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Convex Hull Abstractions in Specialization of
CLP Programs

Julio C. Peralta1? and John P. Gallagher2??
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1 Instituto de Investigación en Matemáticas Aplicadas y en Sistemas
Circuito Escolar s/n, Ciudad Universitaria, México, D.F.

2 Dept. of Computer Science, Building 42.1, University of Roskilde
P.O. Box 260, DK-4000 Roskilde, Denmark

Abstract. We introduce an abstract domain consisting of atomic for-
mulas constrained by linear arithmetic constraints (or convex hulls). This
domain is used in an algorithm for specialization of constraint logic pro-
grams. The algorithm incorporates in a single phase both top-down goal
directed propagation and bottom-up answer propagation, and uses a
widening on the convex hull domain to ensure termination. We give ex-
amples to show the precision gained by this approach over other methods
in the literature for specializing constraint logic programs. The special-
ization method can also be used for ordinary logic programs containing
arithmetic, as well as constraint logic programs. Assignments, inequal-
ities and equalities with arithmetic expressions can be interpreted as
constraints during specialization, thus increasing the amount of special-
ization that can be achieved.

1 Introduction

Program specialization is sometimes regarded as being achieved in three phases:
pre-processing of the program, analysis and program generation. During pre-
processing the input program may be subject to some minor syntactic analyses
or changes, ready for the analysis phase. The analysis computes some data-flow
and control-flow information from the program and the specialization query. Fi-
nally, at program generation time the result of the analysis is used to produce
a residual program reflecting the result of the analysis. In off-line specialization
the three phases are consecutive, whereas in on-line specialization and driving
the analysis and program generation phases are merged or interleaved.

The use of abstract interpretation techniques to assist program specializa-
tion is well-established [9, 8, 16, 17, 24] and goes back to the invention of binding
time analysis to compute static-dynamic annotations [15]. More complex and
expressive abstract domains have been used such as regular tree structures [22,
10, 12, 18].
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In this paper we focus on an abstract domain based on arithmetic constraints.
Abstract interpretations based on arithmetic constraints have already been de-
veloped [4, 2, 26]. We show how the analysis phase of a specialization algorithm
can benefit from advances made in that field. We introduce an abstract domain
consisting of atomic formulas constrained by linear arithmetic constraints (or
convex hulls [4]). The operations on this domain are developed from a standard
constraint solver.

We then employ this domain within a generic algorithm for specialization of
(constraint) logic programs [12]. The algorithm combines analysis over an ab-
stract domain with partial evaluation. Its distinguishing feature is the analysis
of the success constraints (or answer constraints) as well as the call constraints
in a computation. This allows us to go beyond the capability of another recent
approach to use a linear constraint domain in constraint logic program special-
ization [6].

The specialization method can also be used for ordinary logic programs con-
taining arithmetic, as well as constraint logic programs. We can reason in con-
straint terms about the arithmetic expressions that occur in logic programs,
treating them as constraints (for instance X is Expr is treated as {X = Expr}).
In addition, the algorithm provides a contribution to the growing field of using
specialization for model checking infinite state systems [19].

In this paper a constraint domain based on linear arithmetic equalities and
inequalities is reviewed (Section 2). The structure of the specialization algorithm
is presented (Section 3), along with examples illustrating key aspects. Next, in
Section 4 more examples of specialization using the domain of linear arithmetic
constraints are given. Then, comparisons with related work are provided in Sec-
tion 5. Finally, in the last section (Section 6) some final remarks and pointers
for future work are considered.

2 A Constraint Domain

Approximation in program analysis is ubiquitous, and so is the concept of a do-
main of properties. The analysis phase of program specialization is no exception.

2.1 Linear Arithmetic Constraints

Our constraint domain will be based on linear arithmetic constraints, that is,
conjunctions of equalities and inequalities between linear arithmetic expressions.
The special constraints true and false are also included. This domain has been
used in the design of analysers and for model checking infinite state systems.
Here we use it for specialization of (constraint) logic programs.

Let Lin be the theory of linear constraints over the real numbers. Let C
and D be two linear constraints. We write C v D iff Lin |= ∀(C → D). C
and D are equivalent, written C ≡ D, iff C v D and D v C. Let C be a
constraint and V be a set of variables. Then projectV (C) is the projection of
constraint C onto the variables V ; the defining property of projection is that
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Lin |= ∀V (∃V ′.C ↔ projectV (C)), where V ′ = vars(C) \ V . Given an expression
e let us denote vars(e) as the set of variables occurring in e. If vars(e) = V , we
sometimes refer to projecte(C) rather than projectV (C) when speaking of the
projection of C onto the variables of e.

Arithmetic constraints can be presented in their simplified form, removing
redundant constraints. Constraint simplification serves as a satisfiability check:
the result of simplifying a constraint is false if and only if the constraint is
unsatisfiable. If a constraint C is satisfiable, we write sat(C). Because we used the
CLP facilities of SICStus Prolog all these operations (projection, simplification
and checking for equivalence) are provided for the domain of linear constraints
over rationals and reals. We refer the interested reader to a survey on CLP [14]
for a thorough discussion on the subject.

Intuitively, a constraint represents a convex polyhedron in cartesian space,
namely the set of points that satisfy the constraint. Let S be a set of linear
arithmetic constraints. The convex hull of S, written convhull(S), is the least
constraint (with respect to the v ordering on constraints) such that ∀Si ∈ S.Si v
convhull(S). So convhull(S) is the smallest polyhedron that encloses all members
of S. Further details and algorithms for computing the convex hull can be found
in the literature [4].

