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Abstract

The advancement of deep learning technology has been concentrating on deploying end-

to-end solutions using high dimensional data, such as images. With the rapid increase in

benchmark performance comes the significant resource requirements to train the network

and make inferences with it. Deep learning models that achieve state-of-the-art benchmark

result may require a huge amount of computing resources and data. To alleviate this problem,

knowledge distillation with teacher-student learning has drawn much attention in compressing

neural networks on low-end edge devices, such as mobile phones and wearable watches.

However, current teacher-student learning algorithms mainly assume that the complete dataset

for the teacher network is also available for the training of the student network. However, for

real-world scenarios, users may only access to part of training examples due to commercial

profits or data privacy, and severe over-fitting issues would happen as a result.

In this study, we tackle the challenge of learning student networks with few data by

investigating the ground-truth data-generating distribution underlying these few data. Taking

Wasserstein distance as the measurement, we assume that this ideal data distribution lies

in a neighborhood of the discrete empirical distribution induced by the training examples.

Thus we propose to safely optimize the worst-case cost within this neighborhood to boost

the generalization. Furthermore, with theoretical analysis, we derive a novel and easy-to-

implement loss for training the student network in an end-to-end fashion. Our analysis is

empirically validated through experiments using benchmark datasets, and the result indicates

the effectiveness of our proposed method.
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CHAPTER 1

Introduction

In recent years, computer vision research has rapidly advanced due to the success of deep

neural networks. The image classification performance on large-scale datasets (e.g. ImageNet)

has been constantly refreshed by various convolutional neural networks (CNNs), such as

AlexNet [2], VGGNet [3], Inception [4] and ResNet [5]. Language models, such as GPT [6],

BERT[7] and [8] has achieved superhuman performance on large textual dataset.

However, to achieve outstanding classification performance, these networks usually have a

large volume of parameters and significant resource consumption. For example, to achieve

a top-1 error rate of 22.16%, AlexNet requires more than 232 million parameters and more

than 700 million multiplications to implement the prediction. This computational demand

limits their application on low-end edge devices, such as mobile phones, tablets and wearable

watches.

To minimize the resource required by deep neural networks, several techniques to directly

compress existing trained networks are investigated, such as vector quantization [9], hash

encoding [10], weight matrices decomposition [11] and using unlabeled data [12]. Others at-

tempt to design efficient architectures to accelerate the inference speed, such as ResNeXt [13],

Xception network [14] and MobileNets [15]. Besides these approaches, knowledge distillation

paradigm, also known as teacher-student learning, serves as a complementary scheme to

obtain light and efficient neural networks. By treating the pre-trained huge networks as teacher

networks, the target small network is thus viewed as the student network and can be guided

by the teacher network. [16] took a straightforward approach by directly minimizing the

Euclidean distance between the feature maps generated from the teacher and student networks.

The widely-used knowledge distillation method. [17] leaped forward by introducing a loss

1



2 1 INTRODUCTION

to encourage the student network to learn from the softened outputs of the teacher network.

Others also attempt to further boost the performance by using multiple teachers [18] or

investigating feature layers, such as FitNet [19] and activation boundary loss [20].

Current knowledge distillation algorithms usually assume that the complete dataset for

training teacher network is also available for the learning of the student network. In real-

world scenarios, however, users may only have a few data at hand. For instance, due to the

consideration of commercial profits or data privacy, many applications do not open-source

their large training dataset completely but only supply a fraction for verification purposes.

The limited data usually induce severe over-fitting issues during the learning of the student

network. Another example can be an off-line speech recognition network. In this case, a

generic speech recognition network can be trained on a data center, which will be used as a

teacher. Then, the end-user can provide a few samples of his or her speech to train the student

network. The resulting student network would be small enough to run on a mobile device

while maintaining the high-quality of the teacher network. The combination of benefits from

the teacher-student learning paradigms and the generalization ability enables some large deep

learning networks to be deployed to low battery and computing power devices, such as mobile

phones. Thus, it is important to fit the network to scarce training examples while maintaining

its generalization ability.

To boost the generalization ability of the student network, we propose to explore the ground-

truth data-generating distribution. Given the training examples, we assume the ground-

truth distribution lies in a neighborhood of the discrete empirical distribution, i.e. uniform

distribution over i.i.d. training examples. By dint of Wasserstein distance, we thus propose

to safely optimize the worst-case or every possible ground-truth distribution’s cost within

this neighborhood to boost the generalization as a result. However, the worst-case cost does

not have a closed-form and is not appropriate for training a student network in an end-to-end

fashion. In this way, we furthermore analyze its upper bound in theory and develop a novel

loss function accordingly, called Wasserstein Generalization loss. As a result, via this very

loss, the student network can maintain its generalization ability while being trained on a

fraction of the training examples. Experimental results on benchmark datasets show the



effectiveness of our proposed method, and when the training examples are very limited, our

method significantly outperforms other comparison methods.

1.1 Contributions

The results and findings of this study have made the following important contributions to

scientific knowledge:

(1) A formulation of the generalization ability of the student network in the context of

knowledge distillation.

(2) An theoretical upper bound of the formulation proposed.

(3) A practical loss function for the student network, based on the theoretical upper

bound derived.

(4) Empirical analyses and validations of the proposed loss function.

1.2 Thesis Structure

In Chapter 2, we review previous literature around deep learning, Wasserstein distance, and

knowledge distillation.

In Chapter 3, we present our formulation of the problem using Wasserstein distance, perform

theoretical analysis, and propose a practical loss function for the student network.

In Chapter 4, we validate our method empirically and perform analysis on some important

hyperparameters.

Finally, we conclude on Chapter 5.

3



CHAPTER 2

Literature review

This chapter presents background knowledge and literature review for this study. We will start

by introducing the Wasserstein distance and its applications in deep learning at Section 2.1.

We will then proceed to Section 2.2, which analyses the advantages and weakness of some

state-of-the-art knowledge distillation techniques.

