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Cristian Rodriguez, Rodrigo Santa Cruz, Cedric Scheerlink, Ehab Salahat and Pieter van Goor
for their ongoing support and valuable ideas and recommendations.

Last but not the least, I would like to thank Magdalena Borkowska, Annachiara Arban and my
family, without whom I could never imagine reaching this; my parents and sister, for believing
in me, supporting me throughout my life and encouraging me during my studies.





Abstract

Establishing the spatial and temporal relationships between a robot, and its environment serves
as a basis for scene understanding. The established approach in the literature to simultaneously
build a representation of the environment, and spatially and temporally localise the robot within
the environment, is Simultaneous Localisation And Mapping (SLAM). SLAM algorithms in
general, and in particular visual SLAM—where the primary sensors used are cameras—have
gained a great amount of attention in the robotics and computer vision communities over the last
few decades due to their wide range of applications. The advances in sensing technologies and
image-based learning techniques provide an opportunity to introduce additional understanding
of the environment to improve the performance of SLAM algorithms.

In this thesis, I utilise meta information in a SLAM framework to achieve a robust and con-
sistent representation of the environment and challenge some of the most limiting assumptions in
the literature. I exploit structural information associated with geometric primitives, making use
of the significant amount of structure present in real world scenes where SLAM algorithms are
normally deployed. In particular, I exploit planarity of a group of points and introduce higher-
level information associated with orthogonality and parallelism of planes to achieve structural
consistency of the returned map. Separately, I also challenge the static world assumption that
severely limits the deployment of autonomous mobile robotic systems in a wide range of impor-
tant real world applications involving highly dynamic and unstructured environments by utilising
the semantic and dynamic information in the scene. Most existing techniques try to simplify
the problem by ignoring dynamics, relying on a pre-collected database of objects 3D models,
imposing some motion constraints or fail to estimate the full SE(3) motions of objects in the
scene which makes it infeasible to deploy these algorithms in real life scenarios of unknown and
highly dynamic environments. Exploiting semantic and dynamic information in the environ-
ment allows to introduce a model-free object-aware SLAM system that is able to achieve robust
moving object tracking, accurate estimation of dynamic objects full SE(3) motion, and extract
velocity information of moving objects in the scene, resulting in accurate robot localisation and
spatio-temporal map estimation.
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Chapter 1
Introduction

In a world where automation and intelligent systems are increasingly and rapidly having a huge
impact in a number of various domains, robotics research is tremendously gaining attention.
Among the areas that have gained a lot of attention, and continue to represent one of the most
important building blocks in advanced robotics, is the ability to enable robots to perform tasks
autonomously and independently. In order to achieve such capability, a robot must be able to
reason about its surroundings and to build an understanding of the environment and of its lo-
cation with respect to the environment. Robot localisation is the process of determining where
a mobile robot is located with respect to its environment. Mapping is the ability of a robot to
model the environment. Both localisation and mapping are two of the most fundamental com-
petencies required by an autonomous robot. Simultaneous localisation and mapping (SLAM)
algorithms are used for this purpose and are considered a core enabling technology for mobile
robotics. SLAM is concerned with the problem of continually building a map of some unknown
environment while being able at all times to determine the robot’s location within this map.

1.1 Importance of SLAM for robotics

The ability to learn the location of a robot, as well as the environment around it, without knowing
either beforehand is incredibly difficult. SLAM systems are however proving to be very effective
at tackling this challenge.

SLAM has many potential applications, and demand for this technology is tremendously
increasing as it helps many products become more commercially viable such as augmented and
virtual reality, and autonomous vehicles to name a few. SLAM systems are used in a wide
variety of robots. From space rovers to drones and agriculture field robots, passing by vacuum
cleaners, defect detection robots in mines, underwater reef monitory robots and nano-robots for

1
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minimally invasive surgeries (MIS), SLAM represents a core building block to the deployment
of autonomous robotic applications in real life.

NASA curiosity rover.
https://mars.nasa.gov/

resources/22273/
curiositys-selfie-at-rock-hall/

Aqua reef monitoring robot.
https://robots.ieee.org/

robots/aqua/

Particle image velocimetry.
http://wikiwand.com/en/

Particle_image_velocimetry

Minimally invasive surgery robots.
https://sciencenewsforstudents.org/article/

therapeutic-robots-may-soon-swim-within-body

PR2 service robot.
https://razorrobotics.com/robots/pr2

Google autonomous car.
https://waymo.com/press/

Figure 1.1: Various SLAM applications.

Visual SLAM systems, using visual inputs from a camera, are emerging as one of the most
sophisticated computer vision technologies available. The advances in optical devices to capture
images have given birth to various visual SLAM systems including but not limited to monocular,
stereo, RGB-D, and event-based SLAM systems.

https://mars.nasa.gov/resources/22273/curiositys-selfie-at-rock-hall/
https://mars.nasa.gov/resources/22273/curiositys-selfie-at-rock-hall/
https://mars.nasa.gov/resources/22273/curiositys-selfie-at-rock-hall/
https://robots.ieee.org/robots/aqua/
https://robots.ieee.org/robots/aqua/
http://wikiwand.com/en/Particle_image_velocimetry
http://wikiwand.com/en/Particle_image_velocimetry
https://sciencenewsforstudents.org/article/therapeutic-robots-may-soon-swim-within-body
https://sciencenewsforstudents.org/article/therapeutic-robots-may-soon-swim-within-body
https://razorrobotics.com/robots/pr2
https://waymo.com/press/
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One major potential opportunity for visual SLAM is to replace Global Positioning System (GPS)
tracking and navigation in certain applications. GPS-based systems are not useful indoors, and
they suffer from degraded accuracy in locations with compromised sky views, such as “Urban
Canyons” formed by high-rise buildings. Visual SLAM systems can help solve these problems.
Autonomous driving in urban environments represents the biggest real application to visual
SLAM algorithms nowadays, and one of the most important pillars to the deployment of au-
tonomous vehicles. Other applications of SLAM include service, social and medical robots.
This includes robot companions and assistants for elderly people, and other service robots that
should interact and work closely with humans, which has been made possible after the advances
in learning techniques to jointly perform action recognition and pose estimation [1, 2].

1.2 Meta information in SLAM

Based on the above areas of application, SLAM algorithms are deployed in almost every possible
environment. From underwater, to space, passing by the human body, indoors, mines, and urban
environments, SLAM algorithms should make use of the abundant prior information specific to
each of these environments. Despite the wide range of applications of SLAM algorithms, indoor
and urban environments remain to be the most common, and researched areas of application of
SLAM techniques.
We use the prefix meta- from the Greek µετα, meaning “after” or “beyond” or “higher” and
define meta information as the type of information that is concerned with higher-level and richer
scene models, i.e. information beyond the directly measured data. Although the SLAM algo-
rithms and techniques developed in this work are general enough to be deployed in any appli-
cation, and form a framework for the integration of meta information to better constraint the
problem, there is a clear focus on urban environments and autonomous driving as a primary ap-
plication. Urban environments provide a large amount of important prior information that could
be exploited into a SLAM framework. Meta information present in urban environments can
provide cues to exploit the knowledge we have about the environments where SLAM algorithms
are run, and to allow SLAM to challenge some of the most limiting assumptions made in the
literature to solve the SLAM problem, such as the static world assumption. Challenging these
assumptions is at the core of the deployment of SLAM algorithms to a wide range of real world
scenarios.

Advances in learning techniques for processing information from visual data, enable high
level sensing capabilities in robotic applications and provide rich information about the scene.
Learning techniques are capable of providing: 1) geometric information about the scene in terms
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of single image depth extraction from a monocular camera system [3], 2) structural information
in the form of planes [4] present in the scene, 3) semantic information [5] to segment and classify
−on instance-level− the objects present in the environment, and 4) dynamic information [6] to
achieve motion segmentation. Utilising this information opens new doors for SLAM to achieve
unprecedented results in environments that were always considered challenging. Examples of
these environments include indoor environments with large featureless surfaces [7], environ-
ments represented at the object-level [8], dynamic environments where a significant part of the
scene is moving [9], and others that have only become possible thanks to the rapid advances in
learning algorithms to provide rich high-level information about the scene. Making use of meta
information present in the environment has not only allowed deployment of SLAM algorithms in
challenging environments [7, 8, 9] but also has increased the accuracy, consistency, and usability
of the returned map [8, 9, 10, 11, 12, 13].

1.2.1 Structural information

All built environments, whether indoors or outdoors, contain significant amount of structure.
Application of SLAM in urban environments, and especially to autonomous driving is probably
the biggest monetary pillar and one of the main drivers of SLAM research nowadays. SLAM
algorithms have to be run on-board the autonomous vehicle and provide a globally and struc-
turally consistent map at every time step. Although applied to environments that contain signif-
icant structure, classical SLAM algorithms usually make no assumptions about the structure of
the scene being analysed [14].

The first type of meta information that we explore in this thesis is the structural information.
In particular, we exploit planar information of 3D points pertaining to planar surfaces. We also
exploit parallelism and orthogonality between the detected planes. The plane parameters are
incorporated into the estimation problem as latent variables that are not directly observed by the
robot but rather inferred through the environment points, and/or other planes. We show that by
utilising prior knowledge of the environment, more accurate and globally consistent solutions
can be obtained.

1.2.2 Semantic information

The world is a complex and highly dynamic environment, and thus to allow robots to be part
of our daily lives, research in autonomous robotics is rapidly departing from simple, controlled
environments to environments that are more representative of the reality. SLAM is a well re-
searched area in robotics, and while many efficient solutions to the problem exist, most of the
existing techniques heavily rely on the static world assumption [15] to simplify the problem.
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Such an assumption limits the deployment of SLAM algorithms in highly dynamic environ-
ments, where they are destined to fail due to the lack of reliable static structure. Developments
in the field of 3D scene understanding to provide semantic information offer promising ways
to challenge the static world assumption towards the deployment of SLAM algorithms in high
dynamic environments.

The second type of meta information explored in this thesis is semantic information. We pro-
pose a feature-based algorithm that exploits semantic information to integrate rigid body motion
of objects into a SLAM framework, without the need to estimate the object pose or to have any
prior knowledge of the object’s 3D model. Through a frame change of a pose transformation, we
are able to describe the motion of rigid objects in the scene in terms of the points that belong to
the object in a model-free manner. We show that, in highly dynamic environments, and by utilis-
ing semantic information and prior knowledge about the rigidity of the objects in the scene, our
algorithm produces consistently better results compared to other algorithms that exclude mov-
ing features from the SLAM estimation problem. We also fully exploit the rigid object motion
to extract velocity information of objects in the scene, an emerging task in autonomous driving
which has not yet been thoroughly explored [16]. Such information is crucial to aid autonomous
driving algorithms for tasks such as collision avoidance [17] or adaptive cruise control [18]. To
the best of our knowledge, at the time of writing this document, this is the first work able to esti-
mate, along with the camera poses, the static and dynamic structure, the full SE(3) pose change
of every rigid object in the scene, extract object velocities and be demonstrable on a real-world
outdoor dataset.

1.2.3 Dynamic information

Advances in deep learning have provided algorithms that can reliably detect and segment classes
of objects at almost real time [19, 5]. This semantic information has not yet been fully ex-
ploited within the SLAM community [20]. Exploiting the capabilities of modern deep learning
techniques in providing semantic scene understanding opens the doors towards integrating the
dynamic information into SLAM algorithms.

In the last piece of work presented here, we propose a model-free, object-aware point-based
dynamic full SLAM system that leverages image-based semantic information to integrate dy-
namic information of the scene into the estimation, and estimate the motion of dynamic objects
in the environment jointly with performing SLAM. The proposed system is able to simultane-
ously localise the robot, map the static structure, estimate motions of dynamic objects and build
a dynamic representation of the world, and is engineered to work in real world, and yield con-
sistent results in indoor and outdoor challenging scenarios. To the best of our knowledge, at the
time of writing this document, this is the first full object-aware dynamic SLAM system that is
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able to achieve motion segmentation, dynamic object tracking, and estimate the camera poses
along with the static and dynamic structure, the full SE(3) pose change of every rigid object in
the scene, extract velocity information of moving objects, and outperforms every state of the art
similar dynamic SLAM system in estimation accuracy.

1.3 Approach and contributions

The scope of this thesis is to develop, prototype and test algorithms that utilise meta information
in order to challenge the most adopted assumptions for SLAM problems in challenging environ-
ments. We namely utilise structural, semantic, and dynamic information to improve the SLAM
estimation accuracy. The main assumption we try to challenge is the static world assumption,
that is highly adopted in the SLAM literature to simplify the problem and that hinders the de-
ployment of autonomous robotic vehicles in a wide range of real-world applications.
We redefine the term mapping in SLAM to be concerned with a spatio-temporal representa-
tion of the world, as opposed to the concept of a static map that has long been the emphasis
of classical SLAM algorithms, including SLAM systems that can robustly operate in dynamic
environments by excluding the dynamics of the world.

1.3.1 Proposed approach

In this thesis, we propose a novel SLAM system that utilises meta information to improve the
SLAM estimation accuracy and robustness, and produce more consistent maps. We aim to trans-
fer the prior knowledge we have about the places we live in, particularly urban environments, to
robots undertaking the SLAM estimation problem, with the aim to achieve a better understand-
ing of the environment through exploiting the structural, semantic and dynamic prior information
about the environment. This information is provided by other algorithms whose outputs could
be thought of as sensor inputs to our system. We propose to jointly solve a classical SLAM
problem augmented with latent variables that constitute entities of which one has some prior
knowledge but whose states can not be directly measured by the robot.

We first propose to extract planes from a point cloud of 3D points. These planes are inte-
grated into a graph-based SLAM algorithm and their parameters estimated. Although not di-
rectly measured, these planes are constrained by other environment points and detected planes.
We then utilise instance-level semantic segmentation to detect and segment objects in the scene.
Our model-free object-aware feature-based visual SLAM algorithm is able to perform simul-
taneous localisation, mapping and moving object tracking in a single SLAM framework. The
system is designed to handle the environment dynamics and estimate a full SE(3) pose change
of every rigid object in the scene. Moreover, we exploit the estimated object motions to extract
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velocity information of every detected object in the environment. Our system is proven to be
robust in challenging indoor and outdoor scenarios, and is able to integrate information about
dynamic and static structures in the environment into a single estimation framework resulting in
accurate robot pose and spatio-temporal (time-varying) map estimation.

Our main argument is that SLAM and scene understanding algorithms are mutually benefi-
cial as follows:

1. On one hand, object and layout understanding benefits the SLAM pose estimation and
mapping. The high-level information such as planes and objects in the scene can provide
additional semantic, geometric, and dynamic constraints to improve the SLAM estimates.

2. On the other hand, SLAM improves the accuracy and robustness of 3D scene understand-
ing. Robust single image object segmentation is difficult due to occlusions. However,
multi-view information and SLAM estimates can be used to refine and recover failure
cases of object segmentation and tracking.

1.3.2 Contributions

The main contributions of this thesis can be summarised in the following:

• a graph-based SLAM framework that is able to integrate structural information about the
environment, and an optimisation method that offers the possibility to optimise the layout
planes present in the environment in addition to the camera poses, and the static structure
(section 4.2.1 in chapter 4),

• a novel way to express motion of rigid objects in the scene in terms of points that belong
to the object ((5.5) in chapter 5) and integrate information about dynamic and static struc-
tures in the environment into a single SLAM framework in a model-free manner (section
5.2.2 in in chapter 5) resulting in accurate robot pose and spatio-temporal map estimation,
accurate dynamic objects full SE(3) pose change estimation, and a way to extract velocity
information of moving objects in the scene ((5.7) in chapter 5),

• a full object-aware feature-based dynamic visual SLAM system that outperforms every
state-of-the-art similar SLAM systems and yields object motion estimation results that are
comparable to the camera pose estimation (section 6.3 in chapter 6),

• a robust method to enhance scene 3D understanding for moving object tracking exploit-
ing image-based semantic information (section 6.2.2.3 in chapter 6), and the ability to
deal with indirect occlusions resulting from the failure of semantic object segmentation
(section 6.3.3.3 in chapter 6), and
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• an open-source code, for each of the SLAM systems developed in this thesis, that is made
available for the community to develop and extend including novel observation functions
to integrate structural, semantic and dynamic information, and is made flexible to include
any type of implicit information as long as there is an algorithm “sensor” that can provide
this information and a function that can model it (chapter 7).

1.4 Thesis road map

The remainder of this thesis is structured as follows:

• Chapter 2 reviews the necessary mathematical preliminaries and problem formulation in
the literature.

• Chapter 3 reviews the related work and describes the main components of a typical
classical SLAM system, and details the off-the-shelf components in the literature that
constitute the meta information provided by the front-end.

• Chapter 4 shows how to integrate structural information about the environment layout
into the SLAM estimation problem and describes effects of adding such information on
the global consistency of SLAM. This chapter is mostly based on the work published
in “Exploring The Effect of Meta-Structural Information on the Global Consistency of
SLAM”.

• Chapter 5 describes a novel way to integrate dynamic information about the environ-
ment into the SLAM problem through exploiting image-based semantic information, and
expressing the motion of rigid objects in the scene using points that belong to the object in
a feature-based model-free dynamic SLAM system. This chapter is mostly based on the
work published in “Dynamic SLAM: The Need for Speed”.

• Chapter 6 details a model-free object-aware full dynamic SLAM system that exploits
semantic information to enhance scene 3D understanding and moving object tracking,
yielding results that outperform every state-of-the-art similar system. This chapter is based
on a collaborative work with Jun Zhang, that resulted in the paper “VDO-SLAM: A Visual
Dynamic Object-aware SLAM System”.

• Chapter 7 describes the technical contribution of this thesis in terms of open-source code,
and efforts made to simplify implementation, testing and extension of the current work.
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• Chapter 8 summarises the outputs of this thesis and offers concluding remarks and open
questions.

1.5 Publications

This thesis is based on the following peer-reviewed publications:

1.5.1 Journals

• VDO-SLAM: A Visual Dynamic Object-aware SLAM System.
Jun Zhang*, Mina Henein*, Robert Mahony and Viorela Ila.
* the two authors contributed equally to this work.
To be submitted to IEEE Transactions on Robotics (T-RO).

1.5.2 Conferences

• Exploring The Effect of Meta-Structural Information on the Global Consistency of
SLAM.
Mina Henein, Montiel Abello, Viorela Ila and Robert Mahony.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

• Dynamic SLAM: The Need for Speed.
Mina Henein, Jun Zhang, Robert Mahony and Viorela Ila.
In IEEE International Conference on Robotics and Automation (ICRA), 2020.

• Robust Ego and Object 6-DoF Motion Estimation and Tracking
Jun Zhang, Mina Henein, Robert Mahony, and Viorela Ila.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.
(under review)

1.5.3 Workshops

• Exploiting Rigid Body Motion for SLAM in Dynamic Environments.
Mina Henein, Gerard Kennedy, Robert Mahony and Viorela Ila.
In IEEE International Conference on Robotics and Automation (ICRA), 2018.
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Workshop paper: Inference and Learning for Joint Semantic, Geometric and Physical
Understanding.

1.5.4 Misc

Publicly available source code:

• Entity SLAM
https://github.com/MinaHenein/Entity-SLAM/wiki
main developers and collaborators: Montiel Abello

• DO SLAM
https://github.com/MinaHenein/do-slam
main developers and collaborators: Gerard Kennedy & Yash Vyas

• VDO-SLAM
https://github.com/halajun/VDO_SLAM
main developers and collaborators: Jun Zhang

https://github.com/MinaHenein/Entity-SLAM/wiki
https://github.com/MinaHenein/do-slam
https://github.com/halajun/VDO_SLAM


Chapter 2
Preliminaries

The Simultaneous Localisation And Mapping is concerned with the problem of building a map
of an unknown environment by a mobile robot while at the same time determining its location
within this map. The term SLAM was originally coined by Hugh Durrant-Whyte and John J.
Leonard [21] based on earlier work by Smith, Self and Cheeseman [22]. Durrant-Whyte and
Leonard originally termed it SMAL but it was later changed to give a better impact.

In an attempt to make this document as self-contained as possible, a number of mathematical
concepts such as multivariate differentiation, Taylor series, numerical optimization techniques,
and probabilistic state estimation and its relation to least squares problems are presented in the
below. Moreover, an introduction to Lie groups and some related concepts are presented as a
generalisation over the Euclidean vectors space.

2.1 Multivariate differentiation

A function f : IRn → IRm , which maps a vector onto a vector, is called a vector field.
The first derivative of a vector field f : IRn → IRm is the Jacobian Jf : IRn → IR(m×n) which is
defined as:

Jf :=


∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

. . . ∂fm(x)
∂xn

 (2.1)

The second derivative of a vector field f is called the Hessian Hf : IRn → IR(n×m×n) which
maps a vector onto a three dimensional array or a third-order tensor.

11
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2.2 Taylor series

Let f : IR→ IR be an infinitely differentiable function. The power series

f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · · =

∞∑
k=0

fk(a)

k!
(x− a)k (2.2)

is called the Taylor series of f at a, where fk(a) denotes the kth derivative of f evaluated at the
point a, and the derivative of order zero of f is defined to be f itself.
In practice, a function f in the neighbourhood of a point a is approximated using a finite series,
the nth-order Taylor expansion:

f(x) ≈ f(a) +
f ′(a)

1!
(x− a) + · · ·+ fn(a)

n!
(x− a)n =

n∑
k=0

fk(a)

k!
(x− a)k (2.3)

2.3 Introduction to optimisation

SLAM is inherently an optimisation problem. In typical optimisation problems, one would like
to find the minimum of F :

min
x∈IRn

F (x) (2.4)

For a general scalar field F : IRn → IR, which maps a vector onto a scalar, and even if one
assumes it is infinitely differentiable, there is no guarantee to find such a global minimum in a
finite number of steps. Therefore, one often focuses on finding a local minimum in the neigh-
bourhood of an initial guess x0 instead. If 〈x̄, F (x̄)〉 is a local minimum of F , then∇F (x̄) = 0,
is the necessary condition. Furthermore, if ∇F (x̄) = 0 and HF (x̄) is positive definite, thus
∀y∈IRn\{0}y

> HF (x̄) y > 0, 〈x̄, F (x̄)〉 is a local minimum. This is the sufficient condition.

2.3.1 Gradient descent

The simplest approach to find the minimum of F in the neighbourhood of x(0) is the gradi-
ent descent method, which iteratively takes steps along the current negative gradient direction
−∇F (x(k)), and the update rule is

x(k+1) = x(k) − αk ∇F (x(k)) (2.5)

Typically, the factor αk > 0 is selected in a way such that F (x(k+1))� F (x(k)). If no such αk
exists, the minimum is reached. The gradient descent method is a first-order iterative algorithm,
easy to implement, and is guaranteed to converge locally. However, the convergence rate can be
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low, especially close to the minimum, as the gradient becomes quite small [23].

(a) Gradient descent. (b) Newton’s method.

Figure 2.1: Gradient descent vs Newton method. (a) Method of gradient descent illustrated on a
quadratic form. The method always takes steps along the direction of the steepest descent, which leads
to a “zig-zagging” effect and thus a slow convergence close to the minimum. (b) The Newton method is
illustrated on a higher-order polynomial (solid blue curve). The neighbourhood around the initial guess
x0 is approximated with a positive definite quadratic form (red dashed parabola). The initial update is
performed by stepping to the minimum of this parabola (vertical red line). A second update is also shown
(green parabola, green vertical line) which brings the estimate very close to the optimum [24].

2.3.2 Newton method

A more efficient approach is Newton’s method, which requires F to be twice differentiable
and approximates it by a local quadratic function at each iteration and takes a step towards the
minimum of this quadratic function. Since x0 is assumed to be in the neighbourhood of x̄,
∇F (x̄) can be approximated using the first order Taylor expansion as

∇F (x̄) ≈ ∇F (x0) + HF (x0) (x̄− x0) (2.6)

and since∇F (x̄) = 0 (the necessary condition), x̄ ≈ x0 −H−1
F (x0)∇F (x0).

