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Abstract: Control over the energy level alignment in molecular junctions is 

notoriously difficult making it challenging to control basic electronic functions such 

as the direction of rectification. Therefore, alternative approaches to control electronic 

functions in molecular junctions are needed. This paper describes switching of the 

direction of rectification by changing the bottom electrode material M = Ag, Au, or Pt 

in M-S(CH2)11S-BTTF//EGaIn junctions based on self-assembled monolayers 

incorporating benzotetrathiafulvalene (BTTF) with EGaIn (eutectic alloy of Ga and 

In) as the top electrode. The stability of the junctions is determined by the choice of 

the bottom electrode, which in turn determines the maximum applied bias window, 

and mechanism of rectification is dominated by the energy levels centered on the 

BTTF units. The energy level alignment of the 3 junctions are similar due to Fermi 

level pinning induced by charge transfer at the metal-thiolate interface and by a 

varying degree of additional charge transfer between BTTF and the metal.  Density 

functional theory (DFT) calculations show that the amount of electron transfer from 

M to the lowest unoccupied orbital (LUMO) of BTTF follows the order Ag>Au>Pt. 

Junctions with Ag electrodes are the least stable and can only withstand an applied 

bias of ±1.0 V. As a result, no molecular orbitals can fall in the applied bias window 

and the junctions do not rectify. The junction stability increases for M = Au and the 

highest occupied molecular orbital (HOMO) dominates charge transport at positive 

bias resulting in a positive rectification ratio of 83 at ±1.5 V. The junctions are very 

stable for M = Pt but now the LUMO dominates charge transport at negative bias 

resulting in a negative rectification ratio of 912 at ±2.5 V. Thus, the limitations of 



 
 

Fermi level pinning can be bypassed by a judicious choice of the bottom-electrode 

material making it possible to access selectively HOMO or LUMO based assisted 

charge transport and, as shown here, associated reversal of rectification.  

 

Keywords: molecular diodes, molecular electronics, charge transfer, energy level 

alignment, Fermi-level pinning. 

 

TOC Figure:   

    



1 
 

Introduction 1 

The mechanisms of charge transport and transfer are fundamental to understanding 2 

various areas of research ranging from catalysis1, biology2, to energy management3. Molecular 3 

tunnel junctions make it possible to uncover and study new phenomena, such as light-matter 4 

interactions in tunnel junctions4-7, conductance switching8-9, molecular sensing10 or new 5 

mechanisms of charge transport (such as long-range tunneling11-12, charge transport in the 6 

inverted Marcus region13-15, or nuclear tunneling16-19), at the molecular length-scales. It is still 7 

challenging to control the energy level alignment within molecular junctions as it depends on 8 

several intertwined factors related to molecule-electrode interactions involving push back 9 

effects20-21, Fermi level (Ef) pinning22-23, (partial) charge transfer between the molecule and the 10 

surface20, 24, the formation of surface dipoles and the role of molecular dipoles25-26, or collective 11 

electrostatic effects27-28, complicating the rational design of molecular junctions. For these 12 

reasons, it is challenging to control basic electronic functions of molecular junctions, such as, the 13 

direction of rectification.  14 

Molecular rectification has been one of the hallmarks in molecular electronics since the 15 

landmark report by Aviram and Ratner which outlines the theoretical basis of a molecular 16 

diode29. Although well-performing molecular diodes based on, e.g., donor-acceptor (D-A) 17 

compounds13, 30-31, large molecular dipoles32-33, different interface dipoles34, or redox-units35-36, 18 

have been reported, control over the direction of rectification is limited. The direction of 19 

rectification is defined as the bias at which the molecular diodes allows the current to pass 20 

through the junctions given by:  21 

R+ = J(+V)/J(-V)    (1a) 22 

R- = J(-V)/J(+V)    (1b) 23 
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where J is the current density that flows across the junctions as a function of the applied voltage 1 

V. Here, R+ is the rectification ratio for a junction that allows the current to pass through at 2 

positive V, but blocks the current at negative V, and R- defines the same but for a junction with 3 

reversed rectification. So far, only a few examples have been reported where reversal of 4 

rectification has been demonstrated. In large area junctions, the redox-group is typically located 5 

at the top of the monolayer and is therefore in close proximity to the top electrode. Reversal of 6 

rectification has been achieved in such systems by moving the redox unit to the bottom of the 7 

monolayer37-39. Similarly, reversal of rectification has been achieved by moving a dipole from 8 

the top to the bottom of the monolayer32. In junctions with D-A compounds, changing the 9 

orientation of the D-A unit with respect to the electrodes also results in reversal of rectification30, 10 

40. All these strategies require modification of the chemical structure of the molecules via 11 

elaborate chemical synthesis. In contrast, here we report reversal of rectification by simply 12 

changing the bottom-electrode material.  13 

The energy level alignment at metal—molecule interfaces involves the formation of 14 

interface dipoles (Δ) due to push back effects (molecular adsorption on the metal, which 15 