2.1 Wasserstein Distance

In section introduces some background knowledge about Wasserstein distance, which forms

the backbone of this study. The Wasserstein distance is a distance measure between probability

distributions on a given distance space (M ; ρ), where ρ(x; y) is a between two elements in

set M .

DEFINITION 2.1.1. The Wasserstein distance between two probability measures P and Q is

defined as

dW (P,Q) := inf
γ∈Π(P,Q)

E(x,y)∼γ[‖x− y‖],

where Π(P,Q) denotes the set of all joint distributions γ(x, y) with marginals P and Q, and

‖·‖ represents an arbitrary norm on Rm.

Intuitively, γ(x, y) denotes the units of mass must be transported from x to y, such that the

distribution P can be transformed into the distribution Q. The Wasserstein distance is the cost

of the optimal transport plan.
4



2.1 WASSERSTEIN DISTANCE 5

2.1.1 Wasserstein Distance in Neural Networks

In comparison with other distances for probability distributions, such as Kullback–Leibler

divergence [21], Wasserstein distance is unique for being able to measure between continuous

and discrete distributions. This uniqueness enables the popularity of the Wasserstein distance

in deep learning researches.

[22] empirically models the Wasserstein distance function as a neural network and apply it to

the unsupervised domain adaptation problem. In the domain adaptation problem, the goal is

to apply a machine learning model trained in the source domains to a target domain. During

training, a domain critic is used in order to minimize the discrepancy between the source and

target domains. In their work, the empirical Wasserstein distance will be used as the domain

critic, which will be pre-trained to its optimality.

[23] uses Wasserstein distance to measure distributions in an adversarial learning scheme, or

generative adversarial network [24]. The goal of the generative adversarial network is to train

the networks such that the generator can generate data that look like real-world data, in other

words, to approximate the data generating distribution. There are usually two networks in

the system – a generator network G and a discriminator network D. The training objective

for the generator is to generate samples that fool the discriminator, while the discriminator

tries to distinguish between generated samples and real samples. The proposed method from

[23] suggests that directly applying Wasserstein distance to measure the discrepancy between

the generated distribution and the real data distribution improve the stability of the training

process, and alleviate problems like mode collapse.

[25] proposes to view the multi-label learning problem from a distributional perspective.

In their study, the semantic similarity between output dimensions is being considered. A

Wasserstein loss for learning to predict a non-negative measure over a finite set, based on the

Wasserstein distance, can then be defined to exploit this information to improve the multi-label

classification performance of the network.
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Most existing deep learning works that involve Wasserstein distance often include the Wasser-

stein distance as a part of their optimization objectives. In other words, the Wasserstein

distance is being optimised in one way or another. However, this thesis incorporates the

Wasserstein distance as a measurement as the constraint of the optimization.

2.2 Knowledge Distillation

Now we formally introduce the teacher-student learning scheme in compressing neural

networks, especially the widely-used knowledge distillation method.

In the teacher-student learning scheme, the teacher network NT usually consists of a large

number of parameters and has powerful classification ability accordingly. In contrast, the

student network NS is light and small, which has much fewer parameters and is appropriate

for the low-end computational devices. The goal of the teacher-student learning scheme is to

learn the student network with the help of the pre-trained teacher network, instead of solely

from the training data.

To transfer the knowledge from the teacher network into the student network, special training

guidance or losses are imposed during the learning of student network, e.g. knowledge

distillation (KD) loss [17]. Denote the training data asD = {(xi,yi)}Ni=1 where xi ∈ X ⊂ Rd

and yi ∈ Y ⊂ {0, 1}k. KD loss encourages the student network to have similar softened

outputs with that of teacher network,

LKD(NS) =
1

N

N∑
i=1

[H(ŷi,yi) + CH(pi, qi)], (2.1)

where ŷi ∈ Rk is the prediction output of the student network, C is a balancing constant and

H(·, ·) is the cross-entropy loss to measure the discrepancy between the prediction output

vector and the ground-truth label vector. pi and qi are called the softened outputs of the

teacher network and student network, respectively, which are calculated using their raw output
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Algorithm 1 Training the Student Network with FitNets [19].
Input: A teacher network NT ; a student network NS
Output: A trained student network NS .

1: Initialize student network.
2: Select a middle layer for the teacher Wm

T and student network Wm
S and Initialize WH .

3: Wm∗
S ← arg minWm

S
LHT (Wm

S ,WH ,W
m
T )

4: Assign Wm∗
S back to NS .

5: NS ← arg minNS LKD(NS)

logits oTi and oSi by softmax function, i.e.

pi =
exp(oTi /T )

‖exp(oTi /T )‖1

and qi =
exp(oSi /T )

‖exp(oSi /T )‖1

, (2.2)

where T is a temperature parameter to control the softness of the probabilistic prediction

outputs. The softened outputs contain more information than the one-hot-code ground-truth

label vectors and are supposed to better guide the training of the student network.

2.2.1 Review of FitNets

The idea that to train a smaller network using privileged information from a larger network

has enabled the emergence of researches around this topic. [19] proposed FitNets, which

introduced a novel channel for the teacher network to provide privileged information to the

student network.

In their approach, a hint layer WH is introduced to reshape the dimensions of a middle layer

on the student network Wm
S so that it matches a middle layer on the teacher network Wm

T .

The training algorithm of such configuration is shown in Algorithm 1. Generally speaking,

the training stage is divided into two stages. In the first stage, they minimize the difference

between the output of Wm
T and WH , with respect to a loss function LHT , where WH is

installed on the output of Wm
S . In this stage, shallower parts of the student network, or layers

up until Wm
S , receives additional privileged information from the middle layers of the teacher

network. In the second stage, WH is discarded and the training proceeds with the original

knowledge distillation loss.
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Their approach successfully trained the student network that outperforms the teacher network

with less number of parameters. However, one can argue that such success may come from a

smart selection of the hyperparameters. To be specific, the benefits from the hint layers are

highly dependent on which middle layers on the student network and the teacher network it is

connected to, which dramatically increases the hyperparameter search space. Let nS and nT

denotes the number of layers on the student network and the teacher network, respectively,

then the search space of the hyperparameters will be multiplied by nS × nT , on the top of the

additional hyperparameters search introduced by the knowledge distillation.

