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Association of multiple glycemic 
parameters at intensive care unit 
admission with mortality and 
clinical outcomes in critically ill 
patients
Priscila Bellaver1,2, Ariell F. Schaeffer3, Diego P. Dullius4, Marina V. Viana5, 
Cristiane B. Leitão1,6 & Tatiana H. Rech   1,5*

The aim of the present study was to investigate the association of multiple glycemic parameters at 
intensive care unit (ICU) admission with outcomes in critically ill patients. Critically ill adults admitted 
to ICU were included prospectively in the study and followed for 180 days until hospital discharge or 
death. Patients were assessed for glycemic gap, hypoglycemia, hyperglycemia, glycemic variability, 
and stress hyperglycemia ratio (SHR). A total of 542 patients were enrolled (30% with preexisting 
diabetes). Patients with glycemic gap >80 mg/dL had increased need for renal replacement therapy 
(RRT; 37.7% vs. 23.7%, p = 0.025) and shock incidence (54.7% vs. 37.4%, p = 0.014). Hypoglycemia 
was associated with increased mortality (54.8% vs. 35.8%, p = 0.004), need for RRT (45.1% vs. 22.3%, 
p < 0.001), mechanical ventilation (MV; 72.6% vs. 57.5%, p = 0.024), and shock incidence (62.9% vs. 
35.8%, p < 0.001). Hyperglycemia increased mortality (44.3% vs. 34.9%, p = 0.031). Glycemic variability 
>40 mg/dL was associated with increased need for RRT (28.3% vs. 14.4%, p = 0.002) and shock 
incidence (41.4% vs.31.2%, p = 0.039). In this mixed sample of critically ill subjects, including patients 
with and without preexisting diabetes, glycemic gap, glycemic variability, and SHR were associated 
with worse outcomes, but not with mortality. Hypoglycemia and hyperglycemia were independently 
associated with increased mortality.

In critically ill patients, hyperglycemia is an adaptive metabolic response to acute stress1,2. Optimal glycemic tar-
gets in the ICU setting are controversial and seem to be related to previous patient metabolic status3–9. As glycated 
hemoglobin (HbA1c) is not affected by the onset of acute illness, it can be used to estimate chronic glycemic con-
trol in critically ill patients10. In the intensive care setting, patients with higher HbA1c have higher mortality11,12. 
However, patients with poor chronic glycemic control have worse outcomes when treated with intensive glyce-
mic control13, suggesting that chronic hyperglycemia might be able to generate cellular mechanisms that protect 
against damage mediated by acute hyperglycemia during critical illness14. Therefore, the question is more com-
plex than selecting the “optimal glycemic target”, as the interplay between multiple domains of glycemic control 
might be more relevant. In this sense, glycemic variability, which reflects the magnitude of glycemic excursions 
during the day, has been associated with unfavorable outcomes in critical illness, including higher mortality15,16.

In addition, to separate preexisting hyperglycemia from stress-induced hyperglycemia (elevated blood glucose 
that reverts to normal after disease and inflammation subsides), the glycemic gap and the stress hyperglycemia 
ratio (SHR) have been proposed as predictors of adverse outcomes in the ICU. The glycemic gap, defined as the 
difference between blood glucose at ICU admission and the estimated mean blood glucose derived from HbA1c 
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values, is associated with worse prognosis in specific populations of critically ill patients, such as patients with 
acute myocardial infarction, community-acquired pneumonia, and hepatic abscess17–19. Moreover, a glycemic 
gap above 80 mg/dL is associated with higher hospital mortality in critically ill patients with DM20, but its value 
as a prognostic tool in mixed medical-surgical sample of critically ill subjects is unknown. The SHR is calculated 
by dividing the blood glucose on admission by the estimated average glucose derived from HbA1c. Studies sug-
gest that an SHR > 1.1 is a better predictor for worse outcomes in critical illness than the absolute mean blood 
glucose21.

Within this context, the aim of the present study is to investigate the association of multiple glycemic param-
eters (glycemic gap, hypoglycemia, hyperglycemia, glycemic variability, and SHR) at ICU admission with clinical 
outcomes in critically ill patients with and without diabetes. The primary endpoint was mortality. Secondary 
endpoints were need for renal replacement therapy (RRT), incidence of shock, need for mechanical ventilation 
(MV), time spent on MV, length of stay (LOS) in the hospital, LOS in the ICU, and need for ICU readmission.