2.2 Constrained Atoms and Conjunctions

Now we must define our abstract domain. It consists of equivalence classes of
c-atoms, which are constrained atoms. Each c-atom is composed of two parts,
an atom and a linear arithmetic constraint.

Definition 1 (c-atoms and c-conjunctions). A c-conjunction is a pair 〈B,C〉;
B denotes a conjunction of atomic formulas (atoms) and C a conjunction of
arithmetic constraints, where vars(C) ⊆ vars(B). If B consists of a single atom
the pair is called a c-atom.

(Note that c-conjunctions are defined as well as c-atoms, since they occur in our
algorithm. However, the domain is constructed only of c-atoms).

Given any arithmetic constraint C and atom A, we can form a c-atom 〈A,C ′〉,
where C ′ = projectA(C). Any atom A can be converted to a c-atom 〈A′, C〉
by replacing each non-variable arithmetic expression occurring in A by a fresh
variable3, obtaining A′. Those expressions which were replaced together with the
variables that replace them are added as equality constraints to the constraint
part C of the c-atom. For example, the c-atom obtained from p(f(3), Y + 1) is
〈p(f(X1), X2), (X1 = 3, X2 = Y + 1)〉.

A c-atom represents a set of concrete atoms. We define the concretization
function γ as follows.

3 By parsing the arguments the desired terms can be selected.
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Definition 2 (γ).
Let A = 〈A,C〉 be a c-atom. Define the concretization function γ as follows.

γ(A) =
{

Aθ

∣∣∣∣θ is a substitution ∧
∀ϕ.sat(Cθϕ)

}
γ is extended to sets of c-atoms: γ(S) =

⋃
{γ(A) | A ∈ S}.

There is a partial order on c-atoms defined by A1 v A2 if and only if γ(A1) ⊆
γ(A2). Two c-atoms A1 and A2 are equivalent, written A1 ≡ A2 if and only
if A1 v A2 and A2 v A1. Equivalence can also be checked using syntactic
comparison of the atoms combined with constraint solving, using the following
lemma.

Lemma 1. Let A1 = 〈A1, C1〉 and A2 = 〈A2, C2〉 be two c-atoms. Let 〈Ā1, C̄1〉
and 〈Ā2, C̄2〉 be the c-atoms obtained by removing repeated variables from A1 and
A2 and adding constraints to C1 and C2 in the following manner. If a variable
X occurs more than once in the atom, then one occurrence is replaced by a fresh
variable W and the constraint X = W is added to the corresponding constraint
part.

Then A1 ≡ A2 if and only if there is a renaming substitution θ such that
Ā1θ = Ā2 and C̄1θ ≡ C̄2.

Now we are in a position to define the domain and the operations on the
elements of our domain. The relation ≡ on c-atoms is an equivalence relation.
The abstract domain consists of equivalence classes of c-atoms. For practical
purposes we consider the domain as consisting of canonical constrained atoms,
which are standard representative c-atoms, one for each equivalence class. These
are obtained by renaming variables using a fixed set of variables, and representing
the constraint part in a standard form. Hence we speak of the domain operations
as being on c-atoms, whereas technically they are operations on equivalence
classes of c-atoms.

Next we define the upper bound of c-atoms which combines the most specific
generalization operator (msg) [25] on terms and the convex hull [4] on arithmetic
constraints. The idea is to compute the msg of the atoms, and then to rename
the constraint parts suitably, relating the variables in the original constraints to
those in the msg, before applying the convex hull operation.

The following notation is used in the definition. Let θ be a substitution whose
range only contains variables; the domain and range of θ are dom(θ) and ran(θ)
respectively. alias(θ) is the conjunction of equalities X = Y such that there exist
bindings X/Z and Y/Z in θ, for some variables X, Y and Z. Let θ̄ be any
substitution such that dom(θ̄) = ran(θ) and Xθ̄θ = X for all X ∈ ran(θ). (That
is, θ̄ = ϕ−1 where ϕ is some bijective subset of θ with the same range as θ).

The following definition is a reformulation of the corresponding definition
given previously [26].

Definition 3 (Upper bound of c-atoms, t). Let A1 = 〈A1, C1〉 and A2 =
〈A2, C2〉 be c-atoms. Their upper bound A1tA2 is c-atom A3 = 〈A3, C3〉 defined
as follows.
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1. A3 = msg(A1, A2), where vars(A3) is disjoint from vars(A1) ∪ vars(A2).
2. Let θi = {X/U | X/U ∈ mgu(Ai, A3), U is a variable}, for i = 1, 2. Then

C3 = projectA3
(convhull({alias(θi) ∪ Ciθ̄i | i = 1, 2})).

t is commutative and associative, and we can thus denote by t(S) the upper
bound of the elements of a set of c-atoms S.

Example 1. Let A1 = 〈p(X, X), X > 0〉 and A2 = 〈p(U, V ),−U = V 〉. Then
A1 t A2 = 〈p(Z1, Z2), Z2 ≥ −Z1〉. Here, mgu(p(X, X), p(U, V )) = p(Z1, Z2),
θ1 = {Z1/X, Z2/X}, θ2 = {Z1/U,Z2/V }, alias(θ1) = {Z1 = Z2}, alias(θ2) = ∅,
θ̄1 = {X/Z1} (or {X/Z2}) and θ̄2 = {U/Z1, V/Z2}. Hence we compute the
convex hull of the set {(Z1 = Z2, Z1 > 0), (−Z1 = Z2)}, which is Z2 ≥ −Z1.

