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Abstract The modeling of breast deformations is of interest in medical appli-
cations such as image-guided biopsy, or image registration for diagnostic pur-
poses. In order to have such information, it is needed to extract the mechanical
properties of the tissues. In this work, we propose an iterative technique based
on finite element analysis that estimates the elastic modulus of realistic breast
phantoms, starting from MRI images acquired in different positions (prone and
supine), when deformed only by the gravity force. We validated the method
using both a single-modality evaluation in which we simulated the effect of the
gravity force to generate four different configurations (prone, supine, lateral
and vertical) and a multi-modality evaluation in which we simulated a series of
changes in orientation (prone to supine). Validation is performed, respectively,
on surface points and lesions using as ground-truth data from MRI images,
and on target lesions inside the breast phantom compared with the actual tar-
get segmented from the US image. The use of pre-operative images is limited
at the moment to diagnostic purposes. By using our method we can compute
patient-specific mechanical properties that allow compensating deformations.
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1 Introduction

Imaging techniques are important for screening and diagnosis to determine
the location of a tumour in breast cancer. To end up with the same location
during the common workflow, the effect of deformations should be taken into
account for accurate corrections of the static situation.

Breast cancer diagnosis and surgery are based on different image acqui-
sition modalities ranging from mammography (x-ray), US, and MRI. The
method with the highest sensitivity is MRI [1]. The biopsy procedure or the
surgery could benefit from the transfer of information from the pre-operative
imaging into the operating room. In fact, the position of the patient varies from
the prone, during the MRI scanning, to the supine position which is required
for the breast biopsy or surgery. During US scanning and US-guided biopsy,
the patient is reclined on her back and additional compression is induced by
the US probe. To end up with the same location during the workflow (e.g.
diagnostic imaging, biopsy procedures) the effect of deformations should be
taken into account for accurate corrections of the static situation.

Three-dimensional models of the breast can be reconstructed using MRI
volumetric data. To properly model all the deformations, it is important to
estimate the elastic properties of the tissues under examination. Mechanical
properties of the breast tissue have been measured on ex vivo samples [2,3].
Techniques to measure the elastic properties of in vivo breast tissue are based
on sono-elastography, magnetic resonance elastography, shear wave elastic-
ity imaging and mechanical imaging [4–6]. In vivo measurements are limited
due to the small deformation experiments, while the mechanical properties of
ex vivo samples are different from in vivo tissues due to the fixation of tissue
samples and other effects. It is also generally known that the mechanical prop-
erties of the breast tissue vary across the population and over time for each
person, meaning that patient-specific models should be considered to achieve
an accurate estimation.

Most of the studies involve the use of FE models to solve for the large
deformations of the breast [7,8]. A patient-specific biomechanical model that
provides an initial deformation of the breast between prone and supine MRI
images was proposed in [9]. A zero-gravity reference state for both prone and
supine configurations was estimated. The authors performed a comparison of
three methods to obtain the patient-specific unloaded configuration [10].

Most of the times, the biomechanical methods serve for the initialization
of intensity based image registration techniques [11,12]. The sliding motion
of the breast on the chest wall was observed [13], but usually, a fixed muscle
surface is applied during the FE simulations [12,14,15].

Another approach to model the breast deformation is based on mass-spring
models (MSMs). The MSMs are easier to implement but their main drawback
is their intrinsic non-realistic tissue mechanics representation, due to the lo-
cal distribution of the mechanical parameters characterizing the model. A 3D
female breast deformation model based on MRI data and MSMs iterative de-
formation was implemented in [16]. Compared to FE-based methods, MSMs
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allows for a realistic representation of tissue resection and can be easily paral-
lelized [17]. In FE applications, removing a mesh element requires recalculation
of the mesh constraints and re-meshing of the whole structure, but in the ap-
plications that do not take into account the resection, the FE approach is
preferred.