2.2.2 Review of Activation Boundary Loss

[20] propose a novel manner for the teacher network to provide privileged information to the

student network – the activation boundaries. Their design is based on two statements: 1) a

neural network expresses a complex function with a combination of activation boundaries [26],

and 2) the decision boundary of a neural network is a combination of activation boundaries

from its hidden layers [27]. Hence, they believe that the transfer of activation boundary

information from the teacher network to the student network could dramatically improve the

knowledge transfer performance in classification problems, since a classification problem

depends on the formation of decision boundaries among classes.

Based on their inspiration, they took the approach to design a loss function that can transfer

the activation boundaries of the teacher network to the student network. Instead of transferring

the magnitudes of the neuron responses, their method aims to transfer the activation status of

the neurons. A loss function can thus be constructed as follows,

LAB(x) = ‖ρ(NT (x))− ρ(NS(x))‖1 , (2.3)

where ρ(·) is an element-wise activation indicator function that returns the activation status of

the input neuron.

ρ(x) =

1, if x > 0

0, otherwise



2.2 KNOWLEDGE DISTILLATION 9

However, this loss function is not differentiable. Therefore, gradient cannot flow through

this loss function during back propagation. To alleviate this problem, inspired by the hinge

loss of the support vector machine [28], a feasible approximation of Equation 2.3, which is

differentiable, can be defined as

LAB(x) = ‖ρ(NT (x))� σ(µ1−NS(x)) + (1− ρ(NT (x)))� σ(µ1−NS(x))‖ , (2.4)

where � denotes the element-wise product between two tensors and µ denotes the margin.

Although Activation Boundary loss is simple and intuitive, several limitations exist with

its design. Firstly, the activation boundary can only be applied to classification problems,

because it assumes a decision boundary of the neural network. Secondly, the generalization

ability of the student network is not taken into consideration when designing the loss function.

2.2.3 Review of Flow of Solution Procedure Matrix

[29] propose to view the knowledge distillation from the teacher network to the student

network as a way to transfer the decision process to obtain the solution. Since for a neural

network, the intermediate feature maps can be regarded as part of the decision steps for the

neural network to derive a solution, distilling the knowledge by the transfer of the intermediate

feature maps is viable.

Based on this intuition, they propose to use encode the intermediate feature maps from

the hidden layer along with their sequences into one single matrix – the Flow of Solution

Procedure(FSP) Matrix. In their definition, let h, w, m denotes the height, width and number

of channels of a layer, the FSP matrix S ∈ Rm×n can be defined as

Si,j(x;W ) =
h∑
s=1

w∑
t=1

F 1
s,t,i(x;W )× F 2

s,t,j(x;W )

h× w
, (2.5)

where F1 and F2 denote two selected feature maps, x denote the input image, and W denotes

the weight of the neural network. During training, the distillation can be done by optimizing

the network such that the FSP matrices of the teacher and the student networks are similar.

Having selected n layers from both networks, the distillation can be done by minimising the
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following loss function

LFSP (Wt,Ws) =
1

N

∑
x

n∑
i=1

λi ×
∥∥(STi (x;Wt)− SSi (x;Ws)

∥∥2

2
, (2.6)

where λi represents the weighting of the loss from each selected layer i and N denotes the

number of data points.

Despite the intuitive design, the FSP matrix suffers from several issues. Firstly, the parameter

search can be expensive, since n layers need to be selected from both networks, and n

additional parameters λi needs to be decided, hyperparameter tuning and training of deep

networks where the number of layers is large can be expensive. Secondly, the caching of FSP

matrices can be space-consuming.

Most knowledge distillation techniques assume that the entire training set used to train the

teacher network will also be available for the student networks. This thesis will focus on

this overlooked aspect of knowledge distillation techniques by focusing on the generalization

ability of the student network, which will be presented in the next chapter.



CHAPTER 3

Methods

In this chapter, we first formulate the generalization ability of the student network given only

a small amount of data on Section 3.1. Then, an upper bound will be derived as a result

of our theoretical analysis on Section 3.2. The upper bound can then be developed into a

novel loss function, also known as the Wasserstein Generalization loss, to train the student

network, which will be presented on Section 3.3. On Section 3.4, we analyze the theoretical

similarity between training the student network with the proposed loss function and with

random perturbation. Finally, some practical tips during training will also be discussed.

In this thesis, we consider the general multi-class classification problem.

3.1 Rethinking the Generalization of the Student Network

By dint of knowledge distillation loss, the teacher network’s softened outputs act as additional

(privileged) information during the learning of student network and is shown to enhance

generalization ability of the student network by improving the learning rate [30]. However,

when the number of training examples is limited, the generalization error would be still fairly

large, and severe over-fitting issues would happen consequently. To handle this problem, we

suggest rethinking the generalization of the student network.

Denote the ground-truth data-generating distribution of instances x ∈ X as P, i.e. x ∼ P.

Then the aim of the learning student network is to minimize the following population risk,

R(NS) = EP[[`(x;NS,NT )]], (3.1)
11
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where EP is the expectation over the distribution P. The term `(x;NS,NT ) is a loss encour-

aging the student network to match with the teacher network, for example, for knowledge

distillation in Equation (2.1), `(x;NS,NT ) = H(pi, qi). Given the dataset DX = {xi}Ni=1,

the corresponding empirical risk goes to

R̂(NS) =
1

N

N∑
i=1

`(xi;NS,NT ). (3.2)

In fact, Equation (3.2) can also be written into an expectation form. Define a discrete

distribution PN over X as

p(x) =

1/N, if x ∈ {xi}Ni=1

0, otherwise
(3.3)

which is actually a uniform distribution over all N training data and called discrete empirical

distribution. Then Equation (3.2) equals to

R̂(NS) = EPN [[`(x;NS,NT )]]. (3.4)

In this way, the gap between the empirical risk and the population risk (i.e. the generalization

error) results from the difference between the ground-truth data-generating distribution P and

the discrete empirical distribution PN . To shrink the gap, we estimate the P using PN , and

assume P lies in a neighborhood of PN . Since P is continuous while PN is discrete, to measure

their distance and to cover every possible (continuous or discrete) distribution “between"

them, we adopt the Wasserstein distance [31] as the measurement. The neighborhood Bε(PN)

can be thus constructed as

Bε(PN) := {Q ∈M(X ) : dW (PN ,Q) ≤ ε}, (3.5)

whereM(X ) is the set of all possible distributions Q over X , and dW (·, ·) is the Wasserstein

distance between two probabilistic distributions.

