, so
|k; + 1| — |kj| = ¢;, for j = 1,...,n and g.41 = —1. Hence the commutator
formula is proved.on product vectors, so the formula holds on D(H) C D.

that

on D(H), since

We have earlier (in sectlon 4. 1) shown that [@,'S] = S on D. Then it follows

[ - 5@(@ -1,8] =0
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[7-30@-1.8] = 1.5~ 00-15-@.si@-D
- fQ—gQ(f—O)‘; 55(?—1)

. by use of the above commutation formulas, Mdrebver, ‘evidently [H,Q] =0
. on 2 and on product basis vectors ex, A ... A e, , hence on all of D(H)
So H have the following (lecomposmon as a direct sum

H = ®qezH,

where

H, = HIHq

Recall from section 1.5 that Fa(H) = @,ezH,. Moreover, we put Q, = 59,
where 57 is well-defined for ¢ € Z, since S is invertible, $~! = S*, and Q,
belongs to H,, since Q, = S97leg = S92, Aey = ... = eq_l AegaA... A
ea Aey Aeg, for ¢ > 0, and Q, =(5*)""le_; = (Q*) 2e_ghey=...=
eqg N egp1 A .. /\e_gAel,forq<O

From the commutation relation above, it follows {hat

(r-30@-n) 0, =5 (1 -ta@-n)a=o

since HQ} = Q0 = 0. Let now ey, A ... A e, be an arbitrary product
basis vector in Hﬂ’ Le. Qex, A...Aer,) =27 q; (ex, A... Aek,), where
i=19; = 2= sign(k;) = ¢. Then

H (ek1 A ekn (Z |k |) ek, A 6kn)

For ¢ > 0 is
n q g—1
kL= 3 ka2 3 m
1=1 m=1l m=1
1 1
= 5le=-Dlg-1+1)=35q9(¢-1)
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where k;,, ..., k;,, are q arbitrary positive (or zero) indices in increasing order,

i.e; 0 < kj < kj, <--- <.kj,, it is indeed possible to choose ¢ such indices,

since there are exactly g more positive (or zero) than negative indices kl, k,

all different.from each other (or ey, A... A g, = 0)
For ¢ < 0 we have ‘

-9

Yokl 2 Y 1kl 2 Zm
j=1- . =

m=1 " m=1

| 1 1
; =i - 1) = -q(qg—1
=0t - gea-1)
where k; < k;, < 10 < k; 0 < 0 are’ chosen arbitrarily between the at
least —q negative indices ky, ... k,, which is possible since there are —¢ more

negative than posmve (or zero) 1nd1ces all dlfferont from each other.
For q= 0 Is

. 1
Zlk|>0-_—2q(q—l)
.]._

Hence

v

H('eklA..TAé;Fn) %q(q—l)(ek,/\-'-/\ekn) A
= l'Q(Q—J)(e,;1 A Aex,)

Thus H > ;Q(Q — 1) = 14(q - 1) on product basis vectors in H,.
Therefore the representation of the Virasoro algebra, given above, re-

- stricted :to H,; is calacterlzed by the label ( + 2q(q - 1), 1), where 3§ +

2q(q — 1) is the minimal energy’ elgenvalue of the new energy operator H,
on H, (corresponding to the sector vacuum €2,). The earlier mentioned label
then corresponds to the sector H. Observe that the representations corre-
sponding to ¢ and —g + 1 gives rise to the same label (of course on different
sectors), they are therefore unitarily equivalent.. Since Dj map H, into. H,
and [H, Di] = kDy, for k € Z \ {0}, by the earlier derived commutation re-
lations (or the complexification of formula (1.17)), it follows that HD.Q, =

DiHQ + kD Qg = (34(q — 1) + k) DiQ,. Hence the energy of D, € H,
has energy stricly less than the sector vacuum 2, € H, for any k negative,
which is a contradiction, or D, = 0. Whence DkQ = 0, for any negative

keZ.
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“'We have analysed the diffeomorphism group Diff *(S?!), on a Lie algebra
level, as a unitary group, by use of the spin representation, treated in section
1.5. Thereby we have constructed positive energy representations of the
Virasoro algebra in the charge sectors H,. These representations have all
central charge ¢ = 1 and minimal energy h + 2q(q — 1), respectively, where
h = %, corresponding to the energy operator H, = H + h.. Ly

There are several ways in which Diff*(S') can act on H-'= Lz(S‘), we
have treated one realization of Diff *(S5') above and will treat another in the
next section, namely Diff *(S!) as a symplectic group.
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4.3 The dlffeomorphlsm group Dzﬁ+(S 1) as a
symplectlc group:

In section 4.2 we considered Diﬂ'+(S‘) as a subgroup of the restricted
unitary group acting on M = Ly(S5"), and used again the spin representation,
constructed in section 1.4 and 1.5, to obtain a positive energy projective
representation on a.Lie algebra. level, in the anti-symmatric Fock Hilbert
space, .which turned out to be a sequence of realizations of the Virasoro
algebra with central charge ¢ = 1. As mentioned earlier this is not the only
action of Diff *(S") on the Hilbert space H = Lz(Sl) in fact there are several
other possible actions (see [Ne, p. 411}).

In this sectlon we will make considerations analogous to those of section
4.2. However, we will consider Dzﬁ+(5") as a subgroup of the symplectic

group acting on a Hilbert space 'HO , and use the metaplectic represen-
tation, conqtruct(d in section 2.3, to achieve a poqltlve energy projective
representation, on a Lie algebra level, in the symmetric Fock Hilbert space.
- This representation turns out to be a realization of the Vlrasoro algcbta with
central charge ¢ = 1 and lowest weight h =0.

The following exposition is parallel to what we dld in sectlon 4.2 and is
based on [Lu 2] and [Ne] ' : :

Consider the infinite vector space H/2 of real functions on the unit circle
S* such that Syenk - [fi]> < oo, where fi = (ek,f)H is the k’th Fourier
component of f with respect to the inner product in H = Lz(Sl) given in
section 4.2. We introduce the semi-inner product on M2, as in the case of
the spin representation of the special loop group, treated en section 4.1, given
in terms of the Fourier components as (f, g )]/2 = 1 ken k- (Frgx + fiTh).
Notice that the Fourier components may be comp]ex even though the original
functions are real. ‘The only restriction on the Fourier component fi is that
f. = (ek,f),{ = <6—k,f)7{ = f_, since f is real. Observe that the semi-inner
product given above is in fact a complex inner product on 2 (for details see -
section 4:1).

The semi-inner product, given above, is not a inner product since H/? has
a one-dimensional null space with respect to the semi-norm arising from the
semi-inner product (-,-), /,. This null space consists of the constant functions
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f = fo (where f, denote the 0’th Fourier component). Hence the quotie’nlj 7
space 'Hlﬁ =H"?/{f: f = fo € R} is a Hilbert space, with inner product
e < o '
Flrst we define the complex unit operator J on H, 12 by

J ( T f) = S fent S(=ifwden T
kGZ\{O} /o kN keN.

ie. J mult1ply the posmve Fourier component fk, k € N, by ¢ and the
negative Fourier component f_;, k € N, by —i. lt follows that Jf € 7'{(1) 2
for fe 'Ho/ % since : : .

