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Abstract: We provide a rigorous mathematical formulation of Deep Learning (DL) methodologies
through an in-depth analysis of the learning procedures characterizing Neural Network (NN) models
within the theoretical frameworks of Stochastic Optimal Control (SOC) and Mean-Field Games
(MFGs). In particular, we show how the supervised learning approach can be translated in terms of
a (stochastic) mean-field optimal control problem by applying the Hamilton–Jacobi–Bellman (HJB)
approach and the mean-field Pontryagin maximum principle. Our contribution sheds new light
on a possible theoretical connection between mean-field problems and DL, melting heterogeneous
approaches and reporting the state-of-the-art within such fields to show how the latter different
perspectives can be indeed fruitfully unified.

Keywords: deep learning; neural networks; stochastic optimal control; mean-field games; Hamilton–
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1. Introduction

Controlled stochastic processes, which naturally arise in a plethora of heterogeneous
fields, spanning, e.g., from mathematical finance to industry, can be solved in the setting of
continuous time stochastic control theory. In particular, when we have to analyse complex
dynamics produced by the mutual interaction of a large set of indistinguishable players,
an efficient approach to infer knowledge about the resulting behaviour, typical for example
of a neuronal ensemble, is provided by Mean-Field Game (MFG) methods, as described
in [1]. MFG theory generalizes classical models of interacting particle systems character-
izing statistical mechanics. Intuitively, each particle is replaced by rational agents whose
dynamics are represented by a Stochastic Differential Equation (SDE). The term mean-field
refers to the highly symmetric form of interaction: the dynamics and the objective of each
particle depend on an empirical measure capturing the global behaviour of the population.
The solution of an MFG is analogous to a Nash equilibrium for a non-cooperative game [2].
The key idea is that the population limit can be effectively approximated by statistical
features of the system corresponding to the behaviour of a typical group of agents, in a
Wasserstein space sense [3]. On the other hand, Deep Learning (DL) is frequently used
in several Machine Learning (ML) based applications, spanning from image classification
and speech recognition to predictive maintenance and clustering. Therefore, it has become
essential to provide a strong mathematical formulation and to analyse both the setting and
the associated algorithms [4,5]. Commonly, Neural Networks (NNs) are trained through
the Stochastic Gradient Descent (SGD) method. It updates the trainable parameters using
gradient information computed randomly via a back-propagation algorithm with the disad-
vantage of being slow in the first steps of training. An alternative consists of expressing the
learning procedure of an NN as a dynamical system (see [6]), which can be then analysed
as an optimal control problem [7].

The present paper is structured as follows. In Section 2, we introduce the fundamentals
about the Wasserstein space, Stochastic Optimal Control (SOC) and MFGs. In Section 3,
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the link between NNs and MFGs is deeply analysed in order to reflect the probabilistic
nature of the learning process. Conclusions and prospects are outlined in Section 4.

2. Problem Formulation and Preliminaries
2.1. Wasserstein Metrics

Many of the main results contained in this paper will be stated in terms of convergence
in the distribution of random variables, vectors, processes and measures. We refer to [8–10]
concerning the basics about the theory of the weak convergence of probability measures in
metric spaces equipped with the natural Borel σ-algebra; see also [11,12] and the references
therein for further details. According to [8] (pp. 7, 8), let us recall the following two
definitions, useful to highlight the strict connection between measure theory and probability.
Given a probability measure µ ∈ P(X ) over the metric space X and a sequence (µn) ⊂
P(X ) with n ∈ N, we say that µn converges weakly to µ or µn → µ if:

lim
n→∞

∫
X

f dµn =
∫
X

f dµ , ∀ f ∈ Cb(X ) .

Given a sequence of X -valued random variables {Xn}n≥1, we say that Xn converges
weakly (or in distribution) to a X -valued random variable X, if:

lim
n→∞

E[ f (Xn)] = E[ f (X)] , ∀ f ∈ Cb(X ) ,

denoting this convergence by Xn ⇒ X. Focusing on the convergence of empirical mea-
sures, let (Xi) be a sequence of independent and identically distributed (i.i.d.) X -random
variables and define the P(X )-valued random variable:

µn =
1
n

n

∑
i=1

δXi , (1)

then we have a random probability measure, usually indicated as the empirical measure.
According to [8] (pp. 12–16), P(X ) is endowed with a metric (compatible with the notion
of weak convergence) in order to consider P(X ) as a metric space itself. Let us recall the
Wasserstein metric, defined on P(X ), based on the idea of coupling. In particular, given
µ, ν ∈ P(X ), Π(µ, ν) represents the set of Borel probability measures π onX ×X , with first,
resp. second, marginal µ, resp. ν. Namely, π(A×X ) = µ(A) and π(X × A) = ν(A) for
every Borel set A ⊂ X . Then, we define P p(X ) for p ≥ 1, as the set of probability measures
µ ∈ P(X ) satisfying: ∫

X
d(x, x0)

pµ(dx) < ∞ ,

where x0 ∈ X is an arbitrary reference point. Consequently, the p-Wasserstein metric on
P p(X ) is defined as:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

d(x, y)pπ(dx, dy)

)1/p

==

(
inf

X∼µ,Y∼ν
E[d(X, Y)p]

)1/p

, (2)

where the infimum is taken over all pairs of X -valued random variables X, Y with, respec-
tively, given marginals µ and ν.