The update rule is then
x(k+1) = x(k) −H−1

F (x(k))∇F (x(k)) (2.7)

Defining the incremental update as δ := x(k+1) − x(k) , the Newton method is performed by
repetitively solving the linear system

HF (x(k)) δ = −∇F (x(k)) (2.8)
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To clearly see that the Newton’s method approximates the function F at x(k) with a quadratic
function, let us consider the quadratic form,

1

2
x>Ax− b>x + c (2.9)

If A is symmetric and positive semi-definite, the quadratic form is minimal for Ax = b [25].
From (2.8), it becomes clear that the Newton’s method approximates the function F at x(k) with
a quadratic form with A = HF (x(k)) and b = −∇F (x(k)). Hence, if F is a quadratic form,
the Newton’s method will converge in one iteration. Note that any function is approximately
quadratic around its minimum if it is twice differentiable. Thus in contrast to the gradient descent
method, Newton’s method converges especially fast in the neighbourhood of the minimum as
shown in Fig. 2.1. For high-dimensional problems, however, it is often intractable to compute
the Hessian HF (a).

2.3.3 Gauss-Newton method

An efficient variant of the Newton method is the Gauss-Newton method, which requires that F
to be of the following class:

F (x) = a d(x)>Λd(x) (2.10)

with a > 0, d : IRn → IRm a twice differentiable vector field, and Λ ∈ IRm×m being a
symmetric, positive semi-definite matrix.
Even though this optimisation method seems to be limited to a specific class of problems, it
covers a large number of applications. Namely, it covers least squares optimisation problems,
where the function to minimise is a quadratic cost, and of which SLAM takes part.
The first derivative of F , with a taken as 1

2 which is an arbitrary choice that does not change the
location of the function minima, and using the fact that Λ is symmetric, becomes:

∇F =
1

2
(d(x)>ΛJd(x))> +

1

2
(Jd(x)>Λd(x)) = Jd(x)>Λd(x) (2.11)

And the second derivative of F is then:

HF (x) = Jd(x)>ΛJd(x) + HdΛd(x) (2.12)

with Hd being the Hessian tensor of d.
The Gauss-Newton method approximates the Hessian of F as

HF (x) ≈ Jd(x)>ΛJd(x) (2.13)
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with the second-order derivative terms being negligible.
The linear system in (2.8) is approximated by the so-called normal equation

(J>dΛJd) δ = −J>dΛd (2.14)

This linear equation is then solved

δ = −(J>dΛJd)−1 J>dΛd (2.15)

and the update rule is applied as:

x(k+1) = x(k) − (J>dΛJd)−1 J>dΛd (2.16)

Global convergence of the Gauss-Newton method is not guaranteed, and it might only converge
to a local minimum that depends on the initial solution. In practice, if the objective function
is locally well-approximated by a quadratic form, then convergence is quadratic. However, the
curvature of the error surface of a non-linear observation model can vary significantly over the
parameter space. The Levenberg-Marquardt method is a refinement to the Gauss-Newton pro-
cedure that increases the chance of convergence and prohibits divergence. Results still depend
on the starting point [26].

2.3.4 Levenberg-Marquardt method

The Gauss-Newton method will fail in the degenerate case when J>dΛJd is singular.
Moreover, as mentioned above, the gradient descent method is guaranteed to converge but suf-
fers poor performance close to the minimum. On the contrary, the Gauss-Newton method works
particularly well close to the minimum, but elsewhere the cost may not decrease at each iteration
as the quadratic approximation may not always be a good approximation at this specific point.
An alternative method to combine the advantages of both is the Levenberg-Marquadt algorithm
which interpolates gradient descent and Gauss-Newton by altering the normal equations as fol-
lows:

(J>dΛJd + µI) δ = −J>dΛd (2.17)

where µ is a damping ratio and I is the identity matrix. The parameter µ > 0 steers the up-
date vector δ towards the direction of the steepest descent. As µ approaches zero, Levenberg-
Marquardt method approaches the standard Gauss-Newton method. On the other hand, if µ
approaches infinity, the matrix (J>dΛJd + µI) approaches a diagonal matrix with infinite trace.
Thus, as µ → ∞, δ = − 1

µJ>dΛd, and the Levenberg-Marquardt method approaches a gradient
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descent update. The parameter µ is adjusted in each optimisation iteration. Only if the update
x(k) + δ reduces the cost (F (x(k) + δ)� F (x(k))), the update is accepted (x(k+1) = x(k) + δ)
indicating the algorithm is approaching the local minimum and hence µ is reduced to strengthen
the influence of Gauss-Newton. However, if the update does not reduce the cost, it is rejected,
and a larger µ (smaller step size) and an update more oriented towards the steepest descent
direction is attempted.

2.4 SLAM problem formulation

2.4.1 SLAM as Bayesian belief net

The SLAM problem can be formulated as a Bayesian belief network. [27, 28, 29, 30, 31]. A
belief net is a directed acyclic graph that encodes the conditional independence structure of a set
of variables, where each variable only directly depends on its predecessors in the graph [32].

Figure 2.2: SLAM as a Bayesian belief net.

Fig. 2.2 shows a Bayesian belief network representation of a SLAM problem. The state
of the robot at the i-th time step is denoted by Xk, an environment landmark by mi, and a
measurement by zk. The joint probability model corresponding to this network is

P (θX ,θM ,θZ) = P (X0)

mk∏
k=1

P (uk|Xk−1, Xk)

z[mi]∏
z[1]

P (zik|Xk,m
i
k) (2.18)

where θX ,θM ,θZ are the sets of all robot states, environment landmarks and measurements
respectively, P (X0) is a prior on the robot initial state, P (uk|Xk−1, Xk) is the motion model,
parameterised by a control input uk, and P (zik|Xk,m

i
k) is the landmark measurement model.

The above equation assumes a uniform prior over all the landmarks.
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Gaussian process and measurement models are assumed as is standard in the SLAM litera-
ture [22, 33, 34, 35, 36]:

uk = fk(Xk−1, Xk) + vk ⇔ P (uk|Xk−1, Xk) ∝ exp− 1

2
‖fk(Xk−1, Xk)− uk‖2Σvk

(2.19)
where fk(.) is the process model and vk ∼ N (0,Σvk) is normally distributed zero-mean process
noise with co-variance matrix Σvk .

zik = hik(Xk,m
i
k)+wik ⇔ P (zik|Xk,m

i
k) ∝ exp− 1

2
‖hik(Xk,m

i
k)− zik‖2Σ

wi
k

(2.20)

where hik(.) is the landmark measurement model, and wik ∼ N (0,Σwi
k
) is normally distributed

zero-mean measurement noise with covariance Σwi
k
.

In the equations above, ‖e‖2Σ , e>Σ−1e is defined as the squared Mahalanobis distance given a
covariance matrix Σ.

2.4.2 SLAM as a factor graph

While belief nets are a very natural way to represent the generative aspect of the SLAM problem,
factor graphs have a much tighter connection with the underlying optimisation problem [32]. As
the measurements are known, one is allowed to eliminate them as variables, and consider them
as parameters of the joint probability factors over the true unknowns. This naturally leads to the
well known factor graph representation (such as the one shown in Fig.3.2), a class of bipartite
graphical models that can be used to represent such factored densities [37]. In a factor graph
there are nodes for unknowns and nodes for the probability factors defined on them, and the
graph structure expresses which unknowns are involved in each factor. More details about factor
graphs are presented in section 3.1.1 of chapter 3. A third way to express the SLAM problem
in terms of graphical models is via Markov random fields, in which the factor nodes themselves
are eliminated.

2.4.3 SLAM as a least squares problem

This section is concerned with the inference, i.e., obtaining an optimal estimate for the set of
unknowns given all measurements.

The maximum a posteriori (MAP) estimates the entire trajectory θX , X , {Xk} and the
map θM ,M , {mi

k}, given the measurements Z , {zik} and control inputs U , {uk}. Let
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θ , θX ∪ θM be the total system state. The MAP is

θ∗ , argmax
θ

P (X,M |Z) = argmax
θ

P (X,M,Z) = argmin
θ
−log(P (X,M,Z)) (2.21)

which leads via (2.19) and (2.20) to the non-linear least squares:

θ∗ = argmin
θ

{ mi∑
k=1

‖fk(Xk−1, Xk)− uk‖2Σvk
+

z[mk]∑
z[1]

‖hik(Xk,m
i
k)− zik‖2Σwk

}
(2.22)

Non-linear optimisation methods such as Gauss-Newton or the Levenberg-Marquardt method
are used to solve a succession of linear approximations to (2.22) in order to reach the minimum
[38]. The process terms in (2.19) are linearised using the first order Taylor expansion as:

fk(Xk−1, Xk)− uk ≈ {fk(X0
k−1, X

0
k) + F k−1

k δXk−1 +GkkδXk} − uk
= F k−1

k δXk−1 +GkkδXk − ak (2.23)

where F k−1
k and Gkk are the Jacobians of fk(.) at the linearisation point (X0

k−1, X
0
k) defined as

F k−1
k , ∂fk(Xk−1,Xk)

∂Xk−1
|(X0

k−1,X
0
k) andGkk ,

∂fk(Xk−1,Xk)
∂Xk

|(X0
k−1,X

0
k), and ak , uk−fk(X0

k−1, X
0
k)

is the odometry prediction error.
The measurement terms in (2.20) are similarly linearised as:

hik(Xk,m
i
k)−zk ≈ {hik(X0

k ,m
i
k

0
)+Hk

k δXk+J ikδm
i
k}−zk = Hk

k δXk+J ikδm
i
k−ck (2.24)

where Hk
k and J ik are the Jacobians of hik(.) with respect to Xk and mi

k respectively at the
linearisation point (X0

k ,m
i
k

0
) defined as

Hk
k ,

∂hik(Xk,m
i
k)

∂Xk
|
(X0

k ,m
i
k
0
)

and J ik ,
∂hik(Xk,m

i
k)

∂mi
k

|
(X0

k ,m
i
k
0
)
, and ck , zk − hik(X0

k ,m
i
k

0
) is

the measurement prediction error.
Using the linearised process and measurement models in (2.23) and (2.24), a linear least squares
in δ is obtained:

δ∗ = argmin
δ

{ mi∑
k=1

‖F k−1
k δXk−1 +GkkδXk − ak‖2Σvk

+

z[mk]∑
z[1]

‖Hk
k δXk + J ikδm

i
k − ck‖2Σwk

}
(2.25)

The Mahalanobis distance can be rewritten as
‖e‖2Σ , e>Σ−1e = (Σ−>/2e)>(Σ−>/2e) = ‖Σ−>/2e‖22 which allows us to rewrite (2.25), after
collecting the Jacobian matrices into a matrix A, and the vectors ak and ck into a right-hand
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side vector b, the following standard least-squares problem is obtained

δ∗ = argmin
δ

1

2
‖Aδ − b‖22 , (2.26)

2.5 Lie groups

The optimisation methods presented in section 2.3 are applicable for scalar fields which are
defined on Euclidean vector spaces IRn and do not apply to non-Euclidean spaces such as 3D
rotations. When performing an optimisation, an incremental update δ ∈ IRn is calculated and
added to the current estimate x(k) ∈ IRn:

x(k+1) = x(k) + δ (2.27)

Performing a rotation by ω and then by δ is in general not equivalent to performing a rotation
of ω + δ. Here think of ω = (ω1, ω2, ω3) as being any parametrisation of rotation in 3D. Thus,
rotations cannot be modelled as a Euclidean vector space, but as a Lie group.
Every Lie group has an associated Lie algebra, which is the tangent space around the identity
element of the group, generated by differentiating the group transformations along chosen direc-
tions in the space, at the identity transformation. The exponential map converts any element of
the tangent space (Lie algebra) exactly into a transformation in the Lie group. This section aims
at revisiting the general update rule for non-Euclidean spaces. For more details about the mathe-
matical definition of group, manifold, tangent space, Lie algebra, we refer the reader to [24, 39,
40].

2.5.1 Special Orthogonal group SO(3)

The special orthogonal group SO(3) represents the group of 3D rotations, and its associated Lie
algebra so(3) has three basis generator matrices which correspond to the derivatives of rotation
around each of the standard axes, evaluated at the identity:

G1 =

0 0 0

0 0 −1

0 1 0

 G2 =

 0 0 1

0 0 0

−1 0 0

 G3 =

0 −1 0

1 0 0

0 0 0


A skew-symmetric matrix [ω]x ∈ so(3) is then represented as a linear combination of the gen-
erators:
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[ω]x = ω1 G1 + ω2 G2 + ω3 G3 =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.28)

The exponential map that takes skew symmetric matrices to rotation matrices is simply the ma-
trix exponential over a linear combination of the generators:

exp : so(3) 7→ SO(3) (2.29)

and has the closed form solution using Rogridues rotation formula

exp([ω]x) = I3 +
sin θ

θ
[ω]x +

1− cos θ

θ2
[ω]2x (2.30)

The exponential map yields a rotation by θ radians around the axis given by ω, and θ = ‖ω‖.
The inverse of the exponential map is the logarithm map that maps an element R in SO(3) to an
element in the Lie algebra so(3).

θ = arccos
(tr(R)− 1

2

)
(2.31)

where tr() is the trace of a matrix.

ln(R) =
θ

2 sin θ
(R−R>) (2.32)

The vector ω is then taken as the unique off-diagonal elements of ln(R).

2.5.2 Special Euclidean group SE(3)

The special Euclidean group SE(3) represents the group of rigid transformations in 3D space.

T =

(
R t

0> 1

)
(2.33)

with R ∈ SO(3) and t ∈ IR3.
The Lie algebra se(3) is the set of 4×4 matrices corresponding to differential translations and
rotations. There are thus six generators of the algebra:
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G1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 G2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 G3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0



G4 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 G5 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 G6 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


An element δ of se(3) is then represented as multiples of the generators:

δ = v1 G1 + v2 G2 + v3 G3 + ω1 G4 + ω2 G5 + ω3 G6 =

(
[ω]x v

0> 0

)
(2.34)

with (v ω)> ∈ IR6.
The exponential map is the matrix exponential over a linear combination of the generators:

exp : se(3) 7→ SE(3) (2.35)

and has the closed form solution

exp(δ) = exp

(
[ω]x v

0> 0

)
=

(
exp([ω]x) V v

0> 1

)
(2.36)

where V = I3 + 1−cos θ
θ2

[ω]x + θ−sin θ
θ3

[ω]2x.
The logarithm map of SE(3) is then

t = V −1v (2.37)

and the vector ω is again taken as the unique off-diagonal elements of ln(R) as in (2.32).

2.5.3 Optimisation on SE(3)

One is now able to solve the SE(3) SLAM optimisation problem. The SLAM variables are nor-
mally the camera/robot poses and point positions in a classical SLAM problem. A camera pose
lies in the non-Euclidean SE(3) space, therefore, one needs to utilise the Lie algebra explained
in the previous section. The update is still denoted as δ around the current variable x. The
variable update formula now changes to a general form:

x(k+1) = x(k) + δ =⇒ x(k+1) = x(k) � δ (2.38)
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More specifically, for an SE(3) variable x, δ is in the tangent space se(3), and the update rule
becomes:

x(k+1) = x(k) � δ =⇒ x(k+1) = x(k) . exp(δ) (2.39)

Similarly, the Jacobian of a cost function e also needs to extend to the general form:

Je(x) =
∂e(x� δ)

∂δ
|δ=0 (2.40)

The update rule in (2.39) and Jacobian general form in (2.40) are at the basis of SLAM opti-
misation on non-Euclidean SE(3) space that will be used in the work presented in this thesis to
perform the optimisation later described in section 3.2.2.1.

It is worth mentioning that the above-presented optimisation methods represent the back-
end component of a visual SLAM system, and will require a front-end component to abstract
the sensor data into models usable for the optimisation. More details on the SLAM front and
back-end components will be discussed in the following chapter.



Chapter 3
Background And Overview

Our work lies at the intersection of geometric classical SLAM, motion and semantics as shown
in Fig. 3.1.

3.1 Literature review

We first review the different categories of the classic geometric visual SLAM. For completeness
and as an attempt to cover all the related work, we then review the semantic scene understand-
ing literature, followed by the motion detection and tracking literature. We then focus on the
intersection of geometry and semantics, and discuss the use of structural information and lay-
out understanding in SLAM. Semantic SLAM algorithms are then covered and finally, the most
relevant dynamic SLAM literature representing the intersection of geometry and motion is dis-
cussed.

3.1.1 Geometric classical SLAM

Based on the formulation, approaches to solve the SLAM problem in the literature can be either
classified as filtering or optimisation-based methods. Based on the measurement functions de-
fined, visual SLAM can also be classified as feature based (indirect) or direct approaches.

Filtering vs. Optimisation-based SLAM Filtering approaches model the problem as an on-
line state estimation where the state of the system consists of the current robot pose and the
map. The estimate is augmented and refined by incorporating the new measurements as they
become available. The earliest works on SLAM focused on the Bayesian filtering approaches
and were based on the extended Kalman filter (EKF) approach [41, 35, 42]. Other techniques

23
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Figure 3.1: Overview of the related work to this thesis. Our work lies at the intersection of geometric
classical SLAM, motion, and semantics. Note that papers cited in this figure are only for illustration and
do not represent the full literature in each category.

that fall into the filtering category include particle filters [27, 43, 44], information filters [45, 46]
or unscented Kalman filters (UKF) [47, 48]. To highlight their incremental nature, the filtering
approaches are usually referred to as online SLAM methods. Filtering approaches estimate and
continuously update a joint probability distribution of the map and robot poses. They comprise
two steps: a prediction step to propagate the probability distribution, and an update step to cor-
rect the distribution based on measurements.
Although filtering approaches are starting to regain popularity with the advances in the field
of event cameras, high frequency sensors and the use of direct methods, however, it has been
shown that filtering approaches tend to have large drift in the long term, and are inconsistent
when applied to the inherently non-linear SLAM problem [49] when the problem size grows,
due to the accumulation of linearisation errors.

Optimisation-based approaches, conversely, estimate the full trajectory of the robot from the
full set of measurements [50, 32, 51]. They jointly optimise all the camera poses and map points,
which is also referred to as bundle adjustment (BA) [52] or smoothing [32] techniques. These
approaches address the so-called full SLAM problem, and they typically rely on non-linear
least-squares error minimisation techniques and can be solved by Gauss-Newton or Levenberg-
Marquardt algorithms using available libraries such as iSAM [53] or g2o [54].
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X0 X1 X2

m1 m2 m3 m4

Figure 3.2: Factor graph representation of a SLAM problem. Larger circular nodes represent random
variables; robot/camera poses Xk and point features mi. Factors, represented as smaller circles here,
correspond to measurement functions. Factors can be unary such as a pose-prior factor, binary such as
pose-pose and pose-point factors or n-ary.

One intuitive way of formulating SLAM is to use a graph representation. Lu and Milios [50]
first proposed the graph-based formulation of the SLAM problem in 1997 where they refine the
map by globally optimising the system of equations to reduce the error introduced by constraints.
Solving a graph-based SLAM problem involves constructing a graph whose nodes represent ran-
dom variables; robot poses and/or landmark positions and in which an edge between two nodes
encodes functions of those variables, typically a sensor measurement that constrains the con-
nected nodes. Once such a graph is constructed, the goal is to find a configuration of the nodes
that is maximally consistent with the measurements [55]. Approaching SLAM as a non-linear
optimisation on graphs has been shown to offer very efficient solutions to moderate scale SLAM
applications [54, 56]. Factor graphs [37], such as the one in Fig.3.2, are graphical models that
have been used for representing the SLAM problem [32, 53, 57] as a graph-based problem. This
is due to the fact that, in factor graphs, the functions are made explicit and such a bipartite graph
is directly connected to the solutions of the optimisation problem [57].
However the memory and computational requirements can easily go unbound in large scale en-
vironments, therefore in practice, the concept of key-frames; only a subset of camera poses, has
been introduced and used in the optimisation [58].
A comparison of filtering and optimisation-based approaches can be found in [59].

Feature-based vs. Direct SLAM Featured based or indirect methods pre-process the raw sen-
sor measurements into intermediate representations such as feature points, lines or planes to be
used in the SLAM estimation as landmarks. The optimisation then only depends on the extracted
features and a geometric cost is normally used. These approaches greatly simplify the raw high
dimensional image measurement to the low-dimensional geometry features. Different types of
features have been considered; Features from Accelerated Segment Test (FAST [60]) corners
in PTAM [58], Oriented FAST and rotated BRIEF (ORB [61]) features in ORB SLAM [62],
Scale Invariant Feature Transform (SIFT [63]) in FOVIS [64] and Speeded Up Robust Fea-
tures (SURF [65]) in LIBVISO [66]. In addition to points, other primitives such as lines and
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planes [11, 12, 67, 68] have been considered in SLAM.

PTAM indirect sparse map. [58] ORB-SLAM indirect sparse map. [62]

LSD-SLAM direct semi-dense map. [69] DTAM direct dense map. [70]

Figure 3.3: Different feature-based and direct SLAM systems.

The second category is direct methods which skip the pre-processing feature extraction step
and directly utilise the raw sensor input such as image pixel intensities. Therefore the opti-
misation cost used is the photometric (intensity) error. Compared to the geometric error, the
photometric error is highly non-linear and non-convex, which results in a small convergence
basin and requires good initialisation of map and camera poses. DTAM [70] is the first real-time
dense and direct SLAM method and relies on GPU acceleration. Recently, Engel et al. proposed
two real-time SLAM systems running on CPU: LSD-SLAM [69] and DSO [71]. Different from
DTAM, LSD and DSO only utilise some high gradient pixels to speed up the process.

3.1.2 Semantic scene understanding

Scene understanding is concerned with the problem of recognising, analysing and understanding
the objects and surfaces in context with respect to the 3D structure of the scene, its layout, and
their spatial, functional, and semantic relationships. Scene understanding includes object detec-
tion, scene classification and semantic segmentation. The object detection problem will later be
described as part of the motion tracking problem.

Scene classification Traditional scene classification methods were based on hand-crafted fea-
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tures such as SIFT [72] and SURF. A Spatial Pyramid Matching (SPM) model was proposed
in [73]. In recent years, deep learning techniques have made a huge progress in image classi-
fication [74, 75], object detection [76, 77], and other computer vision related tasks. A scene
classification model was presented in [78] based on deep CNN features.

Semantic segmentation Traditional methods for semantic segmentation were based on hand-
crafted and carefully engineered features such as SIFT [79] or Histogram of Oriented Gradi-
ents (HoG) [80, 81], along with flat classifiers such as Boosting [82], Support Vector Machine
(SVM) [83, 84], and Random Decision Forests [85, 86]. Substantial improvements have been
achieved by incorporating richer information from context [87] and structured prediction tech-
niques [88, 89, 90, 91]. Image segmentation has often been modelled as an energy minimisation
problem. Conditional Random Fields (CRF) are rich probabilistic graphical models; pixels of
an image can be viewed as variable nodes in a CRF. Krähenbühl and Koltun [89] presented an
efficient, approximate inference algorithm for fully-connected CRFs where pairwise edge poten-
tials are defined by a linear combination of Gaussian kernels. Successful deep neural network
architectures for image classification such as AlexNet [92], VGG net [93], GoogLeNet [74],
and ResNet [75] are a natural precursor to, and often a direct part of semantic segmentation
architectures [94]. All state-of-the-art models [5, 95, 96] involve convolutional neural networks.
Modern semantic segmentation architectures can be categorised in two main categories. The first
contains architectures primarily influenced by the Fully Convolutional Network (FCN [97]), and
rely on an encoder-decoder architecture [98]. The second division contains architectures that are
also influenced by the FCN architecture but additionally employ dilated convolutions [99, 96].

