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Abstract: Risk of cardiovascular disease (CVD) increases considerably as renal function declines
in chronic kidney disease (CKD). Nucleotide-binding oligomerization domain-containing protein
1 (NOD1) has emerged as a novel innate immune receptor involved in both CVD and CKD.
Following activation, NOD1 undergoes a conformational change that allows the activation of the
receptor-interacting serine/threonine protein kinase 2 (RIP2), promoting an inflammatory response.
We evaluated whether the genetic deficiency of Nod1 or Rip2 in mice could prevent cardiac Ca**
mishandling induced by sixth nephrectomy (Nx), a model of CKD. We examined intracellular
CaZ* dynamics in cardiomyocytes from Wild-type (Wt), Nod1™/~ and Rip27~ sham-operated or
nephrectomized mice. Compared with Wt cardiomyocytes, Wt-Nx cells showed an impairment in the
properties and kinetics of the intracellular Ca?* transients, a reduction in both cell shortening and
sarcoplasmic reticulum Ca®* load, together with an increase in diastolic Ca?* leak. Cardiomyocytes
from Nod1~/~-Nx and Rip2~/~-Nx mice showed a significant amelioration in Ca?* mishandling without
modifying the kidney impairment induced by Nx. In conclusion, Nod1 and Rip2 deficiency prevents
the intracellular Ca?* mishandling induced by experimental CKD, unveiling new innate immune
targets for the development of innovative therapeutic strategies to reduce cardiac complications in
patients with CKD.
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1. Introduction

Chronic kidney disease (CKD) is a complex pathology characterized by a reduced glomerular
filtration rate, increased urinary albumin excretion and kidney damage [1]. Recent studies have
found that cardiac complications are frequent in patients with CKD [2,3]. The United States Renal
Data System (USRDS) 2014 annual report stated that the prevalence of any cardiovascular disease
(CVD) is about 2-fold higher in patients with CKD than in patients without CKD. Heart failure
(HF) is the main cardiovascular risk in patients with CKD from the outset, and increases gradually
with the progression of renal dysfunction [4]. Patients with CKD also have a higher prevalence of
cardiac systolic and diastolic dysfunction [5]. These data underscore the sharp increase in mortality
in advanced CKD, due mainly to the occurrence of cardiovascular events, such as arrhythmias [6,7].
The complex association between CKD and cardiac dysfunction can likely be explained by the clustering
of several risk factors, including uremia and inflammatory mediators [8,9]. Yet, little is known about
the underlying mechanisms of cardiac dysfunction in CKD.

Cardiac muscle cell contraction is tightly regulated by the change in intracellular Ca?* levels,
acting as a key mediator of excitation-contraction (EC)-coupling. The initial depolarization event
of the action potential activates L-type Ca®* channels (LTCCs) of the sarcolemma, firing an inward
voltage-dependent Ca®* current type I (Ic,r) from the extracellular medium. Ca* entry triggers a large
release of Ca®" from the sarcoplasmic reticulum (SR) by ryanodine receptor (RyR;) channels, resulting
in an increased intracellular Ca?* concentration ([Ca®*];) that prompts cell contraction. For relaxation
to occur, [Ca%*]; must return to diastolic levels and this occurs mainly by two mechanisms: (i) Ca%*
re-uptake by the Sarco/Endoplasmic Ca?* pump (SERCA) 2a and (ii) Ca®* extrusion by the Na*/Ca?*
exchanger (NCX). During diastole, RyR, channels are mostly closed; however, there is always a
low but finite probability that a RyR, channel will spontaneously open, mediating Ca?* flux into
the cytosol—known as Ca?* sparks. Ca®" spark frequency is normally low during diastole but,
in some pathological conditions, abnormally large or frequent sparks can activate the RyR, channels at
neighboring release sites, generating SR Ca?* waves that favor Ca2* extrusion by NCX, and providing
a substrate to initiate a life-threatening arrhythmia. Dysregulation of any of these Ca?* handling
mechanisms is commonly associated with the development of cardiac dysfunction [10], but whether
this is coming from an indirect kidney damage is less known.

There is a growing body of evidence suggesting that inflammation induced by innate immune
system activation can contribute to cardiac dysfunction [11,12]. Indeed, some receptors of the innate
immune system are known to play a significant role in the host response after cardiac and renal
damage [13,14]. The nucleotide-like receptors (NLRs) are a family of receptors of the innate immune
system with a relevant role in several CVDs. Indeed, specific activators of NLRs have a role in the
progression of some CVDs [15]. Nucleotide-binding oligomerization domain (NOD) 1 (NOD1) and 2
(NOD2) are members of the NLR family that present a few differences in their stimulatory molecules
and tissue location. Regarding their cellular location, NOD1 is broadly expressed in many cell types and
organs, such as heart, lung, skeletal muscle and kidney [14,16-18], whereas NOD2 expression is more
restricted to immune cells and endothelial cells [14,19-22]. Importantly, different groups including
ours have reported an association between NOD1 and CVDs [11,23-29]. NOD proteins are involved in
host defense that respond rapidly to certain pathogens or endogenous molecules released during cell
injury by triggering an inflammatory response [17]. NOD1 is a cytosolic protein that contains a caspase
activation domain, a recruitment domain (CARD), a nucleotide-binding oligomerization domain
(NOD) and a leucine-rich repeat domain. Upon activation, NOD1 undergoes a conformational change,
leading to self-oligomerization that allows the recruitment and activation of the receptor-interacting
serine/threonine protein kinase 2 (RIP2) through CARD-CARD interactions [30]. Activated RIP2 in turn
mediates the recruitment and activation of several mediators that allow the translocation of nuclear
factor kB (NF-kB) into the nucleus to initiate the inflammatory response [18].

