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Abstract 22 

Directional solidification of a cast mono-seed and of a FZ-seed was performed and the grain and 23 

defect structures of the seeds as well as of the regrown parts are analyzed. In situ X-ray diffraction 24 

imaging enabled the observation of the dislocation arrangements. During the heating process, in the FZ-25 

seed, mobile dislocations glide on {111} planes, whereas in the cast mono seed dislocations are arranged 26 

in a mainly immobile cellular structure. Ex situ grain orientation mappings reveal the presence of 27 

subgrains with misorientations up to 3° in the regrown part of the cast mono-seeded sample, which are 28 

not observed in the regrown part of the FZ-seeded sample. Subgrain boundaries characterized by 29 

misorientations around the [001] growth axis propagate roughly along the growth axis and increase their 30 

misorientation by merging with new subgrain boundaries appearing in their vicinity. Although the first 31 

inception of subgrain formation cannot be revealed, the comparison of the dislocation arrangements in the 32 

two seeds strongly suggests an influence of the latter on subgrain formation. In the regrown part, 33 

interactions between subgrain boundaries and twin boundaries show that they can follow Σ3{111} and 34 

Σ9{221} grain boundaries or cross Σ3{111} grain boundaries. Whether Σ3{111} GBs are crossed or not 35 

depends among other things on the orientation of the grains on either side of the twin. It demonstrates that 36 

the grain orientation relationship and not only the grain boundary character play an important role in the 37 

subgrain structure evolution and redistribution in a multicrystalline silicon ingot.  38 

1. Introduction 39 

Subgrain boundaries (SGBs) are known to be electrically active defects that decrease the photovoltaic 40 

(PV) efficiency and, therefore, should be limited during the manufacturing process [1]. SGBs consist of 41 

linear dislocation arrangements, as this configuration reduces the elastic energy in the crystal. In (100) 42 

grown crystals, SGBs can form during the directional solidification process by growing with the solid-43 

liquid interface inducing a tilted subgrain structure with rotations parallel to the growth direction. The 44 

angular deviation of crystal orientations often increases with ingot height, as more dislocations of the 45 
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same character are incorporated in the SGBs [2, 3]. The orientation of the glide planes with respect to the 46 

growth direction, their activation due to equivalent resolved shear stresses during solidification, but also 47 

the generation and termination mechanisms determine the final dislocation distribution.  48 

Subgrains are observed in all silicon ingots that are produced by casting processes for PV 49 

applications: in cast mono (cm-Si) [4-6], high-performance multicrystalline (HPmc-Si), [7] and 50 

conventional multicrystalline (mc-Si) silicon [8]. For mc-Si, either grains with <110> or <111> growth 51 

directions were reported to have the highest dislocation density [8-10]. In cast mono-Si, however, the 52 

<110> growth direction produced fewer dislocation clusters, i.e. narrower clusters originating at the seed 53 

junctions than the <100> growth direction [11]. 54 

The origin of dislocation clusters is found to be at grain boundaries [12, 13], with Σ27a GBs [7, 9, 14] 55 

and SGBs [15] playing a dominant role. Besides, dislocations in cast mono-Si are mainly generated at the 56 

junctions of the seed pavement [16, 17]. Additionally, subgrains originate from dislocation alignments 57 

already present in the seed crystals that can propagate into the new grown crystal during growth [18-20]. 58 

For the latter mechanism, the initial dislocation arrangement in cells in the seed is a main factor [19, 21] 59 

and depends on the stress in the seed [22-24].  60 

Additionally, it was found that the dislocation density in the newly grown crystal is at first lower than 61 

in the un-melted seeds [17, 22]. On the one hand, it could indicate that the thermomechanical stresses 62 

imposed on the seeds during the heating process are higher than during crystallization. On the other hand, 63 

it must be considered that dislocation generation mechanisms in a seed and the newly grown crystal are 64 

different and that dislocation mobility is strongly dependent on temperature and impurities. Therefore, it 65 

is particularly important to control the crystal quality of the seeds in order to control the dislocations in 66 

the regrown part. 67 

Just as important to understand the formation of subgrains is to find out the reason for their 68 

disappearance. A high amount of random angle GBs, like it exists in HPmc-Si, causes a decrease of the 69 

amount of subgrains in the ingot, because it is inferred that the dislocations are stopped at these 70 

boundaries [7]. It was also reported that neighbor grains with lower dislocation densities overgrow the 71 

grains with higher cluster densities [8]. These observations show that once formed, the subgrains can only 72 

be stopped by grain competition mechanisms, wherefore subgrain formation is highly undesirable in cast 73 

mono growth for which this mechanism is irrelevant due to the absence of grain boundaries. 74 

In order to better understand the role of the seed in the formation of subgrains, small-scale directional 75 

solidification experiments using a float-zone (FZ) seed and a cast mono seed in [001] growth orientation 76 

were performed. We compare the developed grain structure by applying in situ X-ray diffraction imaging 77 

to monitor the solidification microstructure during growth and ex situ etch pit and electron backscatter 78 

diffraction (EBSD) analysis to reveal the grain structure and defect spatial distribution. Formation of 79 

SGBs in the cast mono-seeded sample is observed and discussed in terms of their formation, propagation 80 

and disappearance. 81 

2. Experimental methods 82 

2.1. Sample preparation and processing 83 

Two samples originating from different processing techniques are used as seeds for directional 84 

solidification. Sample A-seed was produced by zone-melting using 9N material (SIL’TRONIX Silicon 85 