“pushes” back the electron into the metal), which systematically lowers the work function of the 16 

metal electrode (Φ) (although the opposite effect may occur when, for instance, back-bonding 17 

from the metal dominates23-24, 41). Often, charge transfer between the molecule and metal surface  18 

has also to be considered since it is affecting the interface dipole and may increase or lower Φ21, 19 

42-43. For instance, in alkanethiolate SAMs on coinage metals, charge transfer occurs between the 20 

metal and the thiolate and results in a well-known Fermi-level pinning due to the strong 21 

interfacial electronic coupling, implying that the work function of the metal after molecular 22 

adsorption is independent of the work function of the native metal. In principle, when redox-23 
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active units are present, charge transfer between the metal surface and the highest occupied 1 

molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) centered on the 2 

redox units may also occur.  3 

Due to the Fermi level pinning effects, one would expect that the mechanism of charge 4 

transport is independent of M. Whitesides and co-workers showed that the mechanism of 5 

electrical failure of molecular junctions is independent of the molecular structure,44 and we have 6 

recently shown that the breakdown mechanism is dominated by direct transfer of momentum of 7 

the conduction electrons to the atoms in the electrodes via the wind force resulting in metal 8 

filament formation45. These studies indicated that the stability of the junctions can be improved 9 

with judiciously choses bottom electrode materials. Therefore, by changing the electrode 10 

material of the junctions, it should be possible to increase the bias window and access different 11 

charge transport regimes and behaviors36, 46-47. This paper describes reversal of the direction of 12 

rectification of molecular diodes of the form M-S(CH2)11S-BTTF//GaOx/EGaIn (BTTF = 13 

benzotetrathiafulvalene, EGaIn = eutectic alloy of Ga and In, and M = Ag, Au, or Pt) depending 14 

on the choice of the bottom electrode material M. Figure 1 shows schematic illustrations of the 15 

junctions and indicates the partial charge transfer from the metal to the BTTF units that is made 16 

possible by a super exchange mechanism48-50; this partial charge transfer is large for M = Ag, 17 

moderate for M =Au, and negligible for M = Pt resulting in a similar energy level alignment for 18 

the three bottom electrodes. Junctions with Ag electrodes can only withstand a narrow bias 19 

window of ±1.0 V and do not rectify. Junctions with M = Au are more stable with a rectification 20 

ratio R+ = 83 at ±1.5 V involving the HOMO. In contrast, junctions with M = Pt are very stable 21 

and the current flows across the junction at negative bias with R- = 912 at ± 2.5 V by involving 22 
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the LUMO. These results show that it is possible to control the direction of rectification, despite 1 

Fermi level pinning, by changing the bottom-electrode material.  2 

 3 

Figure 1. (a) Molecular structure of (S(CH2)11S-BTTF)2. (b)-(d) Schematic illustrations of the 4 

M-S(CH2)11S-BTTF//GaOx/EGaIn junctions with M = Ag, Au, and Pt. Red and green ovals 5 

indicate negative and positive charges after partial charge transfer as a result of energy level 6 

alignment, respectively. The circuit symbols indicate the direction of rectification, or when the 7 

junction does not rectify (and behaves as a resistor). δ+ and δ- indicate partial charge transfer 8 

between the S and BTTF units and the bottom electrode surface as determined from DFT 9 

calculations (see Figure 4). 10 

 11 

Results and Discussion 12 

Structural characterization of BTTF SAMs. The synthesis and characterization of the 13 

(S(CH2)11S-BTTF)2 SAM precursor is described in detail in Section S1. The SAMs were formed 14 

on template-stripped Ag, Au, and Pt (Despite that the three types of surfaces have similar surface 15 

roughnesses, the surface topography of the three metal surfaces is different with the Ag surface 16 
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having large grains and grain boundaries, while the grain size and grain boundaries of Au and Pt 1 

are very small. We have reported before51 that the performance of molecular junctions with large 2 

grains and grain boundaries is similar to that of junctions with small grains and grain boundaries 3 

because the fraction of expose grain boundaries in the former is small36, 52), following a well-4 

established procedure (Section S2) and characterized in detail (Section S3). Figure 2 shows the 5 

angle-resolved X-ray photoelectron spectroscopy (AR XPS) results for the S 2p signals for the 6 

SAMs on the three different bottom electrodes recorded at normal (90º) and grazing (40°) take-7 

off angles (see Section S3 for the C 1s, Ag 3d, Au 4f, and Pt 4f spectra). The spectra are 8 

dominated by two doublets each consisting of the S 2p1/2 and S 2p3/2 signals with the 9 

characteristic intensity ratio of 1:2. We assigned peak I with a binding energy of ~162.0 eV (blue 10 

line) to the metal-thiolate bond and peak II with a binding energy of ~163.9 eV (red line) to the 5 11 

sulfur atoms at the top of S(CH2)11S-BTTF SAMs and the physisorbed sulfur species, following 12 

previous peak assignments.53 For S(CH2)11S-BTTF SAMs on Au, a small peak III (green line) at 13 