The rationale behind the Wasserstein distance over other measurements, such as KL-divergence

or maximum mean discrepancy, is three-fold:
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(1) it can lead to a tractable solution which will be presented in Section 3.2;

(2) it can measure the distance between discrete and continuous distributions;

(3) measure concentration results from [32] guarantee that Bε(PN) could contain the

unknown ground-truth data distribution with high confidence.

Hence, Equation (3.5) can be viewed as a Wasserstein ball with a radius of ε that surrounds

the distribution PN . Since the distribution P lies in this ball, to boost the generalization

of the student network, we suggest to safely optimize the risk of all possible ground-truth

distributions within the Bε(PN). This goal equals to improving the worst-case risk of all

distributions in Bε(PN), which is equivalent to minimizing the supremum of the risks [33],

i.e.

sup
Q∈Bε(PN )

EQ[[`(x;NS,NT )]]. (3.6)

In this way, training with the objective Eq. (3.6) would alleviate the over-fitting problem

caused by few training data, and boost the generalization and the classification performance

of the student network accordingly.

3.2 Theoretical Analysis

As illustrated in the previous section, the generalization ability of the student network can be

enhanced by optimizing Equation (3.6). Nevertheless, Equation (3.6) involves a supremum

operation over the Wasserstein ball Bε(PN), which is not computationally tractable for the

training networks in an end-to-end fashion. Inspired by the Majorization Minimization

method [34], we choose to analyze the upper bound of Equation (3.6) as a surrogate objective,

then we can optimize the upper bound instead.

[33, Theorem 6.3] presents an upper bound related to the empirical risk R̂.

THEOREM 1. If ` is proper, convex and lower semicontinous, there exists an upper bound of

Equation (3.6) for any ε ≥ 0, i.e.

sup
Q∈Bε(PN )

EQ[[`(x)]] ≤ ψε+
1

N

N∑
i=1

`(xi), (3.7)
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where ψ := sup{‖θ‖∗ : `∗(θ) <∞}, `∗ is the convex conjugate function of ` and ‖·‖∗ is the

dual norm of ‖·‖.

Here for ease of notation, throughout this section we suppress the dependence of the network

NS andNT in loss `(x;NS,NT ), and denote it as `(x). And we adopt the `2 norm throughout

this paper. Next, we focus on the estimation of ψ’s value, which is dependent on the loss `

itself. We have the following result.

THEOREM 2. If ` is L - lipschitz continuous on X , i.e. for any x and x′ ∈ X ,

‖`(x)− `(x′)‖ ≤ L ‖x− x′‖ (3.8)

holds, then the ψ in Equation (3.7) is upper bounded by

ψ ≤ sup
x∈X
‖Ox`(x)‖ . (3.9)

PROOF. [33, Proposition 6.5] shows that if ` is L - lipschitz continuous, then

ψ ≤ L. (3.10)

Furthermore, the Lipschitz constant can be selected as the supremum module of the (sub) gradi-

ent over X [35], which completes the proof. �

By substituting Equation (3.9) in Equation (3.7), we can derive the following inequality

sup
Q∈Bε(PN )

EQ[[`(x)]] ≤ 1

N

N∑
i=1

`(xi) + ψε (3.11)

≤ 1

N

N∑
i=1

`(xi) + ε sup
x∈X
‖Ox`(x)‖ . (3.12)

However, calculating the supremum can be computationally expensive, so we just approximate

it by using the training examples, i.e.

1

N

N∑
i=1

`(xi) + εmax
i
‖Oxi`(xi)‖ . (3.13)
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Moreover, we adopt a proxy of this quantity as a regularizer following [36, 37] for more

efficient training, then the upper bound can be relaxed into

1

N

N∑
i=1

`(xi) + ε
1

N

N∑
i=1

‖Oxi`(xi)‖ . (3.14)

Recall that the parameter ε controls the radius of the Wasserstein ball centered at the discrete

empirical distribution PN .

3.3 Wasserstein Generalization Loss

To meet the requirements of the loss ` in Theorems 1 and 2, in this thesis we adopt the

following loss,

`(x;NS,NT ) =
∥∥oS − oT∥∥2

2
:= `(oS,oT ), (3.15)

where oS ∈ Rk and oT ∈ Rk are the input x’s logits of the student and teacher network,

respectively. Note that the loss ` for Equation (3.14) is not limited to Equation (3.15). We

use Equation (3.15) for it serves a straightforward and easy way to measure the discrepancy

between the output from student and the teacher network and works nicely in our experiment.

Combining the adopted loss Equation (3.15) and the upper bound Equation (3.14), we can

obtain a loss promoting the generalization, i.e.

LW (NS) =
1

N

N∑
i=1

`(oSi ,o
T
i ) + ε

1

N

N∑
i=1

∥∥Oxi`(oSi ,oTi )
∥∥ . (3.16)

We call this novel loss Wasserstein Generalization loss, which is motivated by focusing on

the generalization within the Wasserstein ball of the discrete empirical distribution. Since

Wasserstein Generalization loss does not include supervision signal from the ground-truth

labels, following the previous works [19, 20], our proposed Wasserstein Generalization loss

should be used in conjunction with the KD loss as

Ltrain(NS) = LKD(NS) + αLW (NS), (3.17)
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where α is a hyperparameter balancing the two losses. In this way, the student network can be

better guided by the teacher network through distilling its knowledge as well as boosting own

generalization.