(JF) = X sign(k)(- e = Z 's;gn(—k)z'f_ke;k" |

keZ\{0} : . keZ\ (0}
= Z sign(k)ifre, = Jf
,—keZ\{o} .

and

S kNI =Y klsign(k)ifel’ = 3 k|fil* < 0

keN keN keN

The above calculations are of course equivalent to consider J on H'/? modulo
constant functions. .
Obviously J? = ~1, by direct computations, and J* = —J, since

(ganll/z = "zk<gszk+gk( t)fk) ‘

keN

=--§:k( (=JI9)efi+ (=Jg)T)

keN
= (- Jg,f>1/2

Thus J introduces a complex structure on the set 'Ha/ ?. The complexification
'H}/ % of 'H(l,/ * is a Hilbert space with respect to the complex inner product
given by '

(fr9); = ‘(f’g)l/Z +: (Jf’9l1/2

Notice that this complex structure is not the usual one. Hence we may write
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(f,9), = 5 Z kfkgk + > |kl fegx

kEN S ke N
s Z k(ife), gk+ RLICIA
. 2 [N : kE N
= > kfigr .
© .. keN Lo

for f,g € 'Hllz. :
- Thus we define the bllmear form o(+,-) on HY/? by

a(f,g) =Im (fag)J

Then

keN keN .5 keZ\{0}

. U(f, =% (Z kfige — Y kfkgk) - % Y kfigr

’Moreover, we may rewrite o f ,g) as -

C'.,(f,g) : % > kfkgk——<2fnfmzik9k¢k>,
..:_'..r_ Lo ..'H

il

, keZ\{0} neZ = keZ
= FUOSON= & L[ fo)g 0y

for smooth functlons f,g9 € 'H EVidently a(- -} is a non-degenerated

symplectic form on Hl/ 2,

The natura,l action of Dzﬁ”*(S’l) on H = Ly(S") i is given by

(S¢f)( ) = f(¢(6))

where ¢ is a smooth real flmctlon such that ¢(0 + 2r) = ¢(8) + 27 and
#'(0) > 0 defining the diffeomorphism v € Diff ¥(S') by ¥(e®) = %9, see
section 4.2 for further details. In fact, ¥p — s4 defines an anti-representation
of Diff *(S57), since 2 0 Yy — 54,04, and exactly as in section 4.2 one shows
that

“(562(56.))(8) = (5910601 /)(0)
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Notlce that s¢ is real linear, with respect to J, and is invertible on ’HJ ,
with inverse s4-1. Moreover, a(,-) is invariant under sy, - -

o(sshrosg) = o= [ HHO) S (aloON0

4w
= = [ 10g@)ai = o(19)

for all f,g-€ 7'{(1)/2; where 0 = ¢(0). Hence s, E}S})(Hlj/z),. In fact s4 is
real linear with respect to J, and as usual we split s, into a complex linear
part (sg)1 = —2J[s4,J]4+ and a complex anti-lincar part (s4); = 3J[s4,J],
which becomes Hilbert-Schmidt. So we only have to prove that [s4,J] is
Hilbert-Schmidt, then is also (s4),. The complex structure J only differs

from the previous polalwdtlon operator, discussed in the beginning of section”

4.2 (and there denoted by a J ) by the factor i, i.e. J = iJo, where Jg is
the polarization operator on 'HJ , that is Jofy = £ fy, for fi € ('Hl/z);{; .

consisting of all vectors in HY J % such that all the negative (+) respectively
positive (~) Fourier components vanish (see also the beginning of section
4.1). ,

Then J, as Jy, is a singular integral operator with kernel K(8,¢) =
i — cot 3(8 — ) (see the discussion in section 4.2). Since the kernel of s, is
given by §(#(8) — ¢), then the kernel of the commutator [s4, J] is given by

7 da (5(000) - @)K (o, ﬁ) ~ K(0,0)6(d(c) — B)

= K($(0),8) - K(8,47'(8))¢'(¢7"(8)) "
= K(4(0),8) - K(0,47'(B)(67)(B) -

As in the discussion in section 4.2, this kernel is indeed smooth, except
possibly on the diagonal 8 = ¢(f), however, it is at least continous at the
diagonal. By use of a Taylor expansion, for |3 — ¢(0)| sufficiently small, the
prospected singularity in the kernel does not appear,

L (¢7)(B) _ (¢71)"(¢09)
¢0) -8 0-9¢71B) (671)(4(0))

by calculations analogous to those in section 4.2. So the kernel is indeed
continous at the diagonal, since ¢, and then ¢!, is a strictly monotonous
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diffeomorphism. Hence, the kernel is square integrable on S! x §!, which
means that the operator it represents, [sg4,J], is Hilbert-Schmidt. There-
fore s4 € Spg('H}/ %), and we can construct the metaplectic representation of
~ Diff *(S"), considered as a symplectic group. .

As a baS1s for the Lie algebra of rea.l vector fields, acting on the Hilbert |
space ’HO , one usually choses cos(k6)% and sm(k0) 75~ However, it is more
convenient to use the ordinary complex structures and thereby introduce the
basis dj = ek‘iio, k € Z, where €, (0) = ¢'**. Of course these operators d;, act
in the ordinary complexification 'Hl 12 of 'Hl 2, Notice that these operators
are unbounded but they have a common maximal domain Dmaz given by
fe 'H ? such that ”d"f”H’c’:’ = | S ez nfrnskll’ = Tnez 7?1 fal? is finite.

One shall' beware that we are now operating with two different complex
structure. Later on we will only consider the (ordinary) imaginary part. Of
course, there will be no trouble if the (ordinary) complex linear operators
commutes with J. However, this is not quite the case for the basis elements
di, [dx;J] # 0, but the commutator is Hilbert-Schmidt, and is, in fact, of

finite rank. Since diJén = — |n|enyx and Jdre, = sign(n) - sign(n + k) -
(= In| - ensr) is [k, Jlen = |n] - €ntx - (sign(n) - sign(n + k) — 1)'and then
di, JIf = Z In| - fa - €ngr (sign(n) . sign(n + k) -1)
n€Z\{0} R .
= Y n foenyke (s1gn(n + k) - 31gn( )
neZ\{0} e

_2 * zo<,;<;kn . fﬂ ° 6n+k for k < 0
B 22 k<n<0n"fn"en+k 9 fork>0

= -2 3 |n| fo- en+k

A ne€Ny ‘ .
where N, = {1,2,... —k-—l} fork<——1 Nk={ k+1—k‘+2 -1},
»fork>1ande-0 else.
. Observe that dj = —d_, with respect to the ordinary complexxﬁcatlon on

'Dm,m, since on basxs vectors e, and e, we have
(em7 dken)c = (—d—kem, 6n)C

where (frg+1- h)c = (f.9 )1/2 +1i-(f, )1/2, for f,g,h € 7'{(1)/2 and g +
h € 7{1/2. Hence d; = —d_;. Moregver, on any basis vectors e; is the
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commutator [d,,,d,] well-defined an(:i:‘gives [dm,dn] = —i(m — n)dpin since
[d,dr)ex = —i- (m —n)-dnyner. The 'dk, k € Z do of cause fulfil the Jacobi
identity N '
[[dk’ d ] ] - [[dm>dn] dk] + [[dm dk] ] 0

So by linearity, {dx,k € Z} spans a complex vector space which is a Lie
algebra, the ordinary complexification of the Lie algcbra correspondmg to
Diff*(S?), considered as a symplectic group.