161.2 eV is visible, which is attributed to Au-S bond associated with a disordered chemisorbed 14 

phase.54-55 The XPS spectra recorded with 40° take-off angle show that the intensity of peak I 15 

decreases with respect to peaks II (Figure 2), confirming that peak I originates from sulfur 16 

species close to the metal surface (Au-S) and that peaks II originates from sulfur species located 17 

at the top of the SAMs. 18 
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Figure 2. S 2p spectra of S(CH2)11S-BTTF SAMs on Ag (a), Au (b), and Pt (c) at take-off angles 1 

of 90° and 40°. (d) CV of S(CH2)11S-BTTF SAMs on Au at 0.1 V/s. (e) Secondary electron cut-2 

off (SECO) spectra of S(CH2)11S-BTTF SAMs on Ag, Au and Pt. (f) Valence band spectra of 3 

BTTF SAMs on Ag, Au and Pt (See Figure S6 for full valence band spectra). The HOMO and 4 

HOMO-1 onsets are marked with black lines. 5 

 6 

From the AR XPS data, we determined the values of the SAM thickness dSAM (Section 7 

S3) along the surface normal on Ag, Au, and Pt. The values of dSAM are similar with 8 

experimental error (21 ± 3 Å for Ag and Pt, 26.1 ± 3 Å for Au) and comparable to the molecular 9 

length (21.6 Å) calculated using the CPK model and a tilt angle (relative to the surface normal) 10 

of 57º determined by NEXAFS. We note that the somewhat larger value of dSAM for Au 11 

originates from the disorder observed in the aforementioned XPS data. We found that the surface 12 

coverage (ΓBTTF) of S(CH2)11S-BTTF SAMs relative to the values determined from CV (Section 13 

S3) are similar for all three metal surfaces (on average ΓBTTF = 1.88×10-10 mol/cm2; Table S1).  14 

The similar tilt angle and surface coverage suggest that the SAM packing is driven by π-π 15 

interactions between the BTTF units rather than differences in the M-S bond geometries, alkyl-16 

alkyl chain interactions or Gauche effects56-59. 17 

Figure 2d shows the cyclic voltammogram (CV) of the S(CH2)11S-BTTF SAMs on Au 18 

measured at a scan rate of 0.1 V/s. The CV exhibits two pairs of redox peaks with peak 19 

anodic/cathodic redox potentials (Epa/Epc) of +0.59 V/+0.44 V and +1.01 V/+0.84 V; these 20 

values are similar to those values determined with (S(CH2)11S-BTTF)2 in solution (Section S3). 21 

We assign peaks 1 and 2 to oxidation of BTTF unit to the radical cation and the dication, 22 

respectively, similar to SAMs with tetrathiafulvalene (TTF) termini60. The full width at half 23 
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maximum (FWHM) of the second oxidation peak of the S(CH2)11S-BTTF SAMs on Au (88 mV) 1 

is smaller than that of the first oxidation peak (167 mV). A similar behavior has also been 2 

observed in the CVs of other TTF SAMs on Au.60-61 For a reversible one-electron redox process, 3 

the FWHM is 90.6 mV (at 25 °C)62, but here the broadening indicates strong repulsive 4 

electrostatic interactions between neighboring BTTF units, similar to previously reported SAMs 5 

with TTF termini.63 The system shows quasi-reversible behavior as the peak oxidation and 6 

reduction potentials of both peaks increase with increasing scan rates, which indicates sluggish 7 

heterogeneous electron transfer rates likely caused by the presence of the long alkyl chain 8 

(Figure S9). Based on all these observations, we conclude that the SAMs are densely packed and 9 

that the standing up phase dominates the SAM structure. Some of us have reported before that 10 

SAMs derived from disulfides ((S-(CH2)11Fc)2) are inferior to those derived from the 11 

corresponding thiols (HS-(CH2)11Fc) with ferrocene (Fc) head groups.54 In contrast, the BTTF 12 

SAMs we report here readily form dense monolayers likely driven by favorable π-π interactions 13 

between neighboring BTTF units (which explains the similar tilt angles of the BTTF units of 57° 14 

as measured with NEXAFS). 15 

Electronic structure of the SAMs. Figure 2e and 2f shows the secondary electron cutoff spectra 16 

and the valence band, respectively (Section S3). For S(CH2)11S-BTTF SAMs on Ag, two features 17 

just below the Fermi edge at a binding energy of 0.59 and 2.3 eV are visible. Based on previous 18 

peak assignments of ultraviolet photoelectron spectra (UPS) of TTF,64 we assign these two 19 

features to the HOMO and HOMO-1 from which we determined the energy of these levels with 20 

respect to vacuum, EH and EH-1, respectively (Table 1). The intensities of the HOMO and 21 

HOMO-1 features for the SAMs on Au are smaller than those on Ag, and barely visible for 22 

SAMs on Pt. As discussed in detail below, DFT calculations indicate that the different degree of 23 
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hybridization between the molecular HOMO and HOMO-1 levels and the continuum of states of 1 

the metal electrode is responsible for this behavior (Section S5). We note that a similar decrease 2 

in the intensity of the HOMO and HOMO-1 features has been observed due to charge transfer 3 

between TTF and tetracyanoquinodimethane (TCNQ) in TCNQ-TTF charge transfer crystals.64 4 