Like most analysis algorithms, our approach computes a monotonically in-
creasing sequence of abstract descriptions, terminating when the sequence sta-
bilizes at a fixed point. Because infinite ascending chains may arise during spe-
cialization it is not enough to have an upper bound operator, in order to reach a
fixpoint. An operator called widening may be interleaved with the upper bound
to accelerate the convergence to a fixpoint and ensure termination of an anal-
ysis based on this domain. When widening we assume that the c-atoms can be
renamed so that their atomic parts are identical, and the widening is defined
solely in terms of widening of arithmetic constraints, ∇c [4]. This is justified
since there are no infinite ascending chains of atoms with strictly increasing
generality. Hence the atom part of the c-atoms does not require widening.

Definition 4 (Widening of c-atoms, ∇). Given two c-atoms A1 = 〈A1, C1〉
and A2 = 〈A2, C2〉, where A1 and A2 are variants, say A2 = A1ρ. The widen-
ing of A1 and A2, denoted as A1∇A2 is c-atom A3 = 〈A2, C3〉 where C3 =
C1ρ ∇c C2.

For instance, the widening of 〈p(X), X ≥ 0, X ≤ 1〉 and 〈p(Y ), Y ≥ 0, Y ≤ 2〉 is
〈p(Y ), Y ≥ 0〉.

3 An Algorithm for Specialization with Constraints

In this section we describe an algorithm for specialization, incorporating oper-
ations on the domain of convex hulls. The algorithm is based on one presented
previously [12], where we used a domain of regular trees in place of convex hulls,
and the operations named ω, calls and answers are taken from there. The op-
erations ω and aunf∗ (which is used in the definition of calls) were taken from
Leuschel’s top-down abstract specialization framework [17]. The answer propa-
gation aspects of our algorithm are different from Leuschel’s answer propagation
method, though. There is no counterpart of the answers operation in Leuschel’s
framework. The differences between the approaches were discussed in our previ-
ous work [12].

The structure of the algorithm given in Figure 1 is independent of any partic-
ular domain of descriptions such as regular types or convex hulls. The operations

5



concerning convex hulls appear only within the domain-specific operations calls,
ω, ∇ and answers.

INPUT: a program P and a c-atom A
OUTPUT: two sets of c-atoms (calls and answers)

begin
S0 := {A}
T0 := {}
i := 0
repeat

Si+1 := ω(calls(Si, Ti), Si)
Ti+1 := Ti∇answers(Si, Ti)
i := i + 1

until Si = Si−1 and Ti = Ti−1

end

Fig. 1. Partial Evaluation Algorithm with Answer Propagation

3.1 Generation of Calls and Answers

The idea of the algorithm is to accumulate two sets of c-atoms. One set represents
the set of calls that arise during the computation of the given initial c-atom A.
The other set represents the set of answers for calls.

At the start, the set of calls S0 contains only the initial goal c-atom, and the
set of answers T0 is empty. Each iteration of the algorithm extends the current
sets Si and Ti of calls and answers. The diagram in Figure 2 illustrates the
process of extending the sets. All existing calls A = 〈A,C〉 ∈ Si are unfolded
according to some unfolding rule. This yields a number of resultants of the form
(A,C)θ ← B1, . . . , Bl, C

′, where Aθ ← B1, . . . , Bl is a result of unfolding A
and C ′ is the accumulated constraint; that is, C ′ is the conjunction of Cθ and
the other constraints introduced during unfolding. If sat(C ′) is false then the
resultant is discarded. The unfolding process is performed in the algorithm by
the operation aunf∗, defined as follows.

Definition 5 (aunf, aunf∗). Let P be a definite constraint program and A =
〈A,C〉 a c-atom. Let {Aθ1 ← L1, C1, . . . , Aθn ← Ln, Cn} be some partial evalua-
tion [20] of A in P , where Ci, Li(1 ≤ i ≤ n) are the constraint and non-constraint
parts respectively of each resultant body. Then define

aunf(A) =
{

Aθi ← Li, (Ci ∧ Cθi)
∣∣1 ≤ i ≤ n, sat(Ci ∧ Cθi)

}
.

Let S be a set of c-atoms. We define aunf∗(S) as:

aunf∗(S) =
{

(L, projectL(C ′))
∣∣∣∣ 〈A,C〉 ∈ S
Aθ ← L,C ′ ∈ aunf(A)

}
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〈Bk+1φ, projectBk+1φ((C1, . . . , Ck)φ ∧ Cθ1φ)〉

where 〈B1, . . . , Bk〉 has answer c-atoms

〈A1, C1〉, . . . , 〈Ak, Ck〉 and

mgu(〈B1, . . . , Bk〉, 〈A1, . . . , Ak〉 = φ)

〈B1, . . . , Bn, C′〉

Generate abstract answer
〈Aθ2φ, projectBθ2φ((C1, . . . , Cn)φ ∧ Cθ2φ)〉
where 〈B1, . . . , Bn〉 has answer c-atoms

〈A1, C1〉, . . . , 〈An, Cn〉 and

mgu(〈B1, . . . , Bn〉, 〈A1, . . . , An〉 = φ)

!
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!
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!
!

EE

EE

EE

EE

Fig. 2. The generation of calls and answers

In the following examples, assume that the unfolding rule selects the leftmost
atom provided that it matches at most one clause (after discarding matches that
result in an unsatisfiable constraint), otherwise selects no atom.