2.2. Stochastic Optimal Control Problem

Following [13] (see also [14] and the references therein), let {Ω,F , (Ft),P} be a filtered
probability space, with filtration Ft = {Ft, t ∈ [0, T]}, T > 0, supporting:

• a controlled state variable (Xα
t )t∈[0,T], where Xt is an i.i.d. sequence of Rn-valued

F0-measurable random variables;
• a sequence {Wi

t}i≥1 of independent and Ft-adapted Brownian motions.
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We consider a control as enforced on the state variable by α = (αt)t∈[0,T], that is an
adapted process defined on A = {(αt)t∈[0,T]}, containing F -progressively measurable
controls, which take values in A identified as a closed subset of Rd. The objective function
J is then defined as:

J(α, X) = E
[∫ T

0
f (αs, Xs)ds + g(XT)

]
,

where f : A×Rn → R denotes the running objective function, while g : Rn → R denotes
the terminal objective function, and the expectation is taken with respect to (w.r.t.) the
probability measure P.

The goal corresponds to identifying the control α solving the maximization problem:

max
α∈A

J(α, Xt) ,

according to the n-dimensional stochastic controlled process Xs s.t.{
dXs = b(αs, Xs)ds + σ(αs, Xs)dWs

Xt = x , s ∈ [t, T] .
(3)

The drift function b : A×Rn → Rn and the volatility function b : A×Rn → Rd+n

are measurable, and they satisfy a uniform Lipschitz condition in x, i.e., there exists K > 0
such that, for all x, y ∈ Rn and αs ∈ A, it holds that:

|b(x, α)− b(y, α)|+ |σ(x, α)− σ(y, α| ≤ K|x− y| .

Previous assumptions guarantee that the SDE (3) has a unique solution, denoted by(
Xt,x

s

)
s∈[t,T]

. Therefore, the objective function can be explicitly expressed in terms of x,

t, namely:

J(α, x, t) = E
[∫ T

0
f (αs, Xt,x

s )ds + g(Xt,x
T )

]
,

with (t, x) ∈ [0, T] × Rn, and the process α ∈ A takes values αs ∈ A. Let v be the
value function:

v(t, x) = sup
α∈A

J(t, x, α) , (4)

then the corresponding optimal control α̂ : [0, T]×Rn → A is defined by:

J(t, x, α̂) = v(t, x) , ∀(t, x),∈ [0, T]×Rn ,

whose solution can be found by exploiting two different and interconnected approaches
respectively based on the Hamilton–Jacobi–Bellman (HJB) equation and on the stochastic
Pontryagin Maximum Principle (PMP).

The first one moves from the Dynamic Programming Principle (DPP), then leading to
the nonlinear second order Partial Differential Equation (PDE) known as the HJB equation
(see [3]), namely: {

∂v
∂t (t, x) + supa∈A

[
Lαv(t, x) + f (x, a)

]
= 0

v(T, x) = g(x) ,
(5)

that holds ∀(x, t) ∈ [0, T] × Rn, where L defines a second order operator called the in-
finitesimal generator of the controlled diffusion:

Lav = b(x, a) · ∇xv(x) +
1
2

Tr
[
(σ(x, a)σ(x, a)T∇2

x v(x)
]

.
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It is possible to define the Hamiltonian for the SOC problem [15,16] as H : Rd ×Rd ×
Sd → R∪ {∞}, written as follows:

H(x, y, z) = sup
a∈A

(
b(x, a) · y +

1
2

Tr [σσT(x, a)z] + f (x, a)
)

,

where Sd denotes the set of symmetric d× d matrices and the variables y and z are called
the adjoint variables. The previously defined Hamiltonian allows encapsulating the nonlin-
earity of the HJB equation, which can be rearranged as:

∂tv(t, x) + H(x,∇(t, x),∇2(t, x)) = 0 .

On the other hand, the stochastic PMP leads to a system of coupled Forward-Backward
SDEs (FBSDEs) plus an external optimality condition in terms of the Hamiltonian function;
see, e.g., [2,17] and the references therein. We define the local Hamiltonian as:

Ht(x, u, p, q) = ft(x, u) + bt(x, u)p + σt(x)q , (6)

where (p, q) are the adjoint variables.
By assuming that ft(x, u), bt(x, u) and σ(x, u) are progressively measurable, bounded

in C1(x, u) and Lipschitz ∀(x, u) ∈ R2, we have that if an arbitrary control maximizes the
Hamiltonian, then (necessary condition for optimality) it is the optimal one:

Hτ(x̂τ , ν̂τ , P̂τ , Q̂τ) = max
ν∈R
Ht(x̂τ , ν, P̂τ , Q̂τ) .

Moreover, by requiring that x 7→ g(x) and x 7→ Ĥt(x, P̂τ , Q̂τ) = supνHτ(x̂τ , ν, P̂τ , Q̂τ)
are both concave functions, the PMP becomes also a sufficient condition to characterize the
optimal control. In addition, by the envelope theorem, it follows that the optimal control ν̂
maximizingH also maximizes its derivative ∂xH:

∂xHτ(x̂τ , ν̂τ , P̂τ , Q̂τ) = ∂xĤt(x̂τ , P̂τ , Q̂τ) .