Several groups, including ours, have analyzed the role of NOD1 in CVD [11,23,31-35].
We previously showed that NOD1 is up-regulated in both mouse and human failing myocardium
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and its genetic deletion or pharmacological blockade in mice with experimental HF impedes the
development of cardiac dysfunction, mainly by preventing cardiac Ca** mishandling [11]. NOD1
expression has been reported in human and mouse renal tubular epithelial cells [14,36]. Supporting
the involvement of NOD proteins in renal disease, Shigeoka et al. demonstrated that the deficiency of
Nod1/2 or Rip2 deletion, was protective against acute kidney ischemia/reperfusion injury, suggesting
that NODs respond to endogenous ligands after injury [14]. By contrast, Stroo et al. reported that the
double Nod1/2 deletion had no impact on the chronic renal damage induced by ureteral obstruction [37].

The potential role of NOD1 in the cardiovascular complications caused by specific renal disease
is unknown. Accordingly, the main goal of the present study was to investigate whether the
NOD1-dependent pathway was implicated in cardiac dysfunction and Ca?* mishandling induced by
experimental CKD.

2. Results

2.1. Macroscopic and Microscopic Cardiac Features and Biochemical Parameters of Renal Function in
Wild-Type and Nod1~/~ Mice at Baseline and after Experimental CKD

Cardiac macroscopic and microscopic parameters of the mice are summarized in Table 1.
Macroscopic analysis revealed that the Nx surgery induced an overall loss in BW (body weight)
in wild-type (Wt) mice, accompanied by a reduction in kidney weight (KW). Notably, the KW in Nx
mice considers the remaining one-third of the left kidney after the surgery, which is hypertrophied in
both Wt and Nod1~/~ mice (Table 1). The weight of the partial kidney resulting from the surgery (1/6 of
the kidney) was similar to the weight of the complete kidney in sham-operated mice, demonstrating
that the Nx remaining kidney is hypertrophied in both Wt and Nod1~~ mice. KW from Wt and
Nod17/~-sham-operated mice was similar. All these results were supported by KW/BW data (Table 1).
Heart weight (HW) and HW/BW ratio were similar between the different groups (Table 1). Additionally,
no differences in cardiomyocyte area were observed between Wt-sham, Wt-Nx, Nod1~/~-sham and
Nod17/~-Nx hearts, indicating that Nx surgery does not induce cardiac hypertrophy in Wt or Nod1~/~
mice. Examination of biochemical parameters related to renal function showed comparable kidney
impairment in both groups of mice subjected to NX, as demonstrated by the significantly higher levels
of plasma urea and BUN, compared with sham-operated mice (Table 2). FGF-23 levels were higher
in Wt-Nx and Nod1~/~-Nx mice compared to sham animals, although they were only significantly
increased in Wt-Nx, compared to Wt-sham. Phosphate levels were not different between the groups.
Biochemical kidney parameters were similar between Wt-Nx and Nod1~/~-Nx mice, indicating that the
deficiency of NOD1 does not prevent the renal impairment induced by Nx.

Table 1. Macroscopic parameters in Wild-type (Wt) and Nod1~/~ mice subjected or not to experimental
chronic kidney disease (CKD).

Wt-sham Wi-Nx Nod1~/~-sham Nod1~/=-Nx

(I;In‘;v) 18689+ 6.08 (10)  169.63 +4.65(8) 19827+ 6.66% (10)  185.03 = 12.05 (9)

1(3;;’ 26.24 + 0.25 (10) 2311+083(8)  2699+076% (10) 2526+ 0.76 (9)
HW/BW 7.11 +0.19 (10) 743 +0.42 (8) 7.38 + 0.28 (10) 731 +0.37 (9)

(ng/g)

(Ifnvgv) 18380 478 (10) 15583 £8.62*(8) 190.96 +7.02% (10)  165.90 + 7.39 (9)
fn":/g/ }sgv)v 7.01 = 0.18 (10) 6.76 = 033 (8) 7.09 + 0.24 (10) 6.58 = 0.26 (9)
Cell area 348221£10925 321590 £ 11973 3396719436 327132 + 116.62

(um?) (72 cells/10) (54 cells/8) (67 cells/10) (59 cells/9)

Data from 8-10 animals for macroscopic parameters per experimental group are reported as mean + SEM. HW:
heart weight, BW: body weight, KW: kidney weight. * p < 0.05 vs. Wt-sham; ¥ p < 0.05, # p < 0.01 vs. Wt-Nx.
Statistical significance was determined by one-way analysis of variance (ANOVA).
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Table 2. Biochemical plasma parameters in Wild-type and Nod1~/~ mice subjected or not to

experimental CKD.
Wt-sham Wit-Nx Nod1~/~-sham Nod1~/~-Nx
(r;jgr/?L) 37.24 + 3.55 (5) 83.30 + 545 ** (8)  39.80 + 4.78 ™# (6)  83.68 + 8.04 ¥+ &&& (g)
(IE;dNL) 17.40 + 1.66 (5) 38.93 + 2,55 ** (8)  18.60 +2.23 # (6)  39.10 + 3.76 *+*&&& (8)
(m;idL) 6.19 = 0.65 (7) 6.91 + 0.55 (8) 6.21 % 0.90 (6) 6.92 + 1.01 (8)
(i?/izf) 14032272 (7) 29400 £47.47*(8)  137.30 = 24.66 (5) 256.90 = 38.51 (8)

Data from 5-8 animals for biochemical parameters per experimental group are reported as mean + SEM. BUN: blood
urea nitrogen; FGF-23: fibroblast growth factor 23; Pi: phosphates. * p < 0.05, *** p < 0.001 vs. Wt-sham; #* p < 0.001
vs. Wi-Nx; &&& p <0.001 vs. Nod1™/~-sham. Statistical significance was determined by one-way ANOVA.