- We now complexnfy the mapping A — dU(A) which is defined in section
2.3 for A € sp,(HY/?) only. First we put

] d 1 )
and
E = sin(k0)S = Lidy + o)
T R R

such that dy = dj -+ - d, where the involution * acts on operators on ’ng.
Notice that di, = —d*, = —(d})* and d}, = d", = —(d})*. Of course their
domains are the max1mal ones and they are all equal to D,,,, defined earlier
as those f € 'HC ‘such that ¥,z n?| fnl is finite, where f,, denotes the n’th
Fourier component of f. Both d}, and d; are skew-selfadjoint with respect to
o, since

odifg) = o= [ cos(kt)S(0)g'(0)ds
- 4% / " cos(k6)g'(0) f'(6)do
= U(dlg,f) = _U(fa Ig)

and quite similarly one sees that o(d..f,g) = —o(f,dig), for all f,g € 'H(I,/2.
The complexification of the above mapping A — dU(A) is then given by

dU(di)c = dU(d}) + idU(d},)

We use the abbreviation Dy = dU(di)c. These operators Dy, k € Z, act
in .7:\,(7"{_, %). From the gencral theory, derived in section 2.3, it follows
that dU(d7) and dU(d}) is well-defined and cssentially skew-sclfadjoint on
fv('H‘Jﬂ). Since (di)2 = 1J[dk, J] is a Hilbert-Schmidt operator, so are both
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(d})2 and (d,'c)g, whereby d} and d} both belong to the extended Lie algebra
of sp,(HY ) Therefore Dy, k € Z are well- deﬁned in Fy(H}?) and fulfil

D= —dU(dL)+sz(d;,) = —dU(d’k)—sz(d‘ ) = ~D_;

on the domain D. Furthermore we put H = —zDo = —tdU(dp), then H* =
" i(=Do)=HonD. Since (do)zen = J[do, J]e, = 0, by direct calculation, for
any n € Z, is (do)2 = 0 and (do), = do Alternatively one could define P as
the orthogonal projection 1(/ +1iJ) onto (’Hl/z)_ = span{e, : n < 0}, the —:
eigenspace corresponding to J. Then (dg); = Pdp(1 — P)+ (1 — P)dyP =0
by a straight forward caculatlon and do = (do)l = PdoP +(1- )do(l - P).
Then : . o o

: L i n o .
'H(ekl\/...Vekn‘) = Ze_klv...Vekj_,ijekj V‘ekj_'_lv...‘\/‘ekn
. § S j=1 . L ]

j=1

A= (Zn: ) ek,' .Vek”)

and by the inner produet on .7"\,(7'{, %) we get

(eklV...Vekn,HekIV...Vek") = (

-

4) Rl
ka) Z ﬁ(v(k) ko ki X(k))

aGS,. 1—1

L .,
= ||M= n[\/]:s
[ -

since (em,€n); = M * bm_m, for m positive and (e, e,); = 0 for m negative,
where x(-) denotes the indicator function for N. Notice that it is strictly
larger than, in the formula, if and only if all the ki, 3 =1,...,n are strictly
. positive.- Hence H is positive (meaning non-negative). So the representatlon
di +— Dy is of positive energy, where H = —iDg denotes the energy operator,
in fv('Hl/z) with the common domain D.

By the complexification, linearity and the above, we get the two point
function
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(D, Dnfl) = (Q,—D_nD,R) |
- = —{Q,(dU(d.,) +i-dU(d",)) (dU(d) +i - dU(d})) Q)

5T (s - (d)s) ((domda - (d)s)) -

1 -

where the inner product is that of fv(’Hy2) and formula (2.24) of theorem
17 in section 2.3 have been used. Obeserving that :

(dn)2(d-m)2ek
= k(m—k)-(1-x(k)) - x(k = m)(1 = x(k —m + n))errn-m
+k(m = k) - x(k) - (1 = x(k=m)) - x(k—=m +n)erinm

for k positive and where x(:) denotes the indicator function for N. Hence

5T ((dn)a(d-m )

1 1 1
- 5 kezz\{o} <ﬁeka (dn)?(d—m)2ﬁek>J
_ % S k(m — k)x(k — m)(1 — x(k = m + 1))6s-mx(k)

ke-N
45 3 k(m = £)(1 = x(k — m)x(k = m + 1) nx(R)
keN
- %5n_,,, 3 k(m — k)x(m)
k=1
1

2
= m(m* — 1)é,_..x(m
12 ( ‘ ) X( , )

where we have explicitely used that {_\},;ek}keN form an orthonormal basis

for H}”, since (em,€n); = Mm - 6y - x(m). Notice that ||D,. || = 0, for m
negative. Therefore the Lie algebra cocycle is
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3

sldmydi)e = ~XT6s([(d)s (dn)e)
- % - (m? = 1) Sppm - (x(m) + x(—m))
: _ |

=A‘¢ﬁ-m-(m2—1)g5n+m

by complexification of formula (2.28) in section 2.3. The positive energy
representation is a socalled level one representation, i.e. (k,c) = (0,1) where
h = 0 is the minimal energy and ¢ = 1 is the central charge. :
We end this section by mentioning that there are other symplectic actions
of Diff*(S') than the one considered in'this section, for those we refer to
[Ne, p. 411]. R




4.4 The boson-fermion correspondance.

In section 4.1 we showed that the mapping f — ¢(f), f €% sIS2, provides
us with a representation of the canonical commutation relations in the anti-
symmetric Fock Hilbert space (see page 177), or equivalently that ¢/ —
U(e'f) gave a representation of the special loop group. SLS!, which fulfils
the Weyl form of the canonical commutation relations (see page 180). As
claimed in section 4.1, the first representation mentioned above is unitarily
equivalent to the Fock representation f — 7(f) on the symmetric Fock space
modelled over H'/?, introduced in section 2.1. This remarkable equivalence
is well understood by the boson-fermion correspondance. We will not discuss
the boson-fermion correspondance in general, but refer to [Mi, p.193-202)
and [K-R, p.53-64], however, we will prove it in this particular case.

Theorem 34 The "sector energy operator” Hy = H — 1Q(Q—1I) is unitarily
equivalent to the boson energy operator in each charge. sector.

Proof. We notice that Uhlenbrock, in [Uh], consider a similar correspodence,
however, the arguments conserning the mutiplicities are not immediately
intelligible, even that the result is correct. Below we bring an alternative
argument. Since [dg, flg = f - g it follows that [dy, f] = f' and hence

H, ¢(f)] = —ildU(do), ¢(f)] = —id({do, f) = —i¢(f")

by direct calculation, using formula (1.17) and the fact that wp(do,2f) = 0.
Whence

[Hp, U] = [H = 5Q(@ = 1),6(1)] = ~id(f")

by [@Q,#(f)] = 0 (see page 177). This is the exspected commutator of Ha
with ¢(f).

In section 4.2, page 199 we have already shown that
1
[Fn, S) = [H ~ 5Q(Q ~ 1), 5] = 0

and that the energy operator H may be decomposed as H = @ ez H,, where
H, = H|3, and H, denote the ¢’th charge sector defined in section 1.5, and
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that Ha = H — 1Q(Q —1).> 0:0n each.’H, (see page 201). Especially
is HAQYy = -HAS'QY = 0 (see page 200).. We notice that the spectrum of
H is N U {0} and that the spectrum of @ is Z, whence the spectrum of
Hy, = H - 3Q(Q — I) is N U {0}: :Moreover, the boson energy operator
in Fy ('Hl/ ?), given by the second quantlzatlon mapping as —t - dU(dp), has
spectrum N U {0}. g
Below we will show that the multlphcmes of H, and that of the boson
energy operator are the same, and that HA and the boson energy operator
then are unitarily equivalent. :
Let us first' consider the boson case. In this case any basis product vector
ex, Voo Voer, € Fo(HY?) with ky > ... > k, > 0 and energy 3.7_, k;
m € N correspond uniquely to a 'partlcula,r partition of m € N into a sum”'
of positive ihtegers, i.e. aset {ky,...,k,} wherek; +-- -+ k, =m and k; >
-+ > k, > 0. Moreover, different partitions corresponds to to orthogonal
vectors. The eigenspace BY, of the boson energy operator corresponding to
energy eigenvalue m € N are spanned by e, V -+ V e, € Fv(H?), where
L kj = m. Hence the dimension dim(BY,) is exactly the number p(m) of
partltlons of m € N into a sum of positive integers. It can be shown that
p(m) = 2= (T2, (1= 2™) ™) |40, but. we will not need this result here.
~ Let. us next consider the fermion case. In this case each product vector
e, N - ‘Aej, €H ¢ with j; >--. > j, and sector-energy m = Y2, |5)| -
%q(q - '1) is uniquely determined by the ordered index-set (j1,...,Jn); with
J17> - > and i € Z, Il = 1,...,n such that card(J;) — card(J_) = ¢
and YL, |71l — 39(¢ — 1) = m, where J, = {j e NU{0} : j € (ji,---,Jn)}
‘and J_ = {3 € =N : j € (j1,---,Jn)}. That is, we have an isomorphism
between the set of orthonormal basis vectors in H, and the set of ordered
integer-tuples such that the difference between the number of non-negative
elements and the number of negative elements is ¢ and such that 37, || =
m+ 2q(q 1). Notice that dlfferent mdex tuples are maped into orthonormal
basis product vectors. -
Define the mapping 4 from the set of such index- tuples, defined above,
into the set of ordered integer-sequences by v(j1, .+, jn) = (¢) = (t-1,2-2,...),