Example 2. Consider the following simple program P .

s(X,Y,Z) <-

p(X,Y,Z), q(X,Y,Z)

p(0,0,0) <-

p(X,Y,Z) <-

{X=X1+1, Y=Y1+1, Z=Z1+1},
p(X1,Y1,Z1)

q(0,Z,Z) <-

{Z > 0}
q(X,Y,Z) <-

{X = X1+1, Z=Z1+1},
q(X1,Y,Z1)

Let S be {〈s(X, Y, Z), X > 2〉}. Then aunf∗(S) = {(p(X1, Y, Z1), q(X, Y, Z), (X >
2, X = X1 + 3, Z = Z1 + 3)}. The unfolding rule results in four steps: the un-
folding of the atom s(X,Y,Z) followed by three unfoldings of p, since the initial
constraint X > 2 implies that the base case p(0,0,0) cannot be matched so long
as the first argument of p is greater than zero.

Note that the range of the function aunf∗ is the set of c-conjunctions. The cur-
rent answers from Ti are then applied, from left to right, to the c-conjunctions
generated by aunf∗. If there is some prefix B1 . . . , Bk (k < l) in a c-conjunction,
having a solution in Ti, then a call to an instance of Bk+1 is generated. More
precisely, we define a function calls as follows. We first define the notion of a
“solution” of a conjunction with respect to a set of c-atoms.

Definition 6 (solution of a conjunction). Let (B1, . . . , Bl) be a conjunction
of atoms and T be a set of c-atoms. Then 〈ϕ, C̄〉 is a solution for (B1, . . . , Bl)
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in T if there is a sequence of c-atoms 〈A1, . . . ,Al〉 where Aj = 〈Aj , Cj〉 ∈ T ,
1 ≤ j ≤ l, such that mgu((B1, . . . , Bl), (A1, . . . , Al)) = ϕ, and sat(C̄) (where
C̄ = (C1 ∧ · · · ∧ Cl)ϕ).

Definition 7 (calls). Let Si be a set of call c-atoms and Ti be a set of answer c-
atoms. Define calls(Si, Ti) to be the set of c-atoms 〈Bk+1ϕ, projectBk+1ϕ(C̄∧C ′ϕ)〉
where

1. 〈B1, . . . , Bl, C
′〉 ∈ aunf∗(Si), and

2. there is a conjunction (B1, . . . , Bk) (k < l) which has a solution 〈ϕ, C̄〉 in
Ti, and sat(C̄ ∧ C ′ϕ).

Example 3. Let P be the program from Example 2 and let S be {〈s(X, Y, Z), X >
2〉}. Let T = {〈p(X1, Y1, Z1), X1 = 0, Y1 = 0, Z1 = 0〉}. Then calls(S, T ) =
{〈p(X1, Y, Z1), true〉, 〈q(X, Y, Z), X = 3, Y = 3, Z = 3〉}. Note that the call to q arises
from applying the solution for p and simplifying the accumulated constraints.

An answer is derived by finding a resultant Aθ ← B1, . . . , Bk, C ′ whose body
has a solution in the current set of answers. The function answers is defined as
follows.

Definition 8 (answers). Let Si be a set of call c-atoms and Ti be a set of c-
atoms. Define answers(Si, Ti) to be the set of answer c-atoms 〈Aθϕ, projectAθϕ(C̄∧
C ′ϕ)〉 where

1. A = 〈A,C〉 ∈ Si, and
2. Aθ ← B1, . . . , Bl, C

′ ∈ aunf(A), and
3. (B1, . . . , Bl) has a solution 〈ϕ, C̄〉 in Ti, and sat(C̄ ∧ C ′ϕ).

Example 4. Let P be the program from Example 2 and let S be {〈p(X, Y, Z), true〉}.
Let T = {〈p(X1, Y1, Z1), X1 = 0, Y1 = 0, Z1 = 0〉}. Then answers(S, T ) =
{〈p(X, Y, Z), X = 1, Y = 1, Z = 1〉}.

An important feature of the algorithm is that no call to a body atom is
generated until the conjunction of atoms to its left has an answer. One effect
of this is to increase specialization because the propagation of answers for some
atom restricts the calls to its right. Secondly, answers can only be generated for
called atoms, and no answer to an atom is generated until there is an answer to
the whole body of some resultant for that atom. There can exist abstract calls
that have no corresponding answers; these represent concrete calls that either fail
or loop. In fact, infinitely failed computations are not distinguished from finitely
failed computations, with the result that programs that produce infinitely failing
computations can be specialized to ones that fail finitely. The examples later in
this section illustrate this point.
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3.2 Approximation Using Convex Hulls and Widening

Call and answer c-atoms derived using the calls and answers functions are added
to the sets Si and Ti respectively. There is usually an infinite number of c-atoms
that can be generated in this way. The purpose of the ω and ∇ functions in the
algorithm is to force termination. The ω function computes a safe approximation
of the calls and answers, using the convex hull and widening operations, both of
which are standard in analyses based on linear arithmetic constraints.