2.2. Deficiency of NOD1 Prevents both Systolic Ca’* Release Impairment and the Decrease in SR Ca’* Load
Triggered by Experimental CKD

Given the link between CKD and the prevalence of cardiac and systolic dysfunction [2,3] and
the involvement of NOD1 in preventing cardiac Ca** mishandling [11], we evaluated systolic Ca*
release after Nx and the possible participation of NOD1. To do this, we analyzed cardiomyocyte Ca2*
transients electrically-evoked by field stimulation at 2 Hz using confocal microscopy. Representative
line-scan images from field-stimulated cardiomyocytes from Wt-sham, Wt-Nx, Nod1~/~-sham and
Nod17/~-Nx mice are shown in Figure 1A. Wt-Nx cells clearly displayed a lower amplitude of
the intracellular Ca?* transients, slower kinetics and lower cell shortening values than Wt-sham
cardiomyocytes (Figure 1A-D). By contrast, the amplitude of Ca?* transients in Nod1~/~-sham and
Nod17/~-Nx myocytes was very similar, and close to the values in Wt-sham cells (Figure 1B). These
data indicate that deficiency of NOD1 prevents the decrease in the Ca?* transient’s amplitude, and
the impairment in their decay time and cell shortening induced by Nx. Since changes in systolic
Ca®* release are closely related to an alteration in the amount of Ca®* that entries though L-type Ca?*
channels (LTCCs), we measured the density of I, using patch-clamp technique in the whole cell
configuration in cardiomyocytes isolated from Wt-sham and Wt-Nx mice. Supplementary Figure S1
shows a similar I, density in both experimental groups, indicating that the Nx did no induce any
change in the density of Ca?* entering through LTCCs.

We next examined whether the observed differences in Ca?* transients between the different
groups were related to changes in the cardiomyocyte SR Ca®* load by measuring caffeine-evoked
Ca®" transients. Figure 1E shows representative line-scan images of caffeine-evoked Ca?" transients
in each group. The amplitude of caffeine-evoked Ca?" transients was significantly lower in Wt-Nx
cells than in Wt-sham cardiomyocytes (Figure 1E,F). By contrast, this parameter was similar between
Nod1~/~-Nx and Nod1~/~-sham cardiomyocytes (Figure 1E,F), indicating that NOD1 deficiency prevents
the impairment of systolic Ca?* release induced by Nx and contributes to the maintenance of the
physiological levels of the SR Ca?" load, allowing adequate systolic Ca?* release and regular cell
shortening after experimental CKD.