Results
Study population characteristics.  A total of 542 consecutive patients admitted to the ICU were included 
in the study. Their main characteristics are summarized in Supplementary Table S1. Briefly, 52.5% were male, and 
the mean age was 59 ± 15 years; 42.4% were admitted to ICU from the emergency department. ICU admissions 
were for medical reasons in 84.3% and for surgical reasons in 15.7%, with acute respiratory failure as the lead-
ing cause (23.6%). The most common primary coexisting condition was hypertension (54%), followed by DM 
(30%). Mean serum glucose at admission was higher in nonsurvivors than in survivors (146 ± 73 vs. 132 ± 60 mg/
dL, p = 0.023), but HbA1c was not (5.8 ± 1.7 vs. 5.5 ± 1.4% p = 0.058). The overall mortality rate was 38.2%. 
When analyzing patients with DM separately, the mortality rate was similar regardless of preexisting DM (43% vs. 
38.2%; p = 0.193). In patients with DM (n = 163; n = 4 type 1 DM; n = 159 type 2 DM), mean blood glucose and 
HbA1c were similar in survivors and nonsurvivors (mean blood glucose: 166 ± 87 vs. 187 ± 96, p = 0.16; HbA1c 
6.8 ± 1.8% vs. 6.9 ± 2.4, p = 0.705).

Glycemic parameters and mortality.  The glycemic gap varied widely, from −159 to 400, with a median 
value of 11 (−15 to 42) mg/dL in the overall population and no difference between survivors and nonsurvivors 
was observed (Fig. 1A). When analyzing patients with DM separately, the glycemic gap was 13 (−37 to 61) mg/
dL, and no differences were observed between survivors and nonsurvivors. Similarly, in patients without pre-
existing DM, the glycemic gap was not different in survivors and nonsurvivors. When stratifying patients by a 
glycemic gap cutoff of 80 mg/dL, a trend toward higher mortality was observed in subjects with wider glycemic 
gaps (49% vs. 37%; p = 0.089). Data related to glycemic gap cutoff of >40 mg/dL and >60 mg/dL are summarized 
in Supplementary Table S2.

More patients who died had hypoglycemia (54.8% vs. 35.8%, p = 0.004) and hyperglycemia (44.3% vs. 34.9%, 
p = 0.031) compared to survivors.

In the entire sample, mean glycemic variability was 67 (41 to 112) mg/dL, with higher values in nonsurvivors 
(Fig. 1B). This difference is not demonstrated in patients with preexisting DM, but is clearly seem in patients with-
out DM. When patients with a glycemic variability cutoff of 40 mg/dL were analyzed in separate, no difference 
in mortality was observed in subjects with higher glycemic amplitudes (34% vs. 39%; p = 0.228). Data related to 
variability >60 mg/dL and >80 mg/dL are summarized in Supplementary Table S3. Overall SHR was 1.1 (±0.5), 
with no difference between survivors and nonsurvivors (Fig. 1C), independently or preexisting DM or not.

Glycemic parameters and other outcomes.  When comparing patients with glycemic gap above and 
below 80 mg/dL, the group with higher values had increased need for RRT and a higher incidence of shock 
(Table 1).

The presence of hypoglycemia within the first 24 hours of ICU admission was associated with increased need 
for RRT, increased need for MV, and higher incidence of shock. Length of hospital stay was shorter in this popu-
lation. The presence of hyperglycemia on admission was associated with increased need for MV. Glycemic varia-
bility during the first 24 hours of admission was associated with an increased need for RRT and a higher incidence 
of shock. These results are summarized in Table 2 and Supplementary Table S3. SHR > 1.1 was associated with 
greater need for MV, but with a shorter time spent on MV and longer ICU stay (Table 1). Interestingly, no glyce-
mic control parameters were associated with the need for ICU readmission (Tables 1 and 2).

Magnitude of the association between glycemic parameters and outcomes.  Figure 2 presents 
the relative risks (RR) for outcomes according to each glycemic parameter. Glycemic gap >80 mg/dL was associ-
ated with an increased need for RRT and significantly increased the incidence of shock.

