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Hydrolase–like catalysis and structural resolution of
natural products by a metal–organic framework
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The exact chemical structure of non–crystallising natural products is still one of the main

challenges in Natural Sciences. Despite tremendous advances in total synthesis, the absolute

structural determination of a myriad of natural products with very sensitive chemical func-

tionalities remains undone. Here, we show that a metal–organic framework (MOF) with

alcohol–containing arms and adsorbed water, enables selective hydrolysis of glycosyl bonds,

supramolecular order with the so–formed chiral fragments and absolute determination of the

organic structure by single–crystal X–ray crystallography in a single operation. This combined

strategy based on a biomimetic, cheap, robust and multigram available solid catalyst opens

the door to determine the absolute configuration of ketal compounds regardless degradation

sensitiveness, and also to design extremely–mild metal–free solid–catalysed processes

without formal acid protons.
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The absolute structural configuration of natural products
has been historically verified by total synthesis1, either
from commercial compounds or, more conveniently, from

fragments of the compound after controlled degradation and re-
synthesis. However, the later approach is often hampered by the
sensitiveness of natural complex molecules. For instance, the
glycosyl bond1 (–O–CR2–O–) is prevalent in natural products
since glycosidase (hydrolase) enzymes are widespread in all
domains of life to generate (and break) ketals with an extremely
high selectivity, at neutral pH in water, by the combined action of
some amino acid residues in the confined enzyme electrostatic
pocket. However, classical synthetic chemistry operates under
much harder conditions, by using formal acids (i.e., protons and
Lewis metal cations) or bases (i.e., inorganic bases and amines),
which are clearly incompatible with the outstanding structural
richness and sensitive functionality of ketals in Nature, and
severely hampers the absolute determination of natural product
structures by simple chemical degradation2,3.

Microporous solids may mimic enzymes with their active
catalytic species in an electrostatic confined space4,5. Indeed,
simple microporous aluminosilicates are good catalysts for ketal
deprotection6, but they show low selectivity towards other acid
sensitive functional groups, since the catalytic activity comes from
acid protons associated with the solid network7. Early observa-
tions in microporous pure silicates showed that densely packed
and interacting Si–OH groups, called silanol nests, naturally
generate an acid site for catalysis without the participation of a
formal proton8,9, however, the concept could not be extended to
the organic functionalities present in enzymes, such as alcohols,
since alcohols tend to generate either alkoxides4 or carbocationic
species10 rather than acid sites, unless water11 or acetic acid12 are
co-added. These precedents severely preclude simple alumisoli-
cates to be used as catalase-like catalysts13 with extremely mild,
bifunctional acid/base sites.

Metal–organic frameworks (MOFs)14 are porous crystalline
materials amenable to single-crystal X-ray crystallography15

(SCXRD), with a great synthetic control of their high-dimensional
architectures and concomitant porosity by a fine tuning of
the functionalities decorating their channels using both pre- or
post-synthetic16,17 methods. Indeed, their thrilling host–guest
chemistry has led to the selective incorporation of gases, solvents,
small molecules or more complex molecular systems18,19. Besides,
advances like the crystalline sponge method20, developed by
Fujita’s group, allows the absolute determination of organic
molecules within the MOF framework21–23. Thus, seems plausible
to go one-step further for the development of novel families of
MOFs, specifically designed to combine the catalytic in-situ
formation1,24–28, capture29–31, organization19,32 and retention of
very sensitive unknown organic species within their functional
channels33.

Herein, we report that a previously reported30,31,34 highly
robust crystalline MOF-derived from the natural amino acid L-
serine and whose micropores are densely decorated with methyl
alcohol groups is capable to accommodate relatively big natural
products, and performs, in a single operation, ketal deprotection
and structural determination of sugars1 and flavonoids of known
and unknown absolute configuration. After selectively incorpor-
ating, untouched, the fragment of unknown chirality into the
MOF, the solid structure is resolved by SCXRD to give the
absolute configuration of the adsorbed organic fragment (Fig. 1a)
and, thus, of the natural product.