3.1.3 Motion detection and tracking

The problems of motion detection and multiple object tracking (MOT) have attracted a lot of
attention over the years. Challenges in MOT can be mainly grouped into the motion and appear-
ance information, the data association problem, and the object detection [100].

Motion segmentation Significant research has been made in motion segmentation in the
past two decades. Current state-of-the-art algorithms seek to combine methods based on affine
assumption [101] and those based on epipolar geometry [102] into a single framework that
leverages their advantages [103, 104]. In a recent approach, a multi-frame spectral clustering
framework is introduced by [105] with joint integration of an affine model, a homography model
and a fundamental matrix. Making use of semantic information has proven to help deal with the
issues of degenerate motions and partial occlusions increasing the motion segmentation accu-
racy [106, 107].
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Motion tracking Multiple object tracking algorithms have moved over the last few years from
classical inference/filtering based [108, 109] to data-driven (deep learning) approaches [110,
111]. One of the earliest works in motion estimation use the Kalman filter [112] to predict the
state of the target at the current time step given its state at the previous time step. Recently, and
with the development of deep learning, motion models based on Recurrent Neural Networks
(RNN) and Long Short Term Memory (LSTM) [110, 113] have been developed. The state-of-
the-art online multi-object tracking STAM-MOT [114] applies spatial and temporal attention
map to handle the partial occlusion problem in tracking. To find the optimal location of objects,
the proposed algorithm employs the dense searching strategies, which are utilised commonly in
tracking single object.
Optical flow has been an effective way to describe motion between image frames within a video.
The traditional Lucas–Kanade algorithm [115] has been widely used for sparse optical flow es-
timation. With the rapid advances of convolutional neural networks (CNN), new methods of
estimating the optical flow have been proposed. Fischer and Ilg et al. successively propose
FlowNet [116] and FlowNet2.0 [117], which can be used for dense optical flow estimation using
a well-trained encoder-decoder network. More recently, Sun et al. propose PWC-Net [118], an
optical flow network fusing pyramidal processing, warping, and a cost volume, achieving better
and faster optical flow estimation.

Appearance feature The appearance feature is a discriminative way to represent an object,
which is essential for MOT in cluttered scenes. Colour histograms [119, 120] and hand-crafted
features [121, 122] were commonly used as objects appearance descriptors in earlier works.
With the popularity of deep neural networks, deep feature-based appearance representations are
increasingly used to enhance the discriminative power of appearance features [100]. The work
by Wojke et al. [123] employs a wide residual network to extract object features and measure
their similarity using cosine distances. The network architecture in [124] is used by Chen et
al. [125] to extract object features, which use Euclidean distance as a similarity metric. Siamese
networks have also been used in [126] to learn discriminative features of detected objects.

Object detection As a part of the commonly-used tracking-by-detection paradigm, object de-
tection has a great impact on the performance of trackers that fall under this category. In earlier
times, object detection based on discriminatively trained part-based models [127] played an im-
portant role in MOT. Recently, deep learning based object detection methods have far surpassed
the traditional methods. Faster-RCNN [128] has become one of the most commonly used object
detectors. Some more recent object detection algorithms include [129, 130, 131, 132, 133].
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Data association Data association is a key step in tracking-by-detection based MOT meth-
ods, and represents the second stage of tracking-by-detection algorithms. Many offline MOT
methods [134, 135, 136] treat data associations as a graph-based optimisation problem. The
Hungarian algorithm [137] is also a commonly used data association optimisation method. More
recently, a differentiable operator to build a deep Hungarian network is introduced in [138].

3.1.4 Structural information in SLAM

SLAM algorithms are normally applied to scenes that contain significant structure that could be
exploited. Integrating structure of the environment into the estimation problem has shown to
improve the quality of the estimation [11, 139, 140].

Lee et al. [140] De La Puente et al. [67]

Michael Kaess [11] Hsiao et al. [68]

Figure 3.4: Different structure-aware SLAM systems.

One of the earliest works that consider adding geometrical constraints to improve the quality
of the reconstruction is presented by Szeliski and Torr [14] where they hallucinate additional
point matches based on image homographies which are either given directly or computed be-
tween a collection of a-priori known co-planar points. Other approaches to explicitly incorpo-
rate planes in the estimation include the work by Weingarten and Siegwart [141] where they
use 3D laser data and odometry derived from a 2D laser into an EKF formulation. Servant et
al. [142] also use an EKF formulation starting with partial knowledge and tracking a monocu-
lar camera. In their work [143, 144], an EKF is also used for monocular mapping. The main
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problem of using an EKF formulation is the computational cost caused by maintaining the dense
covariance matrix, which limits the application to a small number of planes. [11] Zucchelli et
al. [139] showed how linear constraints among feature points (e.g. co-linearity and co-planarity)
can be incorporated in the minimisation process to improve the structure from motion estimates
from optical flow using least-squares minimisation of the differential epipolar constraints. Sev-
eral plane parameterisations are used in the literature. Lee et al. [140] use a graph formulation in
combination with a spherical parameterisation to extract planes and use them to correct odom-
etry between consecutive frames. Another approach presented by Triebel and Burgard [145],
extracts constraints from 3D range scans and uses them for pose estimation in a graph-based
SLAM framework. Another common approach to represent a plane by four parameters is to
use its normal and distance to the origin. Trevor et al. [146] uses this over-parameterised repre-
sentation for a smoothing solution. The over-parameterised formulation is also used by [147]
for real-time mapping, combining both mapping of points and planes. Most recently, De la
Puente and Rodriguez-Losada [67] presented an approach to perform landmark SLAM optimi-
sation, along with different level structure detection (points, segments, lines and circles) in an
Expectation-Maximisation algorithm, where only the last robot pose and the features belong to
the graph. Kaess [11] also shows how to formulate SLAM that directly estimates infinite planes
instead of the 3D landmarks in the environment. It uses homogeneous plane parameterisation
with a corresponding minimal representation for the optimisation which is suitable for use with
non-linear least-squares incremental solvers. Hsiao et al. [148] extend on [11] and use the same
plane parameterisation into a dense planar-inertial SLAM with added structural constraints to
achieve better performance. Similar to [11], the work by Hsiao et al. only consider planar
surfaces and their constraints, and does not estimate for non-planar points. A recent work by
Geneva et al. [149] use a closest point (CP) representation which is defined by the closest point
on the plane to the origin of a given reference frame, which captures the geometric information
of the plane, and minimally represents the plane with an additive error state operation, yielding
numerical advantages. It is important to note that the last two mentioned works appeared after
our work in the area of structural SLAM, however we include them here for the sake of com-
pleteness of literature review.
Our work on the other hand, estimates for both, structure points and planes in graph-based
SLAM formulation, this allows for 3D reconstruction of more realistic environments where pla-
nar and non-planar structures coexist.

3.1.5 Semantic information in SLAM

While the system presented in this thesis is a feature-based SLAM system, it still exploits various
semantic information to be able to consistently and robustly map the environment and estimate
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the robot poses. It is then important to review the semantic information literature in SLAM. This
can be categorised into decoupled and coupled approaches.

Decoupled approaches The decoupled semantic SLAM approaches first build a point cloud
map of the environment then label the points, or detect objects within the map. Sengupta et
al. [150] directly transfer the 2D segmentation label to 3D map through pixel back-projection
to achive 3D semantic labelling. Graphical models can be used to improve the smoothness in
a post optimisation step [151, 152, 153]. [154, 155] show how multi-view SLAM can be used
to improve the object detection performance. Similarly, planes or super-pixels are used in [156,
157, 158] to improve the accuracy of dense mapping in low-texture areas. The performance of
these approaches is dependent on the quality of the SLAM returned map.

SLAM++ [8] Galvez et al. [159]

Hosseinzadeh et al. [7] CubeSLAM [13]

Figure 3.5: Different semantic SLAM systems.

Coupled approaches The coupled approaches define objects and geometric entities as
SLAM landmarks and jointly optimise their parameters along with the camera poses. Compared
to points, objects and planes provide richer, longer-range geometry and scale constraints. Bao et
al. [160] proposed to jointly infer high-level semantic scene components (regions and objects)
along with points into a single inference problem. [8] proposed “SLAM++”; a real-time object
SLAM system using RGB-D cameras and an a-priori created database of 3D-models of every
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object in the scene. Similarly, [159] proposed a real time monocular object SLAM that relies
on prior object models. Objects have also been used to correct the scale drift of monocular
SLAM [161, 162]. [163] solved multi-view 3D ellipsoid estimation exploiting object constraints
on the size of the object shape and QuadricSLAM [164] extended it to an online SLAM system
with no prior models. Lee [165] jointly estimates the layout and performs a global multi-view
point cloud registration iteratively to reduce the RGB-D mapping drift. Hsiao et al. [68] also
use planes to reduce pose drift and create dense mapping for large scale indoor buildings in a
key-frame based planar SLAM. [166] proposed “Fusion++”; an online volumetric object-level
SLAM using RGB-D camera without objects prior shape models. More recently, [7] proposed
a structure-aware SLAM system that jointly estimates points, planes and objects represented
as quadrics and introduced point-plane, plane-plane, and plane-object (supporting) relations to
constraint the problem. A very recent work in [13] presents a method for single image 3D
cuboid detection, and multi-view object SLAM from a monocular camera.

3.1.6 Dynamic motion information in SLAM

Establishing the spatial and temporal relationships between a robot, stationary and moving ob-
jects in a scene serves as a basis for scene understanding and the problems of simultaneous local-
isation, mapping and moving object tracking are mutually beneficial [167]. In the SLAM com-
munity, however, information associated with stationary objects is considered positive, while
information drawn from moving objects is seen as degrading the algorithm performance. State-
of-the-art SLAM systems either treat data from moving objects as outliers [168, 169, 170, 171,
172] or track them separately using multi-target tracking [173, 174, 175, 176], and very few aim
to utilise information from static and dynamic objects into a single framework to improve the
accuracy of the estimation [177, 178, 13].

CoSLAM [179] Reddy et al. [180]
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MVO [178] CubeSLAM [13]

Figure 3.6: Different dynamic SLAM systems.

One of the earliest works in the area of SLAM in dynamic environments is presented by
Hahnel et al. [169] who use an Expectation-Maximisation (EM) algorithm to update the proba-
bilistic estimate about which measurements correspond to a static/dynamic object, and remove
them from the estimation when they correspond to a dynamic object. Alcantarilla et al. [181]
introduce dense scene flow for dynamic objects detection, and show improved localisation and
mapping results by removing “erroneous” measurements on dynamic objects from the estima-
tion. Tan et al. [182] propose an online key-frame update that reliably detects changed features
in terms of appearance and structure and discards them if necessary.

Wang et al. [167] developed a theory for performing SLAM with Moving Objects Tracking
(SLAMMOT). They first presented a SLAM algorithm with generalised objects, which com-
putes the joint posterior over all objects and the robot, an approach that is computationally
demanding and generally infeasible as stated by the authors. In the latest version of their SLAM
with detection and tracking of moving objects, the estimation problem is decomposed into two
separate estimators (moving and stationary objects) to make it feasible to update both filters
in real time. Kundu et al. [176] tackle the SLAM problem with dynamic objects by solving
the problems of Structure from Motion (SfM) and tracking of moving objects in parallel, and
unifying the output of the system into a 3D dynamic map of the scene containing the structure
and the trajectory of both static and moving objects. Reddy et al. [180] use optical flow and
depth to compute semantic motion segmentation. They isolate static objects from moving ob-
jects and reconstruct them independently, before using semantic constraints to improve the 3D
reconstruction.

Bibby and Reid’s SLAMIDE [177] estimates the state of 3D features (stationary or dynamic)
with a generalised EM algorithm where they use reversible data association to include dynamic
objects in a single framework SLAM. A multi-camera SLAM system is proposed by Zhou and
Tan [179], that is able to track multiple cameras, as well as reconstruct the 3D position of both
static background and moving foreground points. Their system leverages the idea that points
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on moving objects share information about relative camera poses at the same time step to esti-
mate all camera poses simultaneously. Judd et al. [178] estimate the full SE(3) motion of both
the camera and rigid objects in the scene by applying a multi-motion visual odometry (MVO)
multi-model fitting technique. Although this approach does not require prior knowledge of the
environment or object 3D models, they only show results on experiments performed on their
own lab-environment indoor collected dataset, with no evaluation on any other existing datasets.
A very recent work by Yang and Scherer [13] presents a method for single image 3D cuboid
detection, and multi-view object SLAM for both static and dynamic environments. Their main
interest, however, is the camera pose and object detection accuracy and they provide no evalua-
tion of the accuracy of their object pose estimation.

3.1.7 Motion and semantics

Finally, recent approaches have tried to solve the problems of multi-object tracking and semantic
scene understanding jointly such as the work presented in Track-RCNN [183] which combines
multi-object tracking and segmentation. Only mentioned here for the sake of completeness, this
body of literature, however, is not of interest or relevance to the work presented in this thesis,
and thus is not covered in here.

3.2 Our SLAM system

This section describes our vision for a SLAM system that integrates meta information to achieve
accuracy, consistency and robustness. It is worth mentioning that all components were not eval-
uated together as a complete system, but rather the appropriate components were picked as
sub-system components for different applications as will be discussed later in chapters 4, 5 and
6.

Popularity of SLAM has been increasing over the last few decades with the advances in a
number of related research fields. At the lower level, SLAM naturally intersects other research
fields such as computer vision and signal processing; at the higher-level, SLAM is an appealing
mix of geometry, graph theory, optimisation, and probabilistic estimation [184].
A typical SLAM system pipeline, as shown in Fig.3.7, consists of two main components.
A front-end component that abstracts sensor data into models that are usable for estimation, and
a back-end component that performs inference on the abstracted data produced by the front-
end. [184].
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Figure 3.7: Our vision for a SLAM system architecture. Vision of front and back-end components in
our SLAM system pipeline. Modified version of an original figure that initially appeared in [184].

3.2.1 Front-end

In practical robotics applications, it might be (computationally) unfeasible to write directly the
sensor measurements as an analytical function of the state, as required in a MAP estimation in
the back-end [184]. For instance, if the raw sensor data is an image, as in visual SLAM systems,
it might be hard to express the intensity of each pixel in the image as a function of the SLAM
state. The same happens with other sensors such as laser scanners, Inertial Measurement Units
(IMU), etc.
The reason is fundamentally associated to the representation of the environment. It is almost
impossible to design a sufficiently general, yet tractable representation of the environment; and
even if such representation exists, it would be difficult to write an analytic function that connects
the measurements to the parameters of such a representation.
SLAM front-ends are then sensor and representation-dependent. Before the SLAM back-end,
it is then common to have a module, the front-end, that extracts relevant information from the
sensor data and feeds them into the back-end. In an indirect (feature-based) vision-based SLAM
for example, the front-end extracts the pixel location of key points in the environment which are
now easy to model within the back-end.
The front-end is also in charge of associating each measurement to a specific landmark in the
environment, or more generally to a subset of unknown variables. The data association module
in the front-end includes a short-term data association block and a long-term one [184]. Short-
term data association is responsible for associating corresponding features in consecutive sensor
measurements; for instance, the fact that two pixel measurements in consecutive frames corre-
spond to the same 3D point. On the other hand, long-term data association or loop closure is in
charge of associating new measurements to older landmarks with the help of feedback informa-
tion from the back-end to support loop closure detection and validation.
Finally, the front-end might also provide an initial guess of the random variables in the non-linear
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optimisation. For instance, in feature-based monocular SLAM, the front-end usually takes care
of the landmark initialisation, by triangulating the position of the landmark from multiple views.
In summary, the pre-processing that happens in the front-end is sensor dependent, since the no-
tion of feature changes depending on the input data [184]. And a SLAM front-end is responsible
of: 1. extracting and abstracting sensor data into models for inference, 2. short-term data associ-
ation, 3. long-term data association, and 4. providing an initial guess of random variables to be
optimised.

It is worth noting that the recent advances in the fields of perception and scene understanding
open wide doors to integrating more information into the estimation problem.
The recent advancement in front-ends made them capable of extending the classical feature
detection, to include higher-level entities, such as lines, segments, circles, planes, or even ob-
jects. It also made them capable of providing information about objects in the environment,
their shape, colour, texture, depth, semantics, and dynamics. This information can be extended
to include meta-structural information about the environment, e.g planarity and orthogonality of
buildings in a city-like environment. Recent development in the area of machine learning, and
neural networks made it possible to detect and classify objects in a scene, making it appealing
to integrate semantics and SLAM into a single framework. Motion segmentation and moving
object tracking, results of deep learning techniques, have recently steered researchers interests
into integrating the dynamics of the environment into SLAM systems.

In the following, we describe the off-the-shelf components of the literature that constitute
parts of the front end of our SLAM system.

3.2.1.1 Feature extraction and tracking

In feature-based visual SLAM systems, a core component is the feature extraction and tracking.
And despite the recent advances in deep learning techniques to segment higher-level entities, and
attempts to include those as environment landmarks in SLAM, point measurements remain to be
the most commonly used in visual SLAM systems due to the fact that they are easily obtained
from visual data and their integration into a SLAM estimation is fairly easy. Feature extraction
and tracking has thus been an attractive research topic since the 90s and continues to be the
interest of a large community of computer vision and robotics researchers.

Descriptor matching A classical approach to track image features is to first describe the
extracted features [63, 65, 60, 61] using a descriptor and match features across images based on
a Euclidean distance in the feature descriptor vector space.
Our planar SLAM system described in chapter 4 of this thesis uses SURF [65] features to detect,
describe and match key points across frames. Plane extraction and association will be described
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later.

Figure 3.8: Feature extraction and tracking on a synthetic city dataset [185]

Optical flow Optical flow is the pattern of apparent motion of objects, surfaces, and edges
in a visual scene caused by the relative motion between an observer and a scene [186]. Optical
flow can also be defined according to Horn as the distribution of apparent velocities of move-
ment of brightness pattern in an image [187]. The concept of optical flow was first introduced
by the American psychologist James J. Gibson in the 1940s to describe the visual stimulus pro-
vided to animals moving through the world [188]. Motion estimation has developed as a major
application of optical flow research. Optical flow is used in areas such as object detection and
tracking [189, 190], image dominant plane extraction [191], robot navigation and visual odom-
etry [192, 193].
Estimation of the optical flow relies on the brightness consistency assumption given by:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (3.1)

which states that the intensity I of a pixel (x, y) at time t is equal to the intensity of the moved
pixel at time t+ ∆t. Assuming the movement to be small, the image constraint at I(x, y, t) can
be approximated using the first-order Taylor expansion as:

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t (3.2)

It follows that
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or
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which results in
∂I

∂x
vx +

∂I

∂y
vy = −∂I

∂t
(3.5)

where vx , vy are the x and y components of the velocity or optical flow at I(x, y, t) and ∂I
∂x , ∂I∂y ,



38 CHAPTER 3. BACKGROUND AND OVERVIEW

and ∂I
∂t are the derivatives of the image at (x, y, t) in the corresponding directions.

Various methods are present in the literature to estimate optical flow from images, of which the
most widely used are the Lucas-Kanade algorithm [115] and the Horn–Schunck method [187].

Figure 3.9: Optical flow estimation on KITTI dataset [194] using PWC-Net [118].

Recently, a number of deep learning techniques have established methods to achieve per-
pixel dense optical flow estimation [117, 118]. In our dynamic SLAM system described in
chapter 5, PWC-Net [118] was used to ensure long tracks of detected features, especially on
moving objects, which are crucial for our feature-based dynamic SLAM system.

3.2.1.2 Structural information

The first piece of the work presented in this thesis deals with SLAM in structured environments;
environments with abundant structure to be exploited. We focus on planar surfaces and integrate
them into the estimation framework as latent variables that are unobservable but constrained by
the observation of environment points and relations to other planar surfaces (parallelism and or-
thogonality). Our system’s front-end is able to extract planes from a single image, associate them
across frames, and infer relations between the extracted planes across a sequence of images.

Normal estimation
Point cloud  per 3D point normal

Manhattan plane selection

Sanity checkPlane merging Plane parameters estimation

Figure 3.10: Proposed planar surfaces extraction and association pipeline.

Planar surfaces extraction and association Planar surfaces extraction and association is
summarised in Fig. 3.10. First, surface normals are estimated using the “Surface Reconstruction
from Unorganised Points” algorithm [195]. This is performed on point clouds to find the normal
of every 3D landmark point in the environment to achieve a per point normal estimation, using a
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neighbourhood of n-points. This parameter was set to six in our planar SLAM system described
in chapter 4. This is followed by a Manhattan world selection, to only include surface normals
orthogonal to the ground plane and normals to planes orthogonal to the ground plane. A plane
sanity check to only keep planes with more than six points defining the plane is performed.
Finally plane parameters are estimated that best fit the set of points on the plane by minimising
the least-squares of the normal distance to the plane, and a plane merging algorithm based on
thresholding of angles between plane normals vectors is performed.

3.2.1.3 Semantic information

Although our SLAM systems presented in chapters 5 and 6 are feature-based, they highly ex-
ploit image-based semantic information to achieve robustness, accuracy and consistency.
Our system exploit semantic information in three main ways; 1. instance-level object segmenta-
tion, and 2. single image depth extraction, besides 3. optical flow estimation for feature tracking
described above. The front-end of our system is then able to provide semantic information to be
integrated into the back-end estimation.

Instance level object segmentation We exploit image-based semantic information to achieve

Figure 3.11: Object segmentation on KITTI dataset [194] using MASK-RCNN [5].

an object-aware SLAM system, that is able to include and estimate dynamics on the environment
into a single SLAM framework. Instance-level object segmentation is performed to achieve per
pixel segmentation of objects present in the scene. We employ a learning-based instance-level
object segmentation, MASK-RCNN [5] to generate object segmentation masks. Object semantic
segmentation can provide significantly important cues for dynamic SLAM. Object classes pro-
vide a great classification of potentially dynamic (moveable) objects such as vehicles, cyclists,
people and forever static objects such as street signs and traffic lights in an urban environment.
In fact, we rely on object segmentation to include every potentially moving object in the scene as
a dynamic object and estimate for its motion, without the need to perform any motion segmen-
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tation as in chapter 5. Moreover, instance segmentation offers object masks that ensure robust
tracking of points on objects by sampling points within the object mask and re-sampling new
points if the number of tracked points on an object falls below a certain predefined threshold, as
compared to feature detection on objects (such as cars, trucks, buses, etc.) that normally consist
of featureless surfaces.

Single image depth estimation In an attempt to fully exploit image-based semantic informa-

Figure 3.12: Single image depth estimation on KITTI dataset [194] using Monodepth2 [196].

tion, we provide a “monocular” version of our dynamic SLAM system. More specifically, our
system uses RGB input images only and first performs a single image depth estimation using
Monodepth2 [196]; a state-of-the-art off-the-shelf learned approach.

3.2.1.4 Dynamic information

Finally, our front-end is able to provide dynamic information to be integrated in the back-end
estimation. Namely, identifying and tracking moving object allows reduce the problem size and
better constraint the object motion estimation.

Motion segmentation Despite the ability of our system described in chapter 6 to model and
estimate the motion of every moveable object in the environment, dynamic object identification
helps reduce computational cost of the proposed system. We perform a motion segmentation step
to reduce the problem size, memory and computational complexity. The front-end is capable of
identifying moving objects based on scene flow estimation. Specifically, after obtaining an initial
camera pose 0Xk, the scene flow vector f ik describing the motion of a 3D point 0mi between
frames k − 1 and k, can be calculated as in [197]:

f ik = 0mi
k−1 − 0mi

k = 0mi
k−1 −0 Xk

Xkmi
k . (3.6)

Unlike optical flow, scene flow−ideally only caused by scene motion−can directly decide whether
some structure is moving or not.
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Moving object tracking Objects masks provided by instance-level object segmentation need
to be tracked and associated across frames. We propose to use optical flow to associate point
labels across frames. A point label is the same as the unique object identifier on which the point
was sampled. We introduce and maintain a finite tracking label set L ⊂ N, where l ∈ L starts
from l = 1 for the first detected moving object in the scene. The number of elements in L
increases as more moving objects are being detected. Static objects and background are labelled
with l = 0.