2.3. Mean-Field Games

In what follows, according to [1,3,5,18], we will exploit the theory of SOC to analyse
Mean-Field Games (MFGs), to gain insights into the symmetric stochastic differential games
characterized by a number of players that tends to infinity. In particular, consider n players
i = 1, . . . , n each of which controls a private state Xi whose dynamics read as follows:

dXi
t =

1
N

N

∑
j=1

b(t, Xi
t, X j

t , αi
t) + σdWi

t , (7)

σ ∈ R being a (common) constant multiplying a random noise component, i.e., dWi
t ,

steered by the i-th copy of a standard Brownian motion.
Each control αi

t represents the strategy played by the ith player, while X j
t models

the influence of the state of the other j-players. The dynamics in Equation (7) can be
reformulated as:

1
N

N

∑
j=1

b(t, Xi
t, X j

t , αi
t) =

∫
b(t, Xi

t, X j
t , αi

t)µ̄
N
t dx ,

where the empirical distribution µ̄N
t of private states is defined by:

µ̄N
t =

1
N

N

∑
j=1

δ
X j

t
.
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Hence, the same dynamics for each player are obtained, since each player depends
only on the global behaviour of the entire system and not on the state of the single player:

dXi
t =

1
N

N

∑
j=1

b(t, Xi
t, µ̄N

t , αi
t) + σdWi

t .

Each individual is minimizing a cost composed by a running cost and a terminal one.
Therefore, the objective function Ji(α), ∀i, is defined by:

Ji(αi) = E
[∫ T

0
f (t, Xi

t, µ̄N
t , αi

t)dt + g(Xi
T , µ̄N

T )

]
,

the goal being to select ε-Nash equilibria, the vector(α1?, . . . , αN?) being a ε-Nash equilib-
rium if:

∀i = 1, . . . , N ∧ ∀αi J(α?)− ε ≤ J(α?−i, αi) ,

meaning that if the ith player is changing his/her behaviour for a small value ε, while other
players follow a fixed strategy, there is no change in the profit of the game in terms of the
cost J. Let us note that, if ε = 0, we are dealing with the standard Nash equilibria.

In this scenario, the solution of an MFG (see [3]) corresponds to a couple (α?, µ?),
where µ?

t = L(Xα?
t ) models the optimal empirical distribution and α? = φ?(t, Xi

t) the
optimal strategies.

Due to the symmetry of the system, all the agents play the same strategy profile:

φ1?(t, X1
t ) = · · · = φN?(t, XN

t ) = φ?(t) , ∀i = 1, . . . , N;

hence, by fixing the flow of the probability measure (µt)t∈[0,T], the solution φ? solves the
SOC problem parametrized by the choice of the family (µt) as:

φ? = argmin
φ(t)t∈[0,T]

E
[∫ T

0
f (t, Xt, µt, φ(t, Xt))dt + g(XT , µT)

]
,

subject to:
dXt = b(t, Xt, µt, φ(t, Xt))dt + σdWt . (8)

The solution of the latter optimization problem returns the best response of a repre-
sentative player to the empirical measure (µt) in a scenario where no player is profitable in
changing his/her own strategy.

Concerning the choice of the flow of the probability measure (µt)t∈[0,T] (see
Equation (1)), if N → ∞, the asymptotic independence implied by the law of large numbers
ensures that the empirical measure µ̄N

t tends to the statistical distribution of Xt in the form
of a fixed point equation, that is L(Xαµ

) = µ. Once the optimal feedback φ? has been
found, for each choice of the parameter (µt)0≤t≤T , it is necessary to check that the optimal
empirical measure µ∗t can be recovered from the statistical distribution of the optimal states
Xα∗

t , i.e., ∀ t, L(Xα?
t ) = µ?

t must hold.
By freezing the family µ of probability, the Hamiltonian becomes:

Hµt(t, x, y, α) = yb(t, x, µt, α) + f (t, x, µt, α) . (9)

Let us assume that there exists a regular function:

α̂(t, x, y) : [0, T]×R×R→ argmin
α∈A

Hµt(t, x, y, α) ,

then we denote the infimum over controls α of Hµt(t, x, y, α) by:

Hµt(t, x, y) := inf
α∈A

Hµt(t, x, y, α) ,
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ending up with a stochastic control problem that can be solved (see, e.g., [3] (pp. 7–9))
by applying one of the following two methods:

1. The PDE approach through HJB Equation (21) and the Kolmogorov equation;
2. The Backward Stochastic Differential Equation (BSDE) approach based on the PMP.

We introduce the HJB value equation following [3], (p. 7), i.e.,:

v(t, x) = inf
α∈At

E
[ ∫ T

t
f (s, Xs, µs, αs)ds + g(XT , µT) |Xt = x

]
, (10)

where At denotes the set of admissible controls over the interval [t, T]. It is expected
that v is the solution, in the viscosity sense, of the HJB equation; see, e.g., [19,20] and the
references therein. Hence:

∂tv +
σ2

2
∂2

xxv +Hµt(t, x, ∂xv(t, x)) = 0 , (t, x) ∈ [0, T]×R , (11)

with terminal condition v(T, x) = g(x, µT), x ∈ R. Imposing µ̄ = (µt)0≤t≤T as the flow
of the optimally controlled state, the flow of statistical distributions should satisfy Kol-
mogorov’s equation, so that, introducing the notation β(t, x) = b(t, x, µt, φ(t, x)) with φ
the optimal feedback, the flow (νt)0≤t≤T of measures given by νt = L(Xt) satisfies the
Kolmogorov’s equation:

∂tν−
σ2

2
∂2

xxν− div(β(t, x)ν) = 0, (t, x) ∈ [0, T]×R , (12)

with initial condition ν0 = µ0. Such a PDE holds in the sense of distributions, since νt
represents a density and the derivatives involved must be considered in the Wasserstein
sense. Setting νt = L(Xt) = µt, we end up with a system of coupled non-linear forward-
backward PDEs (11) and (12), constituting the so-called MFG-PDE system. On the other
hand, we can approximate the solution of the aforementioned stochastic control problem
via the stochastic Pontryagin principle. In particular, for each open-loop adapted control
α = (αt)0≤t≤T , we denote by Xα = (Xα

t )0≤t≤T the associated state, and we introduce the
adjoint equation: {

dYt = −∂x Hµt(t, Xt, Yt, αt)dt + ZtdWt , t ∈ [0, T]
YT = ∂xg(XT , µT) .