Technologies). Accordingly, the impurity concentrations of oxygen and carbon are below 1015 at cm-3. 86 

The sample was cut with a diamond wire saw to a size of 38 × 7 mm and polished to a thickness of 87 

0.3 mm. SiC abrasive paper followed by a 6 µm and a 3 μm diamond suspension was used for final 88 

polishing. 89 



3 

 

Sample B-seed was produced by the cast mono directional solidification technique from Cz seeds. 90 

The casted ingot had a laboratory scale 85 kg G2 and was provided by the Institut National de l’Energie 91 

Solaire (INES). A photoluminescence (PL) image of a vertical wafer cut from which sample B was taken 92 

is shown in Fig. 1. A white border marks the sample position (100 cm - 140 cm from the bottom). It is 93 

taken just below the area where electrically active subgrains do appear on the PL maps. In order to study 94 

subgrain influence during growth, the sample was put upside down in the furnace before partial melting. 95 

The final melt-back interface during the experiments was still above the visible subgrains and is shown in 96 

black on the magnified sample B image. The impurity content in interstitial oxygen [Oi] and substitutional 97 

carbon [Cs] at the height of the sample is (6 ± 1)×1016 cm-3 and (4.5 ± 0.6)×1017 cm-3, respectively. 98 

 99 

  100 

Fig. 1 Photoluminescence (PL) image of a vertical cut of the source ingot of sample B. In the upper part, electrically 101 
active SGBs are visible as dark lines. Sample B was taken just below this area. 102 

Both samples A and B have the same crystallographic orientation. The two main surfaces are the 103 

(110) and (1̅1̅0) planes, the vertical side planes are (11̅0) and (1̅10) and the horizontal planes are (001) 104 

and (001̅). 105 

The samples were placed in a boron nitride crucible and processed in a high temperature Bridgman 106 

furnace known as GaTSBI (Growth at high Temperature observed by Synchrotron Beam Imaging) [e.g. 107 

25, 26]. First, the temperature of both heating elements was slowly increased from room temperature up 108 

to a temperature of 1100 °C. Then, a temperature gradient of 30 °C cm-1 was applied to the heaters with 109 

TTop > TBottom and heating continued up to the melting point of silicon which is 1414 °C. The local vertical 110 

temperature gradient Glocal in the sample was always lower than the applied temperature gradient Gappl and 111 

can be calculated with Glocal = 𝑇/𝑣̇  using the applied cooling rate 𝑇̇ and measuring the growth velocity of 112 

the solid-liquid interface 𝑣 [27, 28]. Glocal was approximately (14 ± 3) °C cm-1 during the experiments. 113 

When partial melting of the sample was achieved, directional solidification was triggered, for sample B 114 

by pulling the sample down with a speed of 0.03 cm min-1 (5×10-6 m s-1), which corresponds to a cooling 115 

rate of 0.4 °C min-1, and for sample A by applying a cooling rate of 0.4 °C min-1 to both heaters for the 116 

first half of solidification followed by a cooling rate of 4 °C min-1 for the second half of solidification. A 117 

total of five and four heating/cooling cycles were carried out for samples A and B, leading to exposure 118 
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times to temperatures above 1100 °C of 20 and 8 hours, respectively. In this study the last heating/cooling 119 

cycle is discussed, as the grain structure is preserved for ex situ analysis. Although the growth processes 120 

of sample A and B differ, we do not expect significant differences during crystal growth due to the three 121 

following reasons. First, for both analyzed experiments in samples A and B, the measured growth rate 122 

(measured directly thanks to the in situ imaging) is identical (within the measurement accuracy limits) 123 

and the applied temperature gradient is also the same. Second, the diffraction images recorded during the 124 

first experiments using cooling rate applied to both heaters in sample B show that the general 125 

solidification features are reproducible compared to the last experiment using pulling down to initiate 126 

solidification. Third, the grain structure observed in both samples A and B is comparable. 127 

 128 

2.2. In situ observation 129 

In situ and real-time observation of the melting and solidification processes was achieved by using X-130 

ray synchrotron radiation at beamline ID 19 of the European Synchrotron (ESRF) in Grenoble, France. A 131 

combination of X-ray radiography and topography imaging allows studying the development of crystal 132 

defects [29]. Two individual camera-based detector systems were used to monitor the radiographic and 133 

topographic images with an image acquisition rate of 2 s-1. The radiography image contrast results from 134 

the density difference between the solid and the liquid phases and provides information on the dynamics 135 

and the morphology of the solid-liquid interface. The topography image results from Bragg diffraction 136 

and can be considered as one extended Laue spot that provides information on the crystal structure and 137 

associated extended defects. Crystal imperfections such as deformations and dislocations change the 138 

diffraction angle of the X-rays, resulting in superimpositions or gaps that are visible in the image as a 139 

change in contrast. The observed contrast provides qualitative information on the strain level which is 140 

associated with the macroscopic crystal deformation. 141 

2.3. Ex situ analyses 142 

After the in situ solidification experiments both surfaces of the samples were first polished with SiC 143 

abrasive paper and then with a 6 µm and a 3 μm diamond suspension to remove the reaction layer of the 144 

boron nitride crucible and to obtain a flat surface for EBSD analysis. EBSD was performed using a FEG-145 