The gradient term included in Equation (3.16) can be interpreted as a term that improves the

generalization ability when being optimized. Intuitively, the gradient term Oxi`(o
S
i ,o

T
i ) can

be viewed as the sensitivity of the network with respect to the input [38]. For example, if

one single image has a large gradient during training, that means the image needs to be paid

attention to. By reducing this term, we are effectively reducing the attention of the network

to one single image specifically. In other words, optimizing gradient term can smoothen the

decision boundaries trained on PN , and thus reduce the gap between network output for input

data in PN and Q.

3.4 Optimizing Gradient As Data Augmentation

Training deep neural networks requires a large amount of data. However, in the case of limited

data availability, a simple solution is to perform data augmentation. Image data augmentation

involves horizontal or vertical flipping of images and adding noise to the images. We next

proceed to show that the inclusion of the gradient term in Equation (3.14) can be explained as

training the network with this data augmentation mechanism.

THEOREM 3. Consider `(x;NS,NT ) =
∥∥oS − oT∥∥2

2
:= `(oS,oT ) as the loss function to

train the student network. Given a random perturbation γ ∼ (0, vI) on the input data x, then

the objective on the noisy input to train the student network would be approximated as

E
p(x,γ)

[[`(x+ γ;NS,NT )]]

= E
p(x)

[[`(x;NS,NT )]] + v E
p(x)

[[‖OxNS(x)‖2
2]] +O(v2)

:= E
p(x)

[[˜̀(x;NT ,NS)]] +O(v2).

(3.18)

PROOF. Given a teacher network NT , student network NS and their respective output oT

and oS , assuming a random perturbation γ ∼ (0, vI) is added to the training data, the loss
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function ` then becomes

E
p(x,γ)

[[`(x+ γ;NS,NT )]]

= E
p(x,γ)

[[(NS(x+ γ)− oT )2]] (3.19)

= E
p(x,γ)

[[N 2
S(x+ γ)− 2oTN 2

S(x+ γ) + o2
T ]],

where p(x,γ) denotes the probability distribution of x and γ. Assuming that the noise γ is

small, NS(x+ γ) can be approximated using Taylor series expansion of NS(x+ γ) around

NS(x).

NS(x+ γ) = NS(x) + γ>OxNS(x) +
1

2
γ>O2

xNS(x)γ +O(γ3) (3.20)

Substituting the approximation in Equation (3.19), ˜̀can then be approximated as the following

E
p(x,γ)

[[`(x+ γ;NS,NT )]]

≈ E
p(x,γ)

[[(NS(x) + γ>OxNS(x) +
1

2
γ>O2

xNS(x)γ)2]]

− 2 E
p(x,γ)

[[oTNS(x)oTγ
>OxNS(x) +

1

2
oTγ

>O2
xNS(x)γ]]

= E
p(x)

[[(NS(x)− oT )2]]− 2 E
p(x,γ)

[[
1

2
oTγ

>OxNS(x)γ]]

+ E
p(x,γ)

[[NS(x)γ>O2
xNS(x)γ + (γ>OxNS(x))2 +O(γ3)]]

= `(x;NS,NT ) + v E
p(x)

[[(NS(x)− oT )O2
xNS(x)]] + v E

p(x)
[[‖OxNS(x)‖2

2]].

If this loss function is minimized by taking the functional gradient of NS(x) and setting the

result to zero, then

NS(x) = E
p(oT ,x)

[[oT ]] +O(v)

which indicates that

E
p(x)

[[(NS(x)− oT )O2
xNS(x)]]
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reduces to O(v). Hence, Equation (3.19) becomes

E
p(x,γ)

[[`(x+ γ;NS,NT )]] = E
p(x)

[[`(x;NS,NT )]] +O(v2) + v E
p(x)

[[‖OxNS(x)‖2
2]], (3.21)

which we use ˜̀ to denote,

E
p(x,γ)

[[`(x+ γ;NS,NT )]]

= E
p(x)

[[`(x;NS,NT ) + v ‖OxNS(x)‖2
2]] +O(v2)

:= E
p(x)

[[˜̀(x;NT ,NS)]] +O(v2).

�

This loss function is similar to Equation (3.14) in many aspects. Firstly, their first term is

identical. Secondly, the second term is the gradient with respect to the input. Optimizing

Equation (3.14) also optimizes Equation (3.18). Since the first terms of Equation (3.18)

and ˜̀ are equal, the second terms can be seen as a regularization term that penalizes the

large gradient value of NS(x). The two regularization terms can also be treated as `1 and `1

regularizations with respect to the gradient. Similar to the feature of L1 regularization, the

regularization term of Equation (3.14) is robust to large gradients during training. Therefore,

optimizing Equation (3.14) with PN resembles training with PN with random perturbation,

which is a popular method to perform data augmentation. The performance of the student

network trained with few data can then be guaranteed by emulating the data augmentation.
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Algorithm 2 Training the Student Network with Wasserstein Generalization loss

Input: A teacher network NT ; a student network NS; training data {(xi,yi)}Ni=1; balancing
factor α; number of epochs e; batch size b.
Output: A trained student network NS .

1: Let i = 0.
2: while until converge or i ≤ e do
3: Sample a minibatch from training data.
4: Calculate the logits oS and oT

5: Calculate `(oS,oT ) as Equation (3.15).
6: Calculate LW (`(oS,oT )) as Equation (3.16).
7: Calculate LKD as Equation (2.1).
8: Apply back propagation and update weights of NS accordingly based on Equa-

tion (3.17).
9: end while

10: return NS



CHAPTER 4

Experiment

In this chapter, we conduct experiments to validate our theoretical analysis and demonstrate the

ability of the proposed Wasserstein Generalization loss to boost the generalization ability of

the student network. We will begin by first discussing the datasets used and the configuration

of the networks in our experiment in Section 4.1. Next, we proceed to design the method to

evaluate the generalization ability of neural networks in Section 4.2. Experimental results

in comparison with the baseline models will be presented in Section 4.3. Then, we discuss

the structural complexity of our network configurations and their impact on the experimental

results in Section 4.4. Finally, we discuss the impact of the hyperparameters selections and

the effect of proxy in Section 4.5 and Section 4.6, respectively.

