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Abstract Background. The evolution of the COVID-19 epidemic has been accompanied 
by efforts to provide comparable international data on new cases and deaths. There is 
also accumulating evidence on the epidemiological parameters underlying COVID-19. 
Hence there is potential for epidemic models providing mid-term forecasts of the 
epidemic trajectory using such information. The effectiveness of lockdown or lockdown 
relaxation can also be assessed by modelling later epidemic stages, possibly using a 
multiphase epidemic model. Methods. Commonly applied methods to analyze epidemic 
trajectories or make forecasts include phenomenological growth models (e.g. the 
Richards family of densities), and variants of the susceptible-infected-recovered (SIR) 
compartment model. Here we focus on a practical forecasting approach, applied to 
interim UK COVID data, using a bivariate Reynolds model (for cases and deaths), with 
implementation based on Bayesian inference. We show the utility of informative priors in 
developing and estimating the model, and compare error densities (Poisson-gamma, 
Poisson-lognormal, Poisson-logStudent) for overdispersed data on new cases and 
deaths. We use cross-validation to assess medium term forecasts. We also consider 
the longer term post-lockdown epidemic profile to assess epidemic containment, using a 
two phase model. Results. Fit to interim mid-epidemic data shows better fit to training 
data and better cross validation performance for a Poisson-logStudent model. 
Estimation of longer term epidemic data after lockdown relaxation, characterised by 
protracted slow downturn and then upturn in cases, casts doubt on effective 
containment. Conclusions. Many applications of phenomenological models have been 
to complete epidemics. However, evaluation of such models based simply on their fit to 
observed data may give only a partial picture, and cross-validation against actual trends 
is also valuable. Similarly, it may be preferable to model incidence rather than 
cumulative data, though this raises questions about suitable error densities for 
modelling often erratic fluctuations. Hence there may be utility in evaluating alternative 
error assumptions.  
 
1. Introduction 
 
Epidemic forecasts have been an essential element in policy decisions regarding the 
COVID-19 epidemic, such as lockdown imposition and relaxation. Forecasting has been 
assisted by well-organized efforts to provide international data on new cases and 
deaths. These include daily updated comparative data provided by the European Centre 
for Disease Prevention and Control (ECDC) 
(https://www.ecdc.europa.eu/en/publications-data), and monitoring profiles provided by 
John Hopkins University [1]. There is also a growing literature providing evidence on the 
parameters of the COVID-19 infection (for example, case fatality ratios, serial intervals, 
etc). Hence the potential occurs for epidemic models that are applicable to routinely 
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collected data, that make use of accumulated evidence, and can provide forecasts for 
epidemics observed at mid-stage. Policy decisions in many countries (imposition of 
lockdowns, and later relaxation) have been made based on trends in observed numbers 
of cases and deaths, while admitting these may be subject to measurement error - for 
example, identified cases may understate total numbers infected; there are fluctuations 
in daily new cases due to variation in daily testing; and there may be COVID-19 
diagnostic errors.  
 
Here we focus on a practical forecasting approach using routinely available data on new 
cases and deaths (from ECDC) to estimate parameters in a bivariate version of the 
Reynolds phenomenological model. Implementation is based on Bayesian inference 
principles, incorporating accumulated evidence on relevant parameters via informative 
priors. The operation and utility of this approach is demonstrated using data on new 
cases and deaths in the United Kingdom (UK), with a focus on predictive accuracy for 
20-day ahead forecasts of cases and deaths, based on mid-epidemic data. Other policy 
relevant parameters such as the effective reproduction ratio and case fatality ratio are 
also estimated in analysis of longer term epidemic data.  
 
The use of a bivariate approach provides originality compared to existing research, 
which, in the case of phenomenological models, is limited to analysing incidence only. 
Some studies have mentioned how the mortality curve parallels the epidemic curve [2], 
and we formalize these linkages under a bivariate approach. The benefits of a bivariate 
approach include the ability to monitor and forecast severity measures such as the case 
fatality ratio. We also consider issues in modelling daily incidence and new deaths, as 
opposed to cumulative incidence and mortality. There are methodological issues in 
analysing cumulative outcomes, discussed below, but also questions (not so far 
considered in the literature) on how best to represent the overdispersion present in 
uncumulated outcomes. The analysis below provides new evidence on the relative fit 
and forecasting performance of different ways of representing Poisson overdispersion, 
and shows that the usually adopted negative binomial performs less well than other 
options. 
 
The implications of the research are that effective medium term forecasts of COVID-19 
incidence and mortality can be provided by the proposed methodology. Such forecasts 
are useful in planning healthcare provision and assessing closeness to full capacity in 
hospital bed occupancy [3, 4]. At the time of writing, daily COVID-19 hospitalisation data 
were not available for the UK. However, extension of the bivariate approach to include 
incidence, mortality and hospitalisations provides additional scope for forecasting of 
indicators relevant to severity assessment [5, 6]. Another possible outcome in a 
multivariate model is recovered cases [cf. 4], with a focus then on the ratio of predicted 
recovered to predicted confirmed cases as an indicator of care need and effectiveness 
of interventions. The methodology also presents a way to monitor longer term infection 
numbers leading to early detection of incipient upturns in infection numbers, via 
continuous monitoring and forecasting of the effective reproduction ratio.  
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In the following sections, we review relevant literature and research gaps (section 2), 
and set out the methodology (section 3). We then consider aspects of the UK case 
study application (section 4), present the results (section 5), and discuss the 
implications of the study's findings and methodology in the context of broader research 
(section 6). Section 7 provides concluding remarks. 
 
2. Related Research and Research Gaps 
Commonly applied approaches to quantitative modelling of aggregate epidemic data 
differ in the data inputs they require, their assumptions, their estimability, and in their 
scope for practical application to making forecasts. Commonly applied methods include 
phenomenological growth models [7], such as the Richards family of densities [8], and 
variants of the susceptible-infected-recovered (SIR) compartment model [9]. 
Phenomenological models are parameterised in terms of epidemic trajectories and 
provide estimates of crucial epidemiological parameters [10, 11], while avoiding the 
complexity of more formal mechanistic models of disease transmission, which can be 
difficult to estimate and provide forecasts, and may not be realistic approximations to 
real epidemic dynamics [2,9,12].  
 