where i_; =, if §; is non-negative and the negative elements i_; € (i) are
the negative integers which do not occur in (jy,...,Js). The sequence (z)
is ordered in decreasing order i_y > i_9 > --- and i_;_; = i_; — 1 from a

certain step (I > n). We will shortly write this as v : J, — I, = J, and
v:J- — I = (-N)\J.. We emphasize that ¢ = card(/,)—card(I2), where
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It = (=N)\I_ = J_, and that there exist a so € N such that i_, = g—s, for
s 2 so. Integer-sequences fulfilling these demand will be called semi-infinite
integer-sequences (of chargeiq). We do especially have that

oo

> (= (g—9) = Zz_s—z (g s)
s=1 - s=1 _
9=
= Z ¢ + Z 1 — Z S
iEIS_q—’O) gGI(_q 20) s=¢q~1

where 17%) = {i € I+ :i> q—s0}. The rewriting

Z i=q§i—2i

iefle—0)  i=—1  ielt

then gives
(e o) 3g—~q S0—¢q
2(a—(g=5) = D i-3di-Y i+ Y s
s=1 iely 1€l i=1 s=—(g-1)
lg-1]
= Y l-xs
i€l ure s=1
. 1
= 2 lil-z4a-1)

JEJ LU
= m

Notice that v in fact defines an isomorphism between the set of index-tu-
ples with charge q and sector-energy m and the set of semi-infinite inte-
ger-sequences (:) such that i_; > i, > ---, card(J}) — card(I%) = q,
i_s = ¢ — s for s larger than some so € N and %2, (i_, — (¢ — s)) = m.
Hence, the dimension of the eigenspace BA(q) of the sector-hamiltonian
H,ly, corresponding to the energy eigenvalue m € N is equal to the num-
ber of different ways one can choose semi-infinite integer-sequences fulfill-
ing the above demands. However, the number of ways one can choose
such different semi-infinite integer-sequences is equal to the number p(m)
of partitions of m into a sum of positive integers (in non-decreasing order).
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Each semi-infinite integers-sequence, for fix ¢ € Z, can be uniquely writ-
ten as (Q-—1+"?l,‘I‘2+ki;, Hqg=n+k,q—n-— 1,q—n—2,...) with
ky2ky > -2k, >0, since 52, (i — (g =8)) = 1 k5. Moreover, one
easily get that the number of ways to choose a vector in H W1th sector -energy
0is p(O) = 1 namely by the choise I, = S0 Thus is

dnm(qu)) p(m) - dim (BY,).

and we may define a ma.ppmg Upm : BV — B ~(g) by first choosing ortho-

“normal basis for BY, arid B (q), respectlvely, and then let U, , map the j’th
basis vector into the j’th basis vector, j = 1,...,p(m). By linearity and
continuity we-extend U, to a unitary operator. If we put

Uy = ®35olam : P (’H‘/Z) = eas:_'oBV - H, =€B°°_0B"( )

then we get a umta.ry operator mappmg fv('Hl”) onto H, such that UHy =
Haln,U,. Whence H, and H, are unitary equivalent in éach charge sector
H, and it follows once more, as stated in the end of section 4.3, that H b,
and HAIH , are umtarlly equ1valent since HA|Hq = U,U; H,\IH ,U U [ |
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‘Summary, conclusions and
outlook | |
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Summary, conclusmns and outlook

As a more personal’ pomt of view, ‘we ﬁnd lt amazmg how strong a tool the
. Fock Hilbert spaces are in the conmderatmns of this paper. Evidently one
could have used other r_eplesentatlon spaces, for example the infinite wedge
space, in most of the considerations. However, thé Fock Hilbert spaces seems
. appropriate for our analytical approach and they are essential for our explicit
construction of both the spin representation and the metaplectic represen-
- tation., We also benefit from these spaces when fixing the cocycles by the
chosen demand, that one-parameter subgroups are lifted to one-parameter
. subgroups near the identity. These cocycle formulas are so simple that they
may deserve to be called canonical cocycles. We also find that the formulas
for the vacuum functionals are remarkabely simple. Our analysis in chapter
1 and 2 is complete on a Lie algebra level and on one-parameter subgroups.

Moreover, the anti-symmetric Fock Hilbert space contains the represen-
tation spaces of our constructed unitary highest weight representations of
the Virasoro algebra with central charge c.= 1, made in section 3.3, by use
of the oscillator construction, and with' central charge ¢,, belonging to a dis- -
crete series in [0, 1[, made in section 3.4, by use of the GKO construction.
We emphasize that for m =1 the'GKO construction provides us with a
‘representation with central charge ¢ = 1. However, our analysis of the Vira-
soro algebra is not exhausted, for example is the famours Kac determinant
formula not discused. From thlS ‘determinant formula one can determinate
the possible irreducible umta.ry highest wexght represéntations, namely those
where (¢, ) € {(cm, R} :r,s € NU{0},1 <s<r<m+1,me NU{0}}).
In section 3.1 we gave a survey on loop algebras, which turned out to be
intrinsically connected with the Virasoro algebra through the Sugawara con-
struction. Furthermore, we find the considerations of chapter 4 quite inter-
esting, as we use the spin representation to construct explicit representations
of the particular loop group LS!. It turns out that this construction provides
us with a sequence of representations of the CC R-algebra, in the anti-sym-
metric Fock Hilbert space, indicating the interessting boson-fermion corre-
spondance. In fact, we end up by discussing this particular boson-fermion
correspondance; which is very concrete in the considered case. These consid-
erations are also completed.

We do also use both the spin representation and the metaplectic repre-
sentation to construct explicit representations of the orientation preserv-
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ing diffeomorphism group of the unit circle Diff %(S'), in the Fock Hilbert
spaces modelled over the one-particle Hilbert space H = L2(S!) or subspaces
thereof. Since the representation theory of the diffeomorphism group is very
rich, our considerations here are less complete. Finally, we point out that it
is still an open question whatever it is possible to construct representatidns
of the Virasoro algebra with central charge ¢ less than 1, especially ¢ = 2,
by use of either the spin representation or the metap]ectlc representatlon n
analogy with the constructions made in section 4.2-4:3.




Chapter 6

Summary in danish.
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Resumé pa dansk.

I dette kapltel brmges en sammenfattende redeg¢relse af afhandllngens re-
sultater pa dansk.

Afhandlingen bestar dels af kendt stof supp]eret med enkelte nye bewser
og dels af nogle nye resultater, der er sammenfattet til et selvsteendigt hele.
Hovedsaghg i starten af hvert afsnit forekommer der nogle historiske bemaerk-
ninger og enkelte steder, specielt i afsnit 3.2, nog]e eksempler pa anvendelser
af teorlen i fys1kken

Kapltel 1 er hovedsaglig en sammenfattende omskuvnmg af kendt stof,
dog suppleret med enkelte detaljer og bevnser som det ikke har veeret muligt
at finde andre steder. :

I afsnit 1.1 introduceres Fock Hllbertrummene modelleret over en- parti-
kel Hilbertrum, samt nogle vigtige underrum deraf.