Results
Glycolysis of natural products of known structure. Figure 1b
shows the proton nuclear magnetic resonance spectra (1H NMR)

of a solution of sucrose octaacetate 1 (neat sucrose was not
soluble under reaction conditions) recorded with time in the
presence of the amino acid-based catalytic MOF 2, which features
hexagonal pores densely decorated with –OH groups, and with
formula {CaIICuII6[(S,S)-serimox]3(OH)2(H2O)}. 39H2O (2)
(where serimox30,31,34= bis[(S)-serine]oxalyl diamide, see also
Supplementary Fig. 1). Isostructural MOF alamox (3) of formula
{CaIICuII6[(S,S)-alamox]3(OH)2(H2O)}. 32H2O (where alamox=
bis[(S)-alanine]oxalyl diamide) without alcohol but only methyl
pending groups was used for comparison. The results show that
the NMR signal corresponding to the ketal linkage (a) and, in
general, all the signals associated with one of the parts of ketal 1,
the fructose fragment 1a, progressively disappears in solution in
the presence of MOF 2, while the glucose fragment 1b remains.
Conversely, no hydrolysis was observed with MOF 3, lacking
confined alcohol groups. Gas chromatography coupled to mass
spectrometry (GC-MS) analyses confirmed the nearly exclusive
presence of glucose fragments 1b in solution after treatment with
MOF 2 (Supplementary Fig. 2). SCXRD of a crystalline sample of
MOF 2 reacted with 1 (see “Methods” and Supplementary
Methods) rendered a new host–guest material with formula (1a)
@{CaIICuII6[(S,S)-serimox]3(OH)2(H2O)}. 19H2O (1a@2) (where
1a= 1,3,4,6-Tetra-O-acetylfructofuranoside), whose crystal
structure as well as absolute configuration could be elucidated by
SCXRD analysis (see Fig. 2 and Supplementary Table 1 and also
an in-depth analysis of 1a@2 crystal structure in Supplementary
Methods). The results show that the only fragment found inside
MOF 2 is fructose 1a and not any glucose derivative (Fig. 1b and
Supplementary Figs. 3–6 and Fig. 2 and crystallographic section
in SI for details). These fragments, well defined by furanose ring,
that is completely assigned by electron density maps, reside in the
pores of MOF 2 anchored by means of strong hydrogen bonds
involving locked water molecules, which act as a bridge between
serine moieties and fructose molecules. So, the alcohol groups
show a prominent role, providing the suitable polar environment
to host fructose molecules, effectively retained and organized
within the pores.

In order to better visualize and also to determine the relative
catalytic hydrolysis rate compared to alcohol dihydroxylation (a
representative competitive reaction in natural product degradation),
the benzaldehyde and cyclohexanone ketals 4 and 5, and 2-phenyl-
2-propanol 6, were employed as substrates for ketal hydrolysis and
the dehydroxylation reaction, respectively (Supplementary Fig. 7).
The kinetic results showed the formation of carbonyl compounds 7
and 8 at a significant rate for MOF 2 (5 mol% of MOF structural
units respect to the substrate), but not for MOF 3. Remarkably,
despite the formation of alkene 9 may be expected to be extremely
easy with a highly stable benzylic carbocation intermediate, the
hydrolysis rate is twice for the dehydroxylation of 6. These results
confirm that MOF 2 selectively catalyzes the hydrolysis of glycosyl
bonds without significant degradation of alcohol-substituted chiral
carbons.