SEM JEOL JSM 7001F operating at an acceleration voltage of 20 kV, a working distance of ~20.0 mm, a 146 

tilt angle of 70° and several magnifications. The SEM was equipped with a HKL Nordlys camera driven 147 

by the ‘Channel 5’ softwares suite (comprising ‘Flamenco’ for acquisition, ‘Map Stitcher’ for stitching, 148 

‘Tango’ for mapping and ‘Mambo’ for pole figures) using either a 7 µm or a 1 µm step size depending on 149 

the studied area. Orientation maps parallel to the growth direction (x), perpendicular to the growth 150 

direction (y) or normal to the sample surface (z) are displayed using the conventional inverse pole figure 151 

(IPF) coloring. For both samples, the x direction corresponds to the growth direction. To obtain large-152 

scale maps, the individually scanned images were stitched together. In some cases, the individual images 153 

do not fit together perfectly, which leads to visible stitching artefacts on the large-scale maps. Grain 154 

boundaries with a special character are shown in coincidence site lattice (CSL) maps. Σ3 <111> GBs are 155 

displayed in red, Σ9 <110> GBs in blue and Σ27a <110> GBs in yellow. Σ (Sigma) is the ratio between 156 

the number of lattice points in the unit cell of the CSL lattice and the number of lattice points in the unit 157 

cell of the generating lattice. The rotations around the indicated <hkl> directions satisfy the 158 

misorientation ranges given by the Brandon criterion [30], which are (60 ± 8.66)°, (38.94 ± 5)° and (31.58 159 

± 2.89)° for Σ3, Σ9 and Σ27a GBs, respectively. The range within special grain boundaries are defined as 160 

Σ grain boundaries is given by θ = 15°/sqrt(Σ). Additionally, misorientation maps that show small angular 161 

deviations from a predefined crystallographic direction, are used to detect subgrains. The detection limit 162 
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of misorientation angles is approximately 0.5° for the EBSD analysis with the highest spatial resolution of 163 

1 µm [31]. 164 

To reveal etch pits and grooves, the samples were etched for 5 min. with the chemical agent Sirtl 165 

(HF(40 %):CrO3(5M) = 1:1). The etching revealed grain boundaries and emerging dislocations that were 166 

observed using an optical microscope. The etching was done twice: the first etching after the EBSD 167 

measurements with 7 µm resolution and the second etching after the EBSD measurements with 1 µm 168 

resolution. 169 

3. Results 170 

3.1. Grain structure 171 

The overall grain structures of samples A and B are dominated by diagonal successive twinning from 172 

both edges, represented in the IPF X images of Fig. 2(a) and (c), respectively. Σ3 twinning at the edges 173 

occurs because there exists a large undercooling [27] that facilitates the nucleation of twin grains [32]. 174 

The twin grains enter in competition at the center of the sample, though, the encounter is shifted towards 175 

the left side in both samples. From the radiographs (see Fig. 3(a) for sample A), it can be deduced that the 176 

twins nucleate earlier on the right side because the solid-liquid interface on the right side advances faster. 177 

This behavior was also reported and explained for this kind of experiments in [33]. The competition 178 

between the twins that propagate from both sides is accompanied by a significant amount of stress. This 179 

becomes clear by looking at the topography images (Fig. 3(b) and Fig. 4(a) and (b) for samples A and B, 180 

respectively), which show a very dark contrast area where the competition takes place. The dark contrast 181 

(stress) started to build up at the level of the initial solid(seed)-liquid interface. Additional dark contrast is 182 

observed on the left of Fig. 3(b), where several twinned grains nucleated as can be seen on the IPF X plot 183 

of Fig. 3(c). However, the higher stress (enhanced black contrast) is observed at the position of encounter 184 

and competition of the diagonal twins coming from the sides (Fig. 3(b)). It was also observed in our 185 

previous work [33] in comparable solidification conditions in a different sample and during another 186 

experimental campaign. In both samples the strain diminishes above in the crystal after the nucleation of a 187 

new grain (purple in IPF X map of Fig. 2(a) and (c)), which is assumed to nucleates inside a grain 188 

boundary groove created by the side twins in the sample center. It has a different crystallographic 189 

orientation than the side twins and the seed grains. Its growth direction is close to <744>. In Fig. 3 and 190 

Fig. 4 these grains are encircled in black dotted lines. On top of them the global strain (dark contrast 191 

areas) reduces, as was previously observed in experiments with a FZ-seed of the same crystallographic 192 

orientation [33]. 193 

By looking at the IPF X and IPF Z images of both samples (Fig. 2(a)-(d)), it is apparent that the 194 

overall grain structure is the same. The [110] surface direction of the seed continues in the new grains 195 

almost over the entire sample height. The main difference in the structure of both samples is the 196 

development of high, up to 3°-misorientated subgrain domains in sample B, which are not present in 197 

sample A. The subgrain domains are detectable on the EBSD orientation maps because they have slightly 198 

different crystallographic orientations compared to the grain matrix. The black lines in Fig. 2(c) and (d) 199 

and the green areas in Fig. 2(e) reveal the subgrains. Fig. 2(e) shows the degree of misorientation from the 200 