In this work, we used the FE framework to compute the displacement
induced by the gravity force on the breast tissue by comparing two MRI ac-
quisition: the prone and the supine. The approach is motivated by the fact
that in these two configurations the gravity force lays on the same line, but
has opposite direction. Using such simplification, we are able to derive an “at
rest” configuration, where no forces are acting. This can be used to generate
any configuration of the breast (e.g. lateral, vertical) by properly setting the
direction of the gravity force and the applied external forces. The method, val-
idated on different anatomical phantoms using MRI and US data, can be used
to predict the location of lesions and use such information in pre-operative
planning of biopsy when, to limit patients’ discomfort, it is crucial to perform
the exam with high precision.

The paper is structured as follows: in Section 2 we will introduce the math-
ematical background of the method, the fabrication process of the phantoms,
the protocol used to acquire MRI data, and the processing applied to the DI-
COM images. Section 3 presents the experimental setup, and it will introduce
the FE framework used. Results and their discussions are presented in Section
4, followed in Section 5 by conclusions and future works.

2 Materials and Methods

2.1 Global Motion of the Breast

The deformation of the breast is due to the body movement, therefore before
applying a deformation method, a rigid motion should be recovered. The rigid
motion is completely described by 6 degrees of freedom, of which 3 for rotation
and 3 for translation. A more general class of transformations are the affine
transformations, which have six additional degrees of freedom, describing scal-
ing and shearing. In the three-dimensional space, an affine transformation can
be written as: [

y
1

]
=

[
A b
0 1

] [
x
1

]
(1)

which is equivalent to the following:

y = Ax + b. (2)

In these equations, x,y are the input/output vectors, the matrix A encodes
the rotation, shearing, and scaling transformations, while the column vector
b is the translation.
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Affine transformations can be directly applied in image registration or can
be used as an initialization of more complex non-rigid registration. In [18]
the authors showed that the affine registration is preferred over other more
complex non-rigid transformation when registering x-ray mammography with
MRI deformed by FE. Another study about affine transformation applied to
mammography registration [19] reported an error of 8 mm computed as the
average distance between the target lesions after the registration.

2.2 Elastic Properties of Isotropic Materials

Almost any solid body, anchored at one end and pulled at the other with
a force F , will react like a spring. Real springs, like ideal ones, are elastic
elements obeying Hooke’s law (F = kx) that states the proportionality (k)
between the applied force (F) and the change of length of the spring (x). In
general, it is more important to consider the average normal stress along the
direction of the force than the force modulus to extend the length of a spring.
By combining the ratio between the applied force and the area of the spring
with the relative longitudinal extension, it is possible to obtain a quantity that
represents the behavior of the material when stretched in one direction:

E =
F/A

x/L
= k

L

A
, (3)

where F is the applied force, A the area of the string, L its length, and k
the proportionality stated by the Hooke’s law. This ratio, called the Young’s
modulus, is constant everywhere along the string and it represents a measure
of in-stretchability. The larger it is, the harder is to stretch the material.

Another quantity used to model the behavior of an elastic material is the
Poisson’s ratio. This measures the ratio between compression (stress) along
the transverse direction (uyy) to the extension (uxx). The material constant is
dimensionless, cannot exceed 0.5, and it is described by the following equation:

ν = −uyy
uxx

. (4)

If the material taken into consideration is isotropic (deform similarly along
all directions), to express Hooke’s law such that takes the same form in all
coordinate systems, it is needed to derive a linear relationship between the
complete stress tensor, σij , and the complete strain tensor, ukk. The most
general linear relationship between strain and stress [20] is defined by

σij = 2µuij + λδijΣkukk. (5)

where λ and µ are material constants, called elastic moduli or Lamé coef-
ficients, δij is the Kronecher delta, Σkukk the trace, and ij indicate the tensor
along any arbitrary direction. It is possible to express the Young’s modulus
and the Poisson’s ratio as the relationship of λ and µ as follows:
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E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
. (6)

Using this pair of elastic moduli, it is possible to fully describe the elastic
properties of any homogeneous and isotropic material.