To further validate the extremely mild solid-catalyzed glycosyl
bond-breaking reaction, the commercially available flavonoid
naringin 10 (Supplementary Fig. 8), with a more complex
glycosyl structure, was treated with catalytic amounts of MOFs 2
and 3. Figure 1c shows the progressive disappearance of the 1H
NMR signals corresponding to the alkyl fragment 10a respect to
the aromatic part, the latter evolving to a different product in
solution which, according to NMR and GC-MS, may be assigned
to the oxidized quinone derivative. The spontaneous oxidation of
the aromatic part in flavonoids, after losing the stabilizing
glycosyl fragment, was expected according to the literature10,35.
Figure 1d shows the increase in the hydrolysis rate of naringin 10
with MOF 2, but not with MOF 3, the latter in the same range
that the hydrolysis rate without catalyst. All the results above,
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together, strongly support that MOF 2 selectively breaks glycosyl
bonds in natural products and, concomitantly, adsorbs the so-
formed alkyl chains, such as 1a in sucrose and 10a in naringin.

Glycolysis and structural resolution of Brutieridin 11. Aiming
to further test our hypothesis, we studied a unique class of fla-
vonoids that is found in bergamot fruit (Citrus Bergamia Risso et
Poiteau) which, in addition to other citrus species such as nar-
ingin 10, neohesperidin and neoeriocitrin, contains a relevant
concentration of the anti-cholesterol agent 6-O-hydro-
xymethylglutaryl (HMG) ester derivative brutieridin 11 (Fig. 3a
and Supplementary Figs. 9 and 10)36–39. Flavonoids are second-
ary metabolites widespread in Nature and involved in different
metabolic processes, offering potential clinical alternatives to
current treatments. However, so far, the challenging character-
ization of this kind of flavonoids has been carried out by the
combination of High-performance liquid chromatography, MS,
and NMR techniques, which have severe shortcomings for the

proper identification of their chiral centers. For instance, bru-
tieridin 11 has been isolated and identified with the formula
hesperetin 7-(2′′-R-rhamnosyl-6′′-(3′′′′-hydroxy-3′′′′-methylglu-
taryl)-glucoside36, but all attempts to crystallize it, thus deter-
mining its crystal structure and unveiling its chiral nature, have
been unsuccessful so far. Brutieridin 11 presents two glycosidic
bonds and, beyond other sensitive functionalities, several sec-
ondary and tertiary chiral alcohols along its chemical structure. It
is noteworthy the presence of an alcohol group flanked by two
different carboxylic groups in beta position (fragment 11a,
Fig. 3a), an extremely sensitive chemical aggrupation prone to
suffer degradation under both acid or basic conditions, since the
tertiary alcohol dehydrates under acid conditions to generate a
stable alkene conjugated to any of both carboxylic groups or,
conversely, the alpha carbon to the carboxylic groups deproto-
nates under basic conditions to generate the same degraded
products. These easy acid or base-triggered reactions, together
with the interferences and potential side reactions caused by the
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Fig. 1 MOF-catalyzed selective hydrolysis of glycosyl bonds of sucrose 1. a Schematic representation of the one-pot selective hydrolysis/adsorption/
crystal resolution of a natural product within a MOF. b 1H NMR spectra of sucrose 1 before and after selective hydrolysis with MOF 2, and SCXRD
resolution of fructose fragment 1a. c Evolution with time of naringin 10 in CD3CN after reaction with MOF 2 at 60 °C, followed by 1H NMR. d Hydrolysis
and incorporation of the alkyl part of naringin 10 into MOF 2 or MOF 3 with time for different amounts of MOFs (left) and initial rate as a function of the
amount of MOF 2 employed (right), according to 1H NMR integrations. Reaction rates were measured with the initial points up to 30% conversion. Lines
are a guide to the eye. Error bars account for a 5% uncertainty.
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phenol, ester, ketone and ether groups also present in brutieridin
11, makes extremely difficult the selective degradation of this
natural product by any classical deketalization method.