In summary, our system front-end is able to extract, and track features on static and dynamic
objects, provide structural, semantic and dynamic information about the lay-out and objects in
the environment and offer initial estimates of unknown random variables to be estimated.
Random variable initialisation provided by the front-end will be discussed in our planar and
dynamic SLAM systems in chapters 4 and 5 respectively.

3.2.2 Back-end

Now that the front-end has provided the above-mentioned information, the role of the back-end
module is to perform inference on the abstracted data provided by the front end [184]. We for-
mulate the SLAM inference problem using a graph representation as described in section 3.1.1

3.2.2.1 Graph-based SLAM problem formulation

In SLAM problems, the goal is to estimate the 3D structure of the environment and the camera
poses that maximally satisfy a set of measurement constraints [198]. It has been shown in the
SLAM literature [34, 22] that Gaussian noise models lead to computationally efficient solutions.
Optimisation-based methods propose to formulate the SLAM problem as a non-linear least-
squares (NLS) optimisation as explained in section 2.4.3. This is done over a set of variables;
the camera/robot poses at different time steps, and the 3D points in the environment. Together
these variables constitute the total system state of a classical landmark SLAM problem.
We consider two types of measurements, the odometry obtained by the robot’s proprioceptive
sensors or offered by the front-end performing visual odometry and the observations of the
landmarks in the environment obtained by processing the images from an on-board camera.
The odometry model error ek(

0Xk−1,
0Xk) is defined as:

ek(
0Xk−1,

0Xk) = (0X−1
k−1

0Xk)
−1 Xk−1

k−1T k , (3.7)

where T = {Xk−1

k−1T k | k ∈ T } is the odometry measurement set with Xk−1

k−1T k ∈ SE(3) and
cardinality no, and with T the set of all time steps. The odometric factors are shown as orange
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circles in Fig. 3.2.
Similarly, the 3D point measurement model error ei,k(

0Xk,
0mi

k) is defined as:

ei,k(
0Xk,

0mi
k) = 0X−1

k
0mi

k − zik , (3.8)

where z = {zik | i ∈M, k ∈ T } is the set of all 3D point measurements at all time steps, with
zik ∈ IR3 and cardinality nz , andM the set of all landmarks. The 3D point measurement factors
are shown as white circles in Fig. 3.2.
We parameterise the SE(3) camera pose by elements of the Lie-algebra x∧k ∈ se(3) as:
0Xk = exp(0x∧k ) , and define (0x∧k )∨ , 0xk ∈ IR6 with the vee operator a mapping from se(3)

to IR6, and the wedge operator as the inverse of the vee operator, and defines a mapping from
IR6 to se(3).
Let θX = {0xk | k ∈ T } be the set of all camera poses, and θM = {0mi

k|i ∈ M, k ∈ T } be
the set of all 3D points, with 0mi

k ∈ IR3. Given θ = θX ∪ θM as all the nodes in the graph, and
using the Lie-algebra parameterisation of SE(3) for X , the solution of the problem is obtained
by minimising the sum of squared non-linear residuals as:

θ∗ = argmin
θ

{ no∑
k

e>k(0xk−1,
0xk) Σ−1

o ek(
0xk−1,

0xk)

+

nz∑
i,k

e>i,k(
0xk,

0 mi
k) Σ−1

z ei,k(
0xk,

0 mi
k))
}
, (3.9)

where Σo is the odometry noise covariance matrix, and Σz is the 3D point measurement noise
covariance matrix. The error terms in (3.9) are calculated as follows: first the wedge operator
is applied to each IR6 element to map it to its se(3) element, then the exponential is applied to
map it to its SE(3), errors are then computed as described in (3.7) and (3.8). The same pro-
cedure is followed when describing a minimisation of residuals for the rest of this document.
Iterative non-linear optimisation methods such as Gauss-Newton (described in section 2.3.3) or
Levenberg-Marquardt (described in section 2.3.4) can be used to find a solution that minimise
(3.9). This formulation is often used in the SLAM literature [32, 53, 54, 198]. The graph formu-
lation of the SLAM is highly intuitive and has the advantage of being able to incorporate several
types of observations (odometry, GPS, IMU, sonar, laser scan registration, feature points, feature
lines, etc.). Another advantage of this formulation is that it allows for efficient implementations
of batch [199, 54] and incremental [53, 57, 200] NLS solvers.
In chapters 4, 5 and 6, we show how this graph formulation is used to incorporate meta infor-
mation into the estimation problem, and how new factors are introduced to model the structural,
semantic and dynamic information provided by the front-end. All back-end graph optimisation
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is this thesis is solved in a batch fashion, unless otherwise indicated.

3.2.3 Estimation accuracy evaluation

The accuracy of the proposed systems in this thesis is evaluated by comparing the absolute
trajectory translational error (ATE), the absolute trajectory rotational error (ARE), the absolute
structure error (ASE), the relative trajectory translational error (RTE), the relative trajectory
rotational error (RRE), and the relative structure error (RSE) calculated as follows:

ATE =
1

nx

nx∑
k=1

‖tr((0Xk
−1)est(

0Xk)gt)‖ (3.10)

where tr(.) returns the IR3 translational component vector of an SE(3) element, and nx is the
total number of robot poses.

ARE =
1

nx

nx∑
k=1

‖rot((0Xk
−1)est(

0Xk)gt)‖ ∗ 180/π (3.11)

where rot(.) returns the axis-angle representation of the rotational SO(3) component of an
SE(3) element.

ASE =
1

nm

nm∑
i=1

‖(0mi)gt − (0mi)est‖ (3.12)

where nm is the total number of structure 3D points.
The relative error metrics are defined as follows:

RTE =
1

nx

nx∑
k=1

‖tr((0
X−1
k−1

0Xk)
−1
est(

0
X−1
k−1

0Xk)gt)‖ (3.13)

RRE =
1

nx

nx∑
k=1

‖rot((0
X−1
k−1

0Xk)
−1
est(

0
X−1
k−1

0Xk)gt)‖ ∗ 180/π (3.14)

RSE =
1

nm

nm∑
i=1

‖(0mi − 0mi−1)gt − (0mi − 0mi−1)est‖ (3.15)
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Chapter 4
Structural SLAM

Although chaotic, cluttered and highly dynamic, the world we live in has a significant amount
of structure. All built environments share some underlying layout that has not yet been fully
exploited in SLAM algorithms.

Figure 4.1: Abundant structural information in urban environments. Bird-eye view of Zamalek,
Cairo. Photo by Vitaliy Raskalov to Cairo Scene.
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4.1 Motivation

Building globally and structurally consistent maps is an essential capability for robots autonomously
navigating the environment and performing tasks. In the SLAM community, there is no univer-
sally accepted notion of global structural consistency [201]. Algorithms that are highly accurate
(minimising residual errors) can still admit large structural inconsistencies that contravene rela-
tively simple global geometric structure such as vertical walls, flat floors, etc. In particular, the
returned map may drift very far from the true global structure of the environment. We refer to
such a situation as the algorithm displaying poor global structural consistency.

Photo by GreyOrange Photo by Australia Post

Figure 4.2: Indoor and outdoor mobile robotics in built environments.

Classical SLAM algorithms usually make no assumptions about the structure of the scene
being analysed [14]. In practice, however, these algorithms are applied to scenes that contain
significant structure that could be exploited.
Service robotics carrying out household chores, entertainment robots leading museums visits,
warehouse robotics sorting out mail delivery or search and rescue robots within built environ-
ments are all examples of robots operating in indoor environments. Outdoor robotics for au-
tonomous driving in urban environments, Unmanned Aerial Vehicles (UAV) for delivery and
surveillance robots are examples of autonomous mobile robotic platforms operating outdoors.
All these environments share an underlying structure to as how they are constructed.
Approaches in the recent literature to include structural information into the SLAM problem
only represent the environment as planar surfaces [146, 140, 151, 11, 68], and marginalise fea-
tures on those surfaces, motivated by the fact that many planar scenes are featureless. And only
a few consider mapping points and planar surfaces [147]. Our work falls in the second category,
where we estimate for both planar (such as walls, floors, ceilings, building facades, and roads)
surfaces and points pertaining to planar and non-planar (such traffic lights, and street signs.)
surfaces to achieve a more realistic mapping of the scene.



4.2. METHODOLOGY 47

The contribution of this chapter is to explore the effect of adding meta-structural information
into the estimation problem, and evaluate the structural consistency of the results. In particu-
lar, we exploit planar information applied to 3D points that are known a-priori to lie on planar
surfaces. We also exploit inter-plane constraints in terms of parallelism and orthogonality be-
tween the detected planes. The plane parameters are incorporated into the estimation problem as
additional random variables that are dependent on the environment points, and/or other planes
but are not directly observed by the robot. We show that by utilising prior knowledge of the
environment, more accurate and globally consistent solutions can be obtained.

4.2 Methodology

4.2.1 Problem formulation

The goal is to estimate the 3D structure of the environment and the camera poses that maximally
satisfy a set of measurement constraints [198]. As in the literature [22, 34], we assume Gaussian
noise models and formulate the SLAM problem as a non-linear least-squares optimisation as
described in section 3.2.2.1.
The solution of the problem is obtained by minimising the sum of squared non-linear residuals:

θ∗ = argmin
θ

{ no∑
k

e>k(0xk−1,
0xk) Σ−1

o ek(
0xk−1,

0xk)

+

nz∑
i,k

e>i,k(
0xk,

0 mi) Σ−1
z ei,k(

0xk,
0 mi))

}
, (4.1)

Iterative non-linear optimisation methods such as Gauss-Newton or Levenberg-Marquardt can
be used to find a solution that minimises (4.1). At each iteration, the cost function in (4.1) is
linearised and the solution is found by solving a linear least-squares problem in δ [32]:

δ∗ = argmin
δ

1

2
‖Aδ − b‖22 , (4.2)

where A is the system Jacobian matrix which gathers the derivatives of the residuals in ((4.1))
with respect to variables in θ weighted by a block-diagonal matrix that gathers all the square
rooted, inverse covariances of all the observations; and b is the residual vector evaluated at the
current linearisation point weighted by the same block diagonal matrix.
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4.2.2 Adding planar constraints to a graph-based SLAM system

X0

X1

X2m1

m2

m3

{0} x

y

z

η

d

Figure 4.3: SLAM with planar information representation. Camera poses are represented by Xk,
landmarks by mi and plane parameters by η and d.

In this chapter, we explore the effect of integrating additional information about the landmarks
in the environment into the SLAM estimation problem. In particular, we exploit planarity infor-
mation applied to points that pertain to the same plane, and angular information between planes
in terms of parallelism or orthogonality constraints. This a common situation in “man-built en-
vironments” where planar surfaces are ubiquitous.
While only concerned with constraining some points to planes and applying orthogonality or
parallelism constraints between planes, the formulation presented here is general and can be ex-
tended to include any type of structural information present in the environment as long as there is
a front-end that can provide that information and a function that can model it. The implemented
front-end uses the raw RGB-D input images to detect, associate and merge planes as shown in
Fig. 4.4, and as explained in section 3.2.1.2.

Normal estimation
Point cloud  per 3D point normal

Manhattan plane selection

Sanity checkPlane merging Plane parameters estimation

Figure 4.4: Proposed planar surfaces extraction and association pipeline.

A plane is parameterised by the unit normal to the planar surface ηs ∈ S2 the unit sphere in
space, with ηs = [ηsx, η

s
y, η

s
z]
>, ||ηs|| = 1, and the distance to the planar surface 0ds ∈ IR , with

ns the total number of detected planes.
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For each point 0mi that lies on a plane defined by 0ps = [ηs,0 ds]> one has:

0 = g(0mi, 0ps) + q with g(0mi, 0ps) = 0ds − 0mi> ηs , (4.3)

where q ∼ N (0,Σq) normally distributed zero-mean Gaussian noise. Here q models the true
distance of the point from the plane, that is the formulation does not require the underlying
plane model to hold exactly, such as for example in the case where points in a corridor may lie
on pin-boards on the wall and vary slightly in depth, or points on the buildings lie on the window
frames, etc. We choose to use an over-parameterisation to parameterise a plane using ηs and ds,
as in this way, it is easiest to represent the distance of a point to the plane as in the way stated
above, and also implies a mathematically simple Jacobian computation.
Furthermore, given two planes with ηs1 and ηs2 , an angle constraint can be defined as:

cos(at) = ηs1> ηs2 + r , (4.4)

where r is the normally distributed zero-mean angle noise with covariance matrices Σr. Here r
models the confidence that is assigned to plane orthogonality or parallelism constraint at.
We deliberately choose not to introduce the angle between two planes as a random variable in
the estimation, but rather introduce edges and factors to constraint the planes estimates to respect
the angular information. This is because it is more realistic that a front-end would give semantics
in terms of walls, ground, ceiling, etc. from which orthogonality and parallelism relationships
can be easily deduced rather than actual measured angles between planar surfaces.

X0 X1 X2

m1 m2 m3 m4

p1 p2

Figure 4.5: Factor graph representation of a SLAM problem with added planar and angular infor-
mation. New variables ps are added to incorporate the planes as well as the new factors, gs in magenta
to incorporate a point-plane planarity factor and at in cyan to incorporate a plane-plane angular factor.

4.2.3 Cost function

The factor graph representing a SLAM problem which integrates two planar constraints and
one angular constraint is shown in Fig. 4.5. The non-linear least-squares that minimises all the
residual errors is then defined by integrating the meta-structural information into the estimation
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problem as follows:

θ∗ = argmin
θ

{ no∑
k

e>k(0xk−1,
0xk) Σ−1

o ek(
0xk−1,

0xk)

+

nz∑
i,k

e>i,k(
0xk,

0 mi) Σ−1
z ei,k(

0xk,
0 mi)) +

ns∑
i,s

(ds − 0mi> ηs)> Σq
−1 (ds − 0mi> ηs)

+

nt∑
s

(cos(at)− ηs1>ηs2)> Σr
−1 (cos(at)− ηs1>ηs2)

}
, (4.5)

where no, nz , ns and nt are the total number of odometric measurements, point measurements,
plane observations and angle observations respectively.
Appendix section A.1 explains particularities on the Jacobian when solving the NLS in (4.5).

4.3 Experimental setup

The framework is evaluated on Manhattan-like worlds, where structures typically exhibit a high
degree of organisation in the form of orthogonal and parallel planes [202]. In order to evaluate
the structural consistency of the proposed methodology, We generated several datasets with
ground truth data. This is done by simulating a robot moving in a Manhattan-like world and
observing 3D points in the environment using a sensor with a limited field of view. Odometric
measurements are also available. We also emulate an advanced front-end that is able to fit
planes to the observed 3D points, and provide initial planes parameters estimates to the back-
end. Planes are assumed to be either orthogonal or parallel, and a threshold-based decision
process is used to determine this.
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4.3.1 Simulated dataset

Figure 4.6: Simulated street dataset. [https://github.com/MinaHenein/Entity-SLAM]

To clearly observe the effects of adding structural information, we simulate a robot moving
forward on a long trajectory without revisiting previous locations. As a baseline, the system
is solved with no additional structural information (NoI) integrated into the estimation. This is
shown in sub-figures a) in both Fig. 4.7 and 4.8. We then consider two different configurations
of planes to model the buildings on the left and right sides of a road.

• In the first case, all buildings on each side are represented as a single plane.

• In the second case, four planes are generated on each side to more accurately and realisti-
cally model separate buildings on a street.

These two cases are repeated when planar information (PI) is added to the system, sub-figures
b) and d) and when both planar and angular information (PAI) is added, sub-figures c) and e) in
both Fig. 4.7 and Fig. 4.8. For each of these cases, the same odometry and point measurements
are used to provide a valid comparison. This comparison is repeated with ten sets of randomly
generated measurements. Experiments were conducted with combinations of several noise levels
for odometry, point measurement, plane constraints and angle between planes. The noise levels
are shown in the captions of the corresponding figures.

https://github.com/MinaHenein/Entity-SLAM
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Figure 4.7: Results on simulated street dataset. Comparison of SLAM with a) no added structural
information, with added planar information when modeling walls as b) one plane and d) four separate
planes, and with both planar and angular information when modeling walls as c) one plane and e) four
separate planes. The Second row shows a different view of the same scene. Ground-truth is shown
in red and the final estimation is shown in blue. The figure is not displayed to scale. Noise levels
used are: Σo = [0.02m, 0.02m, 0.02m, 2◦, 2◦, 2◦]2, Σz = [0.2m, 0.2m, 0.2m]2, Σq = [0.01m]2 and
Σr = [0.05◦]2.
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Figure 4.8: Results on simulated street dataset. Comparison of SLAM with a) no added structural
information, with added planar information when modeling walls as b) one plane and d) four separate
planes, and with both planar and angular information when modeling walls as c) one plane and e) four
separate planes. The Second row shows a different view of the same scene. Ground-truth is shown in
red and the final estimation is shown in blue. The figure is not displayed to scale. Noise levels used
are: Σo = diag[0.02m, 0.02m, 0.02m, 2◦, 2◦, 2◦]2, Σz = diag[0.2m, 0.2m, 0.2m]2, Σq = [0.2m]2 and
Σr = [0.05◦]2.
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4.3.2 Synthetic city dataset

Figure 4.9: City dataset. Point cloud generated from synthetic Blender-generated city dataset by Zhang
et al. [185]

The second dataset is an existing synthetic Blender-generated city by Zhang et al. [185], from
which we generated a dataset which consists of RGB-D images acquired by a robot travelling in
this synthetic city. Ground truth depth can be associated to every pixel in the image. It is worth
mentioning that this dataset provides a good model of a realistic environment, with the only
difference of having perfect depth estimates and ground-truth camera poses. To realistically
model a real case scenario, we deliberately assign high noise levels to odometry and points
measurements (Σo = diag[0.4m, 0.4m, 0.4m, 6◦, 6◦, 6◦]2, Σz = diag[0.4m, 0.4m, 0.4m]2).
A feature matching and tracking algorithm was run to generate a set of 3D point measurements ∈
IR3. On top of that, we implemented a plane extraction algorithm that uses M-estimator SAmple
Consensus (MSAC), a variant of the RANdom SAmple Consensus (RANSAC) as explained in
Fig. 4.4, and more detailed in section 3.2.1.2. Only the planes that satisfy the Manhattan world
assumption are integrated into the estimation. Two experiments were run with this dataset, one
where the robot stops before closing a loop (62 poses and 550 3D points) and a second one
with a loop closure (135 camera poses and 1500 3D pints). Experiments were conducted with
combinations of several noise levels for odometry, point measurement, plane constraints and
angle between planes. The noise levels are shown in the captions of the corresponding figures.
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4.4 Experimental results

We are focused on analysing the accuracy and structural consistency of the proposed estimation
solution and compare it to the classical SLAM formulation which does not integrate any addi-
tional information about the 3D points in the environment. In this sequence of experiments, we
consider points constrained to planes, and orthogonality and parallelism information between
planes, that is using at = 90 deg or at = 0 deg. The accuracy is evaluated by comparing the
absolute trajectory translational error (ATE), the absolute trajectory rotational error (ARE), the
absolute structure error (ASE), the relative trajectory translational error (RTE), the relative tra-
jectory rotational error (RRE), and the relative structure error (RSE) as described in section 3.2.3.
The absolute error is used to evaluate the structural consistency of the estimation. Numbers in
Table. 4.1 and 4.2 show better accuracy results in case of added structural information. More
analysis follows in subsections 4.5.1 & 4.5.2.

Simulated Street Dataset
Error NoI∗ PI∗ PAI∗ SPI∗ SPAI∗

ATE 1.42 m 0.74 m 0.74 m 0.89 m 0.83 m
ARE 0.33 ◦ 0.12 ◦ 0.12 ◦ 0.20 ◦ 0.18 ◦

ASE 2.28 m 0.93 m 0.92 m 1.21 m 1.11 m
RTE 0.05 m 0.05 m 0.05 m 0.05 m 0.05 m

RRE 0.21 ◦ 0.16 ◦ 0.16 ◦ 0.16 ◦ 0.16 ◦

RSE 0.70 m 0.66 m 0.66 m 0.67 m 0.67 m

Table 4.1: Results on simulated street dataset. Average error values for 106 experiments of the simu-
lated dataset.
NoI: without added information, PI: planar information added, PAI: planar & angular information added,
SPI and SPAI are the same are PI and PAI respectively in the case where each side of the street is modeled
as several planes.
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Synthetic City Dataset
Error NoI∗ PAI∗

ATE 1.28 m 0.65 m
ARE 5.79◦ 2.44◦

ASE 1.29 m 0.63 m
RTE 0.31 m 0.30 m
RRE 1.35◦ 1.21◦

RSE 0.68 m 0.50 m

Table 4.2: Results on synthetic city dataset. Error values for the synthetic city dataset without loop
closure. * NoI: without added information, PAI: planar & angular information added.

4.5 Discussion

4.5.1 Analysis of the simulated street dataset

Simulations were run for 16 different combinations of point measurement and plane flatness
noise levels, with 10 different randomly generated measurement datasets, giving a total of 160

trials. We only show average results of 106 different trials and figures of two representative
trials; full result figures and the associated code can be found on Entity SLAM website on the
following url https://github.com/MinaHenein/Entity-SLAM.
We refer to the remainder of trials as ‘local minima’ trials and these will be discussed later. From
the tests one can observe that planar information helps to preserve the structural consistency of
the estimated map. This is most obviously seen in the reduction in drift between a) where no
structural information is used, to the b) where walls are modelled as single planes, in both Fig.
4.7 and Fig. 4.8 and also reflected in table 4.1. There are some cases where this planar infor-
mation results in increased drift. The inherent randomness of the measurement noise model can
result in the estimation drifting back towards the ground-truth. A close examination of Fig. 4.8
a) shows that the estimated trajectory initially drifts towards the negative in the x axis, but this
is corrected by a later drift. Fig. 4.8 b) shows that the planar information tends to preserve the
straightness of the structure, and thus this reversal of direction is not allowed. This situation is
unlikely to occur in a real environment, where a city is more realistically modelled by separate
planes. When considering the case where walls/buildings are modelled as several planes, the
system is more susceptible to drift because of the increased freedom allowed by segmentation
of the planes. In fact, if the number of planes used to represent one building is sufficiently high,
the added planar information act as the no information case; as if every point had the freedom

https://github.com/MinaHenein/Entity-SLAM
https://github.com/MinaHenein/Entity-SLAM
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to lie on a single plane. The addition of angular information helps to reduce this effect, as this
additional information reshapes the problem as a single plane. This can be seen by comparing
d) and e) in both Fig. 4.7 and Fig. 4.8.
Table 4.1 shows 47% error reduction in ATE, 59% reduction in ASE and 63% reduction in ARE
when considering 1 plane on each side (PI & PAI) and 37% error reduction in ATE, 46% re-
duction in ASE and 38% reduction in ARE for planar information when considering segmented
planes (SPI) and 41% error reduction in ATE, 51% reduction in ASE and 44% reduction in ARE
for planar and angular information when considering segmented planes (SPAI).
Finally, when including angular information, care should be taken when choosing the strictness
of the constraints, as the system can become sensitive to large measurement noise resulting in
failure of the estimation. The corrections provided by the angle information must not exceed the
freedom in plane fitting allowed by the spatial distribution of the points. This is reinforced by
the observation that experiments where points are generated loosely on the planes as in Fig. 4.8
the estimation is less susceptible to failure, as opposed to very close to planes as in Fig 4.7.

Local-minima cases It is worth mentioning that angular information should be added with
care, as solving for angular constraints has shown to be very sensitive to initial conditions and
could cause the problem to get stuck in a local minima. This has happened in 33% of the 160
total experiments run for the simulated street dataset (Table 4.1 does not include these cases).