[110] direction of the seed crystal in different colors: dark blue means no misorientation with respect to 201 

the reference direction and green, yellow and red mean a misorientation of 1°, 2° and 3° from the 202 

reference seed direction, respectively. The reference direction corresponds to a direction that is nearly 203 

parallel to the z-direction, i.e. normal to the sample surface. 204 

Two subgrain domains (1 and 2) are evidenced. Considering the detection limit, the first subgrain 205 

domain becomes visible ca. 5.8 mm above the seed-regrown silicon interface and consists of two 206 

subgrains (SG1 and SG2). The second subgrain domain becomes visible ca. 12.5 mm above the seed-207 
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regrown silicon interface and consists also of two subgrains (SG3 and SG4). The subgrains are finite and 208 

disappear again after a few millimeters.  209 

 210 

 211 

Fig. 2 (a) and (c) IPF X and (b) and (d) IPF Z orientation maps obtained by EBSD measurements of the solidified 212 
samples A (FZ-seeded) and B (cast mono-seeded), respectively. (e) The map shows the degree of misorientation 213 
from the [110] direction of the seed crystal. In sample B, SGBs are observed that show misorientations up to 2° with 214 
respect to the seed orientation (see also black-lines in (c) and (d)). The color gradations within the individual 215 
rectangles are due to map stitching artefacts and due to deviations of the electron beam during large-scale map 216 
acquisition. 217 
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 218 

Fig. 3 (a) In situ X-ray radiography image, (b) in situ X-ray topography image and (c) post-mortem IPF X 219 
orientation map of the FZ-seeded sample A. The X-ray radiography image was post-processed to better visualize the 220 
solid-liquid interface. The dark circle indicates a new grain nucleation (purple grain in (c)), which correlates to the 221 
reduction of strain in (b). t0 = 0 corresponds to the start of solidification. 222 

 223 

 224 

Fig. 4 (c) IPF X orientation map with (a) and (b) corresponding to in situ X-ray diffraction snapshots at different 225 
processing times of the cast mono-seeded sample B. t0 = 0 corresponds to the start of solidification. The red [001] 226 
grains that lie in the black framed area of the orientation image are visible on the diffraction images. The circles 227 
indicate the locations of new grain nucleations (purple grains) that contribute to recovery of lower strain levels in the 228 
upper growing grains (reduction of the dark contrast area in the X-ray diffraction images). The dashed lines serve as 229 
guides to the eyes to recognize corresponding regions. 230 

3.2. Formation of SGB domains 231 

In Fig. 5 the formation area of subgrain 4 is shown. The CSL map (Fig. 5(a)) shows that the region 232 

consists of diagonally arranged Σ3 twins. Figure 5(b) is an optical etch pit image on which the dark 233 

diagonal lines represent the same twin boundaries. The red dotted lines show the traces of the SGBs that 234 
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are only weakly visible or in some places are not visible at all on the microscopic image after etching 235 

(Fig. 5(b)). 236 

On the misorientation image of Fig. 5(c), the subgrains are clearly distinguishable because they 237 

exhibit a misorientation up to 3°. The image shows the degree of misorientation from the [110] direction 238 

with respect to subgrain 4. It can be seen that there is a misorientation of 3° between subgrains 3 and 4. 239 

The misorientation between subgrain 4 and the grain matrix is 1.7°. Bellow the sample height at which 240 

the SGBs become visible, a continuous increase of the misorientation can be measured along with the 241 

growth direction (Fig. 5(c)). Furthermore, at the lower ends of the SGBs b and c, which delimit subgrain 242 

4, two SGB-branches initially merged into one SGB. 243 

The misorientation angle of SGB b is the sum of the misorientation angles of the two initial branches. 244 

A summation occurred because the two branches separate subgrains that have a similar misorientation 245 

axis ([213̅] compared to [334̅]). This supports the assumption that the two branches converged into one 246 

during solidification to form a SGB with a higher misorientation. This suggests that the dislocations 247 

incorporated in the SGB are of the same character. When the branches of SGB c merge, the 248 

misorientation is not the sum of both. The reason is that the misorientation axis of both branches differ 249 

([3̅1̅1] compared to [1̅43]). In this case, the dislocations are probably of different character.  250 

 251 

 252 

Fig. 5 (a) CSL map, (b) etch pit image and (c) misorientation map of the formation area of subgrains 3 and 4. The 253 
degree of misorientation from the [110] direction of subgrain 4 is shown. (d) The graph shows a continous increase 254 
of misorientation along the black line. 255 

3.3. Propagation of SGBs 256 

Once a SGB is formed, it evolves almost perpendicular to the solid-liquid interface. In Fig. 6 the 257 

propagation of SGBs d and e, which separate subgrains 1 and 2, are shown. Figure 6(a) is the CSL map 258 

and Fig. 6(b) an inverse pole figure map along the x-direction (corresponding to the growth direction). 259 

Figure 6(c) is an optical etch pit image, where the dotted red lines mark the trace of the SGBs observed 260 

with EBSD. As was shown before, the SGBs are faintly visible on the etch pit image. Figure 6(d) shows 261 

the degree of misorientation from the [110] direction with respect to the grain matrix.  262 

SGB d follows the direction of growth and crosses Σ3{111} GBs without producing noticeable 263 

changes (see dotted pentagons in Fig. 6(c)). Along some short segments, SGBs also follow Σ3{111} GBs 264 