2.3. Deficiency of NOD1 Blunts the Increase in Diastolic Ca’* Release Induced by Nx

Since impairment of SR Ca®* load is frequently associated with alterations in diastolic Ca?* release,
we analyzed the frequency and properties of Ca?* sparks to measure the spark-mediated Ca?* leak from
RyR; channels. Representative line-scan confocal images of quiescent cardiomyocytes from Wt-sham,
Wt-Nx, Nod1~/~-sham and Nod1~/~-Nx mice are shown in Figure 2A. Results showed a significantly
higher frequency of Ca®* sparks in Wt-Nx cells than in Wt-sham counterparts, whereas Ca?* spark
frequency in Nod1~/~-Nx cardiomyocytes was similar to those of in Nod1~/~-sham cells, and both were
comparable with those of Wt-sham cells (Figure 2B). Estimation of Ca®* spark frequency normalized
to the SR Ca?* load showed that this was significantly higher in Wt-Nx cardiomyocytes (Figure 2C).
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Confirming these data, the overall spark-mediated Ca®* leak was substantially increased in Wt-Nx
cells (Figure 2D). By contrast, both the Ca?* spark frequency/SR Ca2* load (Figure 2C) and the overall
spark-mediated Ca2* leak (Figure 2D) were similar in Nod1~/~-Nx and Nod1~/~-sham cardiomyocytes.
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Figure 1. Deficiency of nucleotide-binding oligomerization domain-containing protein 1 (NOD1)
prevents the dysregulation of systolic Ca?* release, cell contraction impairment and the reduction in
sarcoplasmic reticulum (SR) Ca®*-load triggered by 5/6 nephrectomy. (A) Representative line-scan
confocal images of Ca?* transients in cardiomyocytes from Wt-sham, Wt-Nx, Nod1~/~-sham and
Nod1~/~-Nx mice electrically evoked by field stimulation at 2 Hz. Mean values of (B) peak fluorescence
of Ca%* transients, (C) decay time constant and (D) cell shortening obtained in cells from Wt-sham
(n = 45 cells/five mice), Wt-Nx (1 = 43 cells/five mice), Nod1~/~-sham (1 = 39 cells/five mice) and
Nod1~/~-Nx (n = 50 cells/five mice) mice. (E) Representative line-scan confocal images of caffeine-evoked
Ca’* transients in cardiomyocytes from all groups. (F) Mean values of caffeine-evoked Ca?* transients
amplitude obtained in cells from Wt-sham (1 = 33 cells/five mice), Wt-Nx (n = 37 cells/five mice),
Nod1~/~-sham (1 = 34 cells/5 mice) and Nod1~/~-Nx (1 = 35 cells/5 mice) mice. Results show mean + SEM.
1 < 0.001 vs. Wt-sham; # p < 0.05, ## p < 0.001 vs. Wt-Nx.
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Figure 2. Prevents the increased frequency of Ca2+—sparks and spontaneous Ca?™* release (SCR) induced
by 5/6 nephrectomy. (A) Representative line-scan confocal images of Ca?* sparks recordings obtained
in a quiescent cardiomyocyte isolated from Wt-sham, Wt-Nx, Nod1 ~/~-sham and Nod1~/~-Nx mice.
Average data of (B) Ca®* spark frequency, (C) normalization of Ca?* spark frequency by SR-Ca* load,
(D) spark-mediated Ca?* leak and Ca?* sparks properties: (E) peak, (F) duration and (G) width obtained
in cells isolated from Wt-sham (1 = 45 cells/five mice), Wt-Nx (n = 47 cells/five mice), Nod1~/~-sham
(n = 40 cells/five mice) and Nod1~/~-Nx (n = 46 cells/five mice) mice. (H) Representative line-scan
confocal images of SCR recordings (Ca%* wave [upper panel]; spontaneous Ca?* transients release
(lower panel)) from cardiomyocytes isolated from Wt-Nx mice. (I) Average data of SCR occurrence
obtained in cells isolated from all groups. Histograms show mean + SEM. ** p < 0.01; *** p < 0.001 vs.
Wt-sham; * p <0.05; # p <0.01; ittt p <0.001 vs. Wt-Nx.

Examination of the biophysical characteristics of Ca?* sparks revealed that their amplitude was
significantly lower in Wt-Nx cardiomyocytes than in Wt-sham cells (Figure 2E), whereas the opposite
was observed for the average duration of Ca?* sparks (Figure 2F). Ca®* spark amplitude and duration
in Nod1~/~-Nx cells was similar to those of Nod1~/~-sham cells, and both were comparable with those
of the Wt-sham group (Figure 2E,F). Conversely, the average width of Ca* sparks was unchanged
between groups (Figure 2G).
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We next analyzed other forms of spontaneous Ca?* release (SCR), such as Ca®>* waves and
spontaneous Ca®* transients, in ventricular quiescent cardiomyocytes. Figure 2H illustrates an example
of a Ca?* wave (upper panel) and spontaneous Ca’* transient release (lower panel) from cells isolated
from Wt-Nx mice. Results showed that the occurrence of SCR was almost 3-fold higher in Wt-Nx
cardiomyocytes than in Wt-sham cells (Figure 2I). By contrast, the occurrence of SCR in Nod1~/~-Nx
cells was significantly lower than in Wt-Nx cells, and similar to that obtained in Nod1~/~-sham and
Wt-sham myocytes (Figure 2I).

Taken together, these results confirm that the loss of NODI1 prevents the increase in diastolic
Ca?* leak induced by NXx, a beneficial effect that can also be related to the maintenance of the SR
Ca?* load, as observed in Nod1~/~-Nx cardiomyocytes. This provides an explanation not only for the
improvement in the SR Ca?* load, but also for the better systolic Ca>* release observed in Nod1~/~-Nx
cells relative to the Wt-Nx group.

2.4. Deficiency of NOD1 Prevents the Increase in the Rate of Pro-Arrhythmogenic Ca®* Events Induced by Nx

A close relationship exists between altered intracellular Ca?>* dynamics and ventricular
arrhythmias, which are the most common causes of sudden death in advanced stages of renal
disease. We analyzed the occurrence of pro-arrhythmic behavior as spontaneous Ca?* waves or Ca*
transients in ventricular cardiomyocytes field stimulated at 2 Hz for three cycles. Representative
line-scan images of a regular Ca®* transient (upper panel) in a Wt-sham cell and pro-arrhythmogenic
Ca?* transients and waves (lower panel) in a Wt-Nx cell are shown in Figure 3A. Results indicated that
the occurrence of abnormal Ca?* events was significantly higher in Wt-Nx cardiomyocytes than in
Wt-sham cells, being this pro-arrhythmogenic Ca?* release more than 2-fold higher in Wt-Nx (Figure 3B).
By contrast, a lower percentage of Nod1~/~-sham and Nod1~~-Nx cells showed this aberrant behavior
(Figure 3B). These results indicate that the genetic deletion of NOD1 significantly prevents the increased
pro-arrhythmogenic Ca®* release induced by Nx.
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Figure 3. Deficiency of NOD1 prevents the increase of aberrant pro-arrhythmogenic Ca’* events
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provoked by 5/6 nephrectomy. (A) Representative line-scan images of a cardiomyocyte paced
at 2 Hz for three cycles isolated from Wi-sham (upper panel) and Wt-Nx mice (lower panel).
The corresponding fluorescence [Ca®*]; profiles appear below line-scan images. Red marks indicate
electrical stimulation. (B) Percentage of cells with pro-arrhythmogenic Ca?* release in cells isolated
from Wit-sham (1 = 45 cells/5 mice), Wi-Nx (n = 47 cells/five mice), Nod1~/~-sham (n = 40 cells/five
mice) and Nod1™/~-Nx (n = 46 cells/five mice) mice. Histograms show the mean values. ** p < 0.01 vs.
Wt-sham; # p < 0.05 vs. Wt-Nx.