(13)

Hµt corresponds to the Hamiltonian defined in Equation (9), and the solution (Yt, Zt)0≤t≤T
of the BSDE is called a set of adjoint processes.

The PMP necessary condition states that whenever Xα is an optimal state, it must
hold that Hµt(t, Xt, Yt, αt) = Hµt(t, Xt, Yt) , t ∈ [0, T]. Moreover, if the Hamiltonian Hµt

is convex w.r.t. the variables (x, α) and the terminal g is convex w.r.t. the variable x,
then the system given by Equations (13) and (8) characterizes the optimal states of the
MFG problem.

3. Main Result

In this section, we generalize the approach proposed in [5], providing an application
of the Mean-Field (MF) optimal control to Deep Learning (DL). In particular, we start
by considering the learning process characterizing supervised learning as a population
risk minimization problem, hence considering its probabilistic nature in the sense that
the optimal control parameters, corresponding to the trainable weights in the associated
Neural Network (NN) model, depending on the population distribution of input-target
pairs constituting the randomness source.
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3.1. Neural Network as a Dynamical System

In order to study DL as an optimal control problem, it is necessary to express the NN
learning process as a dynamical system [6,21]. In the simplest form, the feed-forward prop-
agation in a T layer, T ≥ 1, network can be expressed by the following difference equation:

xt+1 = xt + f (xt, θt) , t = 0, . . . , T − 1 , (14)

where x0 is the input, e.g., an image, several time-series, etc., while xT is the final output,
to be compared to some target yT by means of a given loss function. By moving from a
discrete time formulation to a continuous one, the forward dynamics we are interested in
will be described by a differential equation that takes the role of (14). The learning aim is to
tune the trainable parameters θ0, . . . , θT−1 to have xT as close as possible to yT , according
to a specified metric and knowing that the target yT is joined to the input x0 by means of a
probability measure µ0.

Following the dynamical systems approach developed in [6], the supervised learning
method aims to approximate some function F , usually called the oracle, denoted by
F : X → Y .

As stated before, the set X ⊂ Rd contains the d-dimensional array of inputs, e.g.,
images, financial time-series, sound recorded data, text, etc., while Y are the targets
modelling the corresponding images, numerical forecast, or predicted texts.

In this setting, it is standard to define what is called a hypothesis space as:

H = {Fθ : X → Y | θ ∈ Θ} .

Training moves from a collection of K samples of input-target pairs {xi, yi = F (xi)}K
i=1 ,

the goal being to approximate F exploiting these training data points.
Let (Ω,F ,P) be a probability space supporting random variables x0 ∈ Rd and yT ∈ Rl ,

jointly distributed according to µ0 := P(x0,yT)
with µ0 modelling the distribution of the

input-target pairs. The set of controls Θ ⊆ Rm denotes the admissible training weights that
are assumed to be essentially bounded, measurable L∞([0, T], Θ) functions. The network
depth, i.e., the number of layers, is denoted by T > 0. We also introduce the functions:

• the feed-forward dynamics f : Rd ×Θ→ Rd;
• the terminal loss function Φ : Rd ×Rl → R;
• the regularization term L : Rd ×Θ→ R.

State dynamics are described by an Ordinary Differential Equation (ODE) of the form:

ẋt = f (xt, θt) , (15)

representing the continuous version of Equation (14), equipped with an initial condi-
tion x0, which is a random variable responsible for the randomness term characterizing
Equation (15).

The population risk minimization problem in DL can be expressed by the following
MF-optimal control problem (see [5] (p. 5)):

inf
θ∈L∞([0,T],Θ)

J(θ) := Eµ0

[
Φ(xT , yT) +

∫ T

0
L(xt, θt)dt

]
, (16)

subject to the dynamics expressed by the stochastic ODE (15). Since the weights θ are shared
by the distribution µ0 of random variable (x0, yT) pairs, Equation (16) can be studied as an
MF-optimal control problem.



Symmetry 2021, 13, 14 8 of 20

On the other hand, the empirical risk minimization problem can be expressed by a
sampled optimal control problem after computing i.i.d. samples {xi

0, yi
T})N

i=1 modelled by
µ0 = P(x0,yT)

:

inf
θ∈L∞([0,T],Θ)

JN(θ) :=
1
N

N

∑
i=1

[
Φ(xi

T , yi
T) +

∫ T

0
L(xi

t, θt)dt
]

, (17)

subject to the dynamics:
ẋi

t = f (xi
t, θt) , i = 1, . . . , N ,

whose solutions, moving from random initial conditions through a deterministic path,
correspond to random variables.