I afsnit 1.2 beskrives CAR-algebraen og den kvivalente Clifford algebra
samt deres Fock repraesentationer. Det vises at CAR:algebraen, og dermed
ogsd Clifford algebraen, er entydig op til *-isomorfier, hvorfor man kan kon-
centrere sig om deres Fock repraesentationer. Endelig stilles spgrgsmalet:
For hvilke ortogonale transformationer T er automorfien w(f) = n(T7f) af
Clifford algebraen uniteer implementerbar i Fock repraesentatlonen ? Sp¢rgs—
malet besvares i afsnit 1.4.

‘Tafsnit 1.3 benyttes det antlsymmotrlske Focl\ Hilbertrum og Fock reprae-
sentationen af CAR-algebraen eksplicit til at konstruere anden kvantisering
ogsa kaldet Fock-Cook kvantisering. .,

I afsnit 1.4 preesenteres "the restricted orthogonal group” Oz(H) (der fin-
des ikke nogen god oversattelse af dette navn til dansk) samt et valg af Lie
algebra. Endvidere konstrueres spmrepraesentatlonon af Oy(H) eksplicit pa
Lie algebra niveau, ved hjalp af anden kvantisering og en generalisering af
denne ide. Spmrepr&asentatlonen er en projektiv reprasentation. Konstruk
tionen bygger pa at enhver reel linezr operator kan splittes op i en sum af en
kompleks linezr og en l\ompleks antilinezer operator, samt det faktum at den
antilinezre del af en operator fra Oy(H), per definition, er Hilbert-Schmidt
og at enhver Hilbert-Schmidt operator er i entydig l\orrespondance med en
vektor i det antisymmetriske to-partike! Hilbertrum. Denne diskussion er
neart relateret til det i afsnit 1.2 stillede spgrgsmal, da svaret er, at autom-
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orfien 7(f) — w(T'f) er uniteer implementerbar i Fock reprasentationen
hvis og kun hvis den ortogonale transformation T tilhgrer O;(H). Dette
svar var givet af Shale og Stinespring allerede i 1965, [S-S]. Det fglger at
spinrepraesentationen netop giver de gnskede uniteere implementorer. Vores
metode er dels konstruktiv og dels benyttes et andet kriterium til at fast-
leegge fasen, nemlig at en-parameter undergrupper af: Lie algebraen lgftes til
en-parameter undergrupper i en omegn af identiteten i Cz(H), ved eksponen-
tialafbildningen. Den resulterende cocykel pa Lie algebra niveau (svarende
til fasen navnt ovenfor) er sa simpel at den fortjener at blive kaldt kanonisk

w(A,B) = ~ (4, By)

hvor A og B er elementer i Lie algebraen og A; henholdsvis B; betegner deres
respektive antilinezre del. Til sidst udledes et simpelt udtryk for vacuum
_funktionalen

c(s) = (det(V_,))""?

hvor V_, = e*41(e™*4), og index 1 refererer til den korresponderende linezere
del. En del af beviserne og argumenterne i dette afsnit har jeg ikke kunnet
finde andre steder, dog findes de fleste resultater i [Lu 2].

I afsnit 1.5 indlejres "the restricted unitary group” Us(H, P) i Oy(H).
Herved kan spinrepreesentationen af Uy(H, P) defineres og teorien fra afsnit
1.4 tilpasses dette specialtilfeelde. Mange beviser og argumenter i dette afsnit
har jeg ikke kunnet finde i litteraturen.

I afsnit 1.6 redegpres for transformationen mellem den anvendte formali-
sme og en alternativ formalisme som for eksempel Araki [Ar] benytter. Denne
transformation er ikke beskrevet andetsteds.

Kapitel 2 redeggr for det symmetriske tilfelde. Det viser sig at meto-
derne fra kapitel 1, hvor det tilsvarende antisymmetriske tilfalde blev be-
handlet, kan overfgres med mindre justeringer. Det er atter den uddybende
og sammenfattende form, der sammen med detaljerne i afsnit 2.3, er mine
vaesentligeste bidrag.

I afsnit 2.1 betragtes det analoge objekt til CAR-algebraen. Pa grund af
manglende norm-kontinuitet er dette objekt ikke en C*-algebra, men kun en
*-algebra. Dog kan CCR-algebraen konstrueres ud fra denne *-algebra, ved
hjzlp af Stones seetning. CCR-algebraen er en C*-algebra.
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I afsnit 2.2 behandles anden kvantisering helt analogt til det antisymme-
triske tilfeelde. , o

I afsnit 2.3 praesenteres den uendeligdimensionale symplektiske gruppe
samt et valg af Lie algebra. Endvidere gives et konstruktivt bevis for ”hvis”
delen' af Shales seetning fra 1962, [Sh): Automorfien (f) — 7(S~1f), hvor
S er en symplektisk transformation, er uniteer implementerbar hvis og kun
hvis S tilhgrer "the restricted symplectic group”, Sp2(H). Disse uniteere
implementorer giver den metaplektiske reprasentation, der er en projektiv
repreesentation af Spy(H). Som i afsnit 1.4 fis en kanonisk cocykel pa Lie
algebra niveau ' ‘

(4, B) = 5T(As, By)

" hvor A og B tilhgrer Lie algebréen og A; henholdsvis B; betegner de respek-
tive antilinezere dele. Vacuum funktionalen bliver

c(s) = (det(V,)) ™"
hvor V_, = e*41(e~*4), og index 1 refererer til den korresponderende linezre
del. De modsatte fortegn, i forhold til de tilsvarende udtryk i det antilinezre
tilfeelde, skyldes symmetrien af produktvektorerne i de respektive Hilbert-
rum. Det skal bemeerkes at den givne udledning af og beviserne for de fleste
- resultater i dette afsnit s vidt jeg ved ikke forekommer andetsteds, selv om -
resultaterne e.'r kendte. - - '

Kapitel 3 er reserveret til en introduktion af loopalgebraer og Virasoro
algebraen samt konstruktioner af diverse repraesentationer af Virasoro alge-
braen for forskellige veerdier. af den centrale ladning. Disse repraesentationer
er transformationer af kendte rent algebraiske konstruktioner til repraesenta-
tioner i det antisymmetriske Fock Hilbertrum, med den yderligere topologiske
struktur dette rum besidder, ‘ T

I afsnit 3.1 beskrives og diskuteres loopalgebracr og deres centrale udvi-
delser til affine Kac-Moody algebraer samt en yderligere udvidelse ogsa til
affine algebraer. Begreberne Cartan delalgebra og hgjeste-vagt-reprasenta-
tioner diskuteres ogsa. Derudover konstrueres Sugawara konstruktionen, der
giver generatorerne for en reprasentation af Virasoro algebraen i termer af
kvadratiske led af basis elementer for en vilkarlig reprasentation af en affin
Kac-Moody algebra. Endelig redeggres der for at de orienteringsbevarende
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diffeomorfier af enhedscirklen virker som en gruppe af automorfier af den
centrale udvidelse af enhver loopalgebra.

I afsnit 3.2 introduceres og diskuteres Virasoro algebraen indgdende samt
nogle af dens anvendelser i fysik. Diskussionen af Sugawara konstruktionen
fra foregdende afsnit fglges op og der tages hul pa diskussionen om hvilke
vardier af den centrale ladning, der er mulig hvis det kraeves at repraesen-
tationerne af Virasoro algebraen skal vere irreducible unitzere hgjeste-vaegt-
reprasentationer. Udtrykkene "hgjeste-vaegt” og "laveste-vaegt” bruges skif-
tevis. Konventionelt benyttes udtrykket "hgjeste-veegt” oftest (af historiske
grunde) ogsa i tilfeelde hvor udtrykket "laveste-veegt” er bedre beskrivende.