As mentioned by Chowell et al [13], phenomenological models are "particularly suitable 
when significant uncertainty clouds the epidemiology of an infectious disease". By 
contrast, as noted in [14], compartmental transmission models may be based on 
untested assumptions such as random mixing between all individuals in a given 
population, may be sensitive to starting assumptions, and may provide estimates that 
differ considerably between models. Such models often rely on preset parameters, 
which may mean prediction uncertainty is understated. They may also be complex to 
specify when an epidemic has more than one phase, whereas multiphase 
phenomenological models [15] are available. 
 
Regarding forecasts, the study by Zhao et al [16] exemplifies application of 
phenomenological models to forecasts of the Zika epidemic in 2015. Autoregressive 
modelling of new cases, with potential for short term forecasting, is illustrated (for foot 
and mouth disease) by the first order autoregressive model of Lawson et al [17], while 
(for multiple spatial units) the model of Bracher and Held [18] specifies a first order 
autoregression based on the mean incidence in adjacent areas. 
 
Regarding the COVID-19 epidemic in particular, studies with differing methodologies 
have been made, some of which forecast different aspects of the COVID epidemic or 
related health care need. In its impact on policy making in the UK and US, perhaps 
most influential has been the Imperial College model [19]. This is based on 
microsimulation with transmission through contacts between susceptible and infectious 
individuals in various settings, or randomly in the community, depending on spatial 
distance between contacts. A number of epidemic parameters (e.g. incubation periods 
and basic reproduction numbers) are preset. Forecasts are provided for deaths and 
hospital beds. Also providing forecasts across countries is the model of the Institute for 
Health Metrics and Evaluation [14]. This has no underlying representation of epidemic 
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dynamics, but is based on fitting a hierarchical parametric model for observed 
cumulative death rates in different countries, and then projecting these forward.  
 
Various types of time series forecast of the COVID-19 epidemic have also been made, 
using ARIMA models [4,20,21], exponential smoothing [22], or autoregression in cases; 
for example, the study by Johndron et al [23] postulates daily deaths as a lagged 
function of earlier new cases. Applications of phenomenological models to COVID-19 
incidence forecasts include [24] and [25].  
 
One may identify some research gaps in the existing literature. Thus existing 
applications (e.g. [24] in the case of COVID-19) have most commonly been to incidence 
data, and have not considered interplay between outcomes in terms of a bivariate 
model. However, examples of potentially interlinked bivariate outcomes from COVID-19, 
and other epidemics, include incidence and mortality, and incidence and 
hospitalizations. The paper [26] converts COVID-19 incidence, mortality and case 
fatality into beta variables and applies univariate beta regression models to each 
outcome. The paper [4] applies separate ARIMA models to incidence and recovered 
cases. However, separate univariate regressions or time series models do not reflect 
potential interlinkages between the processes that facilitate the setting of model 
assumptions, or in the case of Bayesian analysis, facilitate the setting of priors on model 
parameters. Regarding forecasting, wider experience of time series modelling (with non-
epidemic applications) shows the benefit of borrowing strength over outcomes [27]. 
 
Furthermore, many existing applications, such as [11, 26] in the case of COVID-19, [28] 
in the case of H1N1 and Ebola, and [10] in the case of Zika, have been to cumulative 
incidence. However, the drawbacks of studying cumulative incidence have been pointed 
out [29, 30]. Cumulative incidence data have serially correlated measurement error, 
leading to understatement of parameter uncertainty. As stated in [30], "independence of 
sequential measurement errors, ... is clearly violated when observations are 
accumulated through time". However, estimation using new cases or deaths 
(uncumulated) puts a much greater focus on how to deal with stochastic variation in the 
data. For daily data, fluctuations in new events may be considerable (including daily 
"spikes"), whereas cumulative cases and deaths are usually smooth functions. There 
are choices in how to model the overdispersion in new events, based on Poisson 
mixtures [31], but in the epidemic literature, use of the negative binomial is standard, 
and no evaluations of its relative performance are available in the literature so far. 
 
3. Methods 
 
3.1 Phenomenological Models 
Basic phenomenological models for epidemic trajectories include the logistic, Gompertz, 
and Rosenzweig, which have been the basis for a range of generalizations [7, 8]. 
Application of the logistic model to COVID-19 is exemplified by the studies of Batista 
[32] and Shen [33]. For time 𝑡 , the logistic model for new cases 𝐶 ′ 𝑡  and cumulative 
cases 𝐶 𝑡  is 
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Ct  K

1e−rt−L 
,
  

where  𝐾  is the maximum number of cases (final epidemic size), 𝑟 0 measures the 
intensity of exponential growth in cases in the early epidemic phase, and 𝜏  is the 
inflection point where new cases are highest. The Richards model [34] modifies the 
logistic incidence function to 

     
with solution 

   
Ct  K

1e−rt− 1/a
.
  

The parameter  𝑎 0  modifies the incidence decline phase of the logistic, that is 
measures the extent of deviation from the standard logistic curve. The turning point 𝜏, 
when incidence peaks, is obtained when  𝐶 𝑡   equals  𝐾 1 𝑎 /   [35]. The peak 
incidence is important for the healthcare planning, for example aligning the forecast 
peak with hospital bed capacity [36].  
 
Other commonly used models are the Gompertz model [37] with 

   C ′t  rCt logK/Ct,   
while the Rosenzweig model [28] has 

     
 
The incidence function represented by  𝐶 ′ 𝑡   can be used to define mean incidence in 
statistical likelihoods for new cases data. Thus time series of incidence counts can often 
be satisfactorily modelled as a Poisson, with means defined by 𝐶 ′ 𝑡  functions [38, 39]. 
Similarly the cumulative cases function 𝐶 𝑡  can be used to define mean epidemic size 
in models for cumulative case counts [28, 40].  
 
While for smaller epidemics, a Poisson density for mean incidence may be applied, for 
larger epidemics such as COVID-19, a negative binomial density is often preferred, both 
because of large incidence counts, and to represent often erratic incidence fluctuations 
that lead to overdispersion relative to the Poisson [30]. However, the literature does not 
contain any evaluations of the negative binomial to represent overdispersion. There are 
a number of other overdispersed versions of the Poisson that can be achieved by 
mixing the Poisson with a suitable density (e.g. a lognormal density) [31,41], and this 
may be beneficial in detecting unusual observations. 
 