As in classical optimal control theory, the previous problem can be solved following
two inter-connected approaches: a global theory, based on the Dynamic Programming
Principle (DPP) leading to the HJB equation, or considering the Pontryagin Maximum
Principle (PMP) approach, hence expressing the solution by a system of Forward Backward
SDEs (FBSDEs) plus a local optimality condition.

3.2. HJB Equation

The idea behind the HJB formalism is to define a value function corresponding to
the optimal loss of the control problem w.r.t. the general starting time and state. For the
population risk minimization formulation expressed by Equation (16), the state argument
of the value function corresponds to an infinite-dimensional object that models a joint
distribution of the input-target as an element of a suitable Wasserstein space.

As regards random variables and their distribution, a suitable space must be defined
for the rigorous treatment of the optimal control problem. In particular, we use the
shorthand notation L2(Ω,Rd+l) for L2((Ω,F ,P),Rd+l) to denote the set of Rd+l-valued
square integrable random variables w.r.t. a given probability measure P. Then, we deal
with a Hilbert space considering the norm:

||X||L2 :=
(
E(||X||2

) 1
2

, X ∈ L2(Ω,Rd+l) ,

The setP2(Rd+l) denotes the integrable probability measures defined on the Euclidean
space Rd+l . Let us recall that the random variable X is square integrable in L2(Ω,Rd+l)
if and only if its law PX ∈ P2(Rd+l). The space P2(Rd+l) can be endowed with a metric
by considering the Wasserstein distance defined in Equation (2). For p = 2, the two-
Wasserstein distance reads:

W2(µ, ν) := inf
{(∫

Rd+l×Rd+l
||w− z||2π(dw, dz)

) 1
2 ∣∣∣π ∈ P2(Rd+l ×Rd+l)with marginals µ and ν

}
,

according to the marginals introduced in Section 2.1, or equivalently:

W2(µ, ν) := inf
{
||X−Y||L2

∣∣∣X, Y ∈ L2(Ω,Rd+l)withPX = µ,PY = ν

}
,

see, e.g., [5] (p. 6). Moreover, ∀ µ ∈ P2(Rd+l), we define the associated norm:

||µ||L2 =

(∫
Rd+l
||w||2µ(dw)

) 1
2

.

Given a measurable function ψ : Rd+l → Rq that is square integrable w.r.t. the
probability distribution µ, the following notation is introduced:

〈ψ(·), µ〉 :=
∫
Rd+l

ψ(w)µ(dw) . (18)
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Concerning the dynamical evolution of probability measures, let us fix ξ ∈ L2(Ω,Rd+l)
and the control process θ ∈ L∞([0, T], Θ). Then, the dynamics of the system can be written as:

Wt,ξ,θ
s = ξ +

∫ s

t
f̄ (Wt,ξ,θ

s , θt)ds , s ∈ [t, T] ,

µ being the law associated with the variable ψ defined by µ = Pξ ∈ P2(Rd+l), and we can
rewrite the law of Wt,ξ,θ

s as:
Pt,µ,θ

s := P
Wt,ξ,θ

s
. (19)

Indeed, the law involving the dynamics Wt,ξ,θ
s depends only on the law of ξ and not

on the random variable itself; see, e.g., [5] (p. 7).
It turns out that, to obtain the HJB Equation (5) corresponding to the above introduced

formulation, it is necessary to define the concept of the derivative w.r.t. a probability
measure. To begin with, it is useful to consider probability measures on Rd+l as laws
expressing probabilistic features of the Rd+l-valued random variables defined over the
probability space (Ω,F ,P). Then, we define the Banach space of random variables to
define the derivatives. Moreover, if we define a function u : P2(Rd+l)→ R, it is possible to
lift it into its extension U defined on L2([0, T],Rd+l), as follows:

U(X) = u(PX), ∀X ∈ L2(Ω,Rd+l) ,

then the definition of the derivative w.r.t. a probability measure can be expressed in terms
of U in the usual Banach space setting. In particular, we have that u is C1(P2(Rd+l)), if the
lifted function U is Fréchet differentiable with continuous derivatives.

Since L2(Ω,Rd+l) can be identified with its dual, if the Fréchet derivative DU(X)
exists, by Riesz’s theorem, it can be identified with an element of L2(Ω,Rd+l), i.e.,

DU(X)(Y) = E[DU(X) ·Y], ∀Y ∈ L2(Ω,Rd+l) .

It is worth underlining that DU(X) does not depend on X, but only on the law
described by X; hence, the derivative of u at µ = PX is described by ∂µu(PX) : Rd+l → Rd+l ,
defined as:

DU(X) = ∂µu(PX)(X) .

By duality, we know that ∂µu(PX) is square integrable w.r.t. µ. To define a notion for
the chain rule in P2(Rd+l), a dynamical system is described by:

Wt = ξ +
∫ t

0
f̄ (Ws)ds, ξ ∈ L2(Ω,Rd+l) ,

where f̄ denotes the feed-forward dynamics. If a function u ∈ C1(P2(Rd+l)), meaning that
it is differentiable with a continuous derivative w.r.t. a probability measure, then, for all
t ∈ [0, T], we have:

u(PWt) = u(PW0) +
∫ t

0
〈∂µu(PWs)(·) · f̄ (·),PWs〉ds , (20)

where · denotes the usual inner product between the vector in Rd+l . Equivalently, exploit-
ing the lifted function of u, we can state:

U(Wt) = U(W0) +
∫ t

0
E[DU(Ws) · f̄ (Ws)]ds .

Moreover, the variable w denotes the concatenated (d + l)-dimensional variable (x, y),
where x ∈ Rd and y ∈ Rl . Correspondingly, f̄ (w, θ) := ( f (x, θ), 0) is the extended (d + l)-
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dimensional Feed-Forward Function (FFF), L̄(w, θ) = L(x, θ) is the extended (d + l)-
dimensional regularization loss and Φ̄(w) := Φ(x, y) represents the terminal loss function.