Figure 4.10: Failure case when adding planar and angular information. Representative example of
a failure case when adding planar and angular information, in the several planes case (SPAI), causes the
problem to get stuck in a local-minima.
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A possible way to alleviate this effect, is to first solve with added planar information, and only
add angular information once a solution of planar information is reached. Fig 4.10 and 4.11
show a representative example of this case, where adding angular information initially caused
failure of the estimation. However, when first solving with added planar information and once
a solution is reached, re-solving the system with the added angular information and the solution
of the planar information as initial estimates yields better results.

Figure 4.11: Solution to local-minima problem. Representative example of a local-minima case solved
by first adding planar information, and then adding angular information starting from the solution of the
added planar information.

It is important to note that the structural information added, in terms of planarity of a group
of points, does not necessarily fully constrain the degrees of freedom of 3D point landmarks.
This is the reason of the drift seen in Fig. 4.7. The angular information add further constraints
and help reduce this drift. A possible solution is to add geometric distance constraints between
a 3D point and all planes orthogonal to the one it resides on.

4.5.2 Analysis of the synthetic city dataset

Although run for two different setups (with and without a loop closure), and four different noise
levels each, we only show results from one experiment and a single noise level, full results
figures can be found at the same web page mentioned above.
It is known that loop closures help to preserve structural consistency when the same locations
are revisited and the same environment landmarks are re-observed and used to correct the drift.
Therefore in the city dataset, adding planar and angular information appears to have minimal
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Figure 4.12: Final city map estimate. Top view of the final city map estimate (no loop closure) with
no added information (left) vs with planar & angular information added (right). Where some build-
ings appear to lose orthogonality on the left image, the same buildings appear to show planarity and
orthogonality on the right image preserving the global consistency of the map. Noise levels used are as
follows: Σo = diag[0.4m, 0.4m, 0.4m, 6◦, 6◦, 6◦]2, Σz = diag[0.4m, 0.4m, 0.4m]2, Σq = [0.01m]2

and Σr = [1◦]2

effect after the loop is closed. Improvements are however shown in the case where the robot
traversed the city but no large loops have been closed yet. It is here where the estimate drifts
by a significant amount without added structural information. Using prior knowledge about
the environment, in terms of planar and angular information, improves the overall estimation
accuracy and preserves consistency. Fig. 4.12 shows the effect of adding planar and angular
information on the global consistency of the estimation, and Table 4.2 shows a reduction of
50% in absolute errors. While used as preset values here, the covariance associated with the
planar and angular information Σq and Σr respectively can be chosen, in real scenarios, based
on the semantics of the scene −in terms of layout and spatial relationship between segmented
surfaces− as a function of the distance of the point to the segmented planes and the confidence
of the returned planar segmentation.

Although only tested on simulated and synthetic datasets, we believe the proposed algo-
rithm’s applicability to real scenarios is fairly straightforward. A more robust front-end should
however be integrated to ensure robust feature tracking and landmark-plane association in the
case of real environments. We believe this is made possible with the advances in learning tech-
niques to estimate surface normals and integrate depth and scene semantics to improve the esti-
mation as in [203, 204, 205, 206]
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4.6 Conclusion and future work

In this chapter, we have shown the effect of additional structural information on the accuracy
and global consistency of SLAM. A factor graph formulation of a SLAM problem is used to in-
corporate prior knowledge of the environment into the estimation. Results show improvements
in the estimation accuracy. 3D points pertaining to a certain surface show better convergence
results versus the same points with no added information.
The proposed algorithm demonstrates better convergence and global structural consistency re-
sults in most cases and still can be improved in many aspects. A possible improvement can be
made by using the SLAM estimates to refine the plane detections in a prediction step [11].
While presented in isolation here, the planar and orthogonality information can be combined
with other geometric or semantic information as well as dynamics of the objects in the scene to
handle a larger group of problems. Different information can be added to the system such as dis-
tance information for geometric shapes of known dimensions or velocity information for moving
rigid objects, this can greatly improve the incremental segmentation SLAM problem [207] and
opens wide doors to SLAM with objects and dynamic SLAM estimation problems.
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Chapter 5
Dynamic SLAM

“Most of the structures in the visual world are rigid or at least nearly so.”
- David Marr [208]

5.1 Motivation

While many accurate and efficient solutions to the SLAM problem exist, current SLAM algo-
rithms can be easily induced to fail in highly dynamic environments [184]. The conventional
technique to deal with dynamics in SLAM is to either treat any sensor data associated with mov-
ing objects as outliers and remove them from the estimation process [168, 169, 170, 171, 172],
or to detect moving objects and track them separately using traditional multi-target tracking
approaches [173, 174, 175, 176]. The former technique excludes information about dynamic
objects in the scene, and generates static only maps. Accuracy of the latter is dependent on
the camera pose estimation, which is more susceptible to failure in complex dynamic environ-
ments where the presence of reliable static structure is questionable. Increased applications of
autonomous systems to dynamic environments is driving a need to challenge the scene rigidity
assumption, also known as the static world assumption, that underpins most existing SLAM and
Visual Odometry (VO) algorithms.

A typical SLAM system consists of a front-end module, that processes the raw data from
the sensors and a back-end module, that integrates the obtained raw and implicit higher-level
information into a probabilistic estimation framework. Simple primitives such as 3D locations
of salient features are commonly used to represent the environment. This is largely a conse-
quence of the fact that points are easy to detect, track and integrate within the SLAM estimation
problem. Other primitives such as lines and planes [67, 11, 12, 68] or even objects [209, 8, 13]
have been considered in order to provide richer map representations. Semantic information and
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50.76 km/hr
54.72 km/hr

Figure 5.1: Results of object-aware dynamic SLAM on KITTI seq.03. Centroids of each object are
obtained by applying the motion estimates to the first ground-truth object centroid. Speed estimates are
also extracted for each object.

object segmentation can provide important prior information in identifying dynamic objects in
the scene [167, 159], and can be highly valuable in a dynamic SLAM framework. Advances in
deep learning have provided algorithms that can reliably detect and segment classes of objects at
almost real time [19, 5]. Despite recent developments in vision-based object detection and seg-
mentation, the visual SLAM community has not yet fully exploited such information [20]. To
incorporate semantic information in existing geometric SLAM algorithms then either a dataset
of 3D-models of every object in the scene must be available a-priori [8, 159] or the front end
must explicitly provide object pose information in addition to detection and segmentation [210,
211, 212] adding a layer of complexity to the problem. The requirement for accurate 3D-models
severely limits the potential domains of application, while to the best of our knowledge, multiple
object tracking and 3D pose estimation remain a challenge to learning techniques. There is a
clear need for an algorithm that can exploit the powerful detection and segmentation capabili-
ties of modern deep learning techniques without relying on additional pose estimation or object
model priors.

In this chapter, we propose a novel model-free, object-aware point-based dynamic SLAM
approach that leverages image-based semantic information to model dynamic scenes in a unified
estimation framework over robot poses, static and dynamic 3D points, and object motions and
simultaneously localise the robot, map the static structure, estimate a full SE(3) pose change of
moving objects and build a dynamic representation of the world.
We redefine the term mapping in SLAM to be concerned with a spatio-temporal representa-
tion of the world, as opposed to the concept of a static map that has long been the emphasis of
classical SLAM algorithms, including SLAM systems that can robustly operate in dynamic envi-
ronments by excluding the dynamics of the world. We also fully exploit the rigid object motion
to extract velocity information of objects in the scene, as shown in Fig. 5.1, an emerging task in
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autonomous driving which has not yet been thoroughly explored [16]. Although the developed
techniques apply to a wide range of applications, velocity information of vehicles is crucial to
aid autonomous driving algorithms for tasks such as collision avoidance [17] or adaptive cruise
control [18]. The key innovation in the chapter is a novel pose change representation used to
model the motion of a collection of points pertaining to a given rigid body and the integration
of this model into a SLAM optimisation framework. The resulting algorithm is agnostic to the
underlying 3D-model of the object.
To the best of our knowledge, this is the first piece of work able to estimate, along with the
camera poses, the static and dynamic structure, the full SE(3) pose change of every rigid object
in the scene, extract object velocities and be demonstrable on a real-world outdoor dataset.

5.2 Methodology

In the following, we show how to model the motion of a rigid-object in a model free manner
based on point tracking. We propose a factor graph optimisation to estimate the camera and
object motion along with the environment static structure.

The problem considered is one in which there are relatively large rigid objects moving within
the sensing range of the robot that is undertaking the SLAM estimation. The SLAM front-end
is able to identify and associate points from the same potentially moving object at different time
steps. These points share an underlying motion constraint that can be exploited to improve the
quality of the SLAM estimation.

5.2.1 Background and notation

5.2.1.1 Coordinate frames

Let 0Xk,
0 Lk ∈ SE(3) be the robot/camera and the object 3D pose respectively, at time k in a

global reference frame 0, with k ∈ T the set of time steps. Note that calligraphic capital letters
are used to represent sets of indices. Fig. 5.2 shows these pose transformations as solid curves.

5.2.1.2 Object and 3D point motions

The object motion between times k − 1 and k is described by the homogeneous transformation
Lk−1

k−1Hk ∈ SE(3) according to:

Lk−1

k−1Hk =0 L−1
k−1

0Lk . (5.1)
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Figure 5.2: Notation and coordinate frames. Solid curves represent camera and object poses in inertial
frame; 0X and 0L respectively, and dashed curves their respective motions in body-fixed frame. Solid
lines represent 3D points in inertial frame, and dashed lines represent 3D points in camera frames.

Fig. 5.2 shows these motion transformations as dashed curves.
Let 0mi

k be the homogeneous coordinates of the ith 3D point at time k, with
0mi =

[
mi
x,m

i
y,m

i
z, 1
]> ∈ IE3 and i ∈M the set of points.

A point is written in its corresponding object frame as:

Lkmi
k = 0L−1

k
0mi

k . (5.2)

This is shown as a dashed vector from the object reference frame to the red dot in Fig. 5.2.
Substituting the object pose 0Lk at time k from (5.1), this becomes:

0mi
k = 0Lk

Lkmi
k = 0Lk−1

Lk−1

k−1Hk
Lkmi

k . (5.3)

Note that for rigid body objects, Lkmi
k stays constant at Lmi, and so

Lmi = 0L−1
k

0mi
k = 0L−1

k+n
0mi

k+n for any integer n ∈ Z. Then, for rigid objects, and with
n = −1, (5.3) becomes:

0mi
k = 0Lk−1

Lk−1

k−1Hk
0L−1

k−1
0mi

k−1 . (5.4)

(5.4) is crucially important as it relates the same 3D point on a rigid object in motion at con-
secutive time steps by a homogeneous transformation 0

k−1Hk := 0Lk−1
Lk−1

k−1Hk
0L−1

k−1. This
equation represents a frame change of a pose transformation [213], and shows how the body-
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fixed frame pose change Lk−1

k−1Hk relates to the global reference frame pose change 0
k−1Hk. The

point motion in global reference frame is then expressed as:

0mi
k = 0

k−1Hk
0mi

k−1 . (5.5)

(5.5) is at the core of our approach, as it expresses the rigid object pose change in terms of the
points that reside on the object without any knowledge about the object pose or 3D model/shape
in an object-aware, model-free manner. (5.5) essentially describes the full SE(3) motion of each
point on a moving object, and exploits the rigidity of the object to utilise all points on a dynamic
object and describe a single SE(3) pose change of the object 0

k−1Hk ∈ SE(3) expressed in a
global reference frame. It is thanks to the frame change of the pose transformation from the
object body-fixed frame to a global reference frame that the pose change of the object is now
independent of the object’s 3D pose and allows us to express the object’s motion without any
knowledge about the object 3D model or pose. For the remainder of this document, 0

k−1Hk is
referred to as the object pose change or the object motion for ease of reading.
Note that no assumptions about the motion of the object were made, and the resulting quantity
describing the object pose change is an element of the Special Euclidean group SE(3), obtained
by a multiplication of three SE(3) group elements, and describes the full motion of an object in
3D. Appendix section B.1 describes the object SE(3) pose change in a global reference frame in
the two particular cases of pure object translation and pure object rotation in body-fixed frame,
and the general case of an object translation and rotation in body-fixed frame.

5.2.1.3 Linear velocity extraction

While estimating the SE(3) pose change of moving objects in the scene might be very useful for
aerial applications, linear velocity of other vehicles on the road is more intuitive in urban driving
scenarios, and is crucial piece of information in autonomous driving applications. The linear
velocity of a point on an object, expressed in the inertial frame, can be estimated by applying
the pose change 0

k−1Hk and taking the difference

v ≈0 mi
k −0 mi

k−1 =
(

0
k−1Hk − I4

)0
mi
k−1

= 0
k−1tk − (I3 − 0

k−1Rk)
0mi

k−1. (5.6)
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To get a more reliable measurement, we average over all points on an object at a certain time.
Define ck−1 := 1

n

∑
mi
k−1 for all n points on an object at time k − 1. Then

v ≈ 1

n

n∑
i=1

(
0

k−1tk − (I3 − 0
k−1Rk)

0mi
k−1

)
= 0

k−1tk − (I3 − 0
k−1Rk) ck−1 , (5.7)

where 0
k−1Rk ∈ SO(3) and 0

k−1tk ∈ IR3 the rotation and translation components of 0
k−1Hk

respectively, I3 is the identity matrix, and ck−1 is the object’s centroid position at time k − 1.
As the proposed algorithm is sparse, we do not have access to the object’s centroid but rather
approximate it by the spatial mean of features detected on the object. (5.7) describes the linear
velocity of an object at a certain time, and its magnitude the object’s speed. A proof is added
in Appendix section B.2 to show that (5.7) is the same quantity in 3D as the translation vector
from the origin of the object pose at time {k − 1} to the origin of the object pose at time {k} as
seen in the global reference frame.

5.2.2 Graph optimisation

We model the dynamic SLAM problem as a factor graph. The factor graph formulation is highly
intuitive and has the advantage that it allows for efficient implementations of batch [32, 199] and
incremental [57, 214, 200] solvers.

X0 X1 X2

m1
0 m1

1 m1
2

0
0H

1
1

0
1H

2
2

1

(a)

X0 X1 X2

m1
0 m1

1 m1
2

0H1

1

(b)

Figure 5.3: Back-end various factor graph representations. (a): Factor graph representation of a
problem with multiple pose change vertices for the same object. (b): Factor graph representation of a
problem with a unique pose change vertex for the same object.

It has been shown that in dynamic SLAM, knowing the type of motion of the objects in the
environment is highly valuable [167]. In here, two scenarios are evaluated without and with
constant motion model:
• In city scenarios, where the objects motions are subject to changes (acceleration, deceleration,
etc.) modelling the motion is challenging. Therefore, we estimate for a new pose change at every



5.2. METHODOLOGY 67

time step. Fig. 5.3(a) shows a factor graph representation of such scenario where the motion of
the same object is estimated using two motions vertices for two different time transitions.
• A highway scenario, where every vehicle maintains a constant motion. Fig. 5.3(b) shows
the factor graph representation where a single motion is estimated per object. Furthermore, we
show that if the body-fixed frame pose change is constant then the reference frame pose change
is constant too. For any k − 1, k′ − 1 time indices, the constant motion in the body-fixed pose
change is:

Lk−1

k−1Hk = C =
Lk′−1

k′−1
Hk′ ∈ SE(3) . (5.8)

We rescale (5.1) and use (5.8) to obtain: 0Lk = 0Lk−1C which we replace in
0

k−1Hk = 0Lk−1 C
0L−1

k−1 to obtain:

0
k−1Hk = 0Lk C

0L−1
k = 0

kHk+1 . (5.9)

It follows that the reference frame pose change for a specific object j:
0

k−1H
j
k = 0Hj = 0

k′H
j
k′+1 ∈ SE(3) holds for any k, k′ time indices.

Three types of measurements/observations are integrated into a joint optimisation problem; the
3D point measurements, the visual odometry measurements, and the motion of points on a dy-
namic object. The 3D point measurement model error ei,k(

0Xk,
0 mi

k) is defined as:

ei,k(
0Xk,

0 mi
k) =0 X−1

k
0mi

k − zik . (5.10)

Here z = {zik | i ∈M, k ∈ T } is the set of all 3D point measurements at all time steps, with
cardinality nz and zik ∈ IR3. The 3D point measurement factors are shown as white circles in
Fig. 5.3.
The odometry model error ek(

0Xk−1,
0Xk) is defined as:

ek(
0Xk−1,

0Xk) = (0X−1
k−1

0Xk)
−1 Xk−1

k−1Tk , (5.11)

where T = {Xk−1

k−1Tk | k ∈ T } is the odometry measurement set with Xk−1

k−1Tk ∈ SE(3) and
cardinality no. The odometric factors are shown as orange circles in Fig. 5.3.
The motion model error of points on dynamic objects ei,l,k(

0mi
k,

0
k−1H

l
k,

0 mi
k−1) is defined as:

ei,l,k(
0mi

k,
0

k−1H
l
k,

0 mi
k−1) = 0mi

k − 0
k−1H

l
k

0mi
k−1 . (5.12)

The motion of all points on a detected rigid object l are characterised by the same pose transfor-
mation 0

k−1H
l
k ∈ SE(3) given by (5.5) and the corresponding factor, shown as magenta circles
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in Fig. 5.3, is a ternary factor which we call the motion model of a point on a rigid body.
Let θM = {0mi

k | i ∈ M, k ∈ T } be the set of all 3D points. We parameterise the SE(3)

camera pose by elements of the Lie-algebra x∧k ∈ se(3):

0Xk = exp(0x∧k ) , (5.13)

and define θX = {0xk | k ∈ T } as the set of all camera poses, with 0xk ∈ IR6. We parameterise
the SE(3) object motion 0

k−1H
l
k by elements 0

k−1h
l
k
∧ ∈ se(3) the Lie-algebra of SE(3):

0
k−1H

l
k = exp( 0

k−1h
l
k
∧

) , (5.14)

and define θH = { 0
k−1h

l
k | k ∈ T , l ∈ L} as the set of all object motions, with 0

k−1h
l
k ∈ IR6 and

L the set of all object labels. Given θ = θX ∪ θM ∪ θH as all the nodes in the graph, and using
the Lie-algebra parameterisation of SE(3) for X and H (substituting (5.13) in (5.10) and (5.11),
and substituting (5.14) in (5.12)), the solution of the least squares cost is given by:

θ∗ = argmin
θ

{ nz∑
i,k

ρh
(
e>i,k(

0xk,
0 mi

k) Σ−1
z ei,k(

0xk,
0 mi

k)
)

+

no∑
k

ρh
(
ek(

0xk−1,
0xk)

> Σ−1
o ek(

0xk−1,
0xk)

)
+

ng∑
i,l,k

ρh
(
e>i,l,k(

0mi
k,

0
k−1h

l
k,

0 mi
k−1) Σ−1

g ei,l,k(
0mi

k,
0

k−1h
l
k,

0 mi
k−1)

)}
, (5.15)

where Σz is the 3D point measurement noise covariance matrix, Σo is the odometry noise co-
variance matrix, and Σg is the motion noise covariance matrix with ng the total number of
ternary object motion factors. The non-linear least squares problem in (5.15) is solved using
Levenberg-Marquardt method.



5.3. SYSTEM 69

5.3 System
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Figure 5.4: System overview. Input images are used into an instance level object segmentation algorithm
to provide segmentation masks. The algorithm then detects and tracks features on potentially moving
objects. Potentially dynamic features along with tracked static features are used to build the graph, that is
then fed into the back-end for optimisation.

The system pipeline shown in Fig. 5.4 assumes a robot equipped with an RGB-D camera and
proprioceptive sensors (e.g. odometers, IMU). Our feature-based object-aware dynamic SLAM
back-end estimates the robot poses, the static and dynamic structure and pose transformations for
every detected object in the scene. To ensure features are being detected on moving objects, we
employ an instance-level object segmentation algorithm to produce instance level object masks.
Object segmentation constitutes an important prior in static/dynamic object classification and
tracking of dynamic objects. The front-end then makes use of object masks to detect features
on potentially-moving objects and on static background. Feature tracking is a crucial module
for the success of the proposed approach. Through object segmentation and feature tracking,
the SLAM front-end is able to identify and associate points on the same rigid-body object at
different time steps. These points share an underlying motion model that we exploit to achieve
simultaneous localisation, mapping and moving object tracking. The algorithm does not require
the front-end to estimate the objects’ pose or use any geometric model of the objects. The static
and dynamic 3D measurements along with the measurements from proprioceptive sensors are
integrated into the SLAM back-end to simultaneously estimate the camera motion, the static and
dynamic structure and the SE(3) pose transformations of the detected objects in the scene.

5.4 Experiments

The following experiments were performed to test: 1) the effect of various front-end components
on the camera and object motion estimation accuracy, 2) the performance of the proposed algo-
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rithm compared to a classical SLAM followed by moving object tracking from known camera
poses, and 3) the consistency of the proposed algorithm in various SLAM scenarios.

It is important to note that we do not claim better camera pose estimation accuracy compared
to classical SLAM systems (such as ORB-SLAM 2/3 [215, 216]) or SLAM systems that exclude
dynamic objects (such as [172]) in environments with sufficient static structure. We rather show
consistent results of the proposed approach in various scenarios, and emphasise that the main
advantage of this work is in the spatio-temporal representation of the world and the accurate
estimation of dynamic objects’ pose change. Comparison of the full system version of this
work versus state-of-the-art dynamic SLAM systems that integrate moving objects and estimate
their motion is included in the following chapter. Better camera and object motion estimation is
achieved.

5.4.1 Error metrics

The accuracy of the solution is evaluated vs ground-truth (GT) by comparing the Relative Trans-
lational Error (RTE) in %, that is the translational component of the error between the estimated
and GT robot pose changes. Similarly, the Relative Rotational Error (RRE) in ◦/m is the rota-
tional component of the same error. We also evaluate the Relative Structure Error (RSE) in % for
all static and dynamic landmarks, as the error between the corresponding relative positions of
the estimated and GT structure points. We also provide an evaluation of the object pose change
estimates; the Object Motion Translation Error (OMTE) in %, the Object Motion Rotational Er-
ror (OMRE) in ◦/m, calculated similar to the camera pose errors described in section 3.2.3 and
for driving scenarios, the Object Motion Speed Error (OMSE) in % calculated as the difference
between the ground truth speed and the extracted speed calculated from the object’s pose change
divided by the ground truth speed.

5.4.2 Virtual KITTI dataset

5.4.2.1 Description

Virtual KITTI [217] is a photo-realistic synthetic dataset that provides RGB-D videos from a
vehicle driving in an urban environment. Frames are fully annotated at the pixel level with
unique object tracking identifiers (needed for errors calculations). Ground truth information
about camera and object poses is also provided which makes it a perfect dataset to test and
evaluate the proposed technique.
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5.4.2.2 Goal

We make use of the ground truth data to test the effect of each component in the front-end on
the performance of the algorithm and the accuracy of the pose change estimation for the camera
and moving objects in the scene. The three aspects studied are errors in: a) depth/3D point
measurement, b) object segmentation, and c) feature tracking.

5.4.2.3 Implementation

Due to the fact that the initially proposed algorithm is sparse-based, object pose change estima-
tion is affected by the distribution of the extracted features on moving objects. Another important
aspect is the percentage of the object mask in the image. In the experiments reported in this sec-
tion, we only estimate for objects whose segmentation masks amount to a certain percentage of
the total image. This threshold ensures to exclude far-away and partially observed objects that
are entering/exiting the camera field of view and which makes their motion estimates inaccurate.
This threshold is set to 6% for vKITTI, and 2% for KITTI.
For all the tests reported in this subsection, odometry noise level is kept constant and GT is used
for every module of the front-end except the one being tested. Point measurement noise is only
varied when testing the effect of depth information, otherwise kept constant as explained below.