3.2 Model Specification: Poisson Overdispersion 
 
Consider the Richards model parameters. Let  𝑐   and  𝐶   denote incidence and 
cumulative incidence counts at times  𝑡 1, . . . , 𝑇  (days in the case of COVID data 
from ECDC). We condition on the first case or cases (i.e. the first observation), and take 
incidence at time  𝑡  as a function of cumulative cases at 𝑡 1, so that for a Poisson 

C ′t  rCt 1 − Ct
K

, 1

C ′t  rCt 1 − Ct
K

a
, 2

C ′t  rCt Ct
K

a
− 1 .
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model for cases (with subscript 𝑐 for parameters) we have 

     ct  Poissonct ,  

   
In practice, many epidemic datasets are overdispersed relative to the Poisson, and 
epidemic studies generally adopt a negative binomial model instead. We can specify an 
overdispersed model (including the negative binomial) by introducing multiplicative 
random effects [41, eqn 2], such that the Poisson means for incidence are specified by 

   
where the  ϵ

ct
  are positive random effects. For the Poisson-gamma model (equivalent 

to a Negative Binomial), the ϵ
ct
 are gamma distributed with mean 1, namely 

   ct  Gammac,c,   
where  1/𝜆   is the overdispersion parameter mentioned by [30]. Note that the 
assumed parameterisation of the gamma density with random variable 𝑥 is 

   
Other options in (3) are to take 𝑢 𝑙𝑜𝑔 𝜖  as normally distributed [41] 

   uct  Normal0,uc
2 ,   

or Student t distributed [42], 
    𝑢 ∼ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡-𝑡 0, 𝜎 , 𝜈   
where 𝜈  is a degrees of freedom parameter. These two options define the Poisson-
Lognormal (PLN) and Poisson-log-Student (PLS) options respectively [31]. The PLN 
and PLS representations may provide a more robust alternative to the Poisson-gamma 
[41, 42, 43, 44, 45], as their tails are heavier than for the gamma distribution, and have 
been found to be better at accommodating outliers (such as daily "spikes" in an 
epidemic application).  
 
3.3 A Joint Model for New Cases and New Deaths 
In the analysis below we apply a bivariate estimation with both new cases and deaths 
modelled using the Richards specification. Thus denote 𝑑  and 𝐷  as new and 
cumulative deaths at time 𝑡. The joint likelihood for an overdispersed Poisson model for 
both outcomes then specifies 

     ct  Poissonct,   

 dt  Poissondt,   

 ct  rcCt−11 − Ct−1/Kcac ct , 4  

 dt  rdDt−11 − Dt−1/Kdad dt , t  2, . . . ,T.    5   
 
For a Bayesian application, we need to specify prior densities, or priors for short, for the 
parameters. For the epidemic size parameter  𝐾 ,  a diffuse prior confined to positive 
values, such as a diffuse gamma density - for example 𝐺𝑎𝑚𝑚𝑎 1, 𝜀  or 𝐺𝑎𝑚𝑚𝑎 𝜀, 𝜀  , 
with  𝜀  small - was found to lead to convergence problems. As noted in [32],"... in the 
early stage, the logistic curve follows an exponential growth curve, so the estimation of  

ct  rcCt−11 − Ct−1/Kcac , t  2, . . . ,T.

ct  rcCt−11 − Ct−1/Kcac ct , 3

px|a,b  ba

Γa
xa−1e−bx .
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𝐾  is practically impossible". This difficulty persists when an epidemic is past its peak 
but early in a downturn.  
 
However, Batista [32] mentions a relationship (for the logistic model) between 
successive cumulative case counts that may assist in providing a prior for 𝐾  . 
Specifically for three points spaced 𝑚 time units apart, one may obtain the relationship 
for a point estimator of 𝐾 , namely 

   
Kc

e  Ct−mCt−2mCt−m−2Ct−2mCtCt−mCt

Ct−m
2 −CtCt−2m

.
  

One may use this point estimator to define a prior mean for 𝐾  in the Richards model 
(which is a generalisation of the logistic). Specifically, one may take a lognormal density 
prior for 𝐾 , with 𝑙𝑜𝑔 𝐾  as mean, and a suitable variance, such that the prior is still 
relatively diffuse. For example, suppose 𝐾  is 250,000, and the variance in the 
lognormal is set at 1. Then the 97.5 percentile for the lognormal prior is 1.77 million.  
 
In the bivariate specification (for new cases and new deaths jointly), we seek to share 
prior information between outcomes. One option for the prior on 𝐾  (the final death 
total) is as a function of 𝐾 , namely 
   𝐾 Φ𝐾 ,  
where Φ is a form of case fatality ratio (CFR). An informative prior for Φ could be based 
on the COVID experience in similar countries, or on experience of epidemics of similar 
diseases. Considering the first option, and an appropriate prior for analysing UK data, 
an informative prior for Φ could be provided by the case fatality ratio across the 
European Union (the UK being no longer an EU member). International information on 
case fatality is provided at https://ourworldindata.org/mortality-risk-covid#the-current-
case-fatality-rate-of-covid-19.  
 
Alternatively one may link 𝐾  and 𝐾  using both the point estimator 𝐾  and a case 
fatality ratio, namely  𝐾 Φ𝐾 .  Then a lognormal density prior can be taken for 𝐾 , 
with 𝑙𝑜𝑔 𝐾    𝑙𝑜𝑔 𝐾 𝑙𝑜𝑔 Φ  as the mean, and a suitable variance such that the 
prior is still relatively diffuse. 
 
Another possible prior to link ultimate cases and deaths would involve a time series in 
time-specific case fatality ratios 𝜑 , such as an autoregression  𝜑 ∼ 𝑁 𝜌𝜑 , 𝜎  , 
with 𝜑  estimated from cumulative data on deaths and cases. Some analyses of 
epidemics show that the CFR early in an epidemic may underestimate later values [46], 
in which case the prior on Φ may be constrained to exceed the final  𝜑  based on 
observed data. With regard to COVID-19 this pattern may not necessarily apply, with 
the US (for example) showing a decline in CFRs at later epidemic stages. There is also 
evidence that the mortality to infection ratio (a more precise measure than the CFR) has 
fallen [47].To allow for such a scenario, the prior for Φ could be centred at the last 
observed 𝜑 , rather than constrained to exceed it. 
 