I afsnit 3.3 focuseres pa repraesentationer af Virasoro algebraen med cen-
tral ladning ¢ = % Der konstrueres eksplicitte repreesentationer i det an-
tisymmetriske Fock Hilbertrum i de to essentielt forskellige tilfeelde, kaldet
Ramond sektoren, henholdvis Neveu-Schwarz sektoren. Derved opnas irre-
ducible unitare laveste-veaegt-repraesentationer med positiv energi. Denne
oscillatormetode, som bygger pa en oscillatoralgebra, kan ogsa benyttes til
at konstruere reprasentationer med central ladning stgrre end 1. Den ekspli-
citte konstruktion pa det antisymmetriske Fock Hilbertrum er mig bekendt
ikke tidligere beskrevet.

I afsnit 3.4 overfgres den rent algebraiske GKO konstruktion til repraesen-
tationer af Virasoro algebraen i visse underrum af tensor produkter af lad-
ningssektorer af det antisymmetriske Fock Hilbertrum. Herved konstrueres
en serie af irreducible unitare hgjeste-vaegt-reprasentationer parametriseret
ved de sammenhgrende mulige vardier af den centrale ladning og den hgjeste
vagt, hvor den centrale ladning er givet ved

6
S (m+2(m+3)
og den hgjeste veegt er givet ved
() = ((m 4+ 3)r — (m +2)s)? — 1,
4(m + 2)(m + 3)
Efter hvad jeg ved er konstruktionen beskrevet i dette afsnit ikke publiceret
tidligere.

Cp =

m € NU {0}

rnseEN,1<s<r<m+1

Kapitel 4 omhandler anvendelse af de tidligere kapitler, specielt kapitel
1 og 2, pa den orienteringsbevarende diffeomorfigruppe pa enhedscirklen og
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pa loopgruppen LS' over cirkelgruppen, ogsa kaldet loopcirklen. Nogle af
resultaterne forekommer i [Lu 2], men med meget fa deta.lJer Disse samt
nogle nye resultater udledes.

I afsnit 4.1 dekomponeres loopcirklen i et produkt af den specielle loop-
gruppe SLS! og ladningsgruppen. SLS?! realiseres som en Abelsk under-
gruppe af Uy(H, P) og spinreprasentationen benyttes til at give eksplicitte
reprasentationer af SLS! pa et Lie algebra niveau. Derved fremkommer
der en serie af uniteert kvivalente repreesentationer af ('CR-algebraen i det
antisymmetriske Fock Hilbertrum, hvorved boson-fermion korrespondancen
indiceres (denne behandles senere). I tilfeeldet med ladningsgruppen viser
det sig at elementerne ikke tilhgrer Lie algebraen, der er benyttet fundamen-
talt i konstruktionen af spinreprasentationen, hvorfor de tidligere udviklede
metoder ikke kan benyttes. Pa trods af dette kan uniteere implementorer
eksplicit konstrueres i dette specialtilfeelde. Derved giver produktet af de re-
spektive unitere implementorer, for henholdsvis SLS? og ladnmgsgruppen
projektive repraesentationer af loopcirklen LS.

I afsnit 4.2 studeres den orienteringsbevarende diffeomorfigruppe af en-
hedscirklen, realiseret som en undergruppe af U(H, P), hvilket tillader bru-
gen af spinreprasentationen. Herved opnds en serie af positiv-energi-reprae-
sentationer af Virasoro algebraen med central ladning ¢ = 1, parametriseret
ved den laveste vaegt h = 1 + 1¢(q — 1), ¢ € Z, udtrykt ved spinrepraesenta-
* tionen i det antisymmetriske Fock Hilbertrum.

" 1 afsnit 4.3 foretages betragtninger, analoge til de der blev foretaget i
afsnit 4.2, denne gang ved at realisere den orienteringsbevarende diffeomor-
figruppe af enhedscirklen som en undergruppe af Sp,(H). Herved kan den
metaplektiske reprasentation benyttes, hvorved der opnis en projektiv po-
sitiv-energi- repraesentatlon a.f Vlrasoro algebraen med central ladning ¢ = 1
og laveste vaegt h = 0.: o =

I afsnit 4.4 redeg¢res der for boson fermion korrespondancen, som der
blev lagt op til i afsnit 4.1. Det her givne bevis optraeder ikke andetsteds
og er et alternativ til (en generalisering af) det Uhlenbrock giver i [Uh p.
69-71).

Kapitel 5 er reserveret en kort opsummering og konklusioner, dette er
essentielt inkluderet i naerverende resumé.



Kapitel 6 er forbeholdt ovenstaende resumé pa dansk.
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127/86 "GALOIS' -BIDRAG TTL UDVIKLINGEN AF DFN ABSTRAKTE
ALGEB|
Projektrapport af: Pernille Sand, lieine Larscn &
Lars Frandsen.
N Vejleder: Mogens MNiss.
7 ’
128/86 "SMAKRYB" - cam ikke-standard analyse.
Projektrapport af: Niels Jergensen & Mikael Klintorp.
Vejleder: Jeppe Dyre.

129/86 "PHYSICS IN SOCIETY"

Lecture Notes 1983 (1986)
Af: Bent Sgrensen

"Studies in Wind Power"
Af: Bent Sorensen

130/86

"FYSIK OG SAMFUND" - Et integreret fysik/historie
projekt om naturanskuelsens historiske udvikling

og dens samfundsmassige betingethed.
Projektrapport af: Jakob Heckscher,

Andy Wiered.

Vejledere: Jens Heyrup, Jergen Vogelius,
Jens Hejgaard Jensen.

131/86

Seren Brend,

"FYSIK OG DANNELSE"

Projektrapport af: Seren Brend, Andy Wiered.
Vejledere: Karin Beyer, Jergen Vogelius.

132/86

“CHERNOBYL ACCIDENT: ASSESSING THE DATA.
ENERGY SERIES NO. 15.
AF: Bent Sg¢rensen.

133/86

134/87 "THE D.C. AND THE A.C. ELECTRICAL TRANSPORT IN AsSeTe SY:
Authors: M.B.El-Den, N.B.Olsen, Ib Host Pedersen,

Petr Viscor

"INTUITIONISTISK MATEMATIKS METODER OG ERKENDELSES-
TEORETISKE FORUDSEININGER"

MASTEMATIKSPECIALE: Claus Larsen
Vejledere: Anton Jensen og Stig Andur Pedersen

135/87

136/87 “"Mystisk og naturlig filosofi: En skitse af kristendommens

forste og andet mede med grask filosofi"
Projektrapport af Frank Colding Ludvigsen

Vejledere: Historie: Ib Thiersen
Fysik: Jens Hojgaard Jensen

"HOPMODELLER FOR ELEKTRISK LEDNING I UORDNEDE
FASTE STOFFER" - Resume af licentiatafhandling

Af:

137/87

Jeppe Dyre

Vejledere: Niels Boye Olsen og
Peder Voetmann Christiansen.