Since the state variable is identified with a probability distribution µ ∈ P2(Rd+l),
the resulting objective functional can be defined as:

J(t, µ, θ) := E(xt ,yT)∼µ

[
Φ(xT , yT) +

∫ T

t
L(xt, θt)dt

]
,

which can be written, with the concatenated variable w and the bracket notation introduced
in (18), as:

J(t, µ, θ) := 〈Φ̄(w),Pt,µ,θ
T 〉+

∫ T

t
〈L̄(w, θs),P

t,µ,θ
s 〉ds .

In this setting, some assumptions for the value function are needed to solve
Equation (16). In particular:

1. f , L and Φ are bounded;
2. f , L and Φ are Lipschitz w.r.t. x, and the Lipschitz constant of f and L are independent

of θ;
3. µ0 ∈ P2(R(d+l)).

The value function v∗(t, µ) is defined as the real-valued function on [0, T]×P2(Rd+l),
corresponding to the infimum of the functional J over the training parameters θ:

v∗(t, µ) = inf
θ∈L∞([0,T],Θ)

J(t, µ, θ) .

It is essential to observe how the value function satisfies a recursive relation based on
the Dynamic Programming Principle (DPP). This implies that, for any optimal trajectory
starting from any intermediate point, the remaining part of the trajectory still has to be
optimal. The latter principle can be expressed by defining the value function as:

v∗(t, µ) = inf
θ∈L∞([0,T]),Θ

[ ∫ t̂

t
〈L̄(·, θs),P

t,µ,θ
s 〉ds + v∗(t̂,Pt,µ,θ

t̂ )
]

,

∀ 0 ≤ t ≤ t̂ ≤ T and µ ∈ P2(Rd+l).
Considering a small increment of time t̂ = t + δt with δ > 0, we can compute the

Taylor expansion in the Wasserstein sense, hence obtaining:

0 = inf
θ∈L∞([0,T]),Θ

[
v∗(t + δt,Pt,µ,θ

t+δt)− v∗(t, µ) +
∫ t+δt

t
〈L̄(w, θs),P

t,µ,θ
s 〉ds

]
.

By the chain rule in P2(Rd+l), we have:

0 ≈ inf
θ∈L∞([0,T]),Θ

[
∂tv(t, µ)δt +

∫ t+δt

t
〈∂µv(t, µ)(w) · f̄ (w, θ) + L̄(w, θs), µ〉ds

]
.

Since the infinitesimal δt does not affect the distribution µ and the controls θ (see [5]
(p. 13)), integrating the second term, we have:

0 ≈ δt inf
θ∈L∞([0,T]),Θ

[
∂tv(t, µ) + 〈∂µv(t, µ)(w) · f̄ (w, θ) + L̄(w, θ), µ〉

]
.

Taking δt→ 0, we have:
∂v
∂t

+ infθ∈Θ
〈
∂µv(t, µ)(w) · f̄ (w, θ) + L̄(w, θ), µ

〉
= 0 , on [0, T)×P2(Rd+l)

v(T, µ) = 〈Φ̄(w), µ〉 , on P2(Rd+l).
(21)
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Since the value function should solve the HJB equation, it is essential to find the
precise link between the solution of this PDE and the value function obtained from the
minimization of the functional J. To provide the result, we use a verification argument
allowing the following consideration: if the solution of the HJB is smooth enough, then it
corresponds to the value function v∗; moreover, it allows computing the optimal control θ∗.

Theorem 1 (The verification argument). Let v be a function in C1,1([0, T]×P2(Rd+l)). If v is
a solution of the HJB equation in (21) and there exists θ̄ that is mapping (t, µ)→ Θ attaining the
infimum in the HJB equation, then v(t, µ) = v∗(t, µ), and θ̄ is an optimal feedback control policy,
i.e., θ = θ∗ is a solution of the population risk minimization problem expressed by Equation (16),

where θ∗t := θ̄(t,Pw?
t
) with Pw?

0
= µ0 and

dw?
t

dt
= f̄ (w?

t , θ?t ).

Proof of Theorem 1. Given any control process θ, applying Formula (20) between s = t
and s = T with explicit time dependence gives:

v(T,Pt,µ,θ
T ) = v(t, µ) +

∫ T

t

∂v
∂t

(s,Pt,µ,θ
s ) + 〈∂µv(s,Pt,µ,θ

s )(·) · f̄ (·, θs) , Pt,µ,θ
s )〉ds ,

Equivalently:

v(t, µ) = v(T,Pt,µ,θ
T )−

∫ T

t

∂v
∂t

(s,Pt,µ,θ
s ) + 〈∂µv(s,Pt,µ,θ

s )(·) · f̄ (·, θs) , Pt,µ,θ
s 〉ds

≤ v(T,Pt,µ,θ
T ) +

∫ T

t
〈L̄(·, θs) , Pt,µ,θ

s 〉ds

= 〈Φ̄(·) , PT,µ,θ
t +

∫ T

t
〈L̄(·, θs) , Pt,µ,θ

s 〉ds

= J(t, µ, θ) ,

where the first inequality comes from the infimum condition in (21).
Since the control is arbitrary, we have:

v(t, µ) ≤ v∗(t, µ) ,

then it can be substituted with θ∗ where θ∗t = θ̄ (t,Pt,µ,θ∗
s ) is computed by the optimal

feedback control. Repeating the above argument, the inequality becomes an equality since
the infimum is attained for θ̄:

v(t, µ) = J(t, µ, θ∗) ≥ v∗(t, µ) .