Joint priors on other parameters could be considered, for example, bivariate normal 
priors on the logs of  𝑟   and  𝑟  , or on the logs of 𝑎  and 𝑎  . In the empirical 
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analysis below we focus on priors linking the final epidemic and death total parameters,  
𝐾  and 𝐾 , as these are an important influence on forecasts. 
 
3.4 Medium Term Forecasts 
Many applications of phenomenological models are to historic data on epidemics, where 
the epidemic has run to its full extent. Here we consider applications to incomplete 
epidemics (e.g. epidemics observed to their mid point or early in the downturn), and to 
forecasts using such data. Forecasts at an intermediate point within the observation 
span are of interest in themselves for policy purposes. However, they can also be used 
in comparative model evaluation by using cross-validation, with only some data used for 
estimating the model, and some held out for validation.  
 
Thus suppose the training sample is formed by observations up to time  𝑀 𝑇,  while 
the 𝐹 subsequent observations at times  𝑡 𝑀 1, . . . , 𝑀 𝐹 (where 𝑀 𝐹 𝑇   are 
used as a validation sample. Predictions  𝑐 ,   and  𝑑 ,   for new cases and 
deaths at time  𝑀 1  are based on observed cumulative counts  𝐶   and  𝐷  . As 
usual in Bayesian inference, predictions are obtained as replicate data sampled from 
the posterior predictive densities 𝑝 𝑐 |𝑌 𝑝 𝑐 |𝑌, 𝜃 𝑑𝜃, and 𝑝 𝑑 |𝑌

𝑝 𝑑 |𝑌, 𝜃 𝑑𝜃  where  𝑌 𝑐, 𝑑   are data on new cases and deaths, and 𝜃 are 
parameters in the joint model of section 3.3 [48]. 
 
Predicted cumulative counts at time  𝑀 1 are then obtained as 𝐶 , 𝐶 ,

𝑐 ,   and 𝐷 𝐷 , 𝑑 , .  Predicted new cases and deaths at  𝑀
2 , namely  𝑐 ,   and  𝑑 , are then sampled from the appropriate 
phenomenological model form, based on  𝐶 ,   and  𝐷 , .  Cumulated cases 
and deaths at  𝑀 2  are then obtained by adding predicted new cases and deaths for  
𝑀 2 to 𝐶 ,  and 𝐷 , .  This process is continued until time 𝑀 𝐹.   
 
Fit can be assessed by whether credible intervals for predictions in the cross-validation 
period include actual incidence and new deaths. Also relevant are probabilities of over 
or under-prediction. For example, consider predicted new cases  𝑐 , ,   for the 
validation period  𝑡 𝑀 1, . . . , 𝑀 𝐹,  and for MCMC samples  𝑠 1, . . . , 𝑆 , and let 
average new predicted cases during the validation period (the average over 𝐹 days) at 
iteration  𝑠  be denoted  𝑐 , ,  :  . We want to compare average predicted new 
cases with average observed new cases,  𝑐  :   , during the validation period. 
Probabilities of overprediction can be obtained from binary indicators 

   Os
c  Icnew,s,T1:TF  cT1:TF, s  1, . . . ,S,   

where  𝐼 𝐴 1  if condition 𝐴 is true, and 𝐼 𝐴 0 otherwise. Thus at each iteration 
we compare average new cases (modelled) during the validation period with actual 
average new cases.  
 
Probabilities of overprediction for new cases, 𝜔 , are estimated as  ∑

s=1,…,S
𝑂 /𝑆.  

Probabilities of underprediction can be obtained as  1 𝜔 .  A satisfactory prediction 
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would have  0.05 𝜔 0.95,  with 𝜔  over 0.95 indicating a high probability of 
overprediction, while 𝜔  under 0.05 indicates a high probability of underprediction. 
Underprediction means under-forecasting of future cases, and may lead to incorrect 
inferences regarding epidemic control, as it implies a lessening in incidence earlier than 
actually occurred.  
 
 
 
3.5 Longer Term Epidemic Monitoring, Effective Reproduction Ratios and Case Fatality 
Ratios 
Strategic decisions regarding containment of the COVID-19 epidemic, in the UK and 
other countries, have depended on trends in new infections and deaths, but also on the 
effective reproduction rate. Thus in the UK the choice on whether or not to relax the 
initial COVID lockdown restrictions was based on five criteria, with two being numeric: 
first, "a sustained and consistent fall in daily death rates", and second that the "rate of 
infection is decreasing to manageable levels", meaning that the effective reproduction 
ratio is demonstrably below 1. The reproduction rate may also become especially 
relevant at later epidemic stages (post-lockdown), after a downturn from the initial peak 
and after lockdown measures have been relaxed. Here the concern is to prevent a 
resurgence of infection, indicated by an upturn in 𝑅  .  
 
In the case of a protracted downturn, but with new cases still occurring, the concern is 
especially that there may be a substantial resurgence in cases, and possibly also 
deaths, at some point. This scenario is colloquially known as a "second wave", and in 
most European countries there have been pronounced second waves in the COVID-19 
epidemic during 2020, albeit at different times. Such a resurgence indicates use of a 
multiphase model [15], with a second phenomenological model applied to data after a 
latent switch-point between epidemic regimes. Note that at the time of writing (August 
2020) a fully developed second wave had not yet happened in the UK, though the signs 
were of an upturn in 𝑅 , as the analysis below confirms. 
 
In planning for hospital care, longer term trends in disease severity may be relevant. For 
example, an upturn in cases may reflect more cases among younger people at lower 
mortality risk. Hence trends in, and forecasts of, the case fatality rate are an important 
aspect of strategic management. In a bivariate model of cases and deaths, as here, we 
can trace the modelled CFR through time, where the modelled CFR at day 𝑡 is given by 
the ratio of predicted total deaths to predicted total cases 𝐷 , /𝐶 , .  In a natural 
extension of the bivariate model to include hospitalisations, trends in, and forecasts of, 
hospitalisation rates (ratios of hospitalised cases to total cases) can also be made. 
 