(see dotted circle in Fig. 6(c)). It causes the Σ3 GB{111} to become an incoherent GB, which is expressed 265 

by the misorientation angle that deviates from 60°. 266 

SGB e is located in a region where grain competition among grains that grow from both sides takes 267 

place. Either Σ3 or Σ9 GBs are formed depending on the twin relationship. A difference in the interaction 268 
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behavior between the SGB and Σ3 and Σ9 GBs can be seen. We find that SGBs never cross Σ9 GBs, but 269 

follow them (see dotted rectangles in Fig. 6(b)). We also observe that the misorientation angle of SGB e 270 

increases from 1.5° to 1.8° towards the top. 271 

 272 

 273 

Fig. 6 (a) CSL map, (b) IPF X orientation map, (c) etch pit image and (d) misorientation map showing the 274 
interaction of SGBs with Σ3 and Σ9 grain boundaries. 275 

3.4. Disappearance of SGBs 276 

The disappearance of both subgrains 3 and 4 is associated with the nucleation of new grains of the 277 

same <744> type (grains I and II in Fig. 7). Nucleation of grains I and II takes place on Σ3{111} facets 278 

included within the subgrains 3 and 4, respectively. This is why they have the same crystallographic 279 

misorientation with respect to the matrix than the entire subgrain area (see Fig. 7(c)). The nucleation 280 

events of grains I and II takes place in the subgrain areas 3 and 4 on the contrary to all other previous 281 

nucleation occurring during growth. Before these nucleation events, the subgrains grew only by an 282 

upward propagation crossing grains that nucleated far away from the subgrain area (at the sides of the 283 

sample). Although grain nucleation can be triggered by the presence of dislocations and/or deformed 284 

areas [27, 33] and by extension possibly by the presence of SGBs, it is not possible to conclude on this 285 

from our experiments. Moreover, it is worth noting that the same kind of nucleation events (same 286 

crystallographic orientation and position) was observed in sample A in which SGBs were absent. 287 

In order to understand why the subgrains disappear, it is necessary to have a detailed look at the 288 

development of the three SGBs a, b and c, which delimit subgrains 3 and 4 laterally. SGB a stops at the 289 

encounter of grain I. SGBs b and c meet the new grains I and II at a Σ3{111} GB. In both cases, they do 290 

not cross the GB but propagate along the GB inducing a direction change.  291 

The Σ3 GB is modified from a coherent Σ3{111} to an incoherent Σ3{111} GB. This is reflected in 292 

the misorientation angles of 56.9° (arrow 1 in Fig. 7(c)) and 58.8° (arrow 3 in Fig. 7(c)) between grains I 293 

and II and their neighbor grains, respectively, to be compared to the value of 60° expected for a perfect 294 

Σ3 GB. These grains have a <744> orientation close to the growth direction. The misorientation of the 295 

incoherent Σ3 GB below grain I is higher than that on the right side of grain II. This is due to the fact that 296 

the misorientation of SGB b is higher, too. Following the grain boundaries to the upper right, the 297 

misorientation remains unchanged. Interrupted by Σ9 GBs, the next incoherent Σ3 GBs have similar 298 

misorientations of 57.0° (arrow 2 in Fig. 7(c)) and 58.6° (arrow 4 in Fig. 7(c)), respectively. This is 299 

consistent with the misorientations of the SGBs measured before (3.0° and 1.1° for b and c, respectively). 300 
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Then, the SGBs encounter a triple junction between an incoherent Σ3, and a Σ27a GB. In fact, it is the 301 

first time during their upward propagation that the SGBs meet a Σ27a GB. After the encounter they do not 302 

continue their way in the direction of growth. The formation of the Σ27a GBs is associated with the 303 

nucleation of the new grains I and II that form a Σ27a GB on top. Since Σ27a GBs are also observed in 304 

sample A, which has no subgrains, these 27a GBs are only the result of grain competition.  305 

 306 

 307 

Fig. 7 (a) CSL map, (b) IPF X orientation map, (c) misorientation map and (d) {111}, {221} and {110} pole figures 308 
of the grains lying inside the white rectangle of map (b). The dark circles encircle common crystallogarphic 309 
directions. 310 

3.5. Dislocations in the seed crystals 311 

Dislocation distributions were observed by etching and by X-ray diffraction imaging. Dislocation 312 

densities measured by etch pit counts only show dislocations that emerge at the surface. Dislocations that 313 

stay in planes parallel to the sample surface are not revealed. In the diffraction images, dislocations are 314 

not visible if they fulfill the extinction criterion b⋅g = 0 for the particular diffraction spot observed (b is 315 

the Burgers vector and g is the diffraction vector). Therefore, both techniques do not represent the total 316 

amount of dislocations, but give a qualitative indication of the amount.  317 

Figures 8(a) and (d) show etch pit images of samples A and B at the position of the seed-regrown 318 

interface. In Fig. 8(b) and (e) in situ diffraction images of both samples are presented that show the seed 319 

crystals shortly before melting. The etch pits on the cast mono seed (sample B) form an array of 320 

dislocation cells. In the FZ seed the dislocation are not arranged in cells and are more widely spread. The 321 

dislocations are arranged in lines, which follow the traces of two crossing {111} family planes that are 322 

oriented perpendicular to the surface. Finally, the dislocation density is higher in sample B-seed compared 323 

to sample A-seed. 324 

The diffraction images confirm the observation from the etch pits images. The cast mono seed shows 325 

a dense network of dislocations arranged in cells compared to the FZ-seed. The time sequence of the in 326 