4.1 Datasets and Network Configuration

4.1.1 CIFAR-10 and CIFAR-100 dataset

CIFAR-10 and CIFAR-100 dataset [39] consist of 60,000 tiny RGB images with shape 32×32,

where 50,000 of the images are training set and the remaining 10,000 images are intended for

testing. The tiny images in CIFAR-10 are split into 10 mutually exclusive categories, which

are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. For the two datasets,

we use the same teacher and student network structures, while CIFAR-100 is split into 100

mutually exclusive categories. The architecture of the teacher network for the two datasets

consists of three convolutional maxout [40] layers followed by a fully connected maxout

layer in a 96-192-192-500 plus a softmax layer configuration. The design of the teacher
20
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TABLE 4.1: Details of the network structure used in the experiments using
CIFAR dataset. “conv" means the convolutional layers and “FC" stands for
the fully-connected layers.

CIFAR
Teacher

CIFAR-10
Student #0

CIFAR-10
Student #1

CIFAR-10
Student #2

CIFAR-100
Student

conv 8x8x96
maxpool 2x2
dropout

conv 3x3x16
conv 3x3x32
conv 3x3x32
maxpool 2x2

conv 3x3x16
conv 3x3x16
conv 3x3x16
maxpool 2x2

conv 3x3x32
conv 3x3x48
conv 3x3x64
conv 3x3x64
maxpool 2x2

conv 3x3x32
conv 3x3x48
conv 3x3x64
conv 3x3x64
maxpool 2x2
dropout

conv 8x8x192
maxpool 2x2
dropout

conv 3x3x48
conv 3x3x64
conv 3x3x80
maxpool 2x2

conv 3x3x32
conv 3x3x32
conv 3x3x32
maxpool 2x2

conv 3x3x80
conv 3x3x80
conv 3x3x80
conv 3x3x80
maxpool 2x2

conv 3x3x80
conv 3x3x80
conv 3x3x80
conv 3x3x80
maxpool 2x2
dropout

conv 5x5x192
maxpool 2x2

conv 3x3x96
conv 3x3x96
conv 3x3x128
maxpool 2x2

conv 3x3x48
conv 3x3x48
conv 3x3x64
maxpool 8x8

conv 3x3x128
conv 3x3x128
conv 3x3x128
conv 3x3x128
maxpool 8x8

conv 3x3x80
conv 3x3x80
conv 3x3x80
conv 3x3x80
maxpool 2x2
dropout

maxout 500
FC+softmax

maxout 500
FC+softmax

maxout 500
FC+softmax

maxout 500
FC+softmax

maxout 500
FC+softmax

network generally follows the architecture used in FitNet [19] and maxout with some minor

modifications (See Table 4.1). The images are rescaled to range [0, 1] and are augmented

by random cropping with paddings and random horizontal flipping, before feeding into the

network. The mean and standard deviation of the images are rescaled to zero and one across

three channels.

4.1.2 Fashion-MNIST dataset

Fashion-MNIST dataset [41] consists of 28×28 greyscale images from ten different categories

of fashion items, including T-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,

and ankle boot. The number of examples for training and testing is 60,000 and 10,000,

respectively. The architecture of the teacher network consists of two convolutional layers
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TABLE 4.2: Details of the network structure used in the experiments using
Fashion-MNIST dataset. “conv" means the convolutional layers and “FC"
stands for the fully-connected layers.

Fashion-MNIST
Teacher

Fashion-MNIST
Student

conv 8x8x32
maxpool 2x2

conv 3x3x32
conv 3x3x32
conv 3x3x32
conv 3x3x32
maxpool 2x2

conv 8x8x64
maxpool 2x2

conv 3x3x64
conv 3x3x64
conv 3x3x64
conv 3x3x64
maxpool 2x2

FC 4096 FC 500
FC+softmax FC+softmax

with kernel size 8 × 8 followed by a fully connected layer with 4096 units and a softmax

layer that predicts the probability distribution over the ten categories. Before images are

fed into the network, the images are rescaled to range [0, 1] and are augmented by random

horizontal flipping only. Fashion-MNIST is favored over MNIST for its complexity and its

more accurate presentation of modern computer vision tasks.

4.2 Evaluation of Generalization Ability

To demonstrate the advantage of the proposed algorithm in generalization, we investigate the

classification performance when the student network is trained with a different number of

examples. The teacher network is pre-trained with complete training examples. As for the

student network, we randomly sample M examples for each of the categories and use them

for training. Then different M values indicate the different size of the training set for the

student network. During sampling, balance with respect to the number of examples across

different categories is strictly maintained to avoid unnecessary performance impact.

We compare the classification accuracy of the student network when it is trained with different

competing losses, including the original knowledge distillation (KD) loss, FitNet (FN) [19],
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Activation Boundary (AB) loss [20] as well as our Wasserstein Generalization (WG) loss. As

mentioned in the previous section, following the related works, the Wasserstein Generalization

loss is designed to be used on the top of KD loss. For the fair comparison, all methods use the

same teacher network, and all student networks have an identical structure. In specific, the

pretrained teacher networks have testing accuracy of 89%, 47% and 92% on the CIFAR-10,

CIFAR-100 and Fashion-MNIST dataset, respectively. In our experiments, ε is set to 0.01

and α is set to 0.001 unless stated otherwise. Temperature T for KD loss is set to 3 and the

learning rate is set to 0.001. On all three datasets, the student networks are trained using

backpropagation and Stochastic Gradient Descent (SGD) with momentum for 500 epochs.

During training, the learning rate and the momentum decay linearly. The experiments are run

on a single NVIDIA GeForce 1080 Ti GPU.

4.3 Experimental Results

TABLE 4.3: Classification accuracy with respect to various methods and
different number of training examples on CIFAR-10 dataset.