With the above data in mind, the hydrolysis of brutieridin 11 was
attempted with MOF 2. A combined 1H NMR, ultraviolet–visible
spectrophotometry (UV–Vis), diffuse-reflectance UV–Vis spectro-
photometry (DR–UV–Vis) and Fourier-transformed infrared
spectroscopy (FT-IR) study was performed in order to follow
concomitantly the fate of 11 in solution and within MOF 2. 1H
NMR results (Supplementary Fig. 11) show that the hydrolysis
indeed occurs. The alkyl fragment 11a progressively disappears
from the solution, and the aromatic fragment transforms into a

more symmetric aromatic molecule that persists in solution. This
new aromatic molecule is the quinone fragment, according to
UV–Vis and FT-IR (Supplementary Fig. 12) and also to GC-MS
analysis (Supplementary Fig. 13), akin to what occurred during the
hydrolysis of naringin 10. DR–UV–Vis (Supplementary Fig. 14)
and FT-IR measurements (Supplementary Fig. 15) of the solid
MOF 2 after reaction reveal that the aromatic fragment does not
incorporate into the pores, in line with the results observed for
naringin 10. To further confirm that the alkyl fragment 11a and not
the aromatic part accommodates inside the MOF pores, 13C
isotopically labeled brutieridin (11–13C) was prepared and hydro-
lyzed with MOF 2 (Supplementary Fig. 16). Figure 3b shows that
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Fig. 2 Crystal structure of 1a@2. a Perspective view along c crystallographic axis of a single channel underlining pores filled by guest molecules depicted as
blue sticks with the only exception of oxygen atoms, depicted as red spheres. The H-bond interactions are depicted as red dashed lines. Disordered
positions of lattice water molecules having a key role in host–guest interactions are highlighted (see details of refinement in Supplementary Methods).
b Supramolecular chains of 1a molecules packed in pores of 2 propagating along the direction of channels (all possible orientations are included). Carbon
are represented by blue sticks whereas oxygen atoms of guest molecules and water molecules mediating host–guest interactions are represented by red
spheres.
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only the methoxy signal (a) assignable to the methyl ester of 11a
appears in the magic angle spinning (MAS) solid 13C NMR
spectrum of MOF 2 after hydrolysis of 11–13C. The two anisolic
signals (b and c) of the aromatic fragment, present in the 13C NMR
spectrum of 11–13C, are not present. These results strongly support
the selective incorporation of the chiral alkyl fragment 11a to the
crystalline MOF structure, yielding the novel hybrid material (11a)
@{CaIICuII6[(S,S)-serimox]3(OH)2(H2O)}. 15H2O (11a@2), whose
crystal structure as well as absolute configuration could now be
elucidated by SCXRD analysis.

Figure 4 shows the structure of 11a@2, determined by SCXRD,
which confirms the preservation of the networks of 2 after guests’
capture. It is isomorphic to 2 crystallizing in the P63 chiral space
group of the hexagonal system and consists of a chiral
honeycomb-like three-dimensional (3D) calcium(II)–copper(II)
network, featuring functional hexagonal channels of ca. 0.9 nm as
virtual diameter. The flexible hydroxyl (–OH) groups of the
serine amino acid remain confined and stabilized by lattice water
molecules, in the highly hydrophilic pores of the MOF (Fig. 4 and
Supplementary Figs. 17–19). In these solvated nanospace, SCXRD
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underpinned 11a molecules disclosing their configurations and
locations, despite the persistent disorder. The uni-nodal acs six-
connected net is built up from trans oxamidato-bridged dicopper
(II) units, {CuII2[(S,S)-serimox]} (Fig. 4), which act as linkers
between the CaII ions through the carboxylate groups (Supple-
mentary Fig. 1). Neighboring Cu2+ and Cu2+/Ca2+ ions are
further interconnected by aqua/hydroxo groups (in a 1:2 statistical
distribution) linked in a μ3 fashion (Supplementary Fig. 1c).
Guest molecules of 11a reside in the pores, packed via hydrogen
bonds interactions, mediated by serine derivative arms (Fig. 4b–d
and Supplementary Figs. 17–19). Moreover, intermolecular
interactions of the chiral net of MOF 2 enabled that the chiral
carbon of the HMG side chain of 11a unveiled the R absolute
configuration (Fig. 4c and Supplementary Fig. 20), with its
bounded hydroxyl group directly interacting with methyl alcohol
arm of the MOF (O5′···O1Hser= 3.014(10) Å). The detailed
structures showed 11a arrangements (with a 1:3 statistical
distribution, see Supplementary Methods for details and Supple-
mentary Fig. 21), driven by the nature and size of the guest. In-
depth analysis of the crystal structure reveals chiral 11a molecules
packed via a plethora of strong H-bonds, as expected for a polar
molecule (Fig. 4 and Supplementary Figs. 18 and 19), involving
hydroxyl serine derivative arms directly linked to hydroxyl groups
attached to both sugar moiety or HMG side chain [O···O
distances varying in the range 2.73(1)–3.01(1) Å] (Supplementary
Fig. 19). Oxamate oxygen atoms from the coordination network
assist with strong hydrogen bonds involving carboxyl of HMG
[Ooxamate···Ocarboxyl distances of 2.69(1) Å]. The vastly solvated
nano-confined space further supports the host–guest recognition
process, mediating the interaction with the net by lattice water
molecules acting as bridge between host and guests to reach the
serine derivative arms [shortest O11A···OW and related Ow···Oser