Mean blood glucose increased risk of death, but HbA1c did not. Hypoglycemia was the parameter with the 
highest RR for mortality, followed by hyperglycemia and glycemic variability. Hypoglycemia also yielded the 
highest RR for the need for RRT. Glycemic variability was also associated with an increased need for RRT. Besides 
glycemic gap >80 mg/dL, two other glycemic parameters significantly increased the incidence of shock: hypogly-
cemia and glycemic variability. Regarding the need for MV, hypoglycemia was associated with the highest risk, 
followed by hyperglycemia. Glycemic variability also increased the need for MV. No glycemic parameter was 
associated with risk of ICU readmission, as shown in Supplementary Fig. S1.

Cox regression multivariate analysis with adjustment for SAPS 3 was calculated for the glycemic parameters 
associated with mortality in the univariate models. Three glycemic parameters were associated with increased 
mortality in the univariate analysis: hypoglycemia (Table 2), hyperglycemia (Table 2) and glucose variability 
(cutoff >60 mg/dL and >80 mg/dL, Supplementary Table S3). Hypoglycemia and hyperglycemia remained asso-
ciated with mortality after adjustments (HR 1.68; 95%CI 1.16 to 2.44, p = 0.006 and HR 1.37; 95%CI 1.04 to 1.81, 
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p = 0.026, for hypoglycemia and hyperglycemia, respectively) (Fig. 3A,B), but glycemic variability did not (HR 
1.14; 95%CI 0.86 to 1.51, p = 0.366 for variability >60 mg/dL and HR 1.25; 95%CI 0.95 to 1.64, p = 0.104 for 
variability >80 mg/dL).

Figure 1.  Box plot demonstrating the effect of glycemic gap (A), glycemic variability (B), and stress 
hyperglycemia ratio (C) on mortality in overall population, in patients with DM (diabetes mellitus), and 
in patients without DM. Values are median and interquartile range; dots represent outliers. Figures were 
constructed using R version 3.5.2 (The R Foundation, version 3.5.1, 2018).
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Discussion
In this sample of unselected, prospectively followed critically ill patients, including those with and without preex-
isting diabetes, multiple glycemic parameters at ICU admission were associated with worse outcomes. Higher gly-
cemic gap, a marker of stress-induced hyperglycemia, increased the need for RRT and incidence of shock, but had 
not impact on mortality. The presence of hypoglycemia in the first 24 hours of ICU admission was associated with 
the highest RR for worse outcomes, including increased mortality; a single episode of hypoglycemia doubled the 
risk of death and increased the incidence of shock and the need for RRT threefold. Additionally, hyperglycemia 
at ICU admission increased the risk of mortality by approximately 50%. Both hypoglycemia and hyperglycemia 
were independently associated with mortality.

The association between hyperglycemia and mortality in acutely ill patients, especially in those without dia-
betes, is well documented in the literature22,23. However, it is still not clear if hyperglycemia is a marker of disease 
severity or a determinant of prognosis by itself. In our study, the fact that hyperglycemia was independently asso-
ciated with mortality corroborates the later. Furthermore, there is physiological plausibility to justify how high 
glucose levels contribute to worse outcomes, for instance, the deleterious effects of hyperglycemia on immune 
system function and the increased proteolysis producing lean tissue breakdown24. These two mechanisms might 
contribute to infectious complications25 and ICU-acquired muscular weakness26 respectively.

Glycemic gap and SHR are markers of acute-stress hyperglycemia, as they are able to separate the effect of 
acute, critical illness-associated variations in blood glucose from the previous metabolic state. The present study 
was the first to analyze the role of glycemic gap and SHR in a general medical-surgical population of ICU patients. 
Unexpectedly, no increase in mortality was demonstrated in patients with high glycemic gaps or high SHR, even 
when patients with DM were analyzed separately, which stands in contrast to the findings of previous small stud-
ies of glycemic gap in very specific populations critically ill patients with diabetes17–19. However, a high glycemic 
gap doubled the risk of shock and the need for RRT and SHR increased risk of the need for MV and the time spent 
on MV. The main differences in our study are a larger sample size, the inclusion of a mixed sample of surgical and 
medical critically ill patients, with and without DM, and with high disease severity scores. Therefore, our sample 
represents a more heterogeneous population, which increases the clinical applicability of our findings.