Effect of depth information We evaluate the performance of the proposed algorithm using
ground truth object segmentation, and feature tracking with odometry and varied point mea-
surement noise. The noise levels added are 5% for translational odometry in each axis, and
10% for rotational odometry around each axis. Three different noise levels, drawn from a nor-
mal distribution with zero mean and standard deviation σ1=0.02, σ2=0.04, and σ3=0.06 m in
each axis per observation, were tested. These noise levels correspond to commercially available
LiDAR system, and a RGB-D/stereo system respectively and a third higher value. We acknowl-
edge that noise models for LiDAR and RGB-D/stereo systems are different, in the sense that
RGB-D/stereo noise is heavily distance dependent, while the noise range for a LiDAR system
is relatively independent of the distance to the measured object. However, for the sake of sim-
plicity and to evaluate the effect of depth information, we model the noise as described above.
This is conceptually the same as replacing the depth input in the front-end with a stereo depth
estimation algorithm e.g. SPSS [218] or a single image depth estimation for a monocular system
e.g. [196]. Point measurement noise is kept at σ1 for further tests in this subsection. Effect of
different depth information noise levels on the camera and object motion estimation accuracy is
shown in Fig. 5.6.
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Figure 5.5: Comparison of optical flow and descriptor matching for feature tracking.

Effect of object segmentation This test aims at evaluating the effect of the object segmen-
tation while using GT feature tracking. We employ MASK-RCNN [5], learning based model,
for instance-level object segmentation. We perform evaluation tests of MASK-RCNN on all se-
quences of vKITTI and KITTI. Results for mean average precision (mAP) and mean intersection
over union for predictions only (mIOU_Pred) of the ‘car’ class are 0.513 and 0.557 for vKITTI
and 0.413 and 0.632 for KITTI. Number show good performance, however, testing the effect on
camera and object pose change estimation is crucial. MASK-RCNN represented the state-of-
the-art instance-level object segmentation algorithm at the time of carrying this research. Effect
of MASK-RCNN object segmentation on the camera and object motion estimation accuracy is
shown in Fig. 5.6.

Effect of feature tracking As the proposed algorithm is sparse feature-based, feature tracking
is an essential component of the front-end. In order to test the effect of feature tracking, we first
conduct tests on the quantity and quality of feature matches using 1) PWC-Net [118] and 2)
feature descriptor matching starting from the same number of detected features using FAST [60]
corner detection. Fig. 5.5 shows the number of total and object matches and their correspond-
ing end-point error (EPE), and then extends this test to show these values for “good matches";
matches with less than 3 pixels EPE. PWC-Net represented the state-of-the-art optical flow algo-
rithm at the time of carrying this research. The model is also fine-tuned on KITTI dataset, which
makes it a great choice for the application domains of this research. In this experiment, features
were described using ORB [61] descriptors. We then explore the effect of feature tracking using
optical flow and descriptor matching on the camera and object motion estimation while using
GT object segmentation. Results are shown in Fig. 5.6.
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Figure 5.6: Study of the effect of different front-end components on vKITTI.

5.4.2.4 Discussion

As shown in Fig. 5.6, the feature tracking is the most crucial component of the front-end and dic-
tates the performance of our feature-based algorithm. Fig. 5.5 and 5.6 show better performance
of optical flow over descriptor matching in terms of quantity and quality of features. Object
segmentation appears to have the least effect on the estimation quality.

5.4.3 Simulated data

5.4.3.1 Description

This experiment features a single simulated ellipsoid-shaped object tracked by a robot as it
follows a circular motion in an environment with no static structure. The object is simulated to
have a constant SE(3) pose change, and the estimation makes use of this piece of information to
estimate for a single object motion for all time steps. The simulation corresponds to a scenario
where only moving structure is visible, e.g. a vehicle on a bridge or inside a tunnel occluded by
other vehicles driving alongside and failing to track static structure.

5.4.3.2 Goal

This experiment is designed to show that the proposed approach provides good solutions in cases
where existing approaches to dynamic SLAM might fail. We compare the proposed algorithm
vs. parallel tracking and mapping, e.g. SLAM + Multiple Object Tracking (MOT) [173, 174,
175, 176].
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Table 5.1: Results of applying object-aware dynamic motion integration on simulated data.

Error SLAM+MOT Ours
RTE (%) 4.426 3.804

RRE (◦/m) 1.34 0.486
RSE (%) 8.019 4.177

OMTE (%) 20.946 4.018
OMRE (◦/m) 0.349 0.055
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Figure 5.7: Sample results on KITTI various sequences.

5.4.3.3 Discussion

Camera motion in the case of parallel SLAM+MOT is basically a direct integration of odometric
measurements. Results in Table 5.1 show the clear advantage of the proposed algorithm that
simultaneously estimates the camera and rigid object pose transformations. Improvements are
in the range of 80-85% in object pose change estimation. In an extreme case, where no static
structure is observed, the proposed algorithm not only improves the object motion estimates but
also the camera pose estimation. However, in an environment with enough static structure, both
algorithms yield very similar results as shown in the following.

5.4.4 KITTI dataset

5.4.4.1 Description

KITTI [194] has been a standard benchmark suite for a number of challenging real-world com-
puter vision tasks. We make use of the KITTI tracking dataset as it provides ground truth object
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poses in camera coordinate frame.

5.4.4.2 Goal

This experiment is designed to evaluate and showcase the performance of the proposed algo-
rithm on real-world challenging outdoor scenarios. In relevant dataset sequences, we compare
the results to classical static only SLAM (where dynamic objects are considered outliers) and to
SLAM+MOT solutions.
To demonstrate the generality of the approach and the fact that the proposed framework performs
well in any type of scenarios, we consider three different cases:
a) Classical SLAM: A moving robot equipped with an RGB-D camera in a static environment.
Seq.07 represents this case and shows that the proposed algorithm performs equally well in a
classical scenario with no dynamics and requires no prior knowledge or makes any prior as-
sumptions of the scene.
b) Multi-object tracking: A static camera in a dynamic environment as shown in seq.06. For this
specific data sequence, we consider a constant pose change assumption. Note that camera pose
change errors for this sequence are reported in meters and degrees.
c) Dynamic SLAM: A moving robot equipped with an RGB-D camera in a dynamic environ-
ment. In here we do the distinction between two sub-scenarios:
• A highway scenario, represented by seq.05, where every vehicle is assumed to have constant
motion. This allows us to constraint the problem by assuming a constant pose change model for
each detected object in the scene.
• Seq.01, seq.03 and seq.00 represent an intersection and other city driving scenarios, where
motion models are difficult to impose. In here, the factor graph formulation allows for the es-
timation of a new pose change vertex every time step. Seq.03 and seq.00 contain two objects
each, therefore the object motion error results are shown separated by a ‘/’. Seq.00 consists of
a “van” and a “cyclist” which slightly violates the rigidity assumption, yet our approach still
provides fairly good results.

5.4.4.3 Implementation

The three variants of SLAM; classical, SLAM + MOT, and dynamic are implemented and run
in GTSAM [219]. The tracking dataset is thought for camera-only based application, therefore
GPS and IMU measurements are fused and further corrupted with noise to simulate odometric
measurements available in a robotic (self-driving cars) scenario. The noise values are the same
as the ones explained in subsection 5.4.2.3, except seq.07, where twice the noise is added. In
autonomous driving, the literature normally distinguishes between depth different ranges for
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velocity estimation [16]: near (d < 20 m), medium (20 m ≤ d < 45 m) and far range (d > 45
m). In all KITTI experiments presented here, we only consider objects < 22 m of distance to
the camera (near and early medium range).

5.4.4.4 Discussion

All results show high accuracy in the estimation of pose change transformations and speeds
of moving objects. Results in Table 5.2 show a speed estimation accuracy in the range of 78-
97.5%. The second object in seq.03 and seq.00 are particularly hard to process. In seq.03,
the second object only occupies a small part of the image, dominated by its wheels having a
different motion than the vehicle, yet its speed estimate is reasonable. Seq.00 consists of a van
and a cyclist turning at very low speeds (< 5.5 m/s). Their motion estimation is particularly
hard because of association errors and the fact that a cyclist is a non-rigid object mostly formed
by wheels not obeying the motion model of the object. Although speed errors seem high in
percentage, they only account for an average speed error of 0.16 m/s for the van and 0.063 m/s
for the cyclist.

5.5 Conclusion

In this chapter, we proposed a novel framework that exploits semantic information in the scene
with no additional knowledge of the object pose or geometry, to achieve simultaneous localisa-
tion, mapping and tracking of dynamic objects. We showed that the use of a novel pose change
representation to model the motion of points pertaining to rigid bodies in motion and the inte-
gration of such model into a SLAM framework produces accurate results.
An important issue to be analysed in the future, is the computational complexity of SLAM with
dynamic objects. In long-term applications, different techniques can be applied to limit the
growth of the graph [220, 221]. The estimation could be enhanced even further by assuming a
constant motion within a temporal window and making use of this assumption to address oc-
clusions and reduce the problem size. Another possible extension is to use the SLAM back-end
estimates to improve the tracking accuracy of the front-end.
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Chapter 6
Visual Dynamic Object-aware SLAM

As this chapter mainly draws on the author’s work in collaboration with Jun Zhang, a letter
outlining the contribution of the author is included in Appendix C.1 and is agreed upon and
singed by both contributors of the work in order to avoid any conflict with the declaration of
originality signed at the beginning of the thesis.

6.1 Motivation

In the previous chapter, we have shown how to include the dynamics of the scene into the
SLAM estimation problem and generate static maps along with tracks and motion estimates
of dynamic objects. When dealing with dynamics of the environment, and as opposed to the
classical technique of detecting dynamics and rejecting them as outliers, estimating motion of
dynamic objects in the scene represents a challenge for SLAM systems operating in real life
scenarios, and adds a layer of complexity to the problem in terms of the computational power
and memory dedicated to handle the dynamic parts of the environment.

In this chapter, we propose VDO-SLAM, a novel feature-based stereo/RGB-D dynamic full
SLAM system, that builds on top of the dynamic SLAM approach introduced in chapter 5 and
leverages image-based semantic information to simultaneously localise the robot, map the static
and dynamic structure, and track motions of rigid objects in real world scenarios. VDO-SLAM
is considered an extension of the approach presented in chapter 5 into a full more robust and
computationally efficient dynamic SLAM system. The proposed approach draws from the work
“Robust Ego and Object 6-DoF Motion Estimation and Tracking” by Jun Zhang et al. to: 1) en-
sure better tracking of features on dynamic objects in the scene, 2) provide better camera and
object motion initialisation in the front-end component of the system, and 3) reduce the computa-
tional cost of the proposed system by utilising a scene flow-based motion segmentation module,

79
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and couples it with the back-end formulation introduced in “Dynamic SLAM: The Need for
Speed” by Mina Henein et al., and on top adds 1) a local batch optimisation module that ensures
consistency of the returned map, based on the fact that dynamic objects normally appear in one
local map, and 2) a way to utilise the back-end estimates to enhance the tracking accuracy of the
front-end.

Figure 6.1: Results of VDO-SLAM system. (Top) A full map including camera trajectory, static back-
ground and moving object structure. (Bottom) Detected points on static background and object body, and
estimated object speed. Black circles represents static points, and each object is shown with a different
colour.

In summary, the contributions of this chapter are:

• accurate estimation for SE(3) pose change of dynamic objects that outperforms state-of-
the-art algorithms,

• a robust method for tracking moving objects exploiting semantic information with the
ability to handle indirect occlusions resulting from the failure of semantic object segmen-
tation,

• a demonstrable full system in complex and compelling real-world scenarios.
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To the best of our knowledge, this is the first full dynamic SLAM system that is able to achieve
motion segmentation, dynamic object tracking, and estimate the camera poses along with the
static and dynamic structure, the full SE(3) pose change of every rigid object in the scene,
extract velocity information, and be demonstrable in real-world outdoor scenarios as shown in
Fig. 6.1. The performance of the proposed algorithm is demonstrated on real datasets and show
capability of the proposed system to resolve rigid object motion estimation and yield motion
results that are comparable to the camera pose estimation in accuracy and that outperform state-
of-the-art algorithms by an order of magnitude in urban driving scenarios.

6.2 Methodology

In the tracking component of the proposed system, shown in Fig. 6.3, the cost function cho-
sen to estimate the camera pose and object motion (described in section 6.2.2) is associated
with the 3D-2D re-projection error and is defined on the image plane. Since the noise is better
characterised in image plane, this yields more accurate results for camera localisation [222].
Moreover, based on this error term, we propose a novel formulation to jointly optimise the opti-
cal flow along with the camera pose and the object motion, to ensure a robust tracking of points
(described in section 6.2.2.3). In the mapping module, a 3D error cost function is used to ensure
best results of 3D structure and object motions estimation as described in section 6.2.3.

6.2.1 Background and notation

6.2.1.1 Points

A point is written in robot/camera frame as Xkmi
k =0 X−1

k
0mi

k. Define Ik the reference frame
associated with the image captured by the camera at time k chosen at the top left corner of the
image, and let Ikpik =

[
ui, vi, 1

]
∈ IE2 be the pixel location on frame Ik corresponding to the

homogeneous 3D point Xkmi
k, which is obtained via the projection function π(·) as follows:

Ikpik = π(Xkmi
k) = K Xkmi

k , (6.1)

where K is the camera projection matrix.

The camera and/or object motions both produce an optical flow Ikφi ∈ IR2 that is the dis-
placement vector indicating the motion of pixel Ik−1pik−1 from image frame Ik−1 to Ik, and is
given by:

Ikφi = Ik p̃ik − Ik−1pik−1 . (6.2)
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Here Ik p̃ik is the correspondence of Ik−1pik−1 in Ik. Note that the same notation is used to rep-
resent the 2D pixel coordinates ∈ IR2. In here, we leverage optical flow to find correspondences
between consecutive frames.

6.2.2 Camera pose and object motion estimation

6.2.2.1 Camera pose estimation

Given a set of static 3D points {0mi
k−1 | i ∈M, k ∈ T } observed at time k − 1 in global refer-

ence frame, and the set of 2D correspondences {Ik p̃ik | i ∈M, k ∈ T } in image Ik, the camera
pose 0Xk is estimated via minimizing the re-projection error:

ei(
0Xk) = Ik p̃ik − π(0X−1

k
0mi

k−1) . (6.3)

Using the Lie-algebra parameterisation of SE(3) with the substitution of (5.13) into (6.3), the
solution of the least squares cost is given by:

0x∗k = argmin
0xk

nb∑
i

ρh

(
e>i (0xk) Σ−1

p ei(
0xk)

)
(6.4)

for all nb visible 3D-2D static background point correspondences between consecutive frames.
Here ρh is the Huber function [223], and Σp is the covariance matrix associated with the re-
projection error. The estimated camera pose is given by 0X∗k = exp(0x∗∧k ) and is found using
the Levenberg-Marquardt algorithm to solve for (6.4).

6.2.2.2 Object motion estimation

Analogous to the camera pose estimation, a cost function based on re-projection error is con-
structed to solve for the object motion 0

k−1Hk. Using (5.5), the error term between the re-
projection of an object 3D point and the corresponding 2D point in image Ik is:

ei(
0

k−1Hk) := Ik p̃ik − π(0X−1
k

0
k−1Hk

0mi
k−1)

= Ik p̃ik − π( 0
k−1Gk

0mi
k−1) , (6.5)

where 0
k−1Gk ∈ SE(3). Parameterising 0

k−1Gk := exp
(

0
k−1g

∧
k

)
with 0

k−1g
∧
k ∈ se(3), the opti-

mal solution is found via minimising:

0
k−1g

∗
k = argmin

0
k−1gk

nd∑
i

ρh

(
e>i ( 0

k−1gk) Σ−1
p ei(

0
k−1gk)

)
(6.6)
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given all nd visible 3D-2D dynamic point correspondences on an object between frames k − 1

and k. The object motion, 0
k−1Hk = 0Xk

0
k−1Gk can be recovered afterwards.

6.2.2.3 Joint estimation with optical flow

The camera pose and object motion estimation both rely on good image correspondences. Track-
ing of points on moving objects can be very challenging due to occlusions, large relative motions
and large camera-object distances. In order to ensure a robust tracking of points, the technique
proposed aims at refining the estimation of the optical flow jointly with the motion estimation.

For camera pose estimation, the error term in (6.3) is reformulated considering (6.2) as:

ei(
0Xk,

Ik φ) = Ik−1pik−1 + Ikφi − π(0X−1
k

0mi
k−1) . (6.7)

Applying the Lie-algebra parameterisation of SE(3) element, the optimal solution is obtained
via minimising the cost function:

{0x∗k, kΦ∗k} = argmin
{0xk,kΦk}

nb∑
i

{
ρh
(
e>i (Ikφi) Σ−1

φ ei(
Ikφi)

)
+

ρh
(
e>i (0xk,

Ik φi) Σ−1
p ei(

0xk,
Ik φi)

)}
, (6.8)

where ρh(e>i (Ikφi) Σ−1
φ ei(

Ikφi)) is the regularization term with

ei(
Ikφi) = Ikφ̂i − Ikφi . (6.9)

Here IkΦ̂i = {Ikφ̂i | i ∈M, k ∈ T } is the initial optic-flow obtained through classical or learning-
based methods, and Σφ is the associated covariance matrix. Analogously, the cost function for
object motion in (6.6) combining optical flow refinement is given by

{0k−1g
∗
k,
kΦ∗k} = argmin

{0k−1gk,kΦk}

nd∑
i

{
ρh
(
e>i (Ikφi) Σ−1

φ ei(
Ikφi)

)
+

ρh
(
e>i ( 0

k−1gk,
Ik φi) Σ−1

p ei(
0

k−1gk,
Ik φi)

)}
. (6.10)

6.2.3 Graph optimisation

The proposed approach formulates the dynamic SLAM as a graph optimisation problem, to
refine the camera poses and object motions, and build a global consistent map including static
and dynamic structure. We model the dynamic SLAM problem as a factor graph as the one
demonstrated in Fig. 6.2.
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Figure 6.2: Factor graph representation of an object-aware SLAM system with a moving object.
Large black circles represent the camera poses at different time steps, blue circles represent three static
points, ref circles represent the same dynamic point on an object (dashed box) at different time steps and
green circles the object pose change between time steps. For ease of visualisation, only one dynamic
point is drawn here, however, at the time of estimation, all points on a detected dynamic object are used.
A prior unary factor is shown as a smaller black circle, odometry binary factors are shown as orange
circles, point measurement binary factors as white circles and point motion ternary factors as magenta
circles. A smooth motion binary factor is shown as cyan circle.

Four types of measurements/observations are integrated into a joint optimisation problem;
the 3D point measurements, the visual odometry measurements, the motion of points on a dy-
namic object as explained earlier in section 5.2.2 and the object smooth motion observations.
It has been shown that incorporating prior knowledge about the motion of objects in the scene
is highly valuable in dynamic SLAM [167, 224]. Motivated by the camera frame rate and the
physics laws governing the motion of relatively large objects (vehicles) and preventing their
motions to change abruptly, we introduce smooth motion factors to minimise the change in con-
secutive object motions, with the error term defined as:

el,k(
0

k−2H
l
k−1,

0
k−1H

l
k) = 0

k−2H
l
k−1
−1 0

k−1H
l
k. (6.11)

The object smooth motion factor el,k(
0

k−2H
l
k−1,

0
k−1H

l
k) is used to minimise the change between

the object motion at consecutive time steps and is shown as cyan circles in Fig. 6.2. The smooth
motion factor is considered a softer version of a constant velocity constraint. While vehicle
motion profiles are normally characterised by an acceleration phase, a constant velocity phase
and a deceleration phase, it is challenging in a visual SLAM framework to determine when to
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start and end each of these phases. We believe that the advances of learning based techniques
can provide important cues about the motion/intention of vehicles, and this can integrated in a
dynamic visual SLAM framework in future work.

Let θM = {0mi
k | i ∈M, k ∈ T } be the set of all 3D points, θX = {0xk | k ∈ T } as the set

of all camera poses, and θH = { 0
k−1h

l
k | k ∈ T , l ∈ L} as the set of all object motions. Given

θ = θX ∪ θM ∪ θH as all the nodes in the graph, and using the Lie-algebra parameterisation of
SE(3) for X and H (substituting (5.13) in (5.10) and (5.11), and substituting (5.14) in (5.12)
and (6.11)), the solution of the least squares cost is given by:

θ∗ = argmin
θ

{ nz∑
i,k

ρh
(
e>i,k(

0xk,
0 mi

k) Σ−1
z ei,k(

0xk,
0 mi

k)
)

+

no∑
k

ρh
(
ek(

0xk−1,
0xk)

> Σ−1
o ek(

0xk−1,
0xk)

)
+

ng∑
i,l,k

ρh
(
e>i,l,k(

0mi
k,

0
k−1h

l
k,

0 mi
k−1) Σ−1

g ei,l,k(
0mi

k,
0

k−1h
l
k,

0 mi
k−1)

)
+

ns∑
l,k

ρh
(
el,k(

0
k−2h

l
k−1,

0
k−1h

l
k)
> Σ−1

s el,k(
0

k−2h
l
k−1,

0
k−1h

l
k)
)}

, (6.12)

where Σz is the 3D point measurement noise covariance matrix, Σo is the odometry noise co-
variance matrix, Σg is the motion noise covariance matrix with ng the total number of ternary
object motion factors, and Σs the smooth motion covariance matrix, with ns the total num-
ber of smooth motion factors. The non-linear least squares problem in (6.12) is solved using
Levenberg-Marquardt method.

6.3 System

In this section, we propose a novel object-aware dynamic SLAM system that robustly estimates
both camera and object motions, along with the static and dynamic structure of the environment.
The full system overview is shown in Fig. 6.3. The system consists of three main components:
image pre-processing, tracking and mapping. The tracking component plays the role of the
system’s front-end, and the mapping component represents the system’s back-end module. The
input to the system is stereo or RGB-D images. For stereo images, as a first step, we extract depth
information by applying the stereo depth estimation method described in [218] to generate depth
maps and the resulting data is treated as RGB-D.

Although this system was initially designed to be an RGB-D system, as an attempt to fully
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Figure 6.3: Overview of VDO-SLAM system. Input images are first pre-processed to generate instance-
level object segmentation and dense optical flow. These are then used to track features on static back-
ground structure and dynamic objects. Camera poses and object motions estimated from feature tracks
are then refined in a global batch optimisation, and a local map is maintained and updated with every
new frame. The system outputs camera poses, static structure, tracks of dynamic objects, and estimates
of their pose changes over time.

exploit image-based semantic information, we apply single image depth estimation to achieve
depth information from monocular camera. Our “learning-based monocular” system is monoc-
ular in the sense that only RGB images are used as input to the system, however the estimation
problem is formulated using RGB-D data, where the depth is obtained using single image depth
estimation.

6.3.1 Pre-processing

There are two challenging aspects that this module needs to fulfil. First, to robustly separate
static background and objects, and secondly to ensure long-term tracking of dynamic objects.
To achieve this, we leverage recent advances in computer vision techniques for instance level se-
mantic segmentation and dense optical flow estimation in order to ensure efficient object motion
segmentation and robust object tracking.

6.3.1.1 Object instance segmentation

Instance-level semantic segmentation is used to segment and identify potentially movable ob-
jects in the scene. Semantic information constitutes an important prior in the process of sepa-
rating static and moving object points, e.g., buildings and roads are always static, but cars can
be static or dynamic. Instance segmentation helps to further divide semantic foreground into
different instance masks, which makes it easier to track each individual object. Moreover, seg-
mentation masks provide a “precise” boundary of the object body that ensures robust tracking
of points on the object.
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6.3.1.2 Optical flow estimation

The dense optical flow is used to maximise the number of tracked points on moving objects.
Most of the moving objects only occupy a small portion of the image. Therefore, using sparse
feature matching does not guarantee robust nor long-term feature tracking. Our approach makes
use of dense optical flow to considerably increase the number of object points by sampling from
all the points within the semantic mask. Dense optical flow is also used to consistently track
multiple objects by propagating a unique object identifier assigned to every point on an object
mask. Moreover, it allows to recover objects masks if semantic segmentation fails; a task that is
extremely difficult to achieve using sparse feature matching.