We also determined the energy offset between HOMO and HOMO-1 and Fermi level of the 5 

electrode, δEH and δEH-1, which are similar for SAMs on Ag, Au and Pt (Table 1). These energy 6 

offsets are comparable to what has been reported for TTF based SAMs on Au.53, 65 From the 7 

secondary electron cut-off spectra, we determined the work function ΦSAM of the SAM-modified 8 

bottom electrodes (Section S3). Table 1 shows that ΦSAM for Ag and Pt surfaces are close to 4.1 9 

eV while for Au surface, ΦSAM is 0.2 eV larger which we attribute to the disorder of these SAMs, 10 

as discussed earlier. Despite the large differences between the values of ΦM of the bare metal 11 

ranging from 4.2 eV for Ag to 5.75 eV for Pt (Table 2), the values of ΦSAM are similar, which can 12 

be explained by Fermi level pinning, as discussed in more detail below. 13 

The energy of the LUMO (EL) was extracted for all three SAMs from the first resonant 14 

peak in near edge X-ray absorption fine structure (NEXAFS) spectra by following previously 15 

reported procedures (Section S3) and are listed in Table 1. The experimentally determined 16 

HOMO-LUMO gap from UPS and NEXAFS varies from 2.4 to 2.8 eV (Table 1), and is 17 

comparable to the measured optical HOMO-LUMO gap of 2.99 eV (Section S3) with UV/Vis 18 

spectroscopy.  We note that the HOMO-LUMO gap measurements are rough estimates because 19 

of core-hole (in NEXAFS) and exciton (in UV/Vis) interactions, but qualitatively the different 20 

experimental values agree.  21 

 22 

 23 
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Table 1. Summary of electronic properties of the S(CH2)11S-BTTF SAMs. More technical 1 

details about the DFT (functional, k-point sampling, pseudopotentials, cut-offs) and unit cells 2 

(lattice parameters, surface coverages) parameters used in our calculations are given in Section 3 

S5 of the Supporting Information.  4 

 5 

Electrical characterization of the Junctions. The junctions were fabricated by contacting the 6 

SAMs with cone-shaped EGaIn tips (Figure 1) following a previously reported procedure36 7 

(Section S4). The current density (J) vs. voltage (V) curves were recorded in the bias window of 8 

±1.0 V for junctions on Ag, ±1.5 V for junctions on Au, and ±2.5 V for junctions on Pt; these 9 

bias voltage ranges are below the breakdown voltages of EGaIn junctions with these bottom 10 

electrodes.45 Table S3 summarizes the yields of working junctions, the number of junctions and 11 

traces that were recorded and statistically analyzed following previously reported procedures to 12 

obtain the Gaussian log-average J(V) curves (<log10|J|>G (V)) along with the Gaussian log-13 

standard deviations and 95% confidence levels shown in Figure 3.8, 36, 66 Similarly, we also 14 

constructed the histograms of log10|R| at ±1.0 V for M = Ag, ±1.5 V for M = Au and ±2.5 V for 15 

M = Pt to determine <log10|R|>G and σlog (Section S4).  16 

The most striking result is that for junctions with M = Ag no rectification is observed, while 17 

for junctions with M = Au the value of R+ is 83 (σlog = 0.29) and M = Pt the value of R- = 9.1 × 18 

102 (σlog = 0.76). In other words, the direction of rectification is reversed for junctions with M = 19 

Au or Pt, implying that junctions with M = Au allow the current to flow across the junction at 20 

positive bias while the opposite is true for junctions with M = Pt. The values of J for the 21 

 UPS and NEXAFS   DFT  
Metal ΦSAM 

[eV] 
δEH 
[eV] 

EH 
[eV] 

δEH-1 
[eV] 

EH-1 
[eV] 

δEL 
[eV] 

EL 
[eV] 

 ΦSAM
 [eV] 

δEH 
[eV] 

EH 
[eV] 

δEH-1 
[eV] 

EH-1 
[eV] 

δEL 
[eV] 

EL 
[eV] 

Ag 4.08 0.59 -4.67 2.31 -6.39 1.84 -2.24  4.01 0.12 -4.12 1.47 -5.48 2.16 -1.85 
Au 4.31 0.60 -4.91 2.15 -6.46 2.25 -2.06  4.03 0.10 -4.12 1.45 -5.48 2.2 -1.83 
Pt 4.16 0.62 -4.78 2.42 -6.58 1.83 -2.33  3.99 0.11 -4.10  1.49 -5.48 2.25 -1.74 
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junctions with the Ag electrode are low, which indicates that within the bias window of ±1.0 V, 1 

no molecular frontier orbitals enter the conduction window. In contrast, for junctions with Au 2 

and Pt electrode, a large increase in the J value is observed around 0.50 V and 0.90 V, 3 

respectively, which indicates that at these voltages, a molecular frontier orbital enters the 4 

conduction window (see below). This increase in the J value in only one bias polarity is reflected 5 

in the corresponding R(V) plots (Figure 3).  6 

 7 

 8 
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 1 

Figure 3. The plots of <log10|J|>G vs. V and R(V) plots obtained from M-S(CH2)11S-2 