M Ours AB [20] FN [19] KD [17]
Full 84.66% 82.65% 77.84% 79.72%
1000 82.01% 76.19% 63.84% 77.63%
500 73.08% 66.69% 54.51% 50.63%
100 47.24% 44.7% 29.68% 31.83%
50 41.16% 38.23% 31.65% 28.32%

TABLE 4.4: Classification accuracy with respect to various methods and
different number of training examples on Fashion-MNIST dataset.

M Ours AB [20] FN [19] KD [17]
Full 94.72% 92.1% 92.23% 92.1%
1000 91.95% 91.67% 91.53% 90.44%
500 90.46% 90.25% 82.6% 89.45%
100 85.18% 84.09% 81.92% 83.77%
50 81.73% 80.82% 81.40% 78.5%

Table 4.3 describes the performance of each technique using the CIFAR-10 dataset. The

simplest model, Student #0, is used for all experiments in this table. As can be shown in

Table 4.3, from the results obtained from the CIFAR-10 dataset, due to the optimization with
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TABLE 4.5: Classification accuracy with respect to various methods and
different number of training examples on CIFAR-100 dataset.

M Ours AB [20] FN [19] KD [17]
Full 49.64% 48.22% 48.94% 48.74%
250 34.98% 34.28% 35.38% 34.7%
100 21.81% 20.68% 20.37% 21.76%
50 20.32% 19.22% 18.64% 19.27%

respect to generalization ability, models trained with Wasserstein Generalization loss outper-

form in comparison with other techniques. Specifically, when the models are trained with the

full training set, the testing accuracy of the model trained with Wasserstein Generalization

loss outperforms AB by around 2 percentage points and outperforms other training techniques

by a larger margin. When the number of training samples reduces, Wasserstein Generalization

loss can still maintain its ability to generalize by outperforming all other baseline techniques.

For example, Wasserstein Generalization loss outperforms the second-best baseline method

by 4.25 points on KD, 6.39, 2.54 and 2.93 on AB when M equals to 1000, 500, 100 and 50,

respectively.

Similar observations can be found from Table 4.4, which shows the testing accuracy of

the models using the Fashion-MNIST dataset. When being trained on the full training set,

the performance of all tested models is superior to the teacher networks, while Wasserstein

Generalization loss achieves the highest test set accuracy of 94.72%. As M decreases, the

accuracy of Wasserstein Generalization loss drops from 94.72% to 81.73%, while AB loss

drops from 92.1% to 80.82%, FitNet drops from 92.23% to 81.4% and vanilla KD drops from

92.1% to 78.5%. The test set accuracy of the model trained with Wasserstein Generalization

loss is higher than AB loss, FitNet and KD loss at all tested values of M .

In comparison with CIFAR-10 and Fashion-MNIST, CIFAR-100 can be difficult to train

because there are only 600 images for each class in the dataset. In this case, a loss function

that boosts the generalization ability of the student network will be more essential than other

training algorithms or techniques. As demonstrated in Table 4.3, despite having only 600 data

samples in each category, the network trained with Wasserstein Generalization loss is able to

outperform all other baselines.
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4.4 Structural Complexity Analysis of Student Networks

TABLE 4.6: Classification accuracy of student networks on CIFAR-10 trained
by various methods using different number of samples, where AB, FN, KD
denotes Activation Boundary loss [20], FitNet [19] and Knowledge Distilla-
tion [17] loss, respectively.

Student #1 Student #2
M Ours AB FN KD Ours AB FN KD

1000 78.37% 73.46% 64.83% 62.88% 84.23% 78.64% 62.84% 62.46%
500 67.56% 62.88% 52.71% 48.12% 75.45% 68.82% 49.12% 53.75%
100 43.96% 41.54% 30.2% 28.52% 49.69% 42.95% 42.30% 36.55%
50 41.41% 35.49% 29.0% 35.52% 37.67% 36.45% 29.89% 30.73%

TABLE 4.7: Structural complexity statistics of the teacher network and various
student networks on CIFAR dataset. The compression and acceleration rate is
with respect to the teacher network.

#Params #FLOPs Compression Ratio Acceleration Ratio
Teacher 11M 59.62M 100% 100%

Student #0 1M 5.27M 8.87% 8.83%
Student #1 0.3M 1.73M 2.92% 2.90%
Student #2 2M 9.95M 16.72% 16.69%

To examine the generalization ability benefit of the Wasserstein Generalization loss from

the perspective of network structure, we conducted experiments with the same setting as

described in Section 4.1, but with different network complexities. In this experiment, we

investigate the change of performance affected by altering the network complexity. Concretely,

we trained Student #1 and #2 using the techniques mentioned in the previous section, and

compare the difference in terms of testing accuracy. 4.7 shows the general statistics of the

architectures used in the CIFAR dataset. In this table, the compression ratio of the student

networks is computed by the ratio of the number of parameters of the student network to the

teacher network, assuming the parameters are single precision floating point numbers. The

acceleration ratio is computed by the ratio of the number of floating point operations of the

student network to the teacher network. We can observe from this table that the number of

parameters in Student #1 is smaller than that of Student #0 while the number of parameters in

Student #2 is larger.
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Table 4.6 shows the testing accuracy achieved by various training techniques on Student #1

and Student #2. As can be seen from Table 4.6, the performance of Wasserstein Generalization

loss remains on the top of other techniques on all listed M values, despite the complexity

of the network structure is increased or decreased. On M = 1000, Student #2 trained by

Wasserstein Generalization loss obtained 84.23%, despite the number of parameters being

16.72% of the teacher network. Meanwhile, the testing accuracy obtained by other techniques

on Student #2 is lower than their corresponding results under the same M in Table 4.6 by

a relatively large margin, which demonstrates the superiority of the proposed Wasserstein

Generalization loss in terms of generalization.