situ X-ray images reveal that the dislocations are not very mobile during heating and up to the melting 327 
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point in sample B compared to sample A (videos that show the heating phases of sample A and B are 328 

available as supplementary material). The two diagonal dark lines are probably micro-twins. In the FZ 329 

seed the dislocations originating from sources at the sample edges are very mobile up to the silicon 330 

melting point and move on different {111} planes. The almost horizontal lines form because dislocations 331 

propagate on the [111]/[1̅1̅1̅] and [1̅1̅1]/[111̅] planes, whose projection traces at the surface plane are 332 

horizontal. As these planes have an angle of 35.3° with the surface {110} planes, the movement of the 333 

dislocations on the planes can be nicely observed on the projected images. The propagation of 334 

dislocations along these planes is activated by the pressure exerted by the crucible on the main surface 335 

sides [34]. The reason for the slight inclination of the “horizontal” lines by 8° is due to a geometric 336 

distortion during recording, which is explained in [29]. Activation of the two {111} planes that are 337 

perpendicular to the surface can only be seen close to the melting point. These are the diagonal lines 338 

({111} traces) that are also observed on the etch pit image. 339 

What both samples have in common is that the etch pit density significantly reduces from the non-340 

molten seed to the new grown crystal. In Fig. 8(c) and (f), topography images of samples A and B shortly 341 

after the first solidification cycle are shown. The seed-regrown interface is very dark and therefore 342 

distorted. Inside the new grown grains dark areas are present as well. Although individual dislocations are 343 

poorly visible, one can see that the dislocation structure is quite different in the new grown crystals: 344 

neither horizontal dislocation lines for sample A, nor dislocation cells for sample B are visible. 345 

 346 

 347 

Fig. 8 (a) and (d) post-mortem etch pit images of the initial solid-liquid interface of the last cooling cycle of samples 348 
A and B, respectively. (b) and (e) X-ray diffraction images of the unmolten seeds of samples A and B, respectively, 349 
shortly before melting. (c) and (f) X-ray diffraction images after the first cooling cycles of samples A and B, 350 
respectively, that show the seeds and the regrown crystals and their different dislocation arrangements.  351 
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 352 

4. Discussion 353 

4.1. SBG structure 354 

4.1.1. Orientation relationship of the subgrains 355 

The SGBs in sample B are rotated towards each other mainly by a rotation around the [001] axis, i.e. 356 

the growth direction. This is illustrated in Fig. 9, where the degrees of misorientation from the [110], the 357 

[001] and the [1̅10] directions with respect to the seed orientation are shown from (a) to (c), respectively. 358 

In the x- and y-representations only the grains that have an orientation close to the original orientation of 359 

the seed can be seen in color because the other grains have a higher misorientation than 3°. The subgrains 360 

show a low misorientation along the x-direction but a similar high misorientation along the y- and z- 361 

directions consistent with tilt GBs. In Fig. 9(d) the inclination of the subgrains 3 and 4 relative to the 362 

grain matrix on both sides is schematically shown. 363 

The fact that almost no etch pits are visible along the SGBs means that the dislocations do not emerge 364 

at the surface. Hence, it supports the point that the dislocation lines of the SGBs are mainly oriented along 365 

the growth direction. Since the rotation axis is principally along the growth direction, many dislocations 366 

have an edge character. This is consistent with the analysis of Lantreibecq et al. [18] who found that the 367 

SGBs in the source cast mono ingot are mainly composed of dislocations with a [001] line character and a 368 

Burgers vector a/2[11̅0]. They proposed that these dislocations grow by epitaxy on the solid-liquid 369 

interface. They also found two other families of dislocations that have Burgers vectors at 45° from the 370 

growth axis. These dislocations could be responsible for deviations of the tilt direction of the subgrains 371 

also observed in this study.  372 

 373 

 374 

Fig. 9 Misorientation maps show the degree of misorientation from the (a) [110], (b) [001] and (c) [1̅10] direction 375 
with respect to the seed orientation. (d) Schematic representaiton of the tilt directions of the two subgrains SG3 and 376 
SG4 and the matrix grains on the left and right side. SGB3 and SG4 are inclined towards each other. 377 

 378 
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4.1.2. SGB misorientations and their dislocation density 379 

For SGB b we observe a continuous increase of the misorientation angle in the direction of growth, 380 

which is consistent with an accumulation of dislocations in a dislocation wall. This is also supported by 381 

our observation that lower misoriented branches merge to form a higher misoriented SGB in the direction 382 

of growth (cf. Fig. 5). A similar branched structure was earlier reported by Chuang et al. who observed 383 

SGB formation in silicon in situ suggesting that dislocations aggregate at the solid-liquid interface and 384 

increase the misorientation angle through the continual incorporation of new dislocations [2]. The 385 

branched dislocation arrays that merge into one SGB, the increase of the SGB misorientation and their 386 

principle orientation and tilt along the growth axis suggest a SGB formation during growth. SGBs aligned 387 

along the growth direction in mc-ingots have also been reported by other authors, who also assumed a 388 

generation of dislocations during growth at the solid-liquid interface [8, 13]. 389 