On each iteration, the sets of call c-atoms are partitioned into sets of “similar”
c-atoms. The notion of “similar” is heuristic: the only requirements are that the
definition of similarity should yield a finite partition, and that all c-atoms in
one subset should have the same predicate name. In our implementation we
partitioned based on the trace terms or “unfolding patterns” of the c-atoms
[11]. We assume a function that partitions a set S of c-atoms into a finite set
{S1, . . . , Sm} of disjoint subsets of S, and computes the upper bound of each
subset. The function partition(S) is defined as partition(S) = {t(S1), . . . ,t(Sm)}.
It is desirable though not essential that t(S) belongs to the same set as S.

Even if the partition is finite, a widening is required to enforce termination.
The widening step is defined between the sets of c-atoms on two successive
iterations of the algorithm. Let S, S′ be two sets of c-atoms, where we assume
that both S and S′ are the result of a partition operation. Define S′∇S to be{

A′∇A
∣∣∣∣A′ ∈ S′,A ∈ S,
A′,A are in the same set

}
⋃
{
A

∣∣∣∣A ∈ S,
6 ∃A′ ∈ S′ in the same set as A

}
Finally the operation ω can be defined as ω(S, S′) = S′∇partition(S). This en-
sures termination if the number of sets returned by partition is bounded. The
definition states that each element A of S is replaced by the result of widening
A with the element from S′ from the same set, if such an element exists.

3.3 Generation of the Specialized Program

After termination of the algorithm, the specialized program is produced from the
final sets of calls and answers S and T respectively. It consists of the following
set of clauses. rename(Aθϕ← Lϕ,C ′ϕ)

∣∣∣∣∣∣∣∣
A = 〈A,C〉 ∈ S,
Aθ ← L,C ′ ∈ aunf(A),
L has solution 〈ϕ, C̄〉 in T,
sat(C̄ ∧ C ′ϕ)


That is, each of the calls is unfolded, and the answers are applied to the bodies
of the resultants. Note that we do not add the solution constraints C̄ to the gen-
erated clause, so as not to introduce redundant constraints. The rename function
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is a standard renaming to ensure independence of different specialized versions
of the same predicate, as used in most logic program specialization systems (see
for example [8] for a description of the technique).

Example 5. Consider again the example from Example 2. We specialize this
program with respect to the c-atom 〈s(X, Y, Z), true〉 assuming the usual left-to-
right computation rule. Note that the concrete goal s(X,Y,Z) does not have
any solutions, although with the standard computation rule the computation is
infinite.

After the first few iterations of the algorithm the answer for p(X,Y,Z) is com-
puted, after widening the successive answers p(0,0,0), p(1,1,1), p(2,2,2),
. . .. This in turn generates a call to q(X,Y,Z). The c-atom describing the answers
for p(X,Y,Z) is 〈p(X, X, X), X ≥ 0〉 and thus the call 〈q(X, X, X), X ≥ 0〉 generated.
Further iterations of the algorithm show that this call to q has no answers.
Concretely, the call would generate an infinite failed computation.

When the algorithm terminates, the complete set of calls obtained is

{〈s(X, Y, Z), true〉, 〈p(X, Y, Z), true〉, 〈q(X, X, X), X ≥ 0〉}.

The set of answers is {〈p(X, X, X), X ≥ 0〉}. Thus we can see that there are some
calls (namely, to q and s) that have no answers.

To generate the specialized program from this set of calls and answers, we
generate resultants for the calls, and apply the answers to the bodies. Since
there is no answer for q(X,Y,Z) in the resultant for s(X,Y,Z), s(X,Y,Z) fails
and the specialized program is empty. The specialized program thus consists
only of the resultants p(0,0,0) and p(X,X,X) <- {X = Y+1}, p(Y,Y,Y). The
failure of the original goal is immediately apparent since there are no clauses for
predicate s.

Example 6. More insight into the nature of the approximation can be gained by
considering the same program as in the previous example, except that the body
goals are reversed in the clause for s. In this case q(X,Y,Z) is called first, and
the answers for q constrain the calls to p. The call 〈q(X, Y, Z), true〉 results in the
abstract answer c-atom 〈q(X, Y, Z), X ≥ 0, Y ≥ 0, Z = X + Y〉. Again, widening is
essential to derive this answer. Note that the solution q(0,0,0) is included as
a result of the convex hull approximation, even though this is not a concrete
solution.

This answer is then propagated to the call to p, hence there is a call c-atom
〈p(X, Y, Z), X ≥ 0, Y ≥ 0, Z = X + Y〉. Specialization of this call to p gives the
abstract answer 〈p(X, X, X), X ≥ 0〉.

The specialized program corresponding to this set of calls and answers is the
following.

s(0,0,0) <-

q(0,0,0), p(0,0,0).

p(0,0,0) <-

p(X,Y,Z) <-

{X=X1+1, Y=Y1+1, Z=Z1+1},
p(X1,X1,X1)

q(0,Z,Z) <-

{Z > 0}
q(X,Y,Z) <-

{X = X1+1, Z=Z1+1},
q(X1,Y,Z1)

10



The instance of the clause for s is obtained by conjoining the answers for the
body goals q(X,Y,Z), p(X,Y,Z), that is, X ≥ 0, X = Y, X = Z, Y ≥ 0, Z = X + Y,
which simplifies to the constraint X = 0, Y = 0, Z = 0. The above program does
not make the failure of s(X,Y,Z) explicit; a non-trivial post-processing such
as another run of the specialization algorithm would be needed to discover the
failure of the call q(0,0,0). The general point here is that the convex hull ap-
proximation loses the information that q(0,0,0) is not a solution for q(X,Y,Z).