2.5. Macroscopic and Microscopic Cardiac Features and Biochemistry Parameters of Renal Function of Rip2~/~
Mice at Baseline and after Experimental CKD

As the majority of NOD1-derived effects are mediated via RIP2 activation [38] we next analyzed
whether the lack of RIP2 also ameliorates Ca?* mishandling linked to CKD.

Similar to the studies in Nod1~/~ mice, we characterized the model by analyzing the structural
properties of both the kidney and heart. Analysis revealed no differences in HW, HW/BW ratio and
cardiomyocyte area between Rip27~-sham and Rip27~-Nx mice, indicating that Nx did not induce
cardiac hypertrophy (Supplementary Table S1). By contrast, the surgery induced overall BW loss in the
Wt and Rip2~/~-Nx mice, along with a reduction in KW in both groups, although the remnant KW after
the Nx was higher than one third of the sham-operated mice (Supplementary Table S1). These results
were also supported by KW/BW data. Analysis of biochemical indicators of renal function revealed
that the levels of plasma urea, BUN and FGF-23 were significantly higher in Rip2~/~-Nx mice than
in Rip2~/~-sham mice, whereas no differences were observed in phosphate levels between different
groups (Supplementary Table S2). The results are similar to those observed in Wt-Nx mice, indicating
that the loss of RIP2 does not prevent renal impairment induced by Nx.

2.6. Deficiency of RIP2 Prevents Ca’* Mishandling Induced by Experimental CKD

Analysis of systolic Ca?* release and cell shortening showed that deficiency of RIP2 prevented the
lower amplitude of intracellular Ca?* transients (Figure 4A,B), the slower kinetics (Figure 4C) and
the decreased cell shortening (Figure 4D) induced by Nx. The changes were also associated with a
recovery in the depleted SR Ca* load levels in Rip27/~-Nx cardiomyocytes compared with Wt-Nx cells
(Figure 4E). Accordingly, cardiomyocytes from Rip27~-Nx mice showed similar systolic Ca’* release
and SR Ca”* load, as observed in cells from sham-operated Rip27~ and Wt mice.

Deficiency of RIP2 also prevented the increased diastolic Ca?* leak induced by the Nx surgery.
Cells from Rip2~7/~-Nx mice showed similar values of Ca®* sparks frequency, Ca?* sparks frequency
normalized by SR Ca®* load and spark-mediated leak to sham-operated Rip2 7/~ and Wt cardiomyocytes
(Figure 5A-D). These data indicate that deficiency of RIP2 also prevents the increased Ca®* leak during
diastole and this effect can explain the maintenance of the SR Ca?* load and the physiological systolic
Ca?* release observed in the Rip2 7/~ model of experimental CKD.

Finally, we determined whether the absence of RIP2 could also modulate the incidence of
pro-arrhythmogenic Ca?* release in isolated cardiomyocytes. Results established that only a small
number of cells from Rip27/~-Nx mice showed pro-arrhythmogenic Ca®* events in paced cells, with the
percentage of these events significantly lower than that in the Wt-Nx group, and similar to that in
sham-operated Rip2~/~ and Wt cells (Figure 5E). Overall, these results support the data in Nod1~/~ mice,
and point to a key role for the NOD1 adapter RIP2 in the prevention of Ca?>* mishandling induced by
experimental CKD.
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Figure 4. Deficiency of receptor-interacting serine/threonine protein kinase 2 (RIP2) prevents the systolic

Ca?t mishandling, contractile dysfunction and depressed SR Ca?*-load induced by 5/6 nephrectomy.

(A) Representative line-scan confocal images of Ca’" transients obtained from Wt-sham, Wt-Nx,

Rip2~~-sham and Rip2~/~-Nx cardiomyocytes electrically evoked under field stimulation at 2 Hz. Mean

values of (B) peak fluorescence of Ca?* transients; (C) decay time constant; and (D) cell shortening

obtained in cells from Wt-sham (n = 37 cells/four mice), Wt-Nx (n = 37 cells/four mice), RipZ_/_—sham

(n = 35 cells/four mice) and Rip2~/~-Nx (1 = 56 cells/four mice) mice. (E) Mean values of caffeine-evoked

Ca?* transients amplitude obtained in cardiomyocytes from Wt-sham (1 = 29 cells/four mice), Wt-Nx