distances of 2.94(1) and 2.68(1) Å, respectively], also involving
the innate flexible carboxyl terminus of HMG side chain. This is
reminiscent of the interaction mechanisms found in glycosidases
enzymes40.

Figure 3c shows that the controlled hydrolysis of brutieridin 11
with sodium methoxide gives the fragment derivative R-12 by
chiral-phase GC analysis, together with significant amounts of the
epimerized fragment and some other degraded fragments of the
natural product, as determined with an independently synthe-
sized, enantiomerically enriched sample of 12 obtained after enzy-
matic hydrolysis of diester 13 with pig liver estearase. Thus, one
can say that the R configuration is thus obtained within MOF 2
and also by conventional hydrolysis. This result strongly supports
the validity of the crystallization method to give the correct
absolute configuration of unknown products by SCXRD.

Mechanism of the MOF-catalyzed glycosyl hydrolysis. MOF 2
exposes, to outer molecules, a high number of densely packed
alcohol groups, within a nanometer confined space, just as it
occurs in the silanol nests of zeolites8,9. Thus, a particular acid-
ification of adsorbed water, promoted by the cooperativeness
between nearby methyl alcohols in MOF 2, may occur. In order
to discard potentially acidified water by interaction with the CuII

atoms of the MOF network, the building block Cu2II[(S,S)-ser-
imox] was also tested as a catalyst for glycosyl hydrolysis in wet
conditions, and the results showed a catalytic activity of the free
CuII species one order of magnitude lower than MOF 2 (Sup-
plementary Fig. 22). Complementary, a filtration test showed that
no leaching of active species occurs (Supplementary Fig. 23).
Kinetic experiments with different amounts of reagents and cat-
alyst (Supplementary Fig. 24) showed that the reaction orders for
MOF 2, ketal 4, and water are 1, 1, and 0, respectively, thus giving
a rate equation v0= kexp[2][4]. The role of adsorbed water was

further examined by dehydrating MOF 2 at 80 °C under high
vacuum (10−4 mbar) during 16 h, and then performing the
reaction with ketal 4 in anhydrous solvent, or adding 2 eq. of
water to the reaction mixture at 60 °C. The results (Supplemen-
tary Fig. 25) show a 1/3 decrease of the hydrolysis rate compared
to the original hydrated MOF 2. These results support the cata-
lytic action of water adsorbed in the alcohol network. Kinetic
studies at different temperatures (25, 40, 60, and 80 °C) were
carried out to calculate the activation energy of the glycolysis,
which according to an Arrhenius plot was 15.0 kcal mol−1. The
catalysis should occur mainly inside the MOF pores rather than
on its external surface, as supported by the easier reactivity of
small molecules, the saturation of the solid material with the
bigger molecules and the X-ray data of the encapsulated
fragments.