Thus, v(t, µ) = v∗(t, µ), and θ̄ defines an optimal control policy. For more details,
see [5] (Proposition 3, pp. 13–14).

The importance of Theorem 1 consists of linking smooth solutions of the parabolic
PDE to the solutions of the population risk minimization problem, becoming a natural
candidate for the DL problem.

Moreover, the optimal control policy θ̄ : [0, T]×P2(Rd+l)→ Θ is identified by com-
puting the infimum in (21). Hence, it turns out that the HJB equation strongly characterizes
the learning problem’s solution for the feedback, or closed-loop networks: control weights
are actively adjusted according to the outputs, and this is the essential feature of closed-
loop control. Nevertheless, the solution comes from a PDE that is in general difficult to
solve, even numerically. On the other hand, open-loop solutions can be obtained from the
closed-loop control policy by sequentially setting θ?t = θ̄ (t,Pw?

t
), w?

t being the solution of
the feed-forward ODE describing the dynamics of the state variable, with θ = θ? up to
time t. Usually within DL settings, open-loops are used during training or to measure the
inference of a trained model, since trained weights for each neuron will have a fixed value.
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The great limit of such a formulation relies in assuming that the value function v?(t, µ)
is continuously differentiable. It is straightforward to study a more flexible characterization
for v? dealing with weak solutions, also denoted as viscosity solutions. Thus, it is worth
considering a weaker formulation of the PDE to go beyond the concept of classical solutions,
by introducing the notion of viscosity ones, hence allowing obtaining relevant results when
dealing with weaker assumptions on the coefficients defining the (stochastic) differential
problem we are interested in; see, e.g., [5] (Section 5 pp. 14–22) for more details.

The key idea relies on exploiting the lifting identification between measures and
random variables and moving from the Wasserstein space P2(Rd+l) to the Hilbert space
L2(Ω,Rd+l), using tools developed to study viscosity solutions.

We introduce a functional defined as the Hamiltonian for viscosity formulation
H(ξ, P) : L2(Ω,Rd+l)× L2(Ω,Rd+l)→ R through:

H(ξ, P) = inf
θ∈Θ

E[P · f̄ (ξ, θ) + L̄(ξ, θ)] . (22)

Then, the lifted Bellman equation can be written w.r.t. V(t, ξ) = v(t,Pξ) as follows:
∂V
∂t

+H(ξ, DV(t, ξ)) = 0 on [0, T)× L2(Ω,Rd+l) ,

V(T, ξ) = E[Φ̄(ξ)] on L2(Ω,Rd+l) ;
(23)

hence, the PDE we are analysing is now set within a larger space corresponding to
L2(Ω,Rd+l).

We say that a bounded, uniformly continuous function u : [0, T]×P2(Rd+l)→ R is a
viscosity solution of HJB Equation (21) if its lifted function U : [0, T]× L2(Ω,Rd+l) → R
defined by:

U(t, ξ) = u(t,Pξ) ,

is a viscosity solution to the lifted Bellman Equation (23), namely:

1. U(T, ξ) ≤ E[Φ̄(ξ)] and for any test function ψ ∈ C1,1([0, T]× L2(Ω,Rd+l)) such that
(U − ψ) has a local maximum at (t0, ξ0) ∈ [0, T)× L2(Ω,Rd+l), ψ solves:

∂tψ(t0, ξ0) +H(ξ0, Dψ(t0, ξ0)) ≥ 0 .

2. U(T, ξ) ≥ E[Φ̄(ξ)] and for any test function ψ ∈ C1,1([0, T]× L2(Ω,Rd+l)) such that
the map (U − ψ) has a local minimum at (t0, ξ0) ∈ [0, T)× L2(Ω,Rd+l), ψ solves:

∂tψ(t0, ξ0) +H(ξ0, Dψ(t0, ξ0)) ≤ 0 .

Actually, the unique solution of this formulation corresponds to the value function
v∗ from the minimization problem; see, e.g., [5] (Theorem 1, p. 15). Therefore, the HJB
equation provides both the necessary and sufficient condition for the optimality of the
learning procedure.

Adopting the MF-optimal control viewpoint implies that the population risk minimiza-
tion problem of DL can be studied as a variational problem, whose solution is characterized
by a suitable HJB equation, in analogy with the classical calculus of variations. In other
words, the HJB equation is a global characterization of the value function to be solved
over the entire space P2(Rd+l) of input-target distributions. From the numerical point of
view, it is a hard task to get a solution for the entire space; this is why the learning problem
is typically locally solved, around some (small set of) trajectories generated according
to the initial condition µ0 ∈ P2(Rd+l), then applying the obtained feedback to nearby
input-target distributions.

3.3. Mean-Field Pontryagin Maximum Principle

We have seen how the HJB approach provides a characterization of the optimal
solution for the population risk minimization problem that holds globally in P2(Rd+l),



Symmetry 2021, 13, 14 13 of 20

at the price of being difficult to handle in practice. Moving from this consideration, the MF-
PMP aims to show a local condition for optimality, expressed in terms of E[H], i.e., the
expectation of the Hamiltonian function.