The two examples taken together show that the direction of propagation of
answers affects precision. It would be possible to design an algorithm incorpo-
rating more sophisticated propagation, but post-processing or re-specialization
is a practical alternative for experimental studies.

Note that the above presentation of the algorithm is naive in the sense that
the sets of calls and answers need not be totally recomputed on each iteration.
We use standard techniques to optimize the algorithm, focusing on the “new”
calls and answers on each iteration. We can also use the recursive structure of
the target program to optimize the iterative structure of the algorithm. Instead
of one global fixpoint computation, we compute a series of fixpoints, one for each
group of mutually recursive predicates.

3.4 Correctness of the Specialization

A program that has been specialized with respect to a c-atom A = 〈A,C〉 pro-
duces the same answers as the original program for any terminating computation
for any query in γ(A). Note that the proposition below states nothing about the
preservation of looping computations in the original program. A goal that loops
in the original program can finitely fail in the specialized program.

Proposition 1. Let P be a definite CLP program and A a c-atom. Let P ′ be the
specialized program derived by the algorithm described above, with initial c-atom
A. Let S and T be the sets of call and answer c-atoms returned by the algorithm.
Then for any goal G =← B1, . . . , Bk such that i = 1 · · · k and Bi ∈ γ(A′) for
some A′ ∈ S, P ∪ {G} has an answer ρ if and only if P ′ ∪ {G} has an answer
ρ. Also, if P ∪ {G} fails finitely then P ′ ∪ {G} fails finitely.

Proof. Suppose there is a terminating (possibly failed) derivation of P ′ ∪ {G}.
We argue by induction on the length of the derivation. If the derivation has
length 0, then G fails immediately. We know that there is some A′ = 〈A′, C ′〉
in S such that B1 ∈ γ(A′), since the first call c-atom is 〈B1, true〉, and so S
should contain an element A′ such that 〈B1, true〉 v A′. So a failure means that
(i) there are no resultants for A′, or (ii) that no resultant body has an answer,
or (iii) that there is a resultant A′θ ← L with an answer ϕ for L given by the
set of answer c-atoms, but B1 does not unify with A′θϕ. In the case of (i) there
is a finitely failed computation tree of P ∪ {G}. In the case of (ii) or (iii) there
is either a finitely failed computation tree of P ∪ {G}, or the computation tree
for P ∪ {G} is infinitely failed.
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If the derivation has length 1, with answer substitution ρ, then G =← B1

and there is some unit clause in P ′ whose head unifies with B1 with substitution
ρ. Now, unit clauses in P ′ may come from two sources: either they are already in
P or they are the result of successfully unfolding the body of a non-unit clause,
also in P . Hence by definition of the residual program construction the mgus are
equivalent modulo variable renaming.

If all derivations of length at most m in P ′ have a corresponding derivation
in P , then we show that all derivations of length m + 1 in P ′ do as well. Sup-
pose the first clause used in the derivation is A′θ ← L, mgu(B1, A

′θ) = ϕ and
(L,B2, . . . , Bk)ϕ has a derivation in P ′ of length at most m. By the induction
hypothesis there is a corresponding derivation for (L,B2, . . . , Bk)ϕ in P . Then
clearly there is a derivation in P corresponding to the m + 1 step derivation in
P ′, obtained by concatenating the steps corresponding to the clause A′θ ← L.

The above argument establishes soundness. For completeness, a sketch of a
proof is provided. For each terminating derivation of P ∪ {G} we can construct
a terminating derivation in P ′ ∪ {G}. The clauses in P ′ that are needed to
construct such a derivation exist by virtue of the closedness of the sets of calls
and answers. That is S = ω(calls(S, T ), S) and T = T∇answers(S, T ). Further-
more, the answers produced by successful derivations in P can be reproduced
by derivations in P ′ by virtue of the correctness of the unfolding function aunf,
and the procedure for computing the solution of a conjunction with respect to
a set of answer c-atoms.

4 Examples

We implemented the algorithm described in the previous section, using the SIC-
Stus Prolog linear arithmetic constraint solver. Next we present some examples
where on-line specialization as presented here is used for verifying some formulas
in CTL [3].

Specialization can be seen as an approach to model-checking infinite systems
[19, 7] and in this context our more powerful specialization techniques are highly
relevant. We used the CTL metainterpreter shown in Fig. 3 (also used by M.
Leuschel et al. [19]).

The set of transitions4(predicate trans/3 in the figure) of the system to be
verified in the form of a (C)LP program is appended to this metainterpreter.
Also, the property (predicate prop/2 in the CTL metainterpreter) with respect
to which verification is to be carried out should be specified. Finally, the spe-
cialization query provides the initial state and the CTL formula which is to be
verified for the given system and initial state.

4.1 Specialization Strategy

Before applying the convex hull specialization, we performed a trivial top-down
specialization with respect to the given goal. The main effect of this stage was
4 A transition system may be that of a Kripke structure or a Petri Net, for instance.
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sat(_,true) <-

sat(_,false) <- fail

sat(E,P) <- prop(E,P)

sat(E,and(F,G)) <-

sat(E,F),

sat(E,G)

sat(E,or(_F,G)) <-

sat(E,G)

sat(E,or(F,_G)) <-

sat(E,F)

sat(E,not(F)) <-

not(sat(E,F))

sat(E,en(F)) <-

trans(_Act,E,Ei),

sat(Ei,F)

sat(E,an(F)) <-

not(sat(E,en(not(F))))

sat(E,eu(F,G)) <-

sat_eu(E,F,G)

sat(E,au(F,G)) <-

sat(E,not(eu(not(G),

and(not(F),not(G))))),

sat_noteg(E,not(G))

sat(E,ef(F)) <-

sat(E,eu(true,F))

sat(E,af(F)) <-

sat_noteg(E,not(F))

sat(E,eg(F)) <-

not(sat_noteg(E,F))

sat(E,ag(F)) <-

sat(E,not(ef(not(F))))

sat_eu(E,_F,G) <-

sat(E,G)

sat_eu(E,F,G) <-

sat(E,F),

trans(_Act,E,Ei),

sat_eu(Ei,F,G)

sat_noteg(E,F) <-

sat(E,not(F))

sat_noteg(E,F) <-

not((trans(_Act,E,Ei),

not(sat_noteg(Ei,F))))