BTTF//GaOx/EGaIn junction where M = Ag (a, b), Au (c, d) and Pt (e, f). The error bars 3 
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represent 95% confidence levels (Section S4). These data are collected based on 26 working 1 

junctions (out of 29) for M = Ag, 26 working junctions (out of 31) for M = Au and 31 working 2 

junctions (out of 39) for M = Pt. 3 

 4 

Computational modeling of the self-assembled monolayers. We performed DFT calculations 5 

to shed light on the electronic properties of the S(CH2)11S-BTTF based SAMs adsorbed on Ag, 6 

Au and Pt surfaces (Section S5). The optimized structures display very similar geometric 7 

parameters (Figures S12 and 13 and Tables S4 and S5) of the S(CH2)11S-BTTF molecules within 8 

the SAM, as expected by the fact that the three metals are characterized by very similar lattice 9 

parameters. This is in line with the experimental observations pointing to similar degree of 10 

coverages, SAM thickness and tilt angles for the three studied SAMs. The only appreciable 11 

difference is the metal-sulphur bond distance, which in the case of Pt, is about 0.2 Å shorter with 12 

respect to Ag and Au surfaces as reported by others67. Due to the stronger Pt-S bonds, Pt-13 

S(CH2)11S-BTTF based SAMs are more stable (1.0 eV difference in the adsorption energy Eads) 14 

compared with the other metal surfaces (Table S5).  15 

Next, we computed the values of ΦSAM (i.e., with S(CH2)11S-BTTF layers adsorbed on the 16 

three different surfaces). All ΦSAM values are similar and close to 4.0 eV due to the Fermi level 17 

pinning, which is consistent with the ΦSAM values determined with UPS (~4.2 eV) despite the 18 

large differences in the work functions of the native metals (ФM in Table 2). 19 

 20 

Table 2. Calculated electronic properties for the S(CH2)11S-BTTF SAMs adsorbed on Ag, Au 21 
and Pt metal surfaces. 22 

M Eads (eV) ФM (eV) ФSAM (eV) ΔФ (eV) ΔVSAM (eV) BD (eV) 
Ag -2.32 4.2 4.01 -0.19 -1.65 1.46 
Au -2.22 5.2 4.03 -1.18 -1.64 0.47 
Pt -3.3 5.75 3.99 -1.76 -1.68 -0.08 

 23 
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To elucidate the nature of the work function shifts induced by the SAMs (Δϕ), we casted 1 

down the total shift in two contributions originating from (Eq. 2): (i) the permanent dipole 2 

(ΔVSAM) of the molecular backbone (i.e., dipole mostly oriented along the BTTF unit) and (ii) the 3 

bond dipole contribution (BD) which is the potential shift arising from the charge reorganization 4 

upon adsorption.   5 

                                                ∆𝛷𝛷 = 𝛥𝛥𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐵𝐵𝐵𝐵                         6 

(2) 7 

The values of ΔVSAM are identical (-1.65 eV) for the three studied surfaces due to the similar 8 

geometric pattern of the S(CH2)11S-BTTF layers. For that reason, the origin of the pinning effect 9 

mentioned above is exclusively due to interfacial charge transfer upon adsorption. Variations in 10 

M—S dipole balancing the work function for different metals after SAM deposition has also 11 

been observed for oligophenylene thiol SAMs both at experimental68 and theoretical69 levels. 12 

Furthermore, this effect was also found in perylene diimide (PDI) SAMs with isocyanide 13 

anchoring groups.70 14 

We have analyzed the differences in charge density redistribution at the metal—molecule 15 

interfaces upon deposition of the SAM by following the so-called radical scenario (Eq. 3). In this 16 

formalism, the reorganization of the electron density at the interface (Δρ in e-/Å) can be 17 

estimated as the difference between the electron density of the full system (ρM-SAM) and their 18 

individual components: the S(CH2)11S-BTTF layer (ρSAM) and the metal surface (ρM). 19 

                                           𝛥𝛥𝛥𝛥𝜌𝜌 = 𝛥𝛥M−SAM − 𝛥𝛥𝑆𝑆                                    (3) 20 

By cumulative integration of the electron density redistribution at the interface, we can estimate 21 

the charge transfer profile at the interface (ΔQ in e-). Finally, the progressive buildup of the BD 22 
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contribution (BD in eV) along the normal direction with respect to the metal surface was 1 

obtained by applying the Poisson equation (Eq. 4) where ε0 is the dielectric constant of vacuum. 2 