2.3 Estimation of the Elastic Modulus from Volumetric Data

In this work, for simplicity, we assumed the breast tissues as a unique isotropic
homogeneous material subjected only to the gravity force. Such material,
placed on a horizontal surface, has the same properties, everywhere along
the horizontal plane, as a fluid. In Earth coordinate system, gravity is given
by g = (0, 0,−g0), therefore, we expect a uniform vertical displacement, which
only depends on the z−coordinate: u = (0, 0, uz(z)). On the top, z = h, h is
the total height of the model, the elastic material is left free to move with-
out any external forces acting on it. At the bottom, z = 0, we place a rigid
planar constraint, that allows the only displacement in the horizontal direc-
tions (x and y). The only strain that does not vanish is the one related to the
z−direction, uzz, and expressing it using Equation 5 gives

σxx = σyy = λuzz, σzz = (λ+ 2µ)uzz. (7)

Using the boundary condition σzz = 0 at z = h to the simplified Cauchy’s
equilibrium equation, and integrating the strain with the boundary condition
it brings to

σzz = −ρog0(h− z). (8)

This also expresses the vertical pressure along the body. The strain,

uzz = ∇zuz = − ρ0g0
λ+ 2µ

(h− z), (9)

is negative, due to the choice of the reference frame, and it corresponds to
a compression. Integrating the strain with the boundary condition uz = 0 for
z = 0, we obtain

uzz = −h
2 − (h− z)2

2D
, (10)

where D = λ+2µ
ρ0g0

is the characteristic length scale for major deformation.
Knowing the total displacement, D, and assuming constant the value of

the Poisson’s ratio, it is possible to derive the value of the Young’s modulus.
For the case of the breast tissue, it is not possible to obtain the value of the
displacement with respect to an “at rest” situation, instead, it is possible to
compute it with respect to another configuration.
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Fig. 1 Left: one PVC breast phantom. Right: a pair of molds for manufacturing superficial
and deep tissues.

2.4 Phantom Fabrication

Four phantoms were constructed (Figure 1, left) for this study. Each phantom,
named with letters from E to H, consists of a rigid base, stiff superficial tissue,
soft deep tissue, and three to four lesions. The base is a 3D printed structure
made of polylactide (PLA) and houses three vaseline markers with a diameter
of 10 mm. The markers, or fiducials, are used for rigid alignment. The base
also mimics the rib cage, providing a rigid attachment to the flexible phantom,
and can be attached to a frame that serves to place the phantom in the four
different positions (Figure 2). The superficial and deep tissues and lesions are
made of polyvinyl chloride (PVC) with a plasticizer, mixed in different ratios
in order to obtain a relatively high stiffness for superficial tissue and lesions,
and low stiffness for deep tissue.

The fabrication was divided into two main steps. First, the superficial tissue
was molded in the desired shape using the inner and outer molds (Figure 1,
right). Next, the inner mold was removed and the empty space was filled
with soft PVC. Inside this, three to four stiff pieces of PVC have been placed
to simulate the presence of lesions inside the breast tissue. Finally, the base
was placed on top of the deep tissue’s PVC and covered with stiff PVC. The
external shapes of the four phantoms are identical, the only differences are in
the stiffness of deep tissue, and the placement of lesions.

2.5 MRI Scanning

Each of the four phantoms was scanned in a 0.25T Esaote G-scan Brio MRI
scanner. The chosen scanning protocol is 3D Hyce, which is a 3D balanced
gradient echo sequence. This sequence combines good contrast between the
different materials, in particular, PVC of varying stiffness. The scan time is
2:34 minutes, excluding pre-scan calibration (1:25) and post-processing (1:30).
The acquisition voxel size is 1.5x1.8x2.0 mm. The resulting scans have good
signal-to-noise ratio, as required for effective segmentation.