Fig. 3. CTL metainterpreter

to unfold the calls to the transition relation trans/3. In principle, this unfolding
could be performed during the execution of the main specialization algorithm.
However, the overall process is faster and easier to control when doing the spe-
cialization in two stages.

Example 7. Consider for instance the following transition system, where
trans(t,[X,Y],[Z,W]) holds iff state [Z,W] may be obtained from state [X,Y]
using transition t.

trans(t1,[P1,P2],[X,P3]) <- trans(t2,[P1,P3],[P4,P2]) <-
X is 0, P1>=0,
P1>=1, P2>=0,
P2>=0, P4 is P1+2,
P3>=0, P3 is P2+1
P3 is P2+1

The encoding of an unsafe state property [X,Y] with X>=3 is added as another
clause in the CTL metainterpreter.

prop([X,Y],p(unsafe)) <- X>=3

The specialization query from initial state [X,Y] with X=1,Y=0 for CTL
formula ef(p(unsafe))5 is <- sat([1,0],ef(p(unsafe))). As a result of spe-
5 Meaning that there exists a state in the future such that state property unsafe holds.
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cializing the CTL metainterpreter with a description (transition system) of the
system and a state property with respect to the query above, we obtained the
empty program. This is equivalent to saying that there is no residual program in
which state [1,0] may reach state [X,Y] with X>=3. Had we obtained a residual
program we would have interpreted the residual program as the set of traces
which lead from the initial state to the unsafe state, as above.

This behaviour may be regarded as that of a model checker, hence we argue
that our specializer may be used as a model checker for some infinite state
systems. The only requirement is that those systems may be expressed as definite
(constraint) logic programs and the CTL formulas does not use negation.

Example 8. Figure 4 depicts a Petri net modeling one process with its critical
section (cs) and a semaphore (sema) controlling access to it. The definition of

x

����t -

enter cs

-

cs
����

-

sema

����t
@

@I�
�	

exit cs

-

y

����
-

restart

-

c

����
6

Fig. 4. Petri Net with one semaphore

predicate trans/3 corresponding to the transition relation of the Petri net above,
follows.

trans(enter_cs,[X,Sema,Cs,Y,C],[X1,Sema1,Cs1,Y,C]) <-
X>=1, X1 is X-1,
Sema>=1, Sema1 is Sema-1,
Cs>=0, Cs1 is Cs+1

trans(exit_cs,[X,Sema,Cs,Y,C],[X,Sema1,Cs1,Y1,C]) <-
Sema>=0, Sema1 is Sema+1,
Cs>=1, Cs1 is Cs-1, Y>=0, Y1 is Y+1

trans(restart,[X,Sema,Cs,Y,C],[X1,Sema,Cs,Y1,C1]) <-
X>=0, X1 is X+1,
Y>=1, Y1 is Y-1,
C>=0, C1 is C+1

Next, we may specify with the following clause the unsafe property of more than
two processes being in their critical section (cs) at the same time:

prop([_X,_Sema,Cs,_Y,_C],p(unsafe)) <- Cs>=2.

Now, for the specialization query, with constraint6 X>=1:
6 For every token in the place with name X we associate a process, thus the constraint
X>=1.
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<- sat([X,1,0,0,0],ef(p(unsafe)))

we obtained the empty program, thus denoting that there is no path from the ini-
tial state ([X,1,0,0,0]), with X>=1 leading to a state where property p(unsafe)
holds.

Example 9. Another way of specifying concurrent systems was proposed by U.
A. Shankar [28]. Delzanno and Podelski [5], in turn, propose a systematic method
to translate such specifications into CLP programs. Our translation is similar
to theirs, differing only in the form of the clauses produced, mainly due to the
meaning of the predicate employed.

Figure 5 below contains a specification of the bakery algorithm for two pro-
cesses using the technique above cited.

Control variables p1, p2 : {think, wait, use}
Data variables turn1, turn2 : int
Initial condition p1 = think ∧ p2 = think ∧ turn1 = turn2 = 0
Events cond p1 = think

cond p1 = wait ∧ turn1 < turn2

cond p1 = wait ∧ turn2 = 0
cond p1 = use
. . . symmetrically for Process 2

action p′1 = wait ∧ turn′1 = turn2 + 1
action p′1 = use
action p′1 = use
action p′1 = think ∧ turn′1 = 0