Assume there is some evidence from new cases data of an upturn in cases, even 
before a second wave epidemic is fully established. Consider a model for new cases 
only. Then a two phase model to reflect the upturn would involve two phenomenological 
models, before and after a latent switch-point, with each model having distinct 
parameters. Denote the single switch-point in new cases as 𝜅 , such that for a two-
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phase Richards model 

 ct  Poissonct   

 ct  It  crc1Ct−11 − Ct−1/Kc1ac1  It ≥ crc2Ct−11 − Ct−1/Kc2ac2     
where  𝐼 𝐴 1  when condition 𝐴 is true, and 0 otherwise.  Parameters, such as 
(𝑟 , 𝑟 ) are differentiated by outcome and by wave. The parameter 𝜅  can be assigned 
a uniform prior (on a positive interval) or a positive valued prior, such as an exponential 
density. If there is a second wave upturn in deaths also, then a bivariate model can be 
used, with switch points 𝜅  assumed later for deaths than cases, due to possible 
delays in mortality upturns following incidence upturns. A three phase model for cases 
would have two switch-points, with mean 

 ct  It  c1rc1Ct−11 − Ct−1/Kc1ac1      

Ic2  t ≥ c1rc2Ct−11 − Ct−1/Kc2ac2   It ≥ c2rc3Ct−11 − Ct−1/Kc3ac3 .   
 
An estimator of the effective reproduction rate 𝑅  at time 𝑡 is based on predictions from 
this phenomenological model, and from an estimate of the serial interval density. The 
serial interval is the time between symptom onset in an infected subject and symptom 
onset in the infectee. The serial interval density can discretized in the form of weights  
𝜌 , applied to serial interval lengths (in days) up to a maximum 𝐽 . These can be used 
to estimate effective reproduction ratios 𝑅  within a phenomenological model to analyse 
new cases; see the papers [38], [49] and [50]. Thus 𝑅  can be estimated as 

   
Rt  cnew,t/

J

j0

∑ jcnew,t−j,
  

where  𝑐 ,  are predicted new case data from the phenomenological model. By virtue 
of the MCMC sampling strategy used below, we can readily obtain 95% credible 
intervals for 𝑅 , and the probability that 𝑅 1, which is important for assessing 
epidemic containment strategy.  
 
4. Model Application 
We consider the application of the above methods to UK data on new cases and deaths 
from 1st February 2020 (when the first two cases of COVID-19 in the UK were reported 
according to ECDC). Observations are assigned dates as in the ECDC data, with times  
𝑡 in days from 1st February 2020. Figures 1a and 1b show daily trends in these 
outcomes up to 8th August 2020, with erratic fluctuations apparent in both outcomes. 
However, there is a broad downward trend in both outcomes from days 70 to 80, though 
with a more protracted decline as opposed to the steep initial upturn. Figures 2a and 2b 
show the relatively smooth evolution of cumulative cases and deaths. 
 
4.1 Medium Term Forecasts 
For medium term forecasts, we focus on the Richards bivariate model (section 3.3) and 
compare three alternative error assumptions as discussed in section 3.2: Poisson-
Gamma (PG), Poisson-lognormal (PLN) and Poisson-log-Student (PLS). The Student 
density is represented by a scale mixture of normals [51, 52]. Thus for new cases, 
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instead of directly taking 

 uct  t0,uc
2 ,c,   

where 𝜈  is the degrees of freedom parameter, and where 𝑢 𝑙𝑜𝑔 𝜖  , we take 

 ct  Gamma  c

2
,  c

2
,   

 uct  N0, uc
2

ct
,   

The indicators 𝛿  have average 1, but are significantly lower than 1 for more outlying 
observations, such as daily spikes in cases. 
 
Cross-validation estimations are made at points  𝑀 𝑇 . Thus we consider twenty day 
ahead forecasts at three different stages of the UK COVID-19 epidemic. For the first 
cross validation, estimations are based on training data up to day  𝑀 80  with  𝐹
20  (i.e. the cross validation period consists of days  81  to  100 ). Cross validation 
estimations with 𝐹 20 are also made for 𝑀 100, and for 𝑀 120 , with forecast 
accuracy based on comparing forecasts with hold out data for days 𝑀 1, . . . , 𝑀 𝐹 .  
 
4.2 Model Assumptions 
For prior densities on the unknowns in the medium term forecasts, exponential priors 
with mean 1 are assumed on  𝑟 ,  𝑟 ,  𝑎  and 𝑎  . For the precisions  1/𝜎   and  
1/𝜎   in the PLN and PLS options, and for the parameters  𝜆   and  𝜆   in the 
Poisson-gamma model, a gamma prior  𝐺𝑎𝑚𝑚𝑎 1,0.001  is assumed. For the PLS 
option, we take  𝜈 𝜈 4 as a preset option. The degrees of freedom can be difficult 
to estimate for relatively small datasets, and the option of the preset value 𝜈 4 is a 
robust option [53, 54]. For the maximum cases (epidemic size) parameter 𝐾 , we 
assume as lognormal prior, centred at 𝑙𝑜𝑔 𝐾  (with m=5 in 𝐾 ) and with variance 1, 
as discussed in section 3.2.  
 
For the maximum deaths parameter 𝐾 ,  we assume  𝐾 Φ𝐾   where the prior for  
Φ is a beta density with mean defined by the EU-wide case fatality 𝜑  . The beta has 
total prior count  𝐶 set at 5,  𝐶 5 . Thus the prior on Φ  is  Φ ~𝐵𝑒𝑡𝑎 𝐶𝜑 , 𝐶 1
𝜑 .  For example, on 20-04-2020 (at day 𝑡 80 ), the EU wide case fatality rate 
was 0.101, and the prior is set at  Φ ∼ 𝐵𝑒𝑡𝑎 0.505,4.495 . This illustrates the use of 
relevant external information, rather than diffuse priors. 
 
4.3 Model Fit and Estimation 
Fit to the observed training data is assessed using the Watanabe--Akaike information 
criterion (WAIC) [55]. This is a fit measure which takes account of fit but also penalizes 
model complexity. Cross-validation fit (fit out of the observed sample) is assessed by 
the probabilities of forecasting overprediction,  𝜔   and  𝜔  , and by predictive 
coverage: whether the credible intervals for predicted cases and deaths (averages over 
each validation period) include the observed averages. Estimation uses the BUGS 
program [56], with posterior estimates based on the second halves of two chain runs of 
100,000 iterations, and convergence assessed using Brooks-Gelman-Rubin criteria 
[57]. 
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4.2 Modelling Later Epidemic Stages 
To provide a longer term perspective on epidemic containment, we apply the best 
performing model from analysis of the first wave to the full set of observations as at 8th 
August 2020 (T=190), when the first epidemic peak had passed. So this application is to 
a situation where the epidemic first wave has passed, but there are still non-negligible 
numbers of new cases, and a potential for possible upturns and further waves. 
 