Outcomes

Glycemic gap

p

SHR

p
<80 mg/dL 
(n = 489)

>80 mg/dL 
(n = 53) <1.1 (n = 267)

>1.1 
(n = 275)

Mortality (n, %) 181 (37) 26 (49) 0.087 96 (36) 111 (40) 0.247

Need for RRT (n, %)
Shock incidence (n, %)

116 (23.7)
183 (37.4)

20 (37.7)
29 (54.7)

0.025
0.014

62 (23)
96 (36)

74 (27)
116 (42)

0.287
0.112

Need for MV (n, %) 286 (58.4) 36 (67.9) 0.184 141 (52.8) 181 (65.8) 0.001

Time on MV (days) 4 (1 to 8) 4.5 (2 to 8) 0.117 3 (1 to 8) 2 (4 to 8.5) <0.001

LOS, hospital (days) 20 (10 to 35) 20 (10 to 34.7) 0.585 19 (10.7 to 32.5) 21 (9 to 38) 0.263

LOS, ICU (days) 7 (3 to 12) 7.5 (4.25 to 11) 0.126 6 (3 to 11) 8 (4 to 12) 0.005

ICU readmission (n, %) 62 (12.6) 6 (11.3) 0.770 30 (11.2) 38 (13.8) 0.339

Table 1.  Effects of stress-induced hyperglycemia on clinical outcomes. SHR: stress hyperglycemia ratio; RRT: 
renal replacement therapy; MV: mechanical ventilation; LOS: length of stay; ICU: intensive care unit. Glycemic 
gap was calculated by the difference between the serum glucose at ICU admission and the estimated mean 
blood glucose derived from HbA1c. SHR was defined by the ratio between serum glucose at admission and the 
estimated mean blood glucose derived from HbA1c. Values are mean ± SD or median and interquartile range.

Outcomes

Hypoglycemia

p

Hyperglycemia

p

Glycemic variability

p

No Yes No Yes <40 mg/dL >40 mg/dL

(n = 480) (n = 62) (n = 350) (n = 192) (n = 125) (n = 417)

Mortality (n, %) 172 (35.8) 34 (54.8) 0.004 122 (34.9) 85 (44.3) 0.031 42 (33.6) 165 (39.5) 0.228

Need for RRT (n, %) 107 (22.3) 28 (45.1) <0.001 81 (23.1) 55 (28.6) 0.158 18 (14.4) 118 (28.3) 0.002

Shock incidence (n, %) 172 (35.8) 39 (62.9) <0.001 128 (36.6) 84 (43.7) 0.101 39 (31.2) 173 (41.4) 0.039

Need for MV (n, %) 276 (57.5) 45 (72.6) 0.024 195 (55.7) 127 (66.1) 0.018 64 (51.2) 258 (61.8) 0.033

Time on MV (days) 4 (2 to 8) 2 (1 to 6) 0.365 4 (1 to 8) 4 (2 to 7.7) 0.014 4.5 (1.2 to 9) 4 (1 to 8) 0.17

LOS, hospital (days) 21 (11 to 36) 14 (5 to 30) 0.024 21 (11 to 37) 17.5 (8 to 33.5) 0.498 22 (12–35) 19 (9 to 36) 0.575

LOS, ICU (days) 7 (4 to 12) 5 (2 to 8.5) 0.117 7 (3 to 12) 7 (4 to 11) 0.183 8 (4 to 12.7) 7 (3 to 11) 0.898

ICU readmission (n, %) 64 (13.3) 4 (6.5%) 0.123 41 (11.7) 27 (14) 0.43 14 (11.2) 54 (12.9) 0.604

Table 2.  Effects of hypoglycemia, hyperglycemia, and glycemic variability on clinical outcomes. RRT: renal 
replacement therapy; MV: mechanical ventilation; LOS: length of stay; ICU: intensive care unit. Hypoglycemia 
was defined as any serum or capillary glucose <70 mg/dL during the first ICU day. Hyperglycemia was defined 
as any serum glucose >140 mg/dL at ICU admission. Glycemic variability was calculated as the absolute 
difference in capillary blood glucose during the first ICU day. Values are mean ± SD or median and interquartile 
range.
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Some studies suggest that glucose variability during the 24 hours is a better predictor of outcomes in critical 
illness than mean blood glucose15,16,27,28. However, our results show that glycemic variability measured in the 
first 24 hours of admission was associated with worse outcomes, increased need for RRT and MV, and higher 
incidence of shock, but only hypoglycemia and hyperglycemia were associated with increased mortality after 
adjustment for disease severity. This contrasting result with the literature might be explained by the metric of 
glucose variability used in our study (difference of maximum and minimum glucose values). Although, we have 
to highlight that the best indicator for glucose variability quantification is unsettled29 and that a retrospective 
analysis of the Leuven studies8,9 showed that increased daily glucose amplitude was associated with increased 
mortality30. Moreover, glycemic variability was not associated with higher risk of mortality in patients with DM, 
corroborating the idea that patients exposed to chronic hyperglycemia are adapted to glycemic excursions, pos-
sibly developing protective cellular mechanisms against wide blood glucose variations during the course of a 
critical illness14. In our study, the mortality of patients with DM was similar to that of patients without DM, in 
agreement with the concept of the “diabetic paradox” in the ICU—i.e., the finding that DM is not independently 
associated with increased risk of mortality in heterogeneous populations of critically ill patients31.