(n = 32 cells/four mice), RipZ’/ ~-sham (n = 24 cells/four mice) and RipZ’/ ~-Nx (n = 36 cells/four mice)

mice. Results show mean + SEM. ** p < 0.01; *** p < 0.001 vs. Wt-sham; ittt p <0.001 vs. Wt-Nx.
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Figure 5. Deficiency of RIP2 prevents the increased frequency of Ca?* sparks, diastolic Ca* leak and
pro-arrhythmogenic Ca* events provoked by 5/6 nephrectomy. (A) Representative line-scan confocal
images of Ca?* sparks recordings obtained in a quiescent cardiomyocyte obtained from Wt-sham,
Wt-Nx, RipZ‘/‘—sham and RipZ_/ ~-Nx. Average data of (B) Ca?* spark frequency; (C) normalization of
Ca?* spark frequency by SR-Ca?* load; (D) spark-mediated Ca®* leak in cells isolated from Wt-sham
(n = 35 cells/four mice), Wt-Nx (n = 38 cells/four mice), RipZ_/_—sham (n = 27 cells/four mice) and
Rip27/~-Nx (1 = 47 cells/four mice) mice. (E) Percentage of cells with pro-arrhythmogenic Ca?* release
in cardiomyocytes isolated all groups. Histograms show mean + SEM. ** p < 0.001 vs. Wt-sham;
#p <0.05,% p < 0.01; #* p < 0.001 vs. Wt-Nx.

3. Discussion

Our study demonstrates that genetic deletion of either Nod1 or Rip2 prevents Ca?* mishandling
associated with experimental CKD. Much research has focused on determining the interplay between
CVD and CKD [39]; however, many questions remain unanswered, especially in relation to the
mechanisms involved in the development of cardiac events after renal damage. Among the multiple
risk factors that can explain the high prevalence of CVD in CKD are mineral and bone disorders,
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oxidative stress, accumulation of uremic toxins and an increased inflammatory response. Regarding
CKD, serum Pi levels have been considered a classical biomarker of renal severity and dysfunction
together with others such as BUN or urea. However, several authors have already demonstrated that an
increase in circulating FGF-23 is the earliest alteration observed in CKD patients even before the increase
in serum Pi [40]. In fact, our results point out a similar condition in the experimental CKD developed in
mice by the 5/6Nx. Our results demonstrated that the genetic deletion of Nod1 did not affect the increase
in FGF-23 plasma levels. Moreover, the acute incubation of Wt and Nod1~/~ cardiomyocytes with FGF-23
induced a similar systolic and diastolic Ca?" mishandling (Supplementary Figure S2), suggesting
that probably NOD-1 and the FGF-23 axis are involved in independent pathways that contribute to
the regulation of Ca?* handling, at least in our experimental model of CKD. Importantly, patients
with advanced CKD with secondary hyperparathyroidism and hypocalcemia harbor arrhythmias and
changes in cardiac electrical conduction [41]. However, an unresolved issue is whether the presence
of inflammation is linked to a worse prognosis because of the cardiac events in patients with CKD.
Interestingly, the use of specific inhibitors targeting proinflammatory mediators contributes to the
prevention of some CKD comorbidities, including cardiovascular complications [42,43]. Sustained
activation of the innate immune response leads to increased inflammation and frequently results in
maladaptive responses that can promote deleterious cardiac remodeling [13]. NODI1 is an innate
immune mediator known to be involved in both CKD and CVD [11,14,23,33-35,37,44,45]. With respect
to renal diseases, Shigeoka et al. demonstrated that the double Nod1/2 deletion, as well as Rip2 deletion,
is protective against acute kidney damage induced by ischemia/reperfusion in mice [14]. By contrast,
in experimental CKD induced by unilateral ureteral obstruction, Stroo et al. found similar renal
damage in Wt and double Nod1 ~=/Nod2~~ mice [37]. These conflicting results might be related to the
different experimental procedures used to induce either acute or chronic kidney damage.

We show that deficiency of NOD1 prevents cardiac Ca?" mishandling in a mouse model of
CKD induced by 5/6 nephrectomy, suggesting a specific protective cardiac role of this receptor
independent of renal damage. The classical 5/6 nephrectomy model of CKD reproduces many of
the main features found in human CKD [46,47] and we recently showed that this model presents
with elevated cardiac Ca?* mishandling, which can explain the cardiac dysfunction that accompanies
CKD [48]. Interestingly, the altered pattern of Ca®* cycling in cardiomyocytes in nephrectomised Wt
mice has important similarities to that found in HF [11,49], where cardiomyocyte contraction is also
strongly compromised. The majority of studies provide evidence that failing hearts show a depressed
systolic Ca?* release. As expected, and similar to what occurs in HF, our results show that Wt-Nx
cardiomyocytes present with a significant decrease in the Ca?" transient amplitude together with a
significant slower decay time constant, and having a decreased systolic Ca®* release and depressed
cell contraction. All these alterations were not associated with changes in mRNA levels of Nod1 or Rip2
(Supplementary Figure S3), suggesting that posttranslational modifications or downstream factors
derived from the NOD1-pathway activation can be involved in the observed effects.

In contrast to what occurs in Wt-Nx cell, Ca>* mishandling is blunted in Nod1~/~-Nx mice, chiefly
by the prevention of three effects: (i) the decrease in the Ca?* transient amplitude; (ii) the increase in
their decay time constant; and (iii) the depressed cell contraction. Thus, the loss of NOD1 prevents the
decline in systolic Ca?* release induced by the Nx surgery. This improvement in systolic Ca®* release
can be related to the levels of SR Ca%* load. Indeed, the reduction in the SR Ca%* load observed in
Wt-Nx cardiomyocytes was also prevented by the loss of NOD1. Thus, both the maintenance of the SR
Ca”* load and the improvement in the systolic Ca®* release can explain the better cardiac parameters
exhibited by Nod1~/~-Nx cells, compared with W-Nx counterparts.