4.5 Hyperparameter Analysis

TABLE 4.8: Classification accuracy of the student network #0 on CIFAR-10
trained by Wasserstein Generalization loss with respect to different hyperpara-
meters α and ε in log scale.

log10α
log10ε -1 -2 -3 -4 -5

0 63.16% 80.33% 80.65% 77.67% 77.63%
-1 63.55% 80.03% 79.81% 78.14% 78.49%
-2 62.62% 80.50% 79.27% 78.95% 77.77%
-3 62.54% 80.12% 79.48% 78.81% 78.21%
-4 62.64% 80.07% 78.78% 78.58% 74.90%
-5 63.05% 79.92% 78.81% 78.52% 78.10%

In this subsection, we perform a hyperparameter analysis of our proposed Wasserstein Gener-

alization loss. To this end, the CIFAR-10 model is trained usingM = 1000. Other parameters,

such as the temperature of the distillation, are heavily discussed in previous work [17]. Hence,

we focus on two important hyperparameters that are included in the proposed Wasserstein

Generalization loss, which are the weight of Wasserstein Generalization loss α and ε. Table

4.8 shows the result of the experiments for all combinations of α from 1 to 10−5 with incre-

ment 0.1, and ε for the same range with the same increment using 1000 samples. In theory,

the optimal radius of the Wasserstein ball ε can be computed with given confidence value

within the range (0, 1) using Equation 8 in [33, Theorem 3.4]. However, in our experiments,

with a fixed value of α, the performance of the models shows a low correlation with the
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generalization ability of the network. As α decreases, the performance of the network drops

dramatically as the importance of Wasserstein Generalization loss diminishes. When α is

larger than 0.001, the performance of the network drops dramatically, which is due to the

inclusion of the gradient term. This experiment indicates that the effect of Wasserstein

Generalization loss is only sensitive to α, which controls the relative weight of Wasserstein

Generalization loss itself, in comparison with other losses (i.e. KD loss).

4.6 Proxy Analysis

In Section 3.2, we have derived an upper bound to the formulation of the generalization

ability of the student network, i.e. Equation 3.6. This upper bound is then relaxed into a

tractable solution in Equation 3.11. Since calculating the supremum over the ground-truth

data-generating distribution x ∈ X can be computationally expensive, this supremum term

is then calculated over the current training batch in practice, as shown in Equation 3.13.

To further improve the stability and efficiency of the training process, a proxy of this the

supremum term is adopted.

In this section, we perform experiments to verify whether adopting such proxy can improve

the efficiency and stability of the training process. The experiments will be conducted by

comparing the performance between the Student #0 trained with Wasserstein Generalization

loss as shown in Equation 3.14 and one trained with the un-proxied version of the loss,

i.e. Equation 3.13, which can be implemented as

L′W (NS) =
1

N

N∑
i=1

`(oSi ,o
T
i ) + εmax

i

∥∥Oxi`(oSi ,oTi )
∥∥ .

In this experiment, L′W will be used in addition to the Knowledge Distillation loss, which is

identical to how LW is used in practice as shown in Equation 3.17. The experiments will be

run with CIFAR-10 dataset on Student #0 with the same configuration as Section 4.4. For

both networks, we set ε to 10−2, α to 10−3, and the learning rate to 10−3.
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TABLE 4.9: Classification accuracy of the student network #0 on CIFAR-10
and Fashion-MNIST trained by Wasserstein Generalization loss (proxied) and
the unproxied version of the Wasserstein Generalization loss (unproxied).

Dataset
CIFAR-10 Fashion-MNIST

M Proxied Unproxied Proxied Unproxied
Full 84.66% 82.77% 94.72% 93.19%
1000 82.01% 79.69% 91.95% 90.21%
500 73.08% 70.41% 90.46% 88.30%
100 47.24% 43.22% 85.18% 82.43%
50 41.16% 35.21% 81.73% 80.35%

Table 4.9 shows the accuracy of the unproxied loss compared against the proxied loss (referred

to as Wasserstein Generalization loss) across various M values on the CIFAR-10 and Fashion-

MNIST datasets. As can be seen from this table, Wasserstein Generalization loss outperforms

the unproxied version across all M values. In general, the performance of the student

network trained by the unproxied loss deteriorates faster than the proxied version when M

decreases. In some circumstances, for example, when M is 500 on Fashion-MNIST dataset, it

performs even worse than some other baseline methods shown in Tables 4.3 and 4.4. The fast

deterioration of the unproxied loss when the number of training samples decreases indicates

the necessity of adopting the proxied version because 1) it stabilises the training process by

avoiding exceptionally large values returned by the loss function; and 2) it emulates the data

augmentation by adding random perturbation in the training set, as discussed in Section 3.4.
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Conclusions

5.1 Thesis Summary

This thesis proposed an approach to enhance the generalization ability of the student network

when the training data is limited.

Chapter 1 briefly introduces the background knowledge and the motivation of the knowledge

distillation techniques, as well as the points overlooked by current studies.

Chapter 2 discusses one of the main backbone of our approach – Wasserstein distance, as well

as some previous work on knowledge distillation.

In Chapter 3 we present our proposed approach. Concretely, we assume that the ground-truth

data-generating distribution lies in a Wasserstein ball centered on the training examples’ dis-

crete empirical distribution. Thus we can safely optimize the risks of all possible distributions

within this ball to boost the generalization ability. Furthermore, for ease of training networks

in an end-to-end fashion, we theoretically relax the upper bound of the supremum risk and

develop a novel loss called Wasserstein Generalization loss accordingly. In particular, the

proposed Wasserstein Generalization loss is also easy to implement for the networks in real

applications.

In Chapter 4, we perform extensive experiments on benchmark datasets, which result in

empirical results that validate the effectiveness of our proposed method. It has been shown

that our Wasserstein Generalization loss is capable of improving the classification performance
29
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of the student network, and has significant superiority over other competing methods when

the training data is very limited.

5.2 Future Works

While theoretical and empirical results demonstrate that Wasserstein Generalization loss

has indeed improved the generalization ability of the student network in the knowledge

distillation setting, the introduction of the Wasserstein metric in the optimization constraints

indicates several possible further research and extension. In addition, the idea of improving

the generalization of the student network indicates its possible application on generative

models.
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