New cases and deaths (as 7 day moving averages) had reached maxima of 4850 and 
950 respectively when the UK epidemic peaked in April 2020. As a result of lockdown 
measures imposed in late March, daily new cases averaged just over 500 daily by July. 
However, lockdown relaxations from July were accompanied by the risk of resurgence. 
In that regard, an upturn was apparent with new cases in late July and early August 
averaging over 800 daily (see Figure 3), though deaths continued to fall, averaging 
around 50 per day in early August.  
 
To model the full time series, and since there was no upturn in deaths apparent in early 
August 2020, we focus on new cases only. To reflect the evidence of an upturn in 
cases, a two phase model is applied. For this model, the shift parameter 𝜅  is assigned 
an exponential prior density with mean 150. Priors on the parameters of the second 
phase Richards model are as before for the exponential ascent and logistic modifier 
parameters. For 𝐾  (the forecast total cases under wave 2), we assume  𝐾 𝜂 𝐾   
with 𝜂  assigned an exponential prior with mean 1. Of policy interest here is epidemic 
containment, as summarised by the effective reproduction ratio: specifically the question 
of policy relevance is whether this ratio consistently below 1, and whether its 95% 
credible interval also entirely below 1. If the ratio is not below 1, this suggests a 
significant upturn. 
 
To provide estimates of the effective reproduction ratio, we use accumulated evidence 
on COVID serial intervals from five studies [58,59,60,61,62]. A gamma density on the 
serial interval (SI) is assumed, and information on mean and standard deviation of the 
SI, or on quantiles of SI, is converted to gamma density parameters; for use of SI 
quantiles in this regard, see [63]. Large samples (of a million) from each the five 
densities are taken, and parameters of the pooled gamma density are estimated from 
the pooled sample of five million; the pooled gamma density has shape 1.38 and rate 
0.36. This density is then converted to a discretized form (with 16 bins) to provide an 
informative prior on the SI to the model of White and Pagano [64], which updates the 
prior serial interval density using new case data for the UK. The paper [65] recommends 
that the initial, approximately exponential, epidemic phase be used in estimation, and 
we use UK new case data up to time 24-04-2020, when UK new cases peaked [see 55, 
page 3]. The updated mean serial interval is estimated as 3.5 days with standard 
deviation 3.1. The discretized serial interval is estimated as in [64], with 𝐽 in section 3.5 
set at  𝐽 16.  
 
5. Results 



 
 

13 
 
 

5.1 Table 1 compares parameter estimates from the observed (training) data under the 
three error assumptions for the three cross-validation analyses at M=80, M=100 and 
M=120 (i.e. nine scenarios). It should be noted that predictions of cases and deaths 
should be based not on the posterior mean or median parameter values in Table 1, but 
on sampled posterior predictive replicate data at each iteration. These are based on 
sampling new data from the Poisson means (4) and (5), and from the Richards model 
parameter profile at each particular iteration. The predicted values of cases and deaths 
are very close to actual values: for example, for the PLS model at M=120, the average 
absolute deviation (over  𝑡 2, . . ,120) between actual new cases and predicted new 
cases is under 1. Table 2 compares the WAIC fits to the observed data under the nine 
options, while criteria regarding 20 day ahead forecasts are shown in Table 3. 
 
5.2 Mid Term Forecasts.  
Table 1 shows broad consistency between the three distributional options in terms of 
estimated final epidemic size 𝐾  and eventual death total 𝐾 . The posterior density of 
these parameters may be skewed, with posterior mean exceeding median. For the PLN 
and PLS options the estimate of  𝐾   increases as  𝑀  does. This reflects the 
protracted nature of the UK downturn in cases after the peak in the first wave. Posterior 
mean estimates of the turning points 𝜏  and 𝜏  vary slightly and tend to be higher for  
𝑀 100  and  𝑀 120, but for both outcomes and all 𝑀 values are between 72 and 
86. Turning point estimates for new cases 𝜏  are also mostly higher under the PLS 
option.  
 
Table 2 shows that the PLS option has better fit, with lower WAIC values. Hence its 
estimates of epidemic size and turning points are preferred, and provide a better 
description of the slow decline in cases from their peak. Table 3 shows generally better 
cross-validation performance for the PLS option. As discussed above, satisfactory 
prediction would have 0.05 𝜔 0.95,  and 0.05 𝜔 0.95,  with 𝜔   or 𝜔   
over 0.95 indicating overprediction, and with 𝜔  or 𝜔  under 0.05 indicating 
underprediction. Both PG and PLN options show underprediction for higher values of  
𝑀 , and in policy terms, may be misleading in suggesting a faster decline in cases and 
deaths than actually occurred. By contrast for 𝑀 100  and 𝑀 120 , the 95% 
interval for predicted average cases under the PLS model comfortably includes the 
actual average new cases.  
 
5.3 Longer Term Scenario  
Estimates of policy relevant parameters also come from the longer term scenario when 
the log-Student Richards model is applied to UK COVID new case data up to day T=190 
(8th August, 2020). The shift point in the two phase model is estimated as 179.1 with 
95% interval from 179.0 to 179.3. 
 
Figure 4 plots out the posterior mean estimated effective reproductive ratios (5 day 
moving averages), distinguishing those estimates significantly above 1. The estimates 
hover around 1 throughout June and the first half of July, but in late July/early August 
tend to exceed 1. The impression from this is that success in fully effective containment 
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is then in doubt. The estimates of the reproduction ratio, and their path through June 
and July, are similar to those for the UK available at 
https://epiforecasts.io/covid/posts/national/united-kingdom/#national-summary and 
based on the methods in [66]. 
 
To illustrate the potential for longer term forecasts of severity indicators we also use 
observed data up to day 150 to make forecasts 40 days ahead through to day 190. This 
analysis uses the PLS model option. Figure 5 shows the resulting forecast of the case 
fatality ratio, with 95% intervals, with a slight downward trend apparent. The interval for  
𝑡 190 includes the observed value of 0.151. 
 