Fig. 5. The bakery algorithm

Such a specification may be readily translated into the following definition
of the trans predicate:

trans(f,[think,A,P2,B],[wait,A1,P2,B]) <- A>=0, A1 is B+1
trans(f,[P1,A,think,B],[P1,A,wait,B1]) <- B>=0, B1 is A+1
trans(s,[wait,A,P2,B],[use,A,P2,B]) <- A>=0, A<B
trans(s,[P1,A,wait,B],[P1,A,use,B]) <- B>=0, B<A
trans(s,[wait,A,P2,B],[use,A,P2,B]) <- B=0
trans(s,[P1,A,wait,B],[P1,A,use,B]) <- A=0
trans(t,[use,A,P2,B],[think,A1,P2,B]) <- A>=0, A1=0
trans(t,[P1,A,use,B],[P1,A,think,B1]) <- B>=0, B1=0

Consequently, an unsafe property for the previous system would be a state where
the two processes are in their critical section (denoted as use) at the same time.
This property is denoted as the clause:

prop([use,A,use,B],p(unsafe)) <-

Furthermore, verifying that there is no state of the above mentioned system
where such an unsafe state holds amounts to obtaining an empty program for
the following query:

<-sat([think,0,think,0],ef(p(unsafe)))
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where the variables denoting the turn of each process, namely A,B, are initially
constrained by A=B=0. As a result of the specialization we obtained the empty
program thus verifying that there is no unsafe state in any path beginning from
the initial state described in figure 5.

In a similar way we verified some correctness property [19] of the producers
and consumers algorithm [1] for one producer, one consumer and a buffer of size
one. The authors [19] could not successfully specialize this last example.

4.2 Assessment

Here we have shown some applications of our specialization strategy to infinite
state model checking. Compared to other approaches using specialization for the
same purpose, we believe our approach sheds some insight into the field. The
example of the bakery protocol was also verified by Fioravanti et al. [7]. As op-
posed to their approach we show the actual specialization strategy and its use in
other related examples. We depart from a general CTL metainterpreter whereas
Fioravanti et al. present a somehow specialized version of a CTL metainterpreter.

For the other examples of this section M. Leuschel et al. [19] have a four stage
model checker, as opposed to ours which is just one specialization step. That is,
M. Leuschel et al. first pass through an off-line specializer, then one or more
specialization passes of their on-line specializer and finally one pass through a
most-specific-version analyser.

Admittedly examples 8 and 9 in this section do not propagate answers, and
require a simple unfolding prior to specialization with answers. By contrast, ex-
ample 7 and the producer-consumer of [19] do not need any prior unfolding and
have some limited answer propagation. That is, specialization with answers could
be applied directly to the metainterpreter (together with the transition defini-
tion and the property), to yield the expected verification results. The running
example of Section 3 does indeed need and use answer propagation.

5 Related Work

Despite the fact that unfold-fold approaches to program transformation and pro-
gram specialization based on a fixpoint calculation are not directly comparable,
there are some unfold-fold methods related to our techniques.

In [21] the authors propose the use of convex-hull analysis to enable optimiza-
tion/specialization of CLP programs. Their removal, refinement and reordering
may be rendered as transformation rules. The fairness of comparing our tech-
nique with theirs is dubious because theirs is used for compilation and ours for
specialization, and potentially the former is a special case of the latter one. A
weak form of their method was later dubbed by Fioravanti et al. [6] as contextual
specialization.

Peralta and Gallagher [23] use arithmetic constraints (convex hulls) to spe-
cialize CLP programs, especially an interpreter for imperative programs.
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Their specialization abstract domain is the same as that one used here, but
the specializer only propagates information top-down and cannot achieve the
effects of answer propagation.

Fioravanti et al. [6] (without reference to [13, 23]) argue an automatic spe-
cialization method based on folding and unfolding among other transformation
techniques. They use a domain of atomic formulas constrained by arithmetic
expressions with upper bound based on widening alone, rather than the combi-
nation of convex hull and widening which is known to give better approximations.
The aspects of their method concerned with specialization resemble a top-down
on-line specializer with a subsequent “contextual specialization”, and thus does
not in general achieve the effects of answer propagation.

Another application of specialization using abstract interpretation over poly-
hedral descriptions followed by a contextual specialization was given by Howe et
al. [13]. This approach is similar in being based on abstract interpretation over
a domain of polyhedra. Its bottom-up analysis of answers is not as powerful as
ours, which combines top-down and bottom-up propagation.

Conjunctive Partial Deduction (CPD) [27] aims to solve the answer propaga-
tion problem in a different way. The approach is to preserve shared information
between subgoals by specializing conjunctions rather than atoms. It is not yet
clear whether CPD or answer propagation via atoms, or some combination of
both, will be most effective. In the extreme case of CPD, no resolvent is ever
split, and no answer propagation is needed. However in general resolvents can be
of unbounded size, some splitting is therefore needed, and answer propagation
is required to preserve shared information between conjunctions.

6 Final Remarks

We have presented an algorithm for specialization of definite (C)LP programs.
Its main novelty is the propagation of calls and answers described by atoms
whose arguments are described by convex hulls. The use of answer propagation
with an expressive domain like convex hulls gives increased specialization. By
interpreting Prolog arithmetic as constraints we can also apply the algorithm to
“non-constraint” programs.

6.1 Future Work

At the moment we can only specialize definite (constraint) logic programs. Be-
cause negation in CTL is interpreted as negation in (constraint) logic programs,
this restricts us to model checking of safety properties, as opposed to liveness
properties. Extending the presented techniques to include negation is the focus
of our current research.

Scalability of our specialization method is one avenue into which we plan to
extend the current proposal. Thus making our specialization techniques appli-
cable to larger systems.

Also, in order to improve precision of our specialization with answers more
sophisticated domains are sought.
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