An Iterative Approach for Breast tissue Elastic Properties Estimation 7

skin (stiff)

deep tissue
   (soft)

lesion
(stiff)

ducials

base frame
(rigid)

Fig. 2 Left: The four breast phantom orientations in scanning. Clockwise, from top-left:
supine, vertical, lateral and prone orientations. Right: Example sagittal MRI slice.

Each phantom was scanned in four orientations, as shown Figure 2. Figure
2, right shows one sagittal slice of the phantom in the vertical position, pointing
out the different components of the phantom. It can be observed that the scan
has different signal intensities for the superficial tissue (skin), deep tissue,
lesions, base frame and fiducials and that the image is sufficiently smooth and
uniform to allow direct segmentation by thresholding.

2.6 Data Pre-processing

The first step is the identification and segmentation of the base markers (Fig-
ure 2 right). These were used to align the prone, vertical, and lateral models to
the supine model by calculating the rigid transformation that maps the three
fiducials such that the error, defined as the root-mean-square of the fiducial
distances, is minimal. This error was found to be, on average, in the range
of 0.2-0.3 mm for all phantoms in all orientations. Figure 3 shows two config-
urations of a phantom, overlaid on each other, after segmentation and rigid
registration. In both cases, a displacement of the tip resulting from the gravity
field (oriented downwards in both figures) can be observed.

After the alignment of the MRI images, we segmented separately the breast
phantom, and the lesions by using an automatic algorithm based on region
growing and threshold. Smoothing and decimation processes were employed to
improve the quality of the surface reconstruction. The 3D volumetric models
were generated in a total of ten different levels of detail, for FE analysis.
These different mesh resolutions were constructed by first downscaling the
original DICOM data by a certain factor (between 0.05 and 0.40 in ten steps),
followed by segmentation of the downscaled DICOM data. The same process
has been also applied to each of the lesions presents in the phantoms. The
entire workflow is depicted in Figure 4.
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Fig. 3 Left: phantom in prone and supine configuration, superimposed after rigid registra-
tion based on markers visible on the top. Right. phantom in prone and vertical position,
superimposed after rigid registration based on the markers visible on the left side. The
gravity acts in the vertical direction.

Fig. 4 Workflow of the proposed method. In the figure, boxes represent processing steps,
while circles are used to identify output of the single steps.

3 Experimental Setup

To prove the capability and the adaptability of our approach, we performed
a series of analyses using different phantoms. We validated the method by
comparing the FE simulations results with a ground truth acquired using an
MRI scanner (single-modality validation), or in combination with US images
(multi-modality validation).

We first estimated the elastic parameter of four phantoms developed as
previously described. Each phantom has been placed in the MRI scanner in
four different configurations: prone, supine, lateral, and vertical (Figure 2,
left). The acquired data were then pre-processed to align them rigidly with
respect to a common reference system by using markers visible in the MRI
data (Figure 3).

The external surface of the breast phantom and the surface of the internal
lesions were merged into one single surface mesh used in the FE analysis. A
3D Delaunay tetrahedralization was then applied to create a volume mesh.
The resulting mesh is a homogeneous volume with internal empty structures
representing the lesions. For this reason, the breast tissue was modeled as an
isotropic elastic material, while the lesions were modeled as incompressible
semi-rigid material. An FE analysis software (FEBio [21]) was then used to
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Fig. 5 The multi-modality phantom and the xyz reference system.

simulate the biomechanical behavior of the breast phantom, and to estimate
the specific elastic parameter of each breast phantom.

We based the estimation of the Young’s modulus E of the isotropic material
on the change between two configurations: supine and prone. After an initial
guess of E, we iteratively compare the results of the simulations with the
target mesh. The matching error, either computed on the whole mesh or on
a subset, is used with the Newton’s method to estimate a new value for the
parameter. The process stops when a target error is reached, i.e. the change
of the parameter is lower than a pre-defined threshold, or if a fixed number of
steps has been reached. To ensure correctness in the estimation, we performed
both the change of configuration from prone to supine and vice versa. At the
end of the process, the square harmonic mean ((4 ∗

√
A ∗B/(

√
A +

√
B))2)

of the returned values is used as a final value. With the estimated Young’s
modulus, we generate an “at rest” mesh model, where no forces are acting. This
mesh can be used to simulate other configurations by changing the direction
of the gravity force.