Depressed SR Ca?* load can result from an increase in the Ca®" leak during diastole. In this
regard, Wt-Nx cardiomyocytes showed an increase in diastolic Ca?* leak represented by a higher
frequency of Ca* sparks, Ca>* waves and spontaneous Ca?* transients, as compared with Wt-sham
cells. Supporting these results, we previously showed that RyR, channel activity is increased in hearts
from Wt-Nx mice [48]. The increased diastolic Ca?* leak observed in Wt-Nx mice is potentially a good
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substrate for the induction of cardiac arrhythmias since the released Ca?* diffuses to neighboring RyR,
clusters inducing SCR and triggering cardiac arrhythmias. The genetic deletion of NOD1 reduces the
occurrence of Ca?* sparks, Ca?* waves and spontaneous Ca* transients after Nx surgery, similar to
those found in sham-operated Wt and Nod1~/~ mice. Thus, NOD1 deficiency prevents the abnormal
diastolic Ca?* leak induced by the NXx, along with a reduction of pro-arrhythmogenic Ca** events.
A likely explanation for this is that NOD1 deficiency rescues the SR Ca** content and improves
cell contractility, recovering the impaired cardiac outcome observed in Wt-Nx mice. These features
also bear a resemblance to those found in HF, since SCR is ameliorated in Nod1~/~-sham mice with
experimental HF and the deletion of NOD1 prevents RyR, hyperactivity [11].

To comprehensively study the pathway involved in Ca?* cycling-dysregulation evident in our
mouse model of CKD, we also determined whether the deficiency of RIP2 plays a role in the regulation
of Ca?* dynamics. RIP2 is the adapter kinase that mediates the majority of NOD1 actions. Accordingly,
RIP2-deficient cells are hyporesponsive to signaling through NOD proteins and show severely reduced
NF«B activation [50]. Although the role of RIP2 in renal diseases remains enigmatic, its expression has
been shown to be strongly induced in failing murine and human myocardium [11]. We demonstrate
here that loss of RIP2 prevents the CKD-induced Ca?* mishandling, as cardiomyocytes from Rip2~/~-Nx
mice exhibit improved Ca®* transients amplitude, kinetic rates and cell contractility compared with
their Wt-Nx counterparts. This improvement in systolic Ca®* release can be due to the rescue of the SR
Ca®* content found in the absence of RIP2. Moreover, we also demonstrate that RIP2 deficiency prevents
the increased diastolic Ca?* release observed in WtNx mice, reducing the Ca?* spark frequency and
the occurrence of pro-arrhythmogenic events. These results are in line with those from the analysis of
Nod1~/~ mice. It would be of great interest to determine whether NOD1/RIP2 antagonists can also
prevent the Ca?* mishandling linked to CKD in future studies.

In conclusion, we establish, for the first time, to our knowledge, that the genetic deletion of
two different components of the NODI1 signaling pathway prevents Ca?" mishandling induced by
experimental CKD. Our findings suggest that the NOD1 proinflammatory pathway could be targeted
for the development of new therapies to reduce the risk of cardiovascular complications in patients
with CKD.

4. Methods

4.1. Animal Care

The study was conducted following recommendations of the Spanish Animal Care and Use
Committee, according to the guidelines for ethical care of experimental animals of the European Union
(2010/63/EU), and was approved by the General Direction of Agriculture and the Environment at the
Environment Council of Madrid (PROEX: 053/16 and 272.5/20). Male Nod1~/~ and Rip2~~ mice on
a C57BL/6] (6B; 129P2-NOD!tmINnz 1. 6B- 129P2-RIP2tm1Nnz/]) background were used. Mice were
bred and housed under specific pathogen-free conditions in the Experimental Animal Centre of
Instituto de Investigacion Hospital Universitario la PAZ, IdiPAZ. Mice were maintained at controlled
temperature (23-25 °C) on a 12-hr light/dark cycle with ad libitum access to water and a standard
diet. Wild-type (Wt) C57BL/6] mice (The Jackson Laboratory, Bar Harbor, ME, USA) were employed
as controls. Nod1~/~ and Rip2~/~ were kindly provided by Dr. Gabriel Nufiez (Ann Arbor, MI, USA).
Gene expression analysis of Nod1 and Rip2 confirmed the absence of signal in Nod1- and Rip2-deficient
mice (not shown). Macroscopic cardiac and kidney parameters were analyzed in all experimental
groups as before [35,49].

4.2. Serology

Blood plasma samples were used to analyze the levels of phosphate (Abcam, Cambridge, UK),
blood urea nitrogen (BUN) and urea (BioAssays System, Hayword, CA, USA) and fibroblast
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growth factor-23 (FGF-23) (Immunotopics, Inc, San Clemente, CA, USA) following the
manufacturers” instructions.

4.3. Experimental CKD

Six-week-old male were randomly assigned to either five-sixth nephrectomy (Nx) or sham
surgery under isoflurane (1.5% /v, isoflurane/oxygen) anesthesia and preoperative analgesia (Metacam,
0.05 mg/kg intramuscular) in a two-stage approach, as described [48]. Briefly, in the first stage an
abdominal midline incision was made and the left kidney was exposed. Both the upper and lower poles
were tied with a polyglycolic acid suture line (Dexon®, 4-0), which was subsequently removed. After a
recovery period of one week, the entire right kidney was removed, following ligation of the renal blood
vessels and cauterization of the ureter. The peritoneum and skin were then sutured, and the animals
were returned to their cages. In control mice, sham surgeries involved midline incision, exposure of
both kidneys, but no removal of tissue. The same timings were used as for Nx surgery. Blood plasma
was employed for biochemical assays and isolated ventricular cardiomyocytes for Ca?* recordings.