6. Discussion 
The existing epidemic modelling literature has recognized the need for overdispersed 
distributions to deal with erratic incidence counts [67, 68, 30]. Thus [68] shows that use 
of a negative binomial distribution is more appropriate than the Poisson for describing 
emerging infections with overdispersed case distributions due to superspreading 
events. However, so far as the authors are aware there has been no evaluation of the 
negative binomial as compared to other methods of representing overdispersion in 
epidemic counts. Hence one contribution of this paper rests on a comparison of the 
negative binomial (Poisson-gamma mixture) against alternative Poisson mixture models 
[31]. For example, the Poisson log-Normal distribution is a longer tailed alternative to 
the negative binomial distribution, and may better fit overdispersed count data [69,70]. 
The analysis here suggests such alternatives may usefully be considered as 
alternatives to the negative binomial, and may both improve fit to actual observations 
and provide more accurate forecast performance.  
 
Tackling overdispersion is one issue present in modelling count data associated with 
epidemics. Another is the outcome focus: the choice is between incidence alone (the 
usual approach), or on taking account of both incidence and related outcomes. We have 
developed here a bivariate approach to jointly modelling epidemic outcomes, using 
priors that link parameters between outcomes. For example, here the eventual death 
total 𝐾  is linked (via the Bayesian prior specification) to the eventual epidemic size  
𝐾 . This approach has been used here to study the interrelationships between incidence 
and mortality, but can be readily extended to more outcomes, such as incidence, 
mortality, and hospitalisations. Forecasts from such joint outcome models enable 
forecasts of epidemic severity (e.g. case fatality rates, case-hospitalization ratios, 
deaths-hospitalizations ratios as well as effective reproduction ratios) that assist in 
pandemic severity assessment. Severity assessment, and the development of summary 
indicators of epidemic severity, is being recognized as an important aspect of epidemic 
monitoring and modelling [71, 72]. 
 
The present paper also considers the gain in applying phenomenological models to later 
stages of incomplete epidemics, especially (in the case of COVID-19) after lockdown 
relaxations, where there may be a protracted period of non-zero incidence, or further 
more pronounced waves of infection. The above analysis has therefore applied the 
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Poisson-log Student to late epidemic data for the UK (up to early August 2020), when 
there was some evidence of an incidence upturn, but not yet a full blown second wave. 
The focus of this analysis was on the effective reproduction rate and the case fatality 
ratio, both indicators of epidemic severity. As mentioned in [73], "the COVID-19 
pandemic has shown that the effective reproduction rate of the virus 𝑅  is a crucial 
determinant not only of public health, but also of public policy". There are a number of 
ways of estimating this quantity, including novel approaches such as using Google 
mobility data [74]. Here an analysis using estimates of 𝑅  based on a two-phase 
Richards model suggest a upturn in transmission in the UK by late July/early August 
2020.  
 
Hence the added value of the study is provided by the following: (a) proposing a 
multivariate framework readily applied for assessing severity, (b) in providing an 
approach for assessing alternative methods for representing overdispersion; and (c) in 
providing a methodology for assessing long terms trends and making longer term 
forecasts (e.g. of case fatality and the effective reproduction rate) in a multi-wave 
situation.  
 
7. Conclusion 
 
Many applications of phenomenological models have been to complete epidemics. 
However, evaluation of such models based simply on their fit to observed data may give 
only a partial picture. Also relevant to epidemic model assessment, particularly for policy 
application, is the accuracy of medium term forecasts for incomplete epidemics. 
Arguably, evaluation in  this case is better done using a cross-validation approach, 
where only some of the observed data are used to estimate parameters, and a hold out 
sample can then assess the accuracy of forecasts. The analysis here of UK epidemic 
data in the first half of 2020 has shown that fit to training data and the cross validation fit 
are consistent in their choice of preferred model option.  
 
The contribution of the present paper is to illustrate a bivariate approach to two 
epidemic outcomes, and how prior information (under a Bayesian approach) can be 
applied to interlink the parameters governing each outcome. The benefits of a bivariate 
(and potentially multivariate) approach include the ability to forecast severity measures 
such as the case fatality ratio, and the borrowing of strength over outcomes in making 
forecasts [27]. A further contribution is that a focus on incidence and new deaths rather 
than cumulative outcomes has brought into sharper focus the question of adequately 
representing Poisson overdispersion. The latter is caused by often erratic fluctuations in 
the observed series, apparent in UK COVID data on new cases and deaths. The 
analysis has provided new evidence on the relative fit and forecasting performance of 
different ways of representing Poisson overdispersion in epidemic count data, and 
potential gains through using heavier tail alternatives to the negative binomial. We have 
also considered Bayesian analysis of longer term epidemic trends, where multiple 
waves may exist, and illustrated monitoring of case fatality and epidemic reproduction.  
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The implications of the research (e.g. in planning healthcare provision) are that effective 
medium term forecasts of COVID-19 incidence and mortality can be provided by the 
proposed methodology. Extension of the bivariate approach (e.g. to include incidence, 
mortality and hospitalisations) provides scope for forecasting other indicators relevant to 
severity assessment. The methodology also presents a way to monitor longer term 
infection numbers leading to early detection of incipient upturns in infection numbers, 
via continuous monitoring and forecasting of the effective reproduction ratio. Assessing 
whether the latter is confined to values below 1 is important for strategic epidemic 
containment. 
 
The present study has some possible limitations. Comparative analysis of alternative 
ways of representing overdispersion has been limited here to UK data, and to the first 
wave COVID-19 epidemic, and will require validation with other epidemic time series, 
both for COVID-19 and other infectious diseases. A caveat, though not a limitation per 
se, is that with regard to Bayesian estimation, relatively informative priors may be 
needed to guarantee stable estimation and ensure convergence. For example, diffuse 
gamma priors on the eventual epidemic size parameter caused convergence problems 
in the analysis reported here. 
 