The distance between individual dislocations d assuming that the SGB is constituted of perfect edge 390 

dislocations aligned along the SGB can be evaluated by 391 

d = b/sin(𝜃). 392 

Using b = 0.384 nm for the Burgers’ vector magnitude in silicon along a <110> direction, the distance 393 

between each dislocation is d1 = 7.3 nm and d2 = 22 nm for θ of 3° and 1°, respectively. These 394 

misorientation angles are in the same order of magnitude as what was observed by Lantreibecq et al. in 395 

the source cast mono ingot at a height of about 160 mm from the melt-back surface [18], which is above 396 

the area where electrically active subgrains do appear on the PL maps (cf. Fig. 1). The rotation axis is also 397 

similar.  398 

The spacing of the dislocations can be used to estimate the number of dislocations within the SGBs. 399 

With a sample thickness t = 3×10-2 cm and a dislocation spacing in the order of d1 = 1×10-6 cm, 3×104 400 

dislocations exist within SGB b assuming a Burgers vector of 0.384 nm standard for hypothetical edge 401 

dislocations aligned vertically constituting the boundary. Accordingly, approximately 1.5×104 402 

dislocations exist in SGB a and c, respectively. This makes a total of 6×104 dislocations that should 403 

intersect a horizontal virtual surface to create the observed boundary misorientations.  404 

4.2. SGB origin and implications of the crystal quality of the seeds 405 

Oriwol et al. [12] performed a detailed study on the origin of dislocation clusters and found that 97% 406 

originate at grain boundaries. Different from this report and from other studies [e.g. 9, 35], SGBs start in 407 

the bulk crystal and not at a specific GB in our experiment. One reason for the high number of 408 

dislocations in sample B could be that dislocations propagate from the seed in the regrown crystal. 409 

Dislocation density was measured in the range 1×104 cm-2 to 3×104 cm-2 in another brick of the source 410 

ingot at a similar height to the one at which the sample was extracted for our experiments. Such a 411 

dislocation density results in a maximum of 540 dislocations crossing each sample horizontal surface. 412 

Compared to a number of 6×104 dislocations for the regrown part of sample B, the density in the seed 413 

crystal is too low to be the origin of all dislocations associated with the subgrains. Another argument 414 

against the idea that all dislocations originate from the seed is that the etch pit structure changes above the 415 

seed-regrown interface, which indicates that there is either a reduction of the total number of dislocations 416 

or a change in dislocation character and orientation or both. Hence, there are not enough dislocations in 417 

the seed to create the observed misorientations and dislocation multiplication and not only accumulation 418 

must have taken place in the regrown part. 419 

The question arises about the reason for the dislocation generation in sample B and not in sample A. 420 

That FZ-seeded samples do not develop subgrains has been confirmed several times by similar 421 

experiments using FZ seeds [33, 36]. When considering the two seeds A and B, it is obvious that a main 422 
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difference lies in the initial dislocation density and structuration. The initial dislocation network in the 423 

cast mono seed at the melting point shows a low mobility and is arranged in a cellular structure, whereas 424 

the dislocation network in the FZ seed is very mobile and aligned on {111} glide planes.  425 

In comparison to the source cast mono ingot of sample B, very similar subgrains are observed 426 

indicating a similar origin. Since sample B was taken from a domain just below SGB multiplication 427 

started in the source ingot, we can conclude that subgrain formation occurs at a similar height in both 428 

cases. As only the cellular dislocation structure and microtwins are initially characterized in sample B 429 

(see Fig. 8(e)), one of those defects might carry some deformation in relation with the SGB generation. 430 

Additionally, as microtwins are not present anymore after our melting step, we hypothesize that the origin 431 

of the SGB development could be due to the cellular dislocation structure present in the seed.  432 

Besides the dislocation structure, another difference is the chemistry of the cast mono compared to the 433 

FZ seed. The oxygen concentration in both seeds is very low, but the cast mono seed contains more 434 

carbon than the FZ seed. However, the sample is not oversaturated in carbon so that only a small number 435 

of precipitates should be present. It was reported that precipitates in the source cast mono seed do not 436 

immobilize dislocations, but that they can create dislocation cross-slip, if they are exposed to sufficient 437 

stress [18]. A strong influence of C- and N-based impurities on subgrain formation is therefore not 438 

suspected. In addition, both samples have boron concentrations >1017 at. cm-3 due to contact with the 439 

boron nitride crucible. Since both samples are equally exposed to the boron nitride crucible, a different 440 

influence behavior of boron on the formation of subgrains is improbable.  441 

The clearly different dislocation structures of the two seeds A and B indicates that it is probably the 442 

decisive factor causing the formation of subgrains. Unfortunately, it is not possible to give more 443 

information on the origin of the subgrains, because subgrains with smaller misorientations that probably 444 

exist in the lower part of the sample as it was reported in [18] could not be detected during this study due 445 

to experimental limitations. In a next step, the recording multiple diffraction spots providing 446 

complementary information is foreseen to clarify further details about the generation of subgrains. 447 

4.3. SGB propagation and termination 448 

The grain orientation relationship and the GB character play an important role for the propagation of 449 

the SGBs. Once the SGBs are generated, they cannot leave the sample because they grow with the solid-450 

liquid interface and are arranged parallel to the growth direction. When meeting a grain boundary, the 451 

existence of a common slip system on both sides of the grain boundary is necessary for dislocations to 452 

cross the twin boundary. Σ3{111} GBs that separate {110}<001> (red) and {110}<221> (blue) oriented 453 

grains are crossed by the SGBs without inducing any visible changes (colors refer to the IPFs). Σ3{111} 454 