3.1 Single-modality setup

We validated our approach by comparing the matching error between each
of the acquired configurations (prone, supine, vertical, and lateral) with the
simulated configurations. We estimated both the matching error with respect
to the superficial nodes of the mesh, and with respect to the centroids of
each lesion. Since there is no direct correspondence between the nodes of the
different meshes, we took the closest point to point distance, as in [22], to
minimize the difference between two sets of nodes. In this study, each phantom
extends horizontally (back to front) along the positive direction of the y-axis,
and vertically (bottom to top) along the positive direction of the z-axis. With
this alignment, to generate the prone configuration it is needed to apply the
gravity force of 9.8 N along the y-axis, while to generate the supine one a -9.8
N force along the same axis. The vertical configuration, instead, is obtained
by applying -9.8 N along the z-axis, and to generate the lateral configuration
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Fig. 6 The multi-modality setup uses an optical tracker and markers that define a reference
system attached to the breast phantom. The US probe is tracked as well.

it is needed a force of -9.8 N along the x-axis. Figure 5 shows the directions of
the x–,y–,z-axes.

3.2 Multi-modality setup

The standard US breast diagnosis setup setup involves the identification of the
target (lesion) in pre-operative, high-resolution MRI acquired in the prone po-
sition and the tissue sampling with the patient on semi-supine position. To test
the adaptability of the method in a realistic clinical setting, we compared the
results obtained with FE simulations with measurements acquired from MRI
data in combination with US. The aim of this second analysis is to evaluate
the performance of the proposed FE simulation methods in compensating for
breast deformation introduced by US scanning. In this study, we only consider
the deformations induced by the gravity force when scanning the phantom
in different positions between supine and prone orientations. Since the phan-
toms used in the previous section are not compatible with US acquisitions, we
employed a multimodality breast phantom CIRS 0731 (CIRS Inc.) that accu-
rately mimics heterogeneous breast tissue appearance under different imaging
modalities such as US, MRI, mammography, and CT.

To limit the motions of the phantom, and to facilitate US acquisitions,
we rigidly attached the phantom to a rotating table to mimic the different
scanning positions. We considered angles from 0 deg to 180 deg, corresponding
respectively to supine and prone scanning position, measured with respect to
the floor plane. Between the two extremes, we only considered the deformations
induced by the gravity force when scanning the phantom in different positions
between supine and prone orientations. A total of 13 scanning position each of
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them acquired with steps of 15◦. In each of the scanning, the position of the
table has been locked and the US acquisition has been performed using a free-
hand US system (FUS). The FUS setup (Figure 6) is based on a Sonix MDP US
machine (Ultrasonix, Richmont, Canada) and a Micron Tracker Hx40 tracking
system (Claron Technology, Toronto, Canada). We performed the calibration
with a linear probe (model L14-5/38) with an acquisition frequency of 10 MHz
and a depth setting of 60 mm, using hardware and software components pro-
vided by the PLUS toolkit [23]. More detailed description of the experimental
setup, including coordinate reference systems relationship, is available in [24].
We fixed a coordinate reference system to the phantoms so that the three-
dimensional information reconstructed from the FUS system is independent
of the table rotation angle. Using markers visible on the phantoms and the
tracking system, all the acquisitions are aligned rigidly in a common reference
system. Through FUS we identify the central point of the lesions inside the
phantom which are then mapped in the tracking reference system.