This study has limitations. First, glucose monitoring was not continuous, which raises the possibility that 
some extreme glucose values may have gone unrecorded. However, this is a conservative bias that might have 
decreased differences in outcomes, further corroborating our findings. Furthermore, glucometers are still largely 
used because they are practical and low cost. Second, accurate information on diet (including the amount of cal-
ories consumed) and on insulin doses administered was not recorded, thus precluding conclusions regarding the 
influence of carbohydrate intake or insulin therapy on outcomes. However, the association of at least one of the 
outcomes evaluated herein, hypoglycemia, seems to be independent from insulin use, as suggested by the results 
of the NICE-SUGAR study32. Third, the absence of data on diabetes duration and the low absolute number of 
patients with type 1 DM prevent any conclusion regarding different underlying pathogenic mechanisms between 
type 1 and type 2 DM and long term complications over the outcomes.

The main strength of this study is the prospective cohort design, specifically selected to evaluate multiple gly-
cemic parameters simultaneously in a large unselected population of critically ill patients and their associations 
with clinical outcomes and mortality. Our findings reinforce that, besides mean blood glucose seems to be the 
most important predictor of outcomes, several other domains of glycemic control are relevant in critical illness. 
This might be especially important for research in glycemic control, as future trials should evaluate not only gly-
cemic targets, but rather multiple glycemic parameters at the same time.

Figure 2.  Relative risks for outcomes according to each glycemic parameter. (A) Mortality. (B) Need for 
renal replacement therapy (RRT). (C) Incidence of shock. (D) Need for mechanical ventilation (MV). HbA1c: 
glycated hemoglobin. Hypoglycemia was defined as any serum or capillary glucose <70 mg/dL during the first 
ICU day. Hyperglycemia was defined as any serum glucose >140 mg/dL at ICU admission. Glycemic gap was 
calculated by the difference between serum glucose at ICU admission and the estimated mean blood glucose 
derived from HbA1c. Glycemic variability was calculated as the absolute difference in capillary blood glucose 
during the first ICU day. SHR (stress of hyperglycemia ratio) was defined by the ratio between serum glucose 
at admission and the estimated mean blood glucose derived from HbA1c.Values are point estimates with 95% 
confidence intervals. Figures were constructed using R version 3.5.2 (The R Foundation, version 3.5.1, 2018).
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In summary, in this mixed medical-surgical sample of critically ill subjects, including patients with and with-
out previous diagnosis of diabetes, glycemic gap was associated with worse clinical outcomes, but had no impact 
on mortality. Hypoglycemia and hyperglycemia were independently associated with increased mortality and 
influenced other outcomes, such as incidence of shock and need for RRT and MV. Similarly to glycemic gap, gly-
cemic variability and SHR also negatively affected outcomes, with no impact on mortality. It is common sense that 
optimal glycemic control should be pursued to reduce the risk of unfavorable outcomes. Then, further research 
is needed to personalize glycemic control targets in critically ill patients, focusing on a broader view of glucose 
dysregulation based in multiple parameters rather than in a single, in an effort to reduce the risks of iatrogenic 
adverse events.

Figure 3.  Cumulative survival at 180 days stratified by presence of abnormal blood glucose at ICU admission. 
(A) Hypoglycemia (defined as any serum or capillary glucose measurement <70 mg/dL during the first ICU 
day). (B) Hyperglycemia (defined as any serum glucose measurement >140 mg/dL at ICU admission). Hazard 
ratios are adjusted for SAPS 3 (Simplified Acute Physiology III) score. Figures were constructed using SPSS 20.0 
(Chicago, IL, USA).
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Methods
Study population.  This is a prospective cohort study. The study protocol was approved by the ethics com-
mittee at Hospital de Clínicas de Porto Alegre (project number 17-0386). Informed consent was obtained from 
patients or their legal representatives. From September 2017 to February 2018, critically ill adults (age >18 years) 
admitted to the ICU were prospectively included in the study. The exclusion criteria were pregnancy, diabetic 
ketoacidosis, hyperosmolar hyperglycemic state, sickle cell anemia, and other hemoglobinopathies. Blood sam-
ples were collected at study entry from all patients for random serum blood glucose and HbA1c quantifications, 
and clinical and laboratory data were recorded for all patients. Simplified Acute Physiology Score 3 (SAPS 3), 
ranging theoretically from a minimum of 0 points to a maximum of 271 points, with higher scores denoting 
higher severity33, was used to score disease severity.