GBs that separate {110}<221> (blue) and {110}<744> (purple) oriented grains are not crossed, but 455 

change the direction of the SGBs. SGBs propagate rather along the Σ3 and Σ9 GBs limiting the purple 456 

grains than through the purple grains. This is plausible as dislocations can be absorbed in a GB, splitting 457 

into grain boundary dislocations (GBD) with smaller Burgers vectors, and move in the boundary [37, 38]. 458 

We observe that Σ3{111} GBs become incoherent GBs when SGBs merge with them and follow them. 459 

This observation is different from the in situ observations of Chuang et al., who detected only cases where 460 

SGBs crossed Σ3{111} GBs that remain coherent according to EBSD detection limits [39]. 461 

Notably, the orientation relationship of the blue and purple grains is not favorable for the dislocations 462 

in the SGB to cross. It was reported by Schmid et al. that a common slip system is not enough to explain 463 

the correlation between dislocations and grain boundaries, but that the structure of the grain boundaries 464 

has to be taken into account [40]. From a macroscopic point of view, there is no difference in the 465 

character of the crossed and uncrossed GBs. From a microscopic point of view, the GB structure is 466 

unknown and TEM measurements would be required to obtain this information. In addition, it depends on 467 

the local stress and on the type of dislocation whether it can pass through a grain boundary [41, 42]. It has 468 
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been observed [41] and simulated [43] that even Σ3{111} GBs can act as accumulation obstacles for 469 

dislocations. The stereographic projection in Fig. 7(d) shows that the common <110> direction of the 470 

red/blue grains is roughly oriented in the direction of the SGB path. The common <110> direction of the 471 

blue/purple grains, however, is almost perpendicular to the SGB direction, i.e. parallel to the solid-liquid 472 

interface. The highest probability of crossing for dislocations and thus for dislocations arranged in a SGB 473 

is obtained if there is a common glide plane (common <110> direction) if other conditions of stress and 474 

dislocation character are fulfilled. Consequently, as the growth direction is forced upon the grains by the 475 

temperature gradient, the unsuitable orientation of the common <110> direction might be the reason for 476 

the SGB change, especially if there is no Burgers vector common to both slip systems.  477 

Above the purple grains, the SGBs do not continue their way. Either dislocations rearrange at the 478 

level of high disorder twin boundaries, like Σ27a GBs that limit the purple grains on top and emit new 479 

dislocations, or the dislocations leave the sample by cross slipping at the Σ3 or Σ9 GBs. Σ27a GBs have a 480 

higher boundary energy than Σ3 and Σ9 GBs and were found to be the source of new dislocations [13, 14, 481 

35] probably as the result of atomic faceting [44, 45]. We do not observe any new dislocation emissions 482 

originating at these Σ27a GBs, but first, the in situ X-ray diffraction image is very dark at this position, 483 

which conceals the observation of dislocations, and second, new generated dislocations could grow out of 484 

the sample surface due to the thin sample geometry. 485 

It is also important to note that these purple grains were identified as the grains whose nucleation 486 

releases strain previously accumulated as a result of grain competition when no SGBs are observed [33]. 487 

The new grain nucleation leads to a subsequent grain structure reorganization, which contributes to a 488 

reduction of the strain in the growing ingot. Although the disappearance of the subgrain domain is 489 

probably affected by the thin sample geometry, it means that the purple grains have an unambiguous 490 

influence on the SGB evolution. In a large-scale casting it could be a mechanism to stop or spread SGBs.  491 

 492 

5. Conclusion 493 

In situ growth experiments and ex situ analyses of two seeded wafers were performed. The initial seed 494 

orientation along the growth direction was [001] for both the FZ and the cast mono seeds. Several 495 

millimeters long subgrain boundaries, elongated in the growth direction and crossing a number of twin 496 

boundaries are formed in the cast mono-seeded sample, but not in the FZ-seeded sample. The subgrains 497 

have a main rotation axis along the [001] growth direction and increase their misorientation by merging 498 

with new SGBs appearing in their vicinity. 499 

In situ X-ray topography imaging during the heating and solidification experiments showed that the 500 

dislocations are very mobile in the FZ seed and propagate on {111} slip planes, whereas the dislocations 501 

in the cast mono seed are less mobile and are arranged in cells. The significantly smaller number of 502 

dislocations in the cast mono seed compared to the number of dislocations contained in the SGBs shows 503 

that dislocation multiplication mechanisms must have taken place in the regrown part. Although the 504 

source of the dislocations could not be revealed, the observations suggest that subgrain formation is 505 

related to the initial cellular dislocation structure in the cast mono seed. 506 

Once formed, the SGBs either follow Σ9{221} and Σ3{111} GBs or cross Σ3{111} GBs. In the 507 

situation where SGBs follow twin boundaries, the coherency of the Σ3{111} GBs is degraded due to the 508 

presence of the SGBs. A particular situation is observed where a Σ3{111} GB that separates <221> and 509 

<744> oriented grains constitutes an obstacle and is not crossed by the SGBs. Whether the dislocations 510 

stop or cross-slip cannot be determined, because the sample is very thin and a change in direction of the 511 

dislocation lines would cause the dislocations to escape at the surface. However, in either of these cases 512 

the vertical SGB propagation in the growth direction is disturbed. Transferring this finding to a real size 513 
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casting, the nucleation of <744> oriented grains that are known to release strain could be responsible for 514 

the stopping or lateral spreading of SGBs. 515 
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