To replicate the same configuration also in the FE framework, we scanned
the phantom using the protocol introduced earlier and processed the acqui-
sitions to obtain the volume meshes. These have been used to estimate the
phantom’s elastic property and to validate the value following the same steps
used for the other phantoms. From these initial analysis, we synthesized a
mesh in which the breast was not subjected to any gravity force (i.e. the “at
rest” configuration) that was placed in the same reference system as the one
used in FUS acquisitions. In this configuration, to replicate the change of ori-
entation of the table, we applied a series of transformation matrices to the
vector representing the gravity force. For every step (15◦), we extracted the
centroids of each lesion and compute the distance from the same centroids
acquired in the US data. To evaluate the effects due to the FE analysis error,
we also computed the distance between a non-rotated mesh placed in the same
reference system.

4 Results and Discussions

All the computations, both registration, and FE analysis, have been performed
on a 2.6Ghz i7 machine with 16GB of RAM. The generated meshes contain
around 34000 nodes forming 123000 4-node tetrahedron elements. From the
computational point of view, the time required for each simulation differs
according to the stiffness of the material. Stiffer materials take shorter com-
putation time (∼ 2 s), while softer materials require a longer time (∼ 20 s). In
total, the parameter estimation required around 2-5 min. We need to consider
that current implementation is not optimized, therefore reduction of estima-
tion time is possible by implementing the FE solution using parallel hardware
(i.e. GPU). Therefore, we expect a final estimation time under 1 min, compat-
ible with clinical practice. Results are grouped according to the experimental
setup presented earlier.
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4.1 Single-modality Validation

Table 1 presents the estimated values for the Young’s modulus for each of the
tested phantom. The mean value of the supine-to-prone (SP) and prone-to-
supine (PS) has been computed as the square harmonic mean and used in
later validations. As the results suggest, there is a consistency in the value of
the elastic parameter computed for both directions. The fact that the values
obtained in the two configurations are not identical relies on the presence
of stiff masses within the phantoms, causing their behavior to displace from
the ideal isotropic condition we are considering. Despite this, it is possible to
observe an overall consistency in the value of the elastic parameter computed
for the two directions, meaning that the isotropic approximation holds in this
setup (since stiff masses are small and inserted in a homogeneous material).
However, when clinical data will be used, an isotropic assumption may not
stand and a different material might be used.

SP PS Mean
E 5397.14 6129.98 5746.08
F 3950.24 4197.28 4070.95
G 5342.15 5695.93 5514.79
H 7839.15 8314.50 8071.58

Table 1 Elasticity computed using the iterative method presented in the paper. SP stands
for supine to prone, while PS stands for prone to supine. The value expressed by Mean is
the square harmonic mean between the SP and PS values. All values are expressed in kPa.

50

-60

-20

-40

0

-20

-40

0

-60

20

-50
-80

40

60

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Fig. 7 Prone-supine model matching between the segmented surfaces. (left) The initial error
just after registration. (right) The final error after the gravity-only induced deformation. For
both cases, a color bar representing the magnitude of the error is shown. The value expressed
in the color bars has to be intended in mm.

Results on prone to supine matching are shown in Figure 7. In the figure,
blue color represents small errors, while yellow represents larger errors. In
the picture, the region subjected to a higher change —i.e.where the error is
reduced by the applied deformation— is the one closed to the front part of the
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phantom. This phenomenon is expected since the back part of the phantoms
is fixed to an external rigid structure that constrained its deformation. The
front part, instead, is free to move following the direction of the applied force.
Thanks to this result, we could reduce the number of points over which we
compute the matching errors in the validation phase. In fact, instead of using
the whole cloud of points, we could limit the comparison only to the subset
that was within the 20-30% of the total distance from the front part of the
mesh. This can reduce the computation time while preserving accuracy in the
computation of the error. Table 2 presents the validation errors computed
using such subset of points for all the considered cases (i.e. supine, prone,
lateral, and vertical). Each error is computed with respect to the initial non-
deformed mesh, and after the application of the gravity force along the proper
direction. As reported in the table, there is a common trend in reduction of
the global error. Despite this, the errors are not reduced to zero. This can be
explained by the fact that there is not a direct matching between the nodes
of the different meshes, and by the fact that the phantoms are not always
perfectly aligned with the real direction of the aplied force.