6.3.2 Tracking

The tracking component includes two modules; the camera ego-motion tracking with sub-modules
of feature detection and camera pose estimation, and the object motion tracking including sub-
modules of dynamic object tracking and object motion estimation.

6.3.2.1 Feature detection

To achieve fast camera pose estimation, we detect a sparse set of corner features and track them
with optical flow. At each frame, only inlier feature points that fit the estimated camera motion
are saved into the map, and used to track correspondences in the next frame. New features
are detected and added, if the number of inlier tracks falls below a certain level. These sparse
features are detected on static background; image regions excluding the segmented objects.

6.3.2.2 Camera pose estimation

The camera pose is computed using (6.8) for all detected 3D-2D static point correspondences.
To ensure robust estimation, a motion model generation method is applied for initialisation.
Specifically, the method generates two models and compares their inlier numbers based on re-
projection error. One model is generated by propagating the camera previous motion, while the
other by computing a new motion transform using P3P [225] algorithm with RANSAC. The
motion model that generates most inliers is then selected for initialisation.

6.3.2.3 Dynamic object tracking

The process of object motion tracking consists of two steps. In the first step, segmented objects
are classified into static and dynamic. Then we associate the dynamic objects across pairs of
consecutive frames.
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• Instance-level object segmentation allows us to separate objects from background. Although
the algorithm is capable of estimating the motions of all the segmented objects, dynamic object
identification helps reduce computational cost of the proposed system. This is done based on
scene flow estimation as described in section 3.2.1.4. Unlike optical flow, scene flow−ideally
only caused by scene motion−can directly decide whether some structure is moving or not.
Ideally, the magnitude of the scene flow vector should be zero for all static 3D points. However,
noise or error in depth and matching complicates the situation in real scenarios. To robustly
handle this, we compute the scene flow magnitude of all the sampled points on each object. If
the magnitude of the scene flow of a certain point is greater than a predefined threshold, the
point is considered dynamic. This threshold was set to 0.12 in all the experiments carried in this
chapter. An object is then recognised dynamic if the proportion of “dynamic” points is above
a certain level (30% of total number of points), otherwise static. Thresholds to identify if an
object is dynamic were deliberately chosen as mentioned above, to be more conservative as the
system is flexible to model a static object as dynamic and estimate a zero motion at every time
step, however, the opposite would degrade the system’s performance.
• Instance-level object segmentation only provides single-image object labels. Objects then
need to be tracked across frames and their motion models propagated over time. We propose
to use optical flow to associate point labels across frames. A point label is the same as the
unique object identifier on which the point was sampled. We maintain a finite tracking label
set L ⊂ N, where l ∈ L starts from l = 1 for the first detected moving object in the scene. The
number of elements in L increases as more moving objects are being detected. Static objects and
background are labelled with l = 0. Ideally, for each detected object in frame k, the labels of all
its points should be uniquely aligned with the labels of their correspondences in frame k − 1.
However, in practice this is affected by the noise, image boundaries and occlusions. To overcome
this, we assign all the points with the label that appears most in their correspondences. For a
dynamic object, if the most frequent label in the previous frame is 0, it means that a previously
static object starts to move, or a new dynamic object enters the scene, or a previously dynamic
and occluded object reappears. In this case, the object is assigned a new tracking label. For
partially occluded objects, the same object label is kept across frames, as long as the object is
successfully segmented by the instance-level object segmentation algorithm.

6.3.2.4 Object motion estimation

As mentioned above, objects normally appear in small portions in the scene, which makes it
hard to get sufficient sparse features to track and estimate their motions robustly. We sample
every third point within an object mask, and track them across frames. Similar to the camera
pose estimation, only inlier points are saved into the map and used for tracking in the next frame.
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When the number of tracked object points decreases below a certain level, new object points are
sampled and added. We follow the same method as discussed in section 6.3.2.2 to generate an
initial object motion model.

6.3.3 Mapping

In the mapping component, a global map is constructed and maintained. Meanwhile, a local
map is extracted from the global map, which is based on the current time step and a window of
previous time steps. Both maps are updated via a batch optimisation process.

6.3.3.1 Local batch optimisation

We maintain and update a local map. The goal of the local batch optimisation is to ensure ac-
curate camera pose estimates are provided to the global batch optimisation. The camera pose
estimation has a big influence on the accuracy of the object motion estimation and the overall
performance of the algorithm. The local map is built using a fixed-size sliding window con-
taining the information of the last nw frames, where nw is the window size. Local maps share
some common information; this defines the overlap between the different windows. We choose
to only locally optimise the camera poses and static structure within the window size, as locally
optimising the dynamic structure does not bring any benefit to the optimisation unless a hard
constraint (e.g. a constant object motion) is assumed within the window. However, the system
is able to incorporate static and dynamic structure in the local mapping if needed. When a local
map is constructed, similarly, a factor graph optimisation is performed to refine all the variables
within the local map, and then update them back into the global map.

6.3.3.2 Global batch optimisation

The output of the tracking component and the local batch optimisation consists of the camera
pose, the object motions and the inlier structure. These are saved in a global map that is con-
structed with all the previous time steps and is continually updated with every new frame. A
factor graph is constructed based on the global map after all input frames have been processed.
To effectively explore the temporal constraints, only points that have been tracked for more than
3 instances are added into the factor graph. The graph is formulated as an optimisation problem
as described in section 6.2.3. The optimisation results serve as the output of the whole system.

6.3.3.3 From mapping to tracking

Maintaining the map provides history information to the estimate of the current state in the
tracking module, as shown in Fig. 6.3 with blue arrows going from the global map to multiple



90 CHAPTER 6. VISUAL DYNAMIC OBJECT-AWARE SLAM

components in the tracking module of the system. Inlier points from the last frame are leveraged
to track correspondences in the current frame and estimate camera pose and object motions.
The last camera and object motion also serve as possible prior models to initialise the current
estimation as described in section 6.3.2.2 and 6.3.2.4. Furthermore, object points help associate
semantic masks across frames to ensure robust tracking of objects, by propagating their previ-
ously segmented masks in case of “indirect occlusion” resulting from the failure of semantic
object segmentation.

6.4 Experiments

We evaluate the proposed method in terms of camera motion, object motion and velocity, as well
as object tracking performance. The evaluation is done on the Oxford Multimotion Dataset [226]
for indoor, and KITTI Tracking dataset [227] for outdoor scenarios. We first evaluate our system
versus ORB-SLAM2 [215] as a baseline for the camera pose estimation. We also compare
results to two state-of-the-art methods, MVO [178] and CubeSLAM [13], to prove the better
performance of VDO-SLAM.

6.4.1 System setup

We adopt a learning-based instance-level object segmentation, Mask R-CNN [5], to generate
object segmentation masks. The model of this method is trained on COCO dataset [228], and is
directly used without any fine-tuning. MASK-RCNN represented the state-of-the-art instance-
level object segmentation algorithm at the time of carrying this research. For dense optical flow,
we leverage a state-of-the-art method; PWC-Net [118]. PWC-Net represented the state-of-the-
art dense optical flow algorithm at the time of carrying this research. The model is trained on Fly-
ingChairs dataset [229], and then fine-tuned on Sintel [230] and KITTI training datasets [194],
which makes it a great choice for the application domains of this work. To generate depth maps
for a “monocular” version of the proposed system, we apply a learning-based monocular depth
estimation method, MonoDepth2 [196]. The model is trained on Depth Eigen split [231] exclud-
ing the tested data in the experiments reported here. Feature detection is done using FAST [60]
implemented in [61].

6.4.2 Error metrics

We use a pose change error metric to evaluate the estimated SE(3) motion, i.e., given a ground
truth motion transform T and a corresponding estimated motion T̂ , where T ∈ SE(3) could
be either a camera relative pose or an object motion. The pose change error is computed as:
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E = T̂−1 T . The translational error Et is computed as the L2 norm of the translational com-
ponent of E. The rotational error Er is calculated as the angle of rotation in an axis-angle
representation of the rotational component of E. For different camera time steps and different
objects in a sequence, we compute the root mean squared error (RMSE) for camera poses and
object motions, respectively. The object pose change in body-fixed frame is obtained by trans-
forming the pose change 0

k−1Hk in the inertial frame into the body frame using the object pose
ground-truth

Lk−1

k−1Hk =0 L−1
k−1

0
k−1Hk

0Lk−1. (6.13)

We also evaluate the object speed error Es between the estimated v̂ and the ground truth v

velocities, calculated as: Es = |v̂| − |v|. The linear velocity extraction from the object SE(3)

pose change was described in section 5.2.1.3 in chapter 5. For different objects tracked over
temporal frames, we also compute the RMSE as an error metric.

6.4.3 Oxford multi-motion dataset

The recent Oxford Multi-motion Dataset [226] contains sequences from a moving stereo or
RGB-D camera sensor observing multiple swinging boxes or toy cars in an indoor scenario.
Ground truth trajectories of the camera and moving objects are obtained via a Vicon motion
capture system. We only choose the swinging boxes sequences for evaluation, since results of
real driving scenarios are evaluated on KITTI dataset. Table 6.1 shows results compared to the
state-of-the-art MVO [178]. As MVO is a visual odometry system without global refinement,
we switch off the batch optimisation module of the proposed system and generate results for fair
comparison. We use the error metrics described in section 6.4.2.

Table 6.1: Comparison versus MVO [178] for camera and object motion estimation accuracy on the
sequence of swinging_4_unconstrained sequence in Oxford Multi-motion dataset. Bold numbers indicate
the better results.

Proposed MVO

Er(deg) Et(m) Er(deg) Et(m)

Camera 0.4525 0.0163 1.0742 0.0338
Top-left Swinging Box 1.0175 0.0302 2.9025 0.0685

Top-right Swinging and rotating Box 1.3567 0.0229 1.4540 0.0212
Bottom-left Swinging Box 1.6356 0.0290 2.9765 0.0502
Bottom-right Rotating Box 1.7507 0.0261 1.3489 0.0117

Overall, the proposed method achieves better accuracy in 7 out of 10 error indexes for cam-
era pose estimation and motion estimation of the 4 moving boxes. In particular, our method
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achieves 50% improvements in estimating the camera pose and motion of the swinging boxes,
top-left and bottom-left. We obtain slightly higher errors when there is spinning motion of the
object observed, in particular the top-right swinging and rotating box, and the bottom-right rotat-
ing box. Interestingly, the proposed algorithm performs worse than MVO [178] in these cases,
and we believe that this is due to the challenging tracking of features on spinning objects us-
ing optical flow. As VDO-SLAM is feature-based, it is best suited for the motion of relatively
large objects (e.g. urban driving scenarios) where features exhibit a significant motion between
frames. The consequence of this is poor estimation of point motion and consequent degrada-
tion of the overall object tracking performance. Even with the associated performance loss for
rotating objects, the benefits of dense optical flow motion estimation is clear in the other metrics.

Figure 6.4: Qualitative results of the proposed method on Oxford Multi-motion Dataset. (Left) The
3D map including camera trajectory, static structure and tracks of dynamic points. (Right) Detected points
on static background and object body. Black color corresponds to static points and features on each object
are shown in a different color.

An illustrative result of the map output of the proposed system on Oxford Multi-motion
Dataset is shown in Fig. 6.4. Tracks of dynamic features on swinging boxes visually correspond
to the actual motion of the boxes. This can be clearly seen in the swinging motion of the bottom-
left box shown with purple colour in Fig. 6.4.

6.4.4 KITTI tracking dataset

The KITTI Tracking Dataset [227] contains 21 sequences in total with ground truth information
about camera and object poses. Among these sequences, some are not included in the evaluation
of the proposed system; as they contain no moving objects (static only scenes) or only contain
pedestrians that are non-rigid objects, which is outside the scope of this work.
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Table 6.2: Comparison versus ORB-SLAM2 [215] for camera pose estimation accuracy on nine
sequences with moving objects drawn from the KITTI dataset. Bold numbers indicate the better results.

Proposed ORB-SLAM2

seq. Er(deg) Et(m) Er(deg) Et(m)

00 0.05 0.05 0.04 0.06
01 0.04 0.12 0.05 0.04
02 0.02 0.04 0.04 0.03
03 0.04 0.09 0.07 0.04
04 0.05 0.11 0.07 0.06
05 0.02 0.10 0.06 0.03
06 0.05 0.02 0.02 0.04
18 0.02 0.07 0.05 0.03
20 0.03 0.16 0.11 0.07

Figure 6.5: Accuracy of object motion estimation of the proposed method compared to
CubeSLAM [13]. The color bars refer to translation error that is corresponding to the left Y-axis in
log-scale. The curves refer to rotation error, which corresponds to the right Y-axis in linear-scale.

6.4.4.1 Camera and object motion

Table 6.2 shows results of camera pose estimation in 9 sequences compared to ORB-SLAM2 [215].
While the biggest performance advantage of our algorithm is in the object motion estimation,
this experiment is provided to show that our system achieves comparable camera pose estima-
tion results to state-of-the-art SLAM systems [215].
Table 6.3 demonstrates results of both camera and object motion estimation in 9 sequences,
compared to CubeSLAM [13], with results of 5 sequences provided by the authors. We ini-
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tially tried to evaluate CubeSLAM ourselves with the default provided parameters, however
errors were much higher, and hence we only report results of the sequences provided by the
authors of CubeSLAM after some correspondences. As CubeSLAM is for monocular camera,
we also compute results of a learning-based monocular version of our method (as mentioned in
section 6.3) for fair comparison.

Overall, both the proposed RGB-D and learning-based monocular methods obtain high ac-
curacy in both camera and object motion estimation. Compared to CubeSLAM, our RGB-D
version gets lower errors in camera motion, while the learning-based monocular version slightly
higher. Nevertheless, both versions obtain consistently lower errors in object motion estimation.
In particular, as demonstrated in Fig. 6.5, the translation and rotation errors in CubeSLAM are
all above 3 meters and 3 degrees, with errors reaching 32 meters and 5 degrees in extreme cases
respectively. However, the translation errors of the proposed system vary between 0.1-0.3 me-
ters and rotation errors between 0.2-1.5 degrees in case of RGB-D, and 0.1-0.3 meters, and 0.4-3
degrees in case of learning-based monocular, which indicates that our object motion estimation
achieves an order of magnitude improvements.

6.4.4.2 Object tracking and velocity

We also demonstrate the performance of tracking dynamic objects, and show results of ob-
ject speed estimation, which is an important information for autonomous driving applications.
Fig. 6.6 illustrates results of object tracking length and object speed for some selected objects
(tracked for over 20 frames) in all the tested sequences. Our system is able to track most objects
for more than 80% of their occurrence in the sequence. Moreover, the estimated objects speed
is always consistently close to the ground truth.
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Figure 6.6: Tracking performance and speed estimation. Results of object tracking length and object
speed for some selected objects (tracked for over 20 frames), due to limited space. The color bars rep-
resent the length of object tracks, which is corresponding to the left Y-axis. The circles represent object
speeds, which is corresponding to the right Y-axis. GT refers to ground truth, and EST. refers to estimated
values.

6.4.4.3 Qualitative results

Fig. 6.7 illustrates the output of the proposed system for three of the KITTI sequences. The
proposed system is able to output the camera poses, along with the static structure and dynamic
tracks of every detected moving object in the scene in a spatio-temporal map representation.
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Figure 6.7: Illustration of system output; a dynamic map with camera poses, static background
structure, and tracks of dynamic objects. Sample results of VDO-SLAM on KITTI sequences. Black
represents static background, and each detected object is shown in a different colour. Top left figure
represents seq.01 and a zoom-in on the intersection at the end of the sequence, top right figure represents
seq.06 and bottom figure represents seq.03.

6.4.5 Discussion

Apart from the extensive evaluation in section 6.4.4 and 6.4.3, we also provide detailed exper-
imental results to prove the effectiveness of key modules in the proposed system. Finally, the
computational cost of the proposed system is discussed.

6.4.5.1 Robust tracking of points

The graph optimisation explores the spacial and temporal information to refine the camera poses
and the object motions, as well as the static and dynamic structure. This process requires robust
tracking of good points in terms of both quantity and quality. This was achieved by refining the
estimated optical flow jointly with the motion estimation, as discussed in section 6.2.2.3. The
effectiveness of joint optimisation is shown by comparing a baseline method that only optimises
for the motion (Motion Only) using (6.4) for camera motion or (6.6) for object motion, and
the improved method that optimises for both the motion and the optical flow (Joint) using (6.8)
or (6.10). Table 6.4 demonstrates that the joint method obtains considerably more points that are
tracked for long periods.
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Table 6.4: Quantitative point tracking performance of joint estimation with optical flow versus
motion only estimation. The number of points tracked for more than five frames on the nine sequences
of the KITTI dataset. Bold numbers indicate the better results. Underlined bold numbers indicate an
order of magnitude increase in number.

Background Object
seq Motion Only Joint Motion Only Joint

00 1798 12812 1704 7162
01 237 5075 907 4583
02 7642 10683 52 1442
03 778 12317 343 3354
04 9913 25861 339 2802
05 713 11627 2363 2977
06 7898 11048 482 5934
18 4271 22503 5614 14989
20 9838 49261 9282 13434

Using the tracked points given by the joint estimation process leads to better estimation of
both camera pose and object motion. An improvement of about 15% to 20% in translation and
rotation errors was observed over the nine sequences of the KITTI dataset shown above. See
Table 6.5.

Table 6.5: Effect of joint estimation with optical flow versus motion only estimation on the camera
and object motion estimation accuracy. Average camera pose and object motion errors over the nine
sequences of the KITTI dataset. Bold numbers indicate the better results.

Motion Only Joint
Er(deg) Et(m) Er(deg) Et(m)

Camera 0.0412 0.0987 0.0344 0.0854
Object 1.0179 0.1853 0.8305 0.1606

6.4.5.2 Robustness against non-direct occlusion

The mask segmentation may fail in some cases, due to direct or indirect occlusions (illumination
change, etc.). Thanks to the mask propagation method described in section 6.3.3.3, the proposed
system is able to handle mask failure cases caused by indirect occlusions. Fig. 6.8 demonstrates
an example of tracking a white van for 80 frames, where the mask segmentation fails in 33

frames. Despite the object segmentation failure, the system is still continuously able to track
the van, and estimate its speed with an average error of 2.64 km/h across the whole sequence.
Speed errors in the second half of the sequence are higher due to partial direct occlusions, and
increased distance to the object getting farther away from the camera.
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Figure 6.8: Robustness in tracking performance and speed estimation in case of semantic segmen-
tation failure.
An example of tracking performance and speed estimation for a white van (ground-truth average speed
20km/h) in seq.00. (Top) Blue bars represent a successful object segmentation, and green curves re-
fer to the object speed error. (Bottom-left) An illustration of semantic segmentation failure on the van.
(Bottom-right) Result of propagating the previously tracked features on the van.

6.4.5.3 Global refinement of object motion

Initial object motion estimation (in the tracking component of the system) is independent be-
tween frames, since it is purely related to the sensor measurements. As illustrated in Fig. 6.9,
the blue curve describes an initial object speed estimate of a wagon observed for 55 frames in
sequence 03 of the KITTI tracking dataset. As seen in the figure, the speed estimation is not
smooth and large errors occur towards the second half of the sequence. This is mainly caused by
the increased distance to the object getting farther away from the camera, and its structure only
occupying a small portion of the scene. In this case, the object motion estimation from sensor
measurements solely becomes challenging and error-prone. Therefore, we formulate a factor
graph and refine the motions together with the static and dynamic structure as discussed in sec-
tion 6.2.3. The green curve in Fig. 6.9 shows the object speed results after the global refinement,
which becomes smoother in the first half of the sequence and is significantly improved in the
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second half.

Figure 6.9: Global refinement effect on object motion estimation. The initial (blue) and refined (green)
estimated speeds of a wagon in seq.03, travelling along a straight road, compared to the ground truth speed
(red).

6.4.5.4 Computational analysis

Finally, we provide the computational analysis of the proposed system. The experiments are
carried out on an Intel Core i7 2.6 GHz laptop computer with 16 GB RAM. The object semantic
segmentation and dense optical flow computation times depend on the GPU power and the CNN
model complexity. Many current state-of-the-art algorithms can run in real time [232, 233]. In
this work, the semantic segmentation and optical flow results are produced off-line as input to
the system. The SLAM system is implemented in C++ on CPU using a modified version of g2o
as a back-end [54]. We show the computational time in Table 6.6 for both datasets. In the local
batch optimisation, the window size is set to 20 frames with an overlap of 4 frames. The time
cost of every system component is averaged over all frames, and sequences. Overall, the tracking
part of the proposed system is able to run at the frame rate of 5-8 fps depending on the num-
ber of detected moving objects, which can be improved by employing parallel implementation.
The runtime of the global batch optimisation strongly depends on the amount of camera poses
(number of frames), and objects (density in terms of the number of dynamic objects observed
per frame) present in the scene.
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Table 6.6: Runtime of different system components for both datasets. The time cost of every compo-
nent is averaged over all frames and sequences, except for the object motion estimation that is averaged
over the number of objects, and local batch optimisation that is averaged over the number of frames.

Dataset Tasks Runtime (mSec)

KITTI

Feature Detection 16.2550
Camera Pose Estimation 52.6542

Dynamic Object Tracking 11.4828
Object Motion Estimation (avg/object) 22.9081

Map and Mask Updating 22.1830
Local Batch Optimisation (avg /frame) 18.2828

OMD

Feature Detection 7.5220
Camera Pose Estimation 32.0909

Dynamic Object Tracking 28.0535
Object Motion Estimation (avg/object) 19.5280

Map and Mask Updating 30.3153
Local Batch Optimisation (avg /frame) 15.3414

6.5 Conclusion

In this chapter, we have presented VDO-SLAM, a novel dynamic feature-based SLAM system
that exploits image-based semantic information in the scene with no additional knowledge of the
object pose or geometry, to achieve simultaneous localisation, mapping and tracking of dynamic
objects. The system consistently shows robust and accurate results on indoor and challenging
outdoor datasets, and achieves state-of-the-art performance in object motion estimation. We
believe the high performance accuracy achieved in object motion estimation is due to the fact
that our system is a feature-based system. Feature points remain to be the easiest to detect,
track and integrate within a SLAM system, and that require the front-end to have no additional
knowledge about the object model, or explicitly provide any information about its pose.

Due to the fact that our VDO-SLAM system is a feature-based system, the performance
of the system is sensitive to the quality of feature detection and tracking which is challenging
in dynamic environments. While optical flow learning-based methods seem to have achieved
great results in indoor and outdoor scenarios, our algorithm might experience a performance
degradation in situations where optical flow might suffer, e.g. spinning motion of objects in
Oxford multi-motion dataset. The object size in the image also represents a challenge to our
system. A failure in object segmentation due to the increased distance of the object to the
camera and the small portion of the image the object occupies will result in no motion estimates
for such objects. Even if distant objects are detected and a segmentation mask is available,
feature detection and tracking on such objects is very challenging. The apparent motion of
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distant objects is hard to observe and thus pixel displacements on such objects are challenging
to estimate. This might result in an overall degraded performance of our system. We however
believe that this is not a great problem, as distant objects do not contribute much to the current
dynamic map representation and their motion is not of great importance for the robot state.

An important issue to be reduced is the computational complexity of SLAM with dynamic
objects. In long-term applications, different techniques can be applied to limit the growth of the
graph [220, 221]. In fact, history summarisation/deletion of map points pertaining to dynamic
objects observed far in the past seems to be a natural step towards a long-term SLAM system in
highly dynamic environments.