Hyperglycemia was defined according to the American Diabetes Association (ADA) proposed thresh-
old for in-hospital hyperglycemia as any blood glucose measurement >140 mg/dL34–36 at ICU admission. 
Moderate hypoglycemia was any blood or capillary glucose <70 mg/dL (ADA definition and same level from the 
NICE-SUGAR study)32,34 and serious hypoglycemia was <54 mg/dL (ADA definition)34 during the first day in the 
ICU. Glucose variability was calculated as the absolute difference in capillary blood glucose during the first day 
in the ICU15,16. In order to separate the effects of a chronically altered metabolic state from those of acute stress 
hyperglycemia, the glycemic gap and SHR were evaluated. The glycemic gap was calculated by the difference 
between the ICU admission serum blood glucose and the estimated mean blood glucose (serum blood glucose 
on ICU admission − estimated mean blood glucose)17,18. HbA1c values were used to calculate the estimated mean 
blood glucose, using the following formula: (28.7 × HbA1c) − 46.7 mg/dL (30). The cutoff value of 80 mg/dL for 
glycemic gap was based on Liau et al.20. SHR was defined by the ratio between serum blood glucose at admission 
and the estimated mean blood glucose and the cutoff value of 1.1 based on Roberts et al.21. Diabetes was defined 
on the basis of previous diagnosis or when HbA1c was ≥6.5%34. HbA1c quantifications were measured for all 
patients at ICU admission. Previous diagnosis of diabetes was assessed by two researchers (P.B. and A.S) by elec-
tronic chart review (hospital and ICU admission notes, previous use of antihyperglycemic agents or insulin, and 
outpatient visits if needed).

The outcomes of interest were adjudicated by two unblinded researchers (P.B. and A.S) and included the fol-
lowing: mortality (primary endpoint) and need for RRT, incidence of shock, need for MV, time spent on MV, LOS 
in the hospital, LOS in the ICU, and need for ICU readmission (secondary endpoints). All patients were followed 
up for 180 days for survival analysis.

Biochemical measurements.  Blood samples for glucose measurement were collected in tubes with sodium 
fluoride, centrifuged for 10 min at 3670 rpm, and analyzed by the hexokinase method in a Roche COBAS c702 
system (Roche Diagnostics, Mannheim, GE). For HbA1c measurement, blood samples were collected in EDTA 
tubes, homogenized, and analyzed in BioRAD Variant Turbo II (BioRAD, Hercules, California, USA), processed 
by HPLC. Glucose values were expressed as mg/dL, and HbA1c values as percentage.

Statistical analysis.  Categorical variables were expressed as percentages. Data were expressed as mean and 
standard deviation (SD) if normally distributed, or as median and interquartile range otherwise. Groups were 
compared using Student’s t-test, the Mann–Whitney U test, or the chi-square test as appropriate. To assess relative 
risks of variables of interest and outcomes, univariate linear regression or logistic regression models were con-
structed depending on the characteristics of the outcomes of interest. A multivariate Cox regression analysis with 
mortality as outcome was used to calculate hazard ratios (HR), with variables adjusted for disease severity using 
SAPS 3 score. A sample size of 494 patients was calculated considering a power of 95% and an α-error rate of 5% 
to detect a difference in glycemic gap of 42 mg/dL between survivors and nonsurvivors. There was no missing 
data. Values were considered statistically significant if p < 0.05. Statistical analyses were conducted in SPSS 20.0 
(Chicago, IL, USA) and R version 3.5.2 (The R Foundation, version 3.5.1, 2018).

Ethical approval.  All experiments were performed in accordance with relevant guidelines and regulations. 
The study protocol was approved by the Ethics Committee at Hospital de Clínicas de Porto Alegre (project num-
ber 17-0386).
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