Supine Prone Lateral Vertical
E 3.672 2,499 2.579 1.033 7.337 2.722 7.172 2.311
F 4.630 3,813 3.227 1,078 9.395 3.810 8.292 3.500
G 3.972 2.834 3.075 1.497 6.902 4.259 7.666 2.456
H 3.500 2.908 2.063 0.791 5.943 1.886 7.831 3.069

Table 2 Initial and final errors between the reference model and each of the views before
applying any further deformation. The error has been computed on a subset of points within
5% of a distance from the nipple area of the breast. If a wider area is considered, no significant
changes in reported values are noticeable. All the values are expressed in mm. For each case,
the first column is the mean error before force application, and the second one is the mean
error after force application.

We also measure the matching error between the centroids of the lesions
(Table 3). When lesions are taken into account, results on centroid displace-
ment errors are smaller with respect to global displacement error, this is due
to the fact that the lesions were made of a stiffer material than the rest of the
phantom. As a consequence, the displacement of the structure is smaller. In
both tables, it is possible to notice a smaller error in the prone configuration.
This is due to the fact that to generate the initial mesh (the one in-between the
prone and the supine configuration), we used the points of the prone model.
As a consequence, the match between the nodes is more precise and the errors
are reduced.

4.2 Multi-modality Validation

The elastic properties of the CIRS phantom are estimated and used to further
validate the approach. The final value for its Young’s modulus is 2.85 kPa,
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Supine Prone Lateral Vertical
E 1.660 1.136 1.084 0.066 4.156 1.185 4.271 0.869
F 1.921 1.385 1.775 0.061 6.163 2.195 7.080 0.888
G 0.952 0.929 0.914 0.041 2.670 1.524 3.456 0.770
H 1.777 0.913 1.282 0.063 4.386 1.189 5.705 1.142

Table 3 Mean error on lesion matching per view and per phantom. The errors (in mm)
are computed with respect to the position centroid of each lesions before (first column) and
after (second column) applying the gravity-only-induced deformation. Phantom H has only
3 lesions instead of 4 as in the other cases. The prone case is the one that shows smaller
error since the reference model has been constructed from the prone one. As a consequence,
the error between the matching points is smaller.

which matches the control set points with an error of 0.65 mm. Differently
from the previous case, we do not measure the superficial matching errors,
instead, we only focus on the errors between the centroids of the lesions within
the phantom. Figure 8 shows the matching errors of a non-deformed mesh, and
the one obtained by the FE analyses with respect to the US data. As the image
suggests, by simply rotating the model and not applying any body load, it is
not possible to correctly follow the displacement of the lesions due to applied
force. On the contrary, by applying a body load to the model it is possible
to better approximate the position of the lesion centroids during the change
from prone to the supine configuration. However, the simple application of the
gravity force to the model is not sufficient and some errors still remain. This
is due to the fact that we do not currently model the interaction between the
US probe and the phantom.

In this study, we do not consider the compensation of the applied force
during the FUS acquisition. However, if we assume it constant during the
whole acquisition process (at every in-between step), we can use the initial
displacement error as an approximation of the constant deformation applied
by the US probe. Figure 9 shows the mean displacement value for each lesion
present in the phantom both for the case of the fixed mesh and the one under
the effect of the gravity force. As expected, the results relative to the rigid mesh
still present higher matching error, while the errors computed with respect to
the deformed mesh reduce their magnitude. Only two of the seven lesions still
shows a mean error higher than 5 mm. These two lesions, 4 and 6 according
to our enumeration, are placed, respectively, at the left and right side of the
phantom, regions which we noticed being subjected to higher deformation than
other portions of the same phantom. In addition, we noticed a high hysteresis
of the material the phantom is made of. This, together with the non-uniform
applied force might have influenced the obtained results.