                                                           ∇2𝐵𝐵𝐵𝐵(𝑧𝑧) = −∆𝜌𝜌(𝑧𝑧)
𝜀𝜀0

                          3 

(4) 4 

Figure 4 shows the different profiles of the charge transfer at the interface depending on 5 

the metal surface. Interestingly, both the magnitude and direction of the charge transfer are 6 

changing as a function of the nature of metal surface: Ag and Au lose electron density, while Pt 7 

gains electron density. To obtain a quantitative estimation and a spatial representation of the 8 

charge transfer mechanism, we performed a Hirshfeld versus Voronoi charge population 9 

analysis71 (Tables S6 and S7). The magnitude of the charge transfer is -0.14, -0.02, and 0.18 e- 10 

for M= Ag, Au and Pt, respectively. These values are consistent with reported charge transfers 11 

found in other thiolate-based SAMs72-73.  Despite the fact that M = Pt presents higher values for 12 

the charge transfer, the magnitude of the bond dipole associated with this transfer is very low. 13 

Actually, the charge transfer for this surface is localized at the Pt-S interface, while in the case of 14 

Ag and Au, a charge transfer between the BTTF unit and the metal surface is also found in 15 

addition to that associated with the M—S bond (Figure S14).   16 
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 1 

Figure 4. Plane averaged charge density difference (a), cumulated charge transfer (b) and bond 2 

dipole (c) profile at the interface along the normal axis to Ag (red), Au (blue) and Pt (green) 3 

metal surfaces. The vertical lines represent the atomic positions of the first metallic layer 4 

(orange), anchoring group S (yellow), the first C bonded to the S (C1) and the C connected to the 5 

BTTF unit (C11; grey).  6 

 7 

Figure 5 shows the calculated energy level alignment of the M-S(CH2)11S-BTTF SAMs 8 

on Ag, Au, and Pt. The combined M-S dipole and the partial charge transfer from the electrodes 9 

to BTTF units shifts the EHOMO centered at the BTTF unit toward Ef, while the ELUMO is shifted 10 

away from Ef for by an equal amount. The partial charge transfer to the BTTF unit is larger for 11 

M = Ag, with respect to for M = Au, and M = Pt. Therefore, the shift in the potential associated 12 

to the interfacial charge transfer (BD) is 1.46, 0.47 and -0.08 eV for  M = Ag, Au and Pt 13 
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respectively, which coincides with the above mentioned shift experimented by the energetic 1 

levels of the molecules.  Consequently, the energy level alignment of the three interfaces is 2 

similar despite the large difference in work function of the native metals, in good agreement with 3 

experiments (Table 1). We note that the mechanism of interfacial charge transfer between M and 4 

BTTF most likely proceeds via a super exchange mechanism well-known for donor-bridge-5 

acceptor compounds48-50; here, the metal fulfils the role of the donor and BTTF that of the 6 

acceptor. This charge transfer does not reflect a formal reduction of the BTTF unit but actually 7 

corresponds to a fractional charge transfer.  8 

 9 

Figure 5. The computed energy level diagrams with Evac = energy of vacuum, Ef = Fermi-level 10 

energy, ΦM = work function of metal (M = Ag (a), Au (b) and Pt (c). ΦSAM = work function of 11 

the metal surface after SAM formation. HOMO and HOMO' are the highest occupied molecular 12 

orbitals before (black dashed lines) and after (black solid line) charge transfer with the Ag, Au 13 

and Pt bottom electrodes. LUMO (grey dashed lines) and LUMO' (grey solid line) are the 14 

corresponding lowest unoccupied molecular orbitals levels.  15 
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 1 

In addition, the aforementioned pinning effect is at the origin of the similar energetic 2 

alignment with respect to the metal Ef in the three studied SAMs (Figure 5), as it has been found 3 

by UPS measurements for Ag and Au metal surfaces. Nevertheless, the HOMO signals are 4 

barely visible in the UPS spectrum of Pt. The total density of states (DOS) of the different SAMs 5 

shows that the states of Pt are very intense in the vicinity of the Ef (Figures S15 and 16). 6 

Consequently, the hybridization of the S(CH2)11S-BTTF frontier occupied levels with the Pt 7 

surface is higher than for the other electrodes (Figure S17). This finding agrees with the higher 8 

amplitude of the oscillations in the evolution of Δρ with the normal distance with respect to that 9 

across the Ag and Au metal surfaces (Figure 4a) and with the shorter M—S bond distances. In 10 

summary, stronger coupling implies a larger broadening of the molecular levels and hence a 11 

lower resolution in the UPS spectra.  12 

 13 

Computational modeling of the molecular junctions. To model the junction characteristics, 14 

we placed a Ag top electrode on top of the M-S(CH2)11S-BTTF SAMs with M = Ag, Au, and Pt 15 

(Figures S18 and S23) (Section S5), because Ag has a similar work function74 (ΦAg = 4.25 eV) as 16 

the GaOx\EGaIn top electrode75 (ΦEGaIn = 4.1-4.2 eV). We also verified replacing Ga-In with Ag 17 

top contacts has only a marginal effect on the transmission properties of the junctions (Figures 18 