Computational studies were then performed to elucidate the
possible mechanism of the glycosyl hydrolysis within MOF 2
(see Supplementary Methods), and the results are shown in Fig. 5.
First, ten different complexes were generated by molecular
recognition of 11 into the channel of MOF 2 (Supplementary
Fig. 26). Based on the applied geometrical and energetic filters (see
Supplementary Table 2), which evidenced that all the examined
poses share a common orientation inside the channel of MOF 2,
the best docked pose was isolated (Fig. 5a) and used as starting
structure in the Quantum Mechanics/Molecular Mechanics-Our
own N-layered Integrated molecular Orbitals and Molecular
mechanics (QM/MM–ONIOM) investigation (Supplementary
Figs. 27 and 28). According to the calculations, the energetically
favored mechanism for the hydrolysis of 11 within MOF 2 (see
Fig. 5b, c) occurs by sequential cleavage of the two acetal C–O
bonds, to release first the aromatic (R1) and then the cyclic
aliphatic (R2) moieties, through the formation of intermediates
bound to the serine residues (15A and 17A in Fig. 5b). The
potential energy surface (PES) related to the mechanism of Fig. 5b,
black line of Fig. 5c, evidences that the hydrolysis of R1 (TS14A,
24.7 kcal mol−1) and R2 (TS16A, 26.3 kcal mol−1) occurs with
comparable barriers. The energy barriers associated with an
alternative mechanism where R2 is released before R1 (Supple-
mentary Fig. 29) and also in the absence of MOF 2 (Supplemen-
tary Fig. 30) are significantly higher in both cases. Moreover, the
calculations also highlight that the increased number of serine
moieties (four versus one, see red line of Fig. 5c) leads to a
lowering of the energy barriers (19.6 and 21.1 kcal mol−1, for
TS14A and TS16A, respectively). This supports the synergic effect
of the alcohol arms in the hydrophilic nano-confined space of the
MOF and, extrapolating to the higher number of serine moieties
present within MOF 2, nicely points to the experimental value
(15.0 kcal mol−1) obtained for the hydrolysis activation energy. It
must be noticed that glycosyl hydrolysis occurs in Nature by two
different mechanisms, either in one-step with acid/base sites and
inversion of chirality (inverting glycoside hydrolases) or in two
different steps with acid/nucleophile sites and retention of the
starting chirality (retaining glycoside hydrolases). The catalytic
action of MOF 2 perfectly lies on the retaining type hydrolases,
with the combined action of mild acid sites (water) and
nucleophile sites (alcohols) in a confined space.

Discussion
An amino acid-derived MOF (2), densely decorated with methyl
alcohol arms, is not only capable to hydrolyze glycosyl bonds like
retaining hydrolase enzymes, without the participation of formal
protons, but also to act as a vessel encapsulating the released
chiral fragment and allowing the absolute structural determina-
tion of the natural product by SCXRD. The present results con-
stitute a clear step forward on the use of MOFs in enzymatic
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catalysis41,42, where commonly their catalytic activity arises from
preformed encapsulated active species. Also, let us anticipate that
this bioinspired methodology with MOFs41,43–47 could have
future application in the MOF-driven structural characteri-
zation48,49 of more natural product structures15,50,51.

Methods
Preparation of 1a@2. Well-formed hexagonal green prisms of 1a@2 ((1a)@
{CaIICuII6[(S,S)-serimox]3(OH)2(H2O)}. 19H2O, where 1a= 1,3,4,6-Tetra-O-acet-
ylfructofuranoside), which were suitable for X-ray diffraction, were obtained by
soaking crystals of 2 (ca. 5.0 mg) in saturated water solutions of sucrose octaacetate
(1), for 48 h at temperature of 50 °C. The crystals were isolated by filtration on
paper and air-dried. 1a@2: Anal.: calcd for C38Cu6CaH82N6O56 (1940.42): C, 23.52;
H, 4.26; N, 4.33%. Found: C, 23.50; H, 4.21; N, 4.36%. IR (KBr): ν= 1625, 1611,
1610 cm−1 (C=O).