5 Conclusions

In this work we propose a framework to estimate the lastic properties of the
breast tissue that can be used for diagnosis or for pre-operative planning. The
technique is based on an iterative scheme in which two volumes (prone and
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Fig. 8 Errors for US-FEM matching. (top) Errors computed with respect to a rigid model
that rotates but it is not affected by any force. (bottom) Errors computed with respect to
the results of FE analysis. As the image suggests, the use of FE analysis allows to reduce
the displacement errors but does not cope with the applied force from the US probe.

supine) acquired from MRI images, were rigidly registered and then deformed
by the action of the force of gravity. We validated the method by using a
series of realistic phantoms having different elastic properties. We placed each
of them in an MRI scanner and acquired image data in four configurations:
prone, supine, lateral, and vertical. These data were used as ground truth for
FE analysis. In addition, we validated the method by combining MRI with US
acquisitions of a commercially available, multi-modality phantom.

The results showed that the use of the proposed method allowed to reduce
the global registration error between different configurations, even when these
were synthetically created from FE analysis. Matching errors between the le-
sions were all within 2 mm and had an average overlap of 90%. This proved
the correctness of the method in following the displacement of the phantom
under the influence of the gravity force. When compared to other available
methods, the one proposed in this paper did not only find the zero-gravity
state (“at rest” model) to be used as a reference for non-rigid registration, but
also allowed the estimation of synthetic views. Results obtained by comparing
FE analysis with US data were less precise, but this was mainly due to the fact
that in our model we did not cope with the displacement introduced by the
interaction of the US probe with the phantom. In fact, as simplification, we
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Fig. 9 Mean errors for US-FEM matching after removing an initial offset. (left) Results
computed with respect to a fixed mesh that only rotate according to the prescribed motion.
(right) Results obtained by FE analysis. In both cases, the first displacement error has
bee used as a reference to compensate the force applied by the US probe during the FUS
acquisitions.

assumed constant the force applied from the US probe during the whole pro-
cess and then removed an initial offset from all the measurements. Errors were
still large, but promising as an initial step toward the estimation of patient-
specific elastic properties —which is really important for the breast due to
a high intra-subject variability of these properties— to be used in different
medical applications.

Among these, a possible application is the one in which the technique is
used as support in the common workflow for breas biopsy without adding sig-
nifican modification. However, there are some limitations related to the use of
the proposed approach. In fact, in a real scenario, there are some time con-
traints that do no allow the time to perform the elastic analysis. In addition,
target malignancy cells are usually scattered as multi spots making them dif-
ficult to track in real time. For this reasons clinicians prefer to remove cells in
different targets and in a proximity small volume. However, this work poses
the basis for the development of technologis and controlling algorithms that
can be used in biopsy guided by MRI or when a navigation system is used
(e.g. an optical tracker or a biopsy robot) for the US guided biopsy. In fact,
knowing the elastic properties, leads to the complete control over the defor-
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mation of the breast and allows the update of pre-operative data to match
intra-operative data in a process called registration. The registration will be
performed using a deformable model that employs the elastic modulus, as we
have computed in this work. Including the registration in the clinical workflow
offers potentially a significant improvement of the procedure and ensures a
more precise targeting of early-stage lesions which are visible under MRI but
not under US.

Future works will include clinical tests to adapt the method to the con-
straints imposed from the clinical context (e.g. time, distribution of the ma-
lignancy inside the breast tissue, reduced work space), and to validate the
framework on patient-specific characteristics. A multi-modality (e.g. MRI-US)
registration test on patient data will be performed. The elastic properties com-
puted through the presented method will be employed to compensate the in-
teraction of the US probe with the tissue in contact. Single modality tests
(e.g. MRI-MRI) will performed as well. Use of MRI visible markers that can
support a coarse initial alignment and continuous tracking is also envisioned.
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