Chapter 7
Open-source Code

One of the contributions of this thesis is an open source code that is made available for the
community to test, develop and extend the work achieved in this thesis.
We present 2 systems implementation; the first system is a MATLAB implementation, and was
initially developed to integrate structure information into a SLAM framework (Entity SLAM
in section 7.1.1), and then extended to incorporate dynamic information (DO-SLAM in section
7.1.2). The second system is a C++ implementation that represents a single full system to include
semantic and dynamic information into a SLAM framework (VDO-SLAM in section 7.2.1).

7.1 MATLAB implementation

7.1.1 Entity SLAM

We first introduce “Entity SLAM” [https://github.com/MinaHenein/Entity-SLAM/wiki], an ex-
tension of classical graph-based SLAM to include higher level entities. We mainly focus on
the integration of planar surfaces and introduce planarity (point-plane factor (4.3) in chapter 4),
orthogonality and parallelism (plane-plane factors (4.4) in chapter 4) constraints to improve the
estimation accuracy in Manhattan-like environments.
The framework is implemented in MATLAB and the object oriented design allows for extension
to other primitives and/or information to be integrated.
Modules in the front-end allow the generation of various camera trajectories and map/environ-
ment configurations, and the corresponding measurements. The front-end and back-end modules
are decoupled, and communicate through graph files. This allows for plug-and-play modules to
replace the front-end and/or back-end for testing/developing reasons.
The back-end implements a NLS optimisation. Gauss-Newton and Levenberg-Marquardt non-
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Figure 7.1: Entity SLAM code overview.

linear solvers are implemented. The general implementation overview is shown in Fig. 7.1 and
a documentation is included for ease of use.

7.1.2 Dynamic Object-aware SLAM

The second source code that is made publicly available is “Dynamic Object-aware SLAM”
(DO-SLAM) [https://github.com/MinaHenein/do-slam], a feature-based object-aware dynamic
SLAM system. This work is an extension of a MATLAB framework (Entity SLAM) that is able
to integrate not only simple point measurements but also additional available information about
the environment into a single SLAM framework. Added information could be in the form of
structural, geometric, kinematic, dynamic or even semantic constraints, although only structure
information is implemented in Entity SLAM.
The framework consists of:

1. a simulation component that can reproduce several dynamic environments as shown in
Fig. 7.2;

2. a front-end that generates the data for the SLAM problem by tracking features, objects

https://github.com/MinaHenein/do-slam
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and providing point associations using simulated or real data inputs;

3. a back-end component that includes different non-linear solvers for batch and incremental
processing.

The same code architecture as shown in Fig. 7.1 holds for DO-SLAM.
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Figure 7.2: Examples of simulated dynamic environments. Ellipsoid rigid objects are simulated to have
different trajectories, different camera trajectories can also be simulated, and static background points can
be added. A limited field of view camera is shown, with red points being the ones observed at that time
step.
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7.2 C++ implementation

7.2.1 Visual Dynamic Object-aware SLAM

The last publicly available source code that we provide for the benefit of the community is
“Visual Dynamic Object-aware SLAM” (VDO-SLAM) that can be found on [https://github.com/
halajun/VDO_SLAM], a feature-based object-aware full SLAM system that exploits semantic
image-based information to achieve robustness and consistency in various scenarios including
challenging highly-dynamic environments. As opposed to Entity SLAM and DO-SLAM where
the main focus was on the back-end, VDO-SLAM is a full RGB-D SLAM system as is explained
in chapter 5.

7.3 Features

7.3.1 Graph-files

The concept of a graph-file was introduced with the increased interest in graph-based SLAM.
A graph-file is mainly a text file that serves as an easy and memory efficient tool to store graph-
based SLAM data. Like graph-based SLAM, a graph-file consists of vertices and edges. Each
line of the text file represents an entry in the graph; a graph vertex or edge. A typical SLAM
graph-file uses “tags” or “keywords” to identity the type of vertex or edge (e.g. VERTEX_SE2
for a robot/camera pose in 2D, EDGE_SE2 for an odometry edge between 2 robot poses in 2D
as defined in g2o graph files).

As an attempt to unify graph-file formats across different SLAM systems:

• we introduce a new graph-file that follows the same structure of a typical graph-file,

• we define our own tags/keywords for different vertices and edges types

• we provide examples of simple 3D classical SLAM problems that include robot poses,
and point positions vertices, odometry and point-measurement edges

• we introduce new vertices and edges type, for a SLAM system that utilise structure and
dynamic information, and

• we provide examples of graph-files of SLAM systems that utilise structure and dynamic
information

https://github.com/halajun/VDO_SLAM
https://github.com/halajun/VDO_SLAM
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• we provide MATLAB conversion functions to convert between our graph-files format and
the most commonly used formats; GTSAM [32] and g2o [54] graph-files. Conversion
functions are included to allow the conversion of any graph-file type to another.

7.3.2 New vertices and edges

To be able to incorporate meta-information in terms of structure, semantic and dynamic infor-
mation into SLAM, as explained in chapters 4 and 5 , we define new vertices and edges types.
We initially implement the new vertices, methods to update them, the new introduced factors,
and their Jacobians in MATLAB and then translate them into GTSAM [32] and g2o [54].
Introducing the new factors in GTSAM [32] and g2o [54], along with conversion functions to
convert between our graph-files and the above-mentioned SLAM systems graph-files serve as a
basis to test, develop and extend the work achieved in this thesis.

7.3.3 Visualisation tools

We also include visualisation tools that allow to:

• visualise the simulated environments including structure information,

• plot output maps including structure planar surfaces in addition to non-planar points and
camera poses and provide a visualisation of performance compared to ground-truth

• create animation clips that show the evolution of the robot and planar entities estimates

• visualise the simulated environments, including the camera and rigid object trajectories
and visible points at each time step,

• create animation clips that show the evolution of the robot and object trajectories

• plot spatio-temporal output maps of dynamic SLAM, including tracks of points on rigid
objects in motion, in addition to static background structure and camera/robot poses and
provide a visualisation of performance compared to ground-truth

• output video streams of real data sequences (e.g. KITTI [227] and MVO [226])

Examples of structure and dynamic SLAM output visualisations are shown in Fig. 7.3.
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Figure 7.3: Examples of structure and dynamic SLAM output visualisation.

7.3.4 Error metrics

Finally, as a contribution of this thesis, we propose and implement new error metrics that are
suited for dynamic SLAM systems. We provide error functions that read as input the output
graph-file solution and the ground-truth graph file and returns an evaluation of the accuracy of
the proposed algorithm.
In addition to the classical camera pose errors (Absolute Trajectory Error and Relative Pose
Error), we also introduce two new error metrics for SLAM in dynamic environments. The first
error metric is concerned with the dynamic structure, and the accuracy of object pose change
estimation. We call this error Motion Induced Pose Error (MIPE) and is calculated as explained
in section 6.4.2 in chapter 5. We also introduce a second error that is more relevant in driving
scenarios; object speed error as explained in the same above-mentioned section.



Chapter 8
Conclusion

8.1 Summary and contributions

In this thesis, we have tackled the problem of utilising meta-information into a SLAM framework
to achieve a robust and consistent representation of the environment and challenge some of the
most limiting assumptions in the literature. Previous approaches have been addressed and a
number of new techniques have been presented.
The main achievements are:

• A SLAM framework that is able to integrate different types of information about the envi-
ronment, and an optimisation method with novel observation functions to achieve robust
and consistent map representation and robot poses.

• A structural SLAM framework that integrates structural information about the layout of
points in the environment in the form of planarity information and introduces higher-level
information associated with orthogonality and parallelism of planes to achieve structural
consistency of the returned map.

• A novel way to integrate information about dynamic and static structures in the envi-
ronment into a single estimation framework resulting in accurate robot pose and spatio-
temporal(time-varying) maps estimation.

• Speed SLAM, a model-free object-aware feature-based SLAM system that exploits se-
mantic information to achieve robust moving object tracking, accurate estimation of dy-
namic objects full SE(3) motion, and extract velocity information of moving objects in
the scene, along with an accurate robot localisation and mapping of static environment
structure.
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• A robust method to enhance scene 3D understanding for moving object tracking exploit-
ing semantic information, and the ability to deal with non-direct occlusions resulting from
the failure of semantic object segmentation.

• An open-source code that is made available for the community to develop and extend
including novel observation functions to integrate structural, semantic and dynamic infor-
mation, and is made flexible to include any type of implicit information as long as there is
an algorithm “sensor” that can provide this information and a function that can model it.

8.2 Future work

Integrating meta information into a visual SLAM framework has shown to improve the esti-
mation accuracy and to open doors to a wider class of problems such as SLAM in texture-less
environments or in cluttered and dynamic environments. While SLAM algorithms are concerned
with the problem of continually building a map of some unknown environments and being able
to localise the robot within this map at all time steps, we have a great amount of information
about these unknown environments that should be exploited in a SLAM framework.
This thesis represents a building block towards a SLAM system that utilises meta information
into visual graph-based SLAM to achieve robust, consistent and dynamic representations of the
world.

• The SLAM system presented in this thesis is feature-based. Although this ‘feature-based’
property is at the core of the accuracy of the proposed system, the computational complex-
ity associated with such systems becomes unbound in large-scale complex environments.
While only concerned with feature-based SLAM, the system presented in this thesis is
layout-aware (chapter 4) and object-aware (chapter 5). This allows for the natural exten-
sion of introducing higher-level entities (e.g. planes) or objects (e.g. cuboids, quadrics,
etc.) to replace the points and reduce the computational and memory requirements of the
system. This grouping of points into entities and entities into objects is an interesting
question, and determining the right point in time to group points into a plane or an object,
or split a plane or object back into its constituting points is worth exploring.

• The problems of SLAM and scene understanding are mutually beneficial. While pre-
sented as a ‘one-direction’ communication, where the structural, semantic and dynamic
information are integrated into a SLAM framework to improve the estimation, a ‘closed-
loop’ system should utilise the SLAM estimates to guide, refine and optimise the scene
understanding. This feedback could be in the form of projected point/object locations
in the future to guide the tracking, hallucinating object shapes to handle occlusions, etc.
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While explored on a small scale here, handling indirect occlusions and recovering object
masks when segmentation fails to ensure tracking, more research in this direction looks
promising.

• With a part of this thesis trying to tackle dynamic environments, and with the advances in
the field of event cameras, high frequency sensors and the use of direct methods, filtering
approaches,that only consider the current robot state and the map, are starting to regain
a lot of attention. They however suffer large drift in the long term, and are inconsistent
when applied to the inherently non-linear SLAM problem. We believe a combination of
filtering and optimisation based methods is the right way to tackle SLAM in dynamic
environments. A graph-based SLAM system where each node is a filtering approach
estimating the latest robot state and the map seems to be a promising way to tackle such
environments. Dynamic SLAM will continue to be a key component in many robotics,
augmented and virtual reality applications and thus pushing the accuracy and robustness
of SLAM in dynamic environments and extending the results of this thesis to other scene
topologies are streams of work worth exploring.

• Finally, while only concerned with structural, semantic and dynamic information, this
thesis and the system developed represents a building block towards integrating any type
of available information into a single framework. Geometric information in the form of
distance information for geometric shapes of known dimensions, affordance information
between objects (e.g supporting, inside, over, under, etc.) or dynamic information in
the form of motion models for moving objects could be integrated. Although presented
briefly in this thesis, the constant motion assumption was tested for vehicles on highways,
and smooth trajectories (models that prohibit abrupt changes of motion) are integrated in
the estimation using a temporal window fashion. With the advances of learning based
techniques, important cues about the motion/intention of a vehicle (accelerating, moving
with a constant motion or decelerating) can be provided based on attention models to street
signs, traffic lights, etc., integrating such information into a dynamic SLAM framework is
believed to achieved significant improvements.
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Appendix A
Structural SLAM

A.1 Particularities of the non-linear least-squares Jacobian

Taking the derivative of g(mi, ηs, ds) = ds−mi>ηs with respect to ηs ∈ S2 involves projecting
the differential of g(mi, ηs, ds) onto the tangent space of S2 using the projector (I − ηsηs>)

where I is the identity matrix:

∇ηs g(mi, ηs, ds) = (I − ηsηs>)
∂g(mi, ηs, ds)

∂ηs
. (A.1)

Observe that representing a plane by four parameters is an over-parameterisation, which causes
the system matrix to be singular with zero eigen-values associated with the term (I − ηsηs>)

and any attempt to invert it within the NLS solver will fail.
There are two ways to overcome this problem. The parameterisation of the plane can be char-
acterised by ηs now in IR3 and ds ∈ IR, in which case the optimisation should constrain
ηs>ηs−1 = 0, to ensure the solution converges to a unit norm of the normal vector ηs. This can
be modelled as a unary factor in the factor graph in Fig. 4.5. This approach not only introduces
extra unnecessary factors in the graph for each detected plane but it is also very sensitive to the
confidence associated to this prior.
A second and more elegant approach is to keep the ηs ∈ S2 parameterisation and to solve a con-
strained optimisation problem. This can be done by calculating the perpendicular kernel [234]
to the matrixA>A and solve the equation (K⊥)TA>AK⊥δ

′
= (K⊥)TA>b and then reconstruct

the δ = K⊥δ
′
. This is explained in the following.

We first start with the Gauss-Newton linear system described by the equation:

A>Aδ = A>b , (A.2)

113



114 APPENDIX A. STRUCTURAL SLAM

with optimal solution δ∗. We define K, a matrix whose columns span the null space of ATA,
and K⊥ an orthogonal matrix to K and whose columns span the domain of A>A by construc-
tion. The size of A is M ×N , where:
N = dim(Xk) · nX + dim(mi) · nm + dim(ηs) · ns + dim(ds) · ns,
with nX , nm, ns total number of robot poses, landmark points and detected planes respectively.
M = dim(ok) ·mk + dim(zik) ·mi + dim(ps) ·ms + dim(at) ·mt,
with mk,mi,ms and mt total number of odometry measurements, landmark points measure-
ments, plane observations and angle observations respectively.
Therefore K ∈ IRN×ns and K⊥ ∈ IRN×(N−ns).
Since the solution δ∗ lies in the domain space of A>A, we can write δ∗ = K⊥δ∗

′
, where

δ∗
′ ∈ IRN−ns . Thus one has:

A>Aδ∗ = A>AK⊥δ∗
′

= A>b . (A.3)

Pre-multiplying by (K⊥)> gives:

(K⊥)>A>AK⊥δ∗
′

= (K⊥)>A>b (A.4)

We solve for δ∗
′

and then reconstruct δ∗ = K⊥δ∗
′

for the solution of the actual system.
It is also worth mentioning that due to the sparsity and block structure of the matrix A>A, the
product (K⊥)>A>AK⊥ and (K⊥)>A>b can be computed efficiently by exploiting the block
structure.



Appendix B
Dynamic SLAM

B.1 Dynamic object point SE(3) motion

This section is devoted to describe the object SE(3) pose change in a global reference frame in
the two particular cases of pure object translation and pure object rotation in body-fixed frame,
and the general case of an object translation and rotation in body-fixed frame.

B.1.1 Object pure translation

We start by writing the object pose in a global reference frame at consecutive time steps as

follows: 0Lk−1 =

(
0RLk−1

0tLk−1

0 1

)
and 0Lk =

(
0RLk−1

0tLk

0 1

)
. where 0RLk−1

∈

SO(3) and 0tLk−1
∈ IR3 the rotation and translation components of 0Lk−1, and 0RLk−1

, 0tLk

their corresponding at time k. Note that if the object is undergoing a pure translation, the rotation
component of the object pose remains the same. We first write the expression for Lk−1

k−1 Hk based
on its definition in (5.1).

Lk−1

k−1Hk =

(
I3

0RLk−1
(0tLk

−0 tLk−1
)

0 1

)
(B.1)

Substituting for Lk−1

k−1 Hk by its definition in (5.1), the object pose change in global reference
frame can be expressed as:

0
k−1Hk = 0Lk−1

Lk−1

k−1Hk
0L−1

k−1 = 0Lk
0L−1

k−1 (B.2)
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which can be written as:
0

k−1Hk =

(
I3

0tLk
−0 tLk−1

0 1

)
(B.3)

Note the difference between Lk−1

k−1Hk and 0
k−1Hk in case of a pure translational motion in the

object body-fixed frame. 0
k−1Hk is quite intuitive in the case of an object pure translation in

body-fixed frame and shows that our approach is able to calculate the right object SE(3) motion
in case of an object pure translation.

B.1.1.1 Illustrative example

An illustrative simulated example is shown where a single ellipsoid is undergoing a pure transla-
tional motion in 3D, followed by a robot that observes the object and estimates its motion based
on measurements of points on the ellipsoid. The object is simulated to have an initial pose of
[10; 0; 0; 0; 0; 0.2] and a pose change of [1.5; 0.5; 1; 0; 0; 0] in body-fixed frame, written as
[translation; scaled axis-angle representation of rotation].

Figure B.1: Simulated example of a rigid object undergoing a pure translation.

Starting from an identity initial motion estimate, and assuming known robot poses and a
perfect 3D point measurement sensor, our algorithm is able to estimate the exact object pose
change in a global frame, here [1.3708; 0.7880; 1; 0; 0; 0], with zero translational and rotational
error only from measurements of points that reside on the object. Note the effect of the object’s
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pose initial rotational component on the difference between the object pose change in body-fixed
frame and global frame.

B.1.2 Object pure rotation

We start by writing the object pose in a global reference frame at consecutive time steps as

follows: 0Lk−1 =

(
0RLk−1

0tLk−1

0 1

)
and 0Lk =

(
0RLk

0tLk−1

0 1

)
. where 0RLk−1

∈

SO(3) and 0tLk−1
∈ IR3 the rotation and translation components of 0Lk−1, and 0RLk

, 0tLk−1

their corresponding at time k. Note that if the object is undergoing a pure rotation, the translation
component of the object pose remains the same. We first write the expression for Lk−1

k−1 Hk based
on its definition in (5.1).

Lk−1

k−1Hk =

(
0R>Lk−1

0RLk
0

0 1

)
(B.4)

Substituting for Lk−1

k−1 Hk by its definition in (5.1), the object pose change in global reference
frame can be expressed as:

0
k−1Hk = 0Lk−1

Lk−1

k−1Hk
0L−1

k−1 = 0Lk
0L−1

k−1 (B.5)

which can be written as:

0
k−1Hk =

(
0RLk

0R>Lk−1

0tLk−1
− 0RLk

0R>Lk−1

0tLk−1

0 1

)
(B.6)

0
k−1Hk is not as intuitive in the case of an object pure rotation in body-fixed frame. A rotation
in the object body-fixed frame will always result in a rotation and translation components in the
object pose change in global frame, due to the frame change of the object pose transformation.

B.1.2.1 Illustrative example

An illustrative simulated example is shown where a single ellipsoid is undergoing a pure rota-
tional motion in 3D, observed by a robot that estimates its motion based on measurements of
points on the ellipsoid. The object is simulated to have an initial pose of [10; 0; 0; 0; 0; 0.2] and
a pose change of [0; 0; 0; 0.0045; 0.0201; 0.0499] in body-fixed frame, written as [translation;
scaled axis-angle representation of rotation].
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Figure B.2: Simulated example of a rigid object undergoing a pure rotation.

Starting from an identity initial motion estimate, and assuming known robot poses and a
perfect 3D point measurement sensor, our algorithm is able to estimate the exact object pose
change in a global frame, here [0.0146; -0.4993; 0.2059; 0.0004; 0.0206; 0.0499], with zero
translational and rotational error only from measurements of points that reside on the object.
Again, the simulated example shows that a rotation in the object body-fixed frame will always
result in a rotation and translation components in the object pose change in global frame.

B.1.3 Object translation and rotation

We start by writing the object pose in a global reference frame at consecutive time steps as
follows:

0Lk−1 =

(
0RLk−1

0tLk−1

0 1

)
and 0Lk =

(
0RLk

0tLk

0 1

)
. where 0RLk−1

∈ SO(3) and

0tLk−1
∈ IR3 the rotation and translation components of 0Lk−1, and 0RLk

, 0tLk
their corre-

sponding at time k. We first write the expression for Lk−1

k−1 Hk based on its definition in (5.1).

Lk−1

k−1Hk =

(
0R>Lk−1

0RLk
0R>Lk−1

(0tLk
−0 tLk−1

)

0 1

)
(B.7)

Substituting for Lk−1

k−1 Hk by its definition in (5.1), the object pose change in global reference
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frame can be expressed as:

0
k−1Hk = 0Lk−1

Lk−1

k−1Hk
0L−1

k−1 = 0Lk
0L−1

k−1 (B.8)

which can be written as:

0
k−1Hk =

(
0RLk

0R>Lk−1

0tLk
− 0RLk

0R>Lk−1

0tLk−1

0 1

)
(B.9)

As discussed in the case of a pure rotation, a rotation in the object body-fixed frame will always
result in a rotation and translation components in the object pose change in global frame, due to
the frame change of the object pose transformation.

B.1.3.1 Illustrative example

An illustrative simulated example is shown where a single ellipsoid is undergoing a full SE(3)

motion in 3D, followed by a robot that observes the object and estimates its motion based on
measurements of points on the ellipsoid. The object is simulated to have an initial pose of [10;
0; 0; 0; 0; 0.2] and a pose change of [1.5; 0.5; 1; 0.0045; 0.0201; 0.0499] in body-fixed frame,
written as [translation; scaled axis-angle representation of rotation].

Figure B.3: Simulated example of a rigid object undergoing a full SE(3) motion.

Starting from an identity initial motion estimate, and assuming known robot poses and a
perfect 3D point measurement sensor, our algorithm is able to estimate the exact object pose
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change in a global frame, here [1.3854; 0.2888; 1.2059; 0.0004; 0.0206; 0.0499], with zero
translational and rotational error only from measurements of points that reside on the object.

B.1.4 Discussion

For all of the above cases, the resulting pose of the object at time k is equivalently obtained by
applying the object motion in global reference frame or in body-fixed frame accordingly for all
possible object motions:

0Lk = 0
k−1Hk

0Lk−1 =0 Lk−1
Lk−1

k−1Hk (B.10)

which proves that our approach makes no assumptions about the motion of the object, and shows
the capability of our approach to calculate the full object SE(3) pose change irrespective of the
type of motion the object has undergone.

B.2 Linear velocity extraction from object motion proof

To see that (5.7) is the same quantity in 3D as the translation vector from the origin of the object
pose at time {k − 1} to the origin of the object pose at time {k} as seen in the global reference
frame {0}, we start by writing the object pose change in global reference frame and substitute
for Lk−1

k−1 Hk by its definition in (5.1)

0
k−1Hk = 0Lk−1

Lk−1

k−1Hk
0L−1

k−1 = 0Lk
0L−1

k−1 (B.11)

Assuming 0RLk−1
∈ SO(3) and 0tLk−1

∈ IR3 the rotation and translation components of 0Lk−1,
and 0RLk

, 0tLk
their corresponding at time k, the translation and rotation parts of 0

k−1Hk can be
expressed as 0tLk

−0 RLk
0R>Lk−1

0tLk−1
and 0RLk

0R>Lk−1
. Substituting these two quantities

into (5.7), we get

v = 0tLk
− 0RLk

0R>Lk−1

0tLk−1
− (I3 − 0RLk

0R>Lk−1
) 0tLk−1

(B.12)

which reduces to v = 0tLk
− 0tLk−1

which is the translation vector from the origin of the object
pose at time {k − 1} to the origin of the object pose at time {k} as seen in the global reference
frame {0}.



Appendix C
Visual Dynamic Object-aware SLAM

C.1 Authors’ contribution disclosure

The piece of research work presented in chapter “Visual Dynamic Object-aware SLAM” is a
collaboration between the author and Jun Zhang, where the author’s main contributions were
the back-end formulation and its implementation, the mathematical modelling of the dynamic
object motion in terms of the points that constitute the object, the velocity extraction from the
object pose change estimation, the engagement with authors of state-of-the-art dynamic SLAM
systems for evaluation and comparison to the work in question, and parts of the technical writ-
ing.

Mina Henein Jun Zhang
June 21st, 2020 June 21st,2020
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