S23 and S24). However, our results are sensitive to the choice of van der Waals distance between 19 

the SAM and the top contact (Figures S27-29). In our calculations, we used an optimized 20 

distance of 2.5 Å as discussed in Section S6 and computed the transmission spectra at the 21 

equilibrium (0 V) for the 3 junctions (Figure 6 and Figures S19-22). We note that an electron 22 

transfer takes place between the BTTF unit and the top electrode (Figure S30) which induces an 23 
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interface dipole which downshifts the energetic levels of the SAMs. Consequently, the HOMO 1 

level in the junctions is not anymore in resonance with EF as it was the case in the SAMs but δEH 2 

increases to ~0.9 eV as determined from the transmission spectra in Figure 6. Similar shifts are 3 

also observed for the LUMO levels.  4 

The transmission spectra across the junctions as a function of voltage were calculated by 5 

coupling the non-equilibrium Green’s function theory (NEGF) to the DFT formalism using the 6 

Quantum ATK 2017.2 package (Figure 6). Due to the Fermi level pinning effects with the 7 

bottom electrode described in detail in the previous section, the transmission at negative/positive 8 

bias polarities is governed by unoccupied/occupied levels as indicated by the purple and oranges 9 

lines in Figure 6. From the transmission spectra, the origin of the reversal of rectification despite 10 

similarities in energy level alignment becomes clear, as shown in Figure 7. In the case of Ag 11 

junctions, no energy levels fall in the relatively narrow bias window of ±1.0 V (Figure 6a). For 12 

junctions with Au, δEH is smaller than δEL (Figure 6b) in agreement with the XPS and NEXAFS 13 

results (Table 1) indicating that the HOMO dominates the mechanism of charge transport at 14 

positive bias resulting in rectification (Figure 7b). The participating of HOMO into the charge 15 

transport mechanism was further confirmed by the temperature dependent J(V) measurements 16 

reported in ref. 76 which demonstrated that at positive bias, the charge transport is thermally 17 

activated. In contrast, for junctions with Pt, at large applied bias, the LUMO dominates the 18 

mechanism of charge transport at negative bias. Although the HOMO is still involved with 19 

charge transport at positive bias, its contribution to the charge transport is very weak in 20 

comparison with the LUMO level because another unoccupied orbital (LUMO+1) is very close 21 

in energy to the LUMO (Figure 6c) and contribute significantly to charge transport at large 22 

negative bias (Figure 7c) so that both levels are participating in the transport for -2.5 V. Thus, the 23 
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calculations are in full agreement with the experimental data and explain in detail why the 1 

direction of rectification changes as a function of M. We would like to highlight that the 2 

calculations also show that the mechanism of charge transport would be similar for the three 3 

types of junctions in the hypothetical case that Ag and Au based junction could withstand the 4 

same large applied bias as Pt.5 

   6 

Figure 6. Transmission spectra across the M-S(CH2)11S-BTTF//Ag junctions as a function of the 7 

voltage difference applied to the electrodes for M = Ag (a), Au (b) and Pt (c). The cones 8 

delimited by the dashed lines depict the voltage windows applied to each junction: ± 1 V for M = 9 

Ag, ± 1.5 V for M = Au and ± 2.5 V for M = Pt. The purple and orange shades indicate when the 10 

HOMO or LUMO falls in the bias window, respectively. Note that the molecular orbital energies 11 

are not strictly coinciding with the energies of the transmission peaks. Nevertheless, no big 12 

differences in these energies are expected in view of the weak coupling between the BTTF 13 

moiety and both electrodes. 14 
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Figure 7. Energy level diagrams of M-S(CH2)11S-BTTF//GaOx/EGaIn junctions with M=Ag (a), 1 

Au (b) and Pt (c). ΦSAM and ΦEGaIn are the work function of the bottom electrode and top 2 

electrodes after SAM formation. The arrows indicate the charge transport process. The energy 3 

level diagrams were constructed based on the experimentally obtained EHOMO, ELUMO and ΦSAM 4 

values from UPS and NEXAFS. A renormalization factor of 1.5 was used to correct for the 5 

change of the energy offset when adding a second electrode.77   6 

 7 

According to the UPS measurements, δEH ≈ 0.60 eV (Table 1) but the calculations 8 

suggest that this level should enter the bias window around 1V bias. Similarly, the NEXAFS 9 

results indicate that δEH ≈ 1.8 eV while the calculations indicate that the LUMO enters the bias 10 

window around 1.5 eV. However, in these measurements the top electrode is not present but the 11 

DFT calculations show that charge transfer between the BTTF and top electrode results in a 12 

downshift of the energy levels of 0.5 eV, when moving from large to close top electrode contacts 13 

(see Figure S27). We have estimated this downshift from the transition voltages both 14 

theoretically (Section S5) and experimentally (Section S6) as the maximum of the dJ/dV vs. 15 

applied bias functions to identify the energetic positions of the conduction orbitals. We 16 

performed normalized differential conduction (NDC) analysis using Eq. 5 for the individual J(V) 17 

traces.78-80 18 

                𝑁𝑁𝐵𝐵𝑁𝑁 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 𝑑𝑑
𝑑𝑑

= 𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑)
𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑)