Preparation of 11a@2. Well-shaped hexagonal prisms of 11a@2 ((11a)@{CaII-

CuII6[(S,S)-serimox]3(OH)2(H2O)}. 15H2O, where 11a= 6-O-(3′–hydroxy-3′-
methylglutaryl)-glucopyranose)), suitable for SCXRD, could be obtained by soak-
ing crystals of 2 (which had been treated before through a solvent exchange process
for a week, recharging fresh acetonitrile solvent daily) in a saturated acetonitrile
solution containing hesperetin 7-(2′′-R-rhamnosyl-6′′-(3′′′′-hydroxy-3′′′′-methyl-
glutaryl)-glucoside) (brutieridin 11) during two weeks. After this period, crystals
were isolated by filtration and air-dried. Anal.: calcd for C36Cu6CaH74N6O52

(1844.33): C, 23.44; H, 4.04; N, 4.56%. Found: C, 23.39; H, 4.01; N, 4.57%; IR (KBr):
ν= 1637, 1613, 1608 cm−1 (C –O).

Catalytic procedures. MOF 2 or MOF 3 (37.5 mg, 100 wt%) were placed in a 2 ml
vial equipped with a magnetic stir bar, and the corresponding amount of CD3CN
(0.75 ml) was added. Then, the corresponding amount of naringin 10 (37.5 mg)
was added at room temperature. The mixture was sealed and magnetically stirred
in a pre-heated oil bath at 60 °C. For kinetic experiments, individual reactions were
placed for each point and after centrifugation, the supernatant of the mixture
reaction was periodically taken and analyzed by NMR. The same procedure was
followed for brutieridin 11.

Preparation of 13C isotopically labeled 11–13C. Brutieridin 11 (10 mg 0.013
mmol) was placed in a round-bottomed flask equipped with a magnetic stir bar,
and CD3CN (2 ml). Then, N,N-Diisopropylethylamine (7 μl, 0.039 mmol) and
13CH3I (5 μl, 0.078 mmol) were added via syringe at 0 °C. The mixture was sealed
and magnetically stirred at room temperature for 12 h. After that, the reaction
mixture was analyzed by 13C NMR.

Single-crystal X-ray diffraction. Crystal data for 1a@2 and 11a@2: Hexagonal,
space group P63, T= 90(2) K, Z= 2; 1a@2: C38Cu6CaH82N6O56, a= 17.7840(16) Å,
c= 12.5090(14) Å, V= 3426.2(7) Å3, σ= 1.881 g cm3, µ (mm−1)= 2.031; Absolute
structure parameter (Flack) of 0.12(2). 11a@2: C36Cu6CaH74N6O52, a= 17.9667(15) Å,
c= 12.6886(12) Å, V= 3547.2(7) Å3, σ= 1.727 g cm3, µ (mm−1)= 1.953. Absolute
structure parameter (Flack) of 0.13(2). Further details can be found in the Supple-
mentary Information.

Computational details. The solved X-ray structure of MOF 2 has been adopted
as starting point in the computational investigation. The molecular recognition
has been applied to dock substrate 11 into MOF 2, generating ten different
poses. The best docked pose has been undertaken to QMMM investigations. The
same computational protocol has been previously applied in recent works.
Further detailed description of the used methods is given in Supplementary
Methods.

Data availability
The authors declare that all the data supporting the findings of this work are available
within the article and its Supplementary Information files or from the corresponding
author upon request. The X-ray crystallographic data reported in this study (Figs. 1, 2,
and 4, Supplementary Figs. 1 and 3–6 and Supplementary Table 1) have been deposited
at the Cambridge Crystallographic Data Center (CCDC), under deposition numbers
1985884 (1a@2) and 1985885 (11a@2). These data can be obtained free of charge from
The Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/
data_request/cif.
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