138/87 "JOSEPHSON EFFECT AND.tIRCLE MAP. "

Paper presented at The-International’

Workshop on Teaching Nonlinear Phenomena

.at Universities and Schools, "Chaos in
Education". Balaton, Hungar_y, 26 Aprﬂ -2 May. 1987

By: Peder Voetmann Chr1st1ansen

13987 "Machbarkeit nichtbeherrschbarer Technik
_durch Fortschritte in der Erkennbarkeit
der Natur" )

Af: Bernhelm Booss-Bavnbek .
Martin Bohle-Carbonell

Loy

140/87 "ON THE TOPCLOGY OF SPACES OF HOLOMORPHIC MAPS"

By: Jens Gravesen

141/87 "RADIOMETERS UDVIKLING AF BLODGASAPPARATUR -~
ET TEKNOLOGIHISTORISK PROJEKT"
Projektrapport af Finn C. Physant
Vejleder: Ib Thiersen’

142/87 "The Calderdn Projektor for Operators Wlth
Splitting Elliptic Symbols"

by: Bernhelm Booss—Bavnbek og
Krzysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik pa NAT-BAS"

af: Mogens Brun Heefelt

144/87 "Context and Non-Locality - A Peircean Approach

Paper presented at the Symposium on the
Foundations of Modern Physics The Copenhagen
Interpretation 60 Years after the Camo Lecture.
Joensuu, Finland, 6 - 8 august 1987.

By: Peder Voetmann Christiansen

145/87 "AIMS AND SCOPE OF APPLICATIONS AND
MODELLING IN MATHEMATICS CURRICULA"

Manuscriptbo.f a plenary lecture delivered at
ICMTA 3, Kassel, FRG 8.-11.9.1987

By: Mogens Niss

146/87‘"BESTEMMELSE AF BULKRESISTIVITETEN I SILICIUM"
- en ny frekvensbaséret malemetode.
Fysikspeciale af Jan Vedde
Vejledere: Niels Boye Olsen & Petr Visdor

147/87 “Rapport om BIS pad NAT-BAS"
redigeret af: Mogens Brun Heefelt

148/87 "Naturvidenskabsundervisning med
Samfundsperspektiv"

af: Peter Colding-Jergensen DLH
Albert Chr. Paulsen
149/87 "In-Situ Measurements of the density of amorphous
germanium prepared in ultra high vacuum"
by: Petr Visdor
150/87 "Structure and the Existence of the first sharp

diffraction peak in amorphous" germanlum
prepared in UHV and measured in-situ"

by: Petr Vié&or

151/87 "DYNAMISK PROGRAMMERING"

Matematikprojekt af:
Birgit Andresen, Keld Nielsen og Jimmy Staal

Vejleder: Mogené Niss

152/87

"PSEUDO—DIFFERENTIALVPROJECTIONS AND THE TOPOLOGY.
OF CERTAIN SPACES OF ELLIPTIC BOUNDARY VALUE
PROBLEMS"

by: Bernhelm Booss-Bavnbek
Krzysztof P. Wojciechowski

153/88

-

154/88

155/88

156/88

157/88

158/88

159/88

160/88

161/88

162/88

163/88

164/88

165/88

"HALVLEDERTEKNOLOGIENS UDVIKLING MELLEM MILITERE
OG CIVILE KREFTER"

Et eksempel pd humanistisk teknologihistorie
Historiespeciale

Af: Hans Hedal
Vejleder: 1Ib Thiersen

"MASTER EQUATION APPROACH TO VISCOUS LIQUIDS AND
THE GLASS TRANSITION"

By: Jeppe Dyre

“A NO?E ON THE ACTION OF THE POISSON SOLUTTON
OPERATOR TO THE DIRICHLET PROBLEM FOR A FORMALLY"
SELFADJOINT DIFFERENTIAL OPERATOR" '

by: Michael Pedersen

"THE RANDOM FREE ENERGY BARRIER MODEL FOR AC
CONDUCTION IN DISORDERED SOLIDS"

by: Jeppe C. Dyre

" STABILIZATION OF PARTIAL DIFFERENTIAL EQUATIONS
BY FINITE DIMENSIONAL BOUNDARY FEEDBACK CONTROL:
A pseudo-differential approach."

by: Michael Pedersen
"UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN

RANDOM WALK MODELS"
by: Jeppe Dyre

"STUDIES IN SOLAR ENERGY"

by: Bent Serensen

"LOOP GROUPS AND INSTANTONS IN DIMENSION TWO"

by: Jens Gravesen

"PSEUDO-DIFFERENTIAL PERTURBATIONS AND STABILIZATION
OF DISTRIBUTED PARAMETER SYSTEMS:

Dirichlet feedback control problems"

by: Michael Pedersen

"PIGER & FYSIK - OG MEGET MERE"
AF: Karin Beyer, Sussanne Blegaa, Birthe Olsen,

Jette Reich , Mette Vedelsby

"EN MATEMATISK MODEL TIL BESTEMMELSE AF
PERMEABILITETEN FOR BLOD-NETHINDE~BARR1EREN"

Af: Finn Langberg, Michael Jarden, Lars Frellesen

Vejleder: Jesper Larsen

"Vurdering af matematisk teknologi
Technology Assessmgnt
Technikfolgenabschatzung"

Af: Bernhelm Booss-Bavnbek, Glen Pate med
Martin Bohle~Carbonell og Jens Hejgaard Jensen

"COMPLEX STRUCTURES IN THE NASH-MOSER CATEGORY"

by: Jens Gravesen



166/88 "Grundbegreber i Sandsynligheds-.
regningen”

Af: Jergen Larsen

167a/88 "BASISSTATISTIK 1. Diskrete modeller"

Af: Jorgen Larsen

167b/88 "BASISSTATISTIK 2. Kontinuerte
modeller"

Af: Jergen Larsen

168/88 "OVERFLADEN AF PLANETEN MARS"
Laboratorie-simulering og MARS-analoger
undersegt ved Mossbauerspektroskopi.

Fysikspeciale af:
Birger Lundgren

Vejleder: Jens Martin Knudsen
Fys.Lab./HC@

169/88 "CHARLES S. PEIRCE: MURSTEN 0G M@RTEL
TIL EN METAFYSIK."

Fem artikler fra tidsskriftet "The Monist".
1891-93.
Introduktion og oversattelse:

Peder Voetmann Christéansen

170/88 "OPGAVESAMLING I MATEMATIK"

Samtlige opgaver stillet i tiden
1974 - juni 1988

171/88 "The Dirac Equation with Light-Cone Data"
af: Johnny Tom Ottesen

172/88 "FYSIK OG VIRKELIGHED"

Kvantemekanikkens grundlagsproblem
i gymnasiet.

Fysikprojekt af:
Erik Lund og Kurt Jensen

Vejledere: Albert Chr. Paulsen og
Peder Voetmann Christiansen

173/89 "NUMERISKE ALGORITMER"
af: Mogens Brun Heefelt

174/89 " GRAFISK FREMSTILLING AF
FRAKTALER OG KAOS"

af: Peder Voetmann Christiansen

175/89 " AN ELEMENTARY ANALYSIS OF THE TIME
DEPENDENT SPECTRUM OF THE NON-STATONARY
SOLUTION TO THE OPERATOR RICCATI EQUATION

af': Michael Pedersen

176/89 " A MAXIUM ENTROPY ANSATZ FOR NONLINEAR
RESPONSE THEORY"

af : Jeppe Dyre

177/89 "HVAD SKAL ADAM STA MODEL TIL"

af: Morten Andersen, Ulla Engstrom,
Phomas Gravescen, Nanna Lund, Pia
Madscn, Dina Rawat, Peter Torstensen

Vejleder: Mogens Brun Heefelt

178/89 "BIOSYNTESEN AF PENICILLIN - en matematisk model"

af: Ulla Eghave Rasmussen, Hans Oxvang Mortensen,
Michael Jarden

vejleder i matematik: Jesper Larsen
biologi: Erling Lauridsen

179a/89 "LERERVEJLEDNING M.M. til et eksperimentelt forleb
om kaos'

af: Andy Wiered, Seren Brend og Jimmy Staal

Vejledere: Peder Voetmann Christiansen
Karin Beyer

179b/89 "ELEVHEFTE: Noter til et eksperimentelt kursus om
kaos"

af: Andy Wiered, Soren Brend og 3imhy Staal

Vejledere: Peder Voetmann Christiansen
Karin Beyer

180/89, "KAOS I FYSISKE SYSTEMER eksemplificeret ved
torsions- og dobbeltpendul’.