4.4. Cardiomyocyte Isolation

Six weeks after the second surgery, ventricular cardiomyocytes were isolated using standard
enzymatic digestion [51]. Briefly, mice were anesthetized with sodium pentobarbital (100 mg/kg
intraperitoneal) and heparinized (4 U/g intraperitoneal). The heart was rapidly excised and cannulated
via the ascending aorta on a Langendorff perfusion apparatus. Retrograde perfusion was initiated
with a standard Ca?*-free Tyrode’s solution containing 0.2 mmol/L. EGTA over 2-3 min at room
temperature, and continued for ~3-5 min with the same solution containing collagenase type II
(1 mg/mL) (Worthington Biochemical, Lakewood, NY, USA) and CaCl, (0.1 mmol/L). The heart was
then removed from the Langendorff apparatus and the ventricles were cut out, finely minced into
small pieces and mechanically dissociated in the enzymatic solution (standard Tyrode’s solution
containing 0.1 mmol/L CaCl,). The cardiomyocyte cell suspension was filtered through a nylon mesh
(250 um), pelleted by centrifugation for 3 min at 300 rpm and suspended in Tyrode’s solution containing
0.5 mmol/L CaCl,. Cells were centrifuged as before and suspended in a storage solution containing
1 mmol/L CaCl,. Tyrode’s solution comprised (in mmol/L): 130 NaCl, 5.4 KCl, 0.5 MgCl,, 25 HEPES,
0.4 NaH,POy, 22 glucose; pH = 7.4 adjusted with NaOH. Cardiomyocytes were immediately used for
calcium imaging analyses and patch-clamp experiments.

4.5. Intracellular Calcium Imaging

Experiments were performed at room temperature (20-23 °C). Images were obtained with a
Zeiss LSM 710 Meta confocal microscope (Carl Zeiss, Germany; 40x oil immersion objective with a
1.2 NA), by scanning the cardiomyocytes with an Argon laser every 1 s. Experiments were performed
at room temperature (20-23 °C). To record intracellular Ca®* transients, cells were first loaded with the
CaZ*-sensitive probe Fluo-3 (5 umol/L; Invitrogen Life Technologies, Carslbad, CA, USA), and were
then electrically excited at 2 Hz by field stimulation using two parallel platinum electrodes. Fluo-3
was excited at 488 nm and emitted fluorescence was collected at >505 nm. The fluorescence values (F)
were normalized by the basal fluorescence (Fy) to obtain the fluorescence ratio (F/F). All Ca** images
were corrected for the background fluorescence. The decay time constant of Ca®* transients (Tau) was
obtained by fitting the decay trace. Cell contraction was calculated as the difference of cardiomyocyte
length between rest and contraction (during electrical stimulation) and expressed as a percentage of
shortening of cell length. Spontaneous Ca?* sparks, and spontaneous Ca?* transients and waves were
acquired once stimulation was stopped. Ca?* sparks were considered as located and fast increments in
Ca?* fluorescence. Total spark-mediated Ca®* leak was calculated by multiplying spark frequency
X peak x duration X width. SR Ca?* load was assessed by rapid caffeine (10 mmol/L) application to
deplete the SR of Ca?" stores, after field-stimulation to reach the steady-state. Arrhythmic activity
was analyzed as abnormal spontaneous Ca®* release (SCR) by applying 3 cycles of field electrical
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stimulation at 2 Hz paced, consisting of 7 electric pulses. Data analysis was performed with homemade
routines using IDL 8 software (Research System Inc. Boulder, CO, USA) and Image J 1.50i software
(NIH). Images were corrected for background fluorescence. Cardiomyocyte surface area was quantified
with the LSM Zeiss Image Browser 4.2 software (Carl Zeiss).

4.6. Statistical Analysis

Results are reported as mean + SEM. Statistical analysis was performed using one-way analysis
of variance (ANOVA) or the chi-square test, as appropriate. If a significant level of p was reached
(p < 0.05) and there was no significant variance in homogeneity, Tukey’s post hoc multicomparison
analysis was applied. All statistical analyses were performed with the SPSS 15.0 software (SPSS Inc.,
Chicago, IL, USA) and significance was assumed when p < 0.05.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/22/8868/s1.
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Abbreviations

BW body weight

CARD caspase activation and recruitment domain

CKD chronic kidney disease

CVD cardiovascular disease

EC excitation-contraction

FGF23 fibroblast growth factor-23

HF heart failure

HW heart weight

KW kidney weight

LTCCs sarcolemma L-type Ca?* channels

NCX Na*/Ca?* exchanger

NF«B nuclear factor kappa B

NOD1 nucleotide-binding oligomerization domain-containing protein 1
NOD2 nucleotide-binding oligomerization domain-containing protein 2
Nx five-sixth nephrectomy

RIP2 receptor-interacting-serine/threonine-protein kinase 2
RyR, ryanodine receptor type 2

SCR spontaneous Ca’" release

SERCA2a sarco/endoplasmic reticulum Ca?* pump subtype

SR sarcoplasmic reticulum

TL tibia length

Wt wild-type
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