Regarding future research, as just pointed out, the methodology for comparing 
overdispersion approaches should be assessed with other epidemic datasets. Other 
Poisson mixtures may be considered such as the Poisson log skew-normal [75], or 
Poisson mixtures with other densities [76,77]. Other types of analysis regarding 
forecasting potential can also be envisaged, such as forecast combinations, for 
instance, forecasts based on combining the logistic, Richards and Gompertz curves [78, 
79]. It would also be useful, especially in planning hospital care capacity, to apply a 
bivariate approach to COVID-19 incidence and hospitalisations, or a trivariate approach 
to incidence, mortality and hospitalisations. A trivariate approach will provide model 
estimates and forecasts of indicators central to severity assessment. 
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Table 1 Estimations according to Timing of Cross‐Validation Period (M is days after start of epidemic) 

  M=80 

  Poisson‐gamma  Poisson‐lognormal  Poisson‐log Student 

Parameter    Mean  2.5%  Median  97.5%  Mean  2.5%  Median  97.5%  Mean  2.5%  Median  97.5% 

Kc  373800  151800  210500  1172000  170200  135900  153200  289000  198800  135100  177200  336600 

Kd  32920  25070  32080  45560  33220  24180  32390  46770  35780  17950  29060  91460 

rc  0.31  0.22  0.27  0.58  0.24  0.19  0.23  0.30  0.12  0.08  0.13  0.18 

rd  0.82  0.44  0.75  1.51  0.80  0.38  0.67  1.81  0.29  0.17  0.28  0.46 

ac  0.31  0.07  0.32  0.60  0.54  0.21  0.55  0.89  1.06  0.53  1.06  1.79 

ad  0.13  0.05  0.12  0.26  0.14  0.04  0.13  0.33  0.75  0.20  0.63  1.75 

 0.13  0.03  0.15  0.25  0.21  0.10  0.20  0.31  0.18  0.09  0.16  0.40 

c  76.2  72  75  80  72.5  70.0  72.0  80.0  76.1  73.0  75.0  80.0 

d  74.5  71  74  79  74.7  71.0  75.0  80.0  75.8  71.0  76.0  80.0 

  M=100 

  Poisson‐gamma  Poisson‐lognormal  Poisson‐log Student 

Parameter    Mean  2.5%  Median  97.5%  Mean  2.5%  Median  97.5%  Mean  2.5%  Median  97.5% 

Kc  271040  243490  268820  310190  262700  245700  261100  284000  295800  223800  276400  453200 

Kd  37395  35097  37274  40538  37040  34470  36920  40340  38740  32290  37610  53060 

rc  0.30  0.22  0.30  0.38  0.26  0.22  0.26  0.33  0.18  0.13  0.17  0.27 

rd  1.51  0.63  1.21  4.01  1.27  0.48  1.06  2.88  0.55  0.22  0.49  1.12 

ac  0.25  0.17  0.24  0.42  0.28  0.20  0.28  0.37  0.46  0.20  0.46  0.83 

ad  0.07  0.02  0.06  0.13  0.08  0.02  0.07  0.17  0.20  0.06  0.15  0.62 

 0.14  0.12  0.14  0.16  0.14  0.13  0.14  0.16  0.14  0.08  0.13  0.20 

c  79.4  78  79  82  79.0  78  79  80  83.1  78  82  97 

d  76.2  75  76  77  76.1  75  76  77  77.6  75  77  83 

  M=120 

  Poisson‐gamma  Poisson‐lognormal  Poisson‐log Student 

Parameter    Mean  2.5%  Median  97.5%  Mean  2.5%  Median  97.5%  Mean  2.5%  Median  97.5% 

Kc  302800  295900  302300  312100  303100  293900  302700  317100  349100  282000  321300  549100 

Kd  40670  39670  40630  41890  40370  39410  40330  41560  41050  38580  40770  45020 

rc  0.38  0.30  0.36  0.51  0.34  0.25  0.32  0.49  0.40  0.11  0.45  0.80 

rd  1.87  0.65  1.50  5.38  1.57  0.67  1.52  2.82  0.94  0.34  0.78  2.35 

ac  0.16  0.11  0.16  0.21  0.18  0.11  0.18  0.24  0.27  0.04  0.30  0.69 

ad  0.05  0.01  0.04  0.11  0.05  0.02  0.04  0.10  0.09  0.03  0.08  0.22 

 0.13  0.13  0.13  0.14  0.13  0.13  0.13  0.14  0.12  0.07  0.13  0.15 

c  81.0  80  81  82  81.2  81  81  82  85.6  82  84  99 

d  77.3  77  77  78  77.1  77  77  78  77.9  77  78  79 
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Table 2 Fit to Training Data (WAIC Criterion) 

 
Poisson‐gamma 

Poisson‐
lognormal 

Poisson‐log 
Student 

  M=80 

Cases  605.0  600.0  564.1 

Deaths  365.7  367.4  350.4 

Total  970.7  967.4  914.5 

  M=100 

Cases  851.6  845.8  808.8 

Deaths  562.0  560.1  550.1 

Total  1413.6  1405.9  1358.9 

  M=120 

Cases  1097.0  1086.3  1042.3 

Deaths  743.3  741.4  731.5 

Total  1840.4  1827.7  1773.8 
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M=80
Criterion Mean 2.5% Median 97.5% Mean 2.5% Median 97.5% Mean 2.5% Median 97.5%

Average Daily Cases 4357 1818 3686 7407 2214 1078 1881 4875 3118 1043 2869 5652

Average Daily Deaths 609 344 603 904 613 303.8 613.4 921.8 587 0 514 1471

c 0.41   0.03 0.16

d 0.34   0.38 0.40

Actual Daily Averages in period (M+1,M+F)

New Cases 4857

New Deaths 662

M=100
Criterion Mean 2.5% Median 97.5% Mean 2.5% Median 97.5% Mean 2.5% Median 97.5%

Average Daily Cases 2346 1523 2353 3173 1975 1384 1947 2658 2630 622 2565 4340

Average Daily Deaths 265 184 265 351 224.8 135.8 221.5 332.8 275 52 276 510

c 0.09   0.00 0.31

d 0.06   0.03 0.32

Actual Averages in period (M+1,M+F)

Cases 3039

Deaths 330

M=120
Criterion Mean 2.5% Median 97.5% Mean 2.5% Median 97.5% Mean 2.5% Median 97.5%

Average Daily Cases 1132 1006 1129 1274 1133 963.2 1136 1320 1310 604 1358 1835

Average Daily Deaths 129 89 129 170 117.9 77.6 117.6 160.4 135 37 134 236

c 0.00   0.00 0.42

d 0.00   0.00 0.07

Actual Averages in period (M+1,M+F)

Cases 1506

Deaths 216

Poisson‐gamma (PG) Poisson‐lognormal (PLN) Poisson‐log Student (PLS)

Table 3 Criteria for Out‐sample Predictions (M is Number of Days in Training Sample; F=20 in 
Poisson‐gamma (PG) Poisson‐lognormal (PLN) Poisson‐log Student (PLS)

Poisson‐gamma (PG) Poisson‐lognormal (PLN) Poisson‐log Student (PLS)
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