af: Andy Wiered, Seren Brend og Jimmy Staal
Vejleder: Peder Voetmann Christiansen

181/89 "A ZERO-PARAMETER CONSTITUTIVE RELATION FOR PURE
SHEAR VISCOELASTICITY"

by: Jeppe Dyre

183/89 "MATEMATICAL PROBLEM SOLVING, MODELLING. APPLICATIONS
AND LINKS TO OTHER SUBJECTS — State. trends and

issues in mathematics instruction

by: WERNER BLUM, Kassel (FRG) og
MOGENS NISS, Roskilde (Denmark)

184/89 "En metode til hestemmelse af den frekvensafhangige

varmefylde af en underafkelet vaske ved glasovergange

af: Tage Emil Christensen

185/90 "EN NESTEN PERIODISK HISTORIE"
Et matematisk projekt
af: Steen Grode og Thomas Jessen

Vejleder: Jacob Jacobsen

186/90 "RITUAL OG RATIONALITET i videnskabers udvikling"
redigeret af Arne Jakobgen og Stig Andur Pedersen

187/90 "RSA - et kryptografisk system”
af: Annemette Sofie Olufsen, Lars Frellesen
og Ole Msller Nielsen

Vejledere: Michael Pedersen og Finn Munk

188/90 “FERNICONDENSATION ~ AN ALMOST IDEAL GLASS TRANSITION"
by: Jeppe Dyre

189/90 "DATAMATER I MARTRMATIKUNDERVISNINGEN PA
GYMNASIET OG H@JERE LEREANSTALTER

af: Finn Langberg




190/90 "FIVE REQUIREMENTS FOR AN : 201/90 “"Undersegelse af atomare korrelationer i
APPROXIMATE NONLINEAR: RESPONSE ' amorfe stoffer ved rentgendiffraktion”
”"
THEORY . ' af: Karen Birkelund og Klaus Dahl Jensen

by: Jeppe Dyre Vejledere: Petr viséor, Ole Bakander

. ' 202/90 “TEGN OG KVANTER"
191/90 "MOORE COHOMOLOGY, PRINCIPAL Foredrag og artikler, 1971-90.

BUNDLES AND ACTIONS OF GROUPS
ON C*-ALGEBRAS" af: Peder Voetmann Christiansen

by: Iain Raeburn and Dana P. Williams
203/90 “OPGAVESAMLING I MATEMATIK" 1974-1990

afloser tekst 170/88

192/90 ‘"Age-dependent host mortality in the e
dynamics of endemic infectious diseases
and 204/91 "ERKENDELSE OG KVANTEMEKANIK"
SIR-models of the epidemiology and natural 3 .
selection of co-circulating influenza virus et Breddemodul Fysik Projekt
with partial cross-immunity" ’ af: Thomas Jessen

Vejleder: Petr Viscor

by: Viggo Andreasen

205/91 "PEIRCE'S LOGIC OF VAGUENESS"

1 HC i i 3 "
93/90 ausal and Diagnostic Reasoning by: Claudine Engel-Tiercelin
. . Department of Philosophy
by: Stig Andur Ped 2 PO N
Y & Andur Federsen ’ Université de Paris-1

(Panthéon-Sorbonne)

194a/90 "DETERMINISTISK KAOS"
42/ ) : 206a+b/91 "GERMANIUMBEAMANALYSE SAMT
Projektrapport af : Frank Olsen A - GE TYNDFILMS ELEKTRISKE
’ ‘ . EGENSKABER"
Eksperimentelt Fysikspeciale
194b/90 "DETERMINISTISK KAOS" : £: ind
Korselsrapport ) af: Qeanne Linda Mortensen
og Annette Post Nielsen
Projektrapport af: Frank Olsen Vejleder: Petr visdor
195/90 "STADIER PA PARADIGMETS VEJ" " . N .
Et projekt om den videnskabelige udvikling 207/91 Iﬁog%sgg%ggg (S)gL/I\SS(,'.ONDUC'I tON

der forte til dannelse af kvantemekanikken.

Projektrapport for 1. modul p& fysikuddan- by: Jeppe C. Dyre
nelsen, skrevet af: ’
Anja Boisen. Thomas Hougdrd. Anders Gorm 208/91 "LANGEVIN MODELS FOR SHEAR STRESS
Larsen, Nicolai Ryge. . FLUCTUATIONS IN FLOWS Of VISCO-
. ELASTIC LIQUIDS"

Vejleder: Peder Voetmann Christiansen
: by: Jeppe C. Dyre

196/90 "ER KAOS N@DVENDIGT?" s 209/91 "LORENZ GUIDE" Kompendium til den
- en projektrapport om kaos' paradigmatiske (li%r;;!(glfysiker Ludvig Lorenz,

status i fysikken.
. . af: Helge Kragh
af: Johannes K. Nielsen, Jimmy Staal og

Peter Beggild
210/91 "Global Dimension, Tower of Algebras,
and Jones Index of Split Scperable

Vejleder: Peder Voetmann Christiansen C
Subalgebras with Unitality Condition.

by: Lars Kadison
197/90 "Kontrafaktiske konditionaler i HOL

: af: Jesper Voetmann, Hans Oxvang Mortensen og 211/91 "I SANDHEDENS TJENESTE"

Aleksander Hest-Madsen
- historien bag teorien for de komplekse tal.

Vejleder: Stig Andur Pedersen af': Lise Arleth. Charlotte Gjerrild,
' Jane Hansen. Linda Kyndlev, Anne
Charlotte Nilason., Kamma Tulinius.
" - - "
198/90  "Metal-Isolator-Metal systemer Vejledere: Jesper Larsen og Bevahelm
Speciale Booss—Bavnbek

af: Frank Olsen
212/91 ‘'"Cyelic Homology of Triangular Matrix

. Algebras”
199/90 "SPREDT FEGTNING" Artikelsamling by: Lars Kadison

af: Jens Heojgaard Jensen

200/90 "LINEEZR ALGEBRA OG ANALYSE"
Noter til den naturv1denskabellge basis-
uddannelse.
af: Mogens Niss

213/91 '"Disease-induced natural selection in a
diploid host
by: Viggo Andreasen and Freddy B.Chiistiansen




21491

215191

216|91

"Hallej i =2teren" - om
elektromagnetisme. Oplag
til undervisningsmateriale
i gymnasiet.

Af: Nils Kruse, Peter Gastrup,
Kristian Hoppe, Jeppe Guldager

Vejledere: Petr Viscor, Hans Hedal

"Physics and Technology of -Metal-
Insulator-Metal thin film structures
used as planar electron emitters

by: A.Delong, M.Drsticka, K.Hladil,
V.Kolarik, F.Olsen, P.Pavelka and
Petr Viscor.

"Kvantemekanik p& PC'eren"

af: Thomas Jessen

217/92

218/92

219/92

220/92

221/92

"Two papers on APPLICATIONS AND MODELLING
IN THE MATHEMATICS CURRICULUM"

by: Mogens Niss

"A Three-Square Theorem"

by: Lars Kadison

"RUPNOK ~ stationer stremning i elastiske ror"
af: Anja Boisen, Karen Birkelund, Mette Olufsen

Vejleder: Jesper Larsen

"Automatisk diagnosticering i digitale kredsleb”
af: Bjern Christensen, Ole Meller Nielsen

Vejleder: Stig Andur Pedersen

"A BUNDLE VALUED RADON TRANSFORM, WITH
APPLICATIONS TO INVARIANT WAVE EQUATIONS"

by: Thomas P. Branson, Gestur Olafsson and
Henrik Schlichtkrull