             (5) 19 

Figure 8a shows the NDC curve obtained from an Au-S(CH2)11S-BTTF//GaOx/EGaIn junction 20 

with a resonance peak at +1.03 V. This peak indicates that the HOMO enters the conduction 21 

window at this bias.81-82 At negative bias, the NDC curve shows typical parabolic behavior with 22 

NDC increasing to NDC = 3 which is characteristic for off-resonant tunneling78. The NDC curve 23 
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for a Pt-S(CH2)11S-BTTF//GaOx/EGaIn junction (Figure 8b) is dominated by a resonance peak at 1 

-1.79 V indicating that the LUMO dominates the mechanism of charge transport at this voltage. 2 

Figure 8c-d shows the theoretical dJ/dV vs. V curves which mimic the experimental NDC plots 3 

very well. Figure 8c shows the HOMO resonance at + 0.9 V for junctions with M = Au which 4 

corresponds very well to the peak observed in the NDC plot shown in Figure 8a.  Likewise, 5 

Figure 8d shows a peak at -2.0 V corresponding to a resonance of the LUMO which matches 6 

very well the NDC plot shown in Figure. 8b for the same junction. We note that the small 7 

HOMO peak in Figure 8d is visible at 1.0 V, but this peak is not resolved in the experimental 8 

data (Figure 8b). In the experimental data, the resonance for Pt is very broad. Likely at positive 9 

bias the HOMO is too broad to be seen as a clear peak which could explain why the NDC curve 10 

for Pt at positive bias does not follow a clear parabolic behavior but instead the NDC value 11 

gradually increases with V. In summary, the agreement between experiments and theory 12 

indicates that introduction of the top-electrode results in a downshift in energies of the molecular 13 

levels of about 0.4 eV. 14 

However, the calculated increase of the currents once a molecular frontier orbital enters 15 

the conduction window are much lower than the experimentally observed ones. Therefore, the 16 

experimental rectification ratios are between one or two orders of magnitude higher that the 17 

calculated ratios (Figure S32). It is important to note that our theoretical approach is used to 18 

model the charge transport only in the coherent regime and not in the incoherent hopping 19 

regime.83-84 Preliminary data indicate that indeed hopping is important when a molecular frontier 20 

orbital falls in the conduction window (similar to molecular diodes based on ferrocene units)36, 21 

but this change in the mechanism of charge transport from coherent to incoherent tunneling has 22 

not been accounted for in the current theory and therefore the theory might underestimate the 23 
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values of R for this reason. Moreover, our NEGF-DFT calculations primarily aim at providing 1 

reliable trends to rationalize experiments rather than a quantitative description of the energy level 2 

alignment in the junction due to the inherent limitations of DFT to predict accurate electronic 3 

gaps, especially in the proximity of metallic electrodes.  4 

  5 

Figure 8. NDC plots for M-S(CH2)11S-BTTF//GaOx/EGaIn junction where M=Au (a) and Pt (b). 6 

Calculated dJ/dV vs. applied voltage curves for Au (c) and Pt (d) junctions. 7 

 8 

 9 

 10 
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Conclusions 1 

 Usually it is challenging to tune the energy level alignment of molecular junctions due to 2 

Fermi level pinning. Consequently, it is still not straightforward to control electronic functions of 3 

junctions, such as the direction of rectification. Most approaches to control rectification focus on 4 

chemical alteration of the molecular component of the junctions, but systematic studies involving 5 

different electrode materials are rare. Changes in work function of the electrode have an effect on 6 

the magnitude and/or direction of interface dipoles, but often this effect is masked when the 7 

functional group couples too strongly with the electrode36-37. In this work, the BTTF redox unit is 8 

decoupled from the bottom electrode by the alkyl chain making it possible to investigate 9 

interfacial charge transfer across the metal-thiolate bond and from the metal to the BTTF unit in 10 

detail. With the aid of detailed DFT calculations, the contributions of charge transfer across the 11 

metal—molecule interface involving the thiol-anchoring group and the redox-active unit in the 12 

SAMs as a function of three different metals with large differences in work functions (M = Ag, 13 

Au, and Pt) were elucidated. By using different metals, the bias window could be increased from 14 

±1.0 V for Ag to ±2.5 V for Pt making it possible to change the mechanism of rectification from 15 

HOMO dominated charge transport at low applied bias for junctions with Au to LUMO 16 

dominated charge transport for junctions with Pt at large bias. The change in the energy level 17 

alignment of the system upon the application of a certain bias resulted in reversal of rectification 18 

in molecular diodes with EGaIn top electrodes. In other words, we have demonstrated a new way 19 

of tuning the direction of rectification by changing the bottom electrode material of the junction 20 

rather than by chemical alteration of the molecular structure which involves (often time-21 

consuming) chemical synthesis. Our work provides new insights in the understanding of energy 22 
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level alignment in molecular junctions with redox groups which provide energetically accessible 1 

energy levels and is important toward the rational design of molecular junctions in general. 2 
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