Starting from the population risk minimization problem defined in Equation (16)
and given a collection of K sample input-target pairs, the single ith input sample is consid-
ered. The prediction of the network can be approximated by a deterministic transformation
of the terminal state g(Xi

T) for some g : Rd → Y that models a function both of the initial in-
put xi and of the control parameters θ. Moreover, we define a loss function Φ : Y ×Y → R,
which is minimized when the arguments are equal. Therefore, the goal is to minimize:

K

∑
i=1

Φ(g(Xi
T), yi) .

Since g is fixed, it can be absorbed into the definition of the loss function by defining
the array Φi(·) := Φ(·, yi).

Then, the supervised learning problem can be expressed as:

min
θ∈U

[
K

∑
i=1

Φi(Xi
T) +

∫ T

0
L(θt)dt

]
, (24)

where L : Θ→ R acts as a regularizer term to model a running cost.
Input variables x = (x1, . . . , xK) can be considered as the elements of a Euclidean

space Rd×K, representing the initial conditions of the following ODE system:

Ẋi
t = fθt(t, Xi

t), Xi
0 = xi, 0 ≤ t ≤ T , i = 1, . . . , K , (25)

where θ : [0, T] → Θ are the control parameters to be trained. The dynamics (25) are
decoupled except for the control. A general space U for controls θ is then defined as:
U := {θ : [0, T] → Θ : θ isLebesguemeasurable}, and we are aiming to choose θ in U to
have g(Xi

T) closer to yi for i = 1, . . . , K.
To formulate the PMP as a set of necessary conditions for optimal solutions, it is useful

to define the Hamiltonian H : [0, T]×Rd ×Rd ×Θ→ R given by:

H(t, x, p, θ) := p · f (t, x, θ)− L(θ) ,

with p modelling an adjoint process as in Equation (6).
Let us underline that all input-target pairs (x0, y0), connected by the distribution

µ0, share a common control parameter, and this feature suggests the idea to develop a
maximum condition that has to hold in the average sense. Indeed, the control is now
enforced on the continuity equation that describes the evolution of probability densities.

The following assumptions are needed:

1. f is bounded and f , L are continuous w.r.t. θ;
2. f , L and Φ are continuously differentiable w.r.t. x;
3. the distribution µ0 has bounded support in Rd ×Rl , which means there exists M > 0

such that µ({(x, y) ∈ Rd ×Rl : ||x||+ ||y|| ≤ 1}) = 1.

Theorem 2 (Mean-Field Pontryagin Maximum Principle). Let assumptions 1–3 hold and
θ∗ ∈ L∞([0, T], Θ) be the minimizer for J(θ) corresponding to the optimal control of the population
risk minimization problem (16). Define the Hamiltonian H : Rd ×Rd ×Θ→ R as

H(x, p, θ) = p · f (x, θ)− L(x, θ) . (26)
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Then, there exist absolutely continuous stochastic processes x∗ and p∗ solving the following
forward backward SDEs:

ẋ∗t = f (x∗t , θ∗t ), x∗t = x0 , (27)

ṗ∗t = −∇x H(x∗t , p∗t , θ∗t ), p∗T = −∇xΦ(x∗T , y0) , (28)

and the related optimality condition expressed in terms of the expectation of the Hamiltonian func-
tion:

Eµ0 H(x∗t , p∗t , θ∗t ) ≥ Eµ0 H(x∗t , p∗t , θ), ∀θ ∈ Θ, for a.e. t ∈ [0, T] . (29)

Proof of Theorem 2. For the sake of simplicity, let us introduce a new coordinate x0 satis-
fying the dynamics ẋ0

t = L(xt,∗ , θ∗t ) with x0
0 = 0. Through this choice, the definition of the

Hamiltonian in Equation (26) can be rewritten without running loss L by redefining:

x → (x0, x), f → (L, f ), Φ(xT , y0)→ Φ(xT , y0) + x0
T .

Assumptions 1–3 are still preserved, but now we consider without loss of generality
the case L ≡ 0.

Let some τ ∈ (0, T] be a Lebesgue point of f̂ (t) := f (x∗t , θ∗t ); in this setting, these
points are dense in [0, T]. Now, for ε ∈ (0, τ), define the family of perturbed controls:

θτ,ε
t =

{
ω t ∈ [τ − ε, τ]

θ∗t otherwise
,

where ω ∈ Θ is an admissible control; this kind of perturbation is called needle perturbation.
Accordingly, define xτ,ε

t by:

xτ,ε
t = x0 +

∫ t

0
f (xτ,ε

s , θτ,ε
s )ds ,

that is the solution of the forward propagation equation with the perturbed control θτ,ε.
Clearly, x∗t = xτ,ε

t for every t ≤ τ − ε and every x0 since the perturbation is not present. At
the limit point t = τ, the following holds:

1
ε
(xτ,ε

τ − x∗τ) =
1
ε

∫ τ

τ−ε
f (xτ,ε

s , ω)− f ( f ∗s ), θ∗s )ds ,

and since τ is a Lebesgue point of F:

vτ := lim
ε→0

1
ε
(xτ,ε

τ − x∗τ) = f (x∗τ , ω)− f (x∗τ , θ∗τ) .

It is possible to characterize vτ as the leading order perturbation on the state due to
the needle perturbation introduced in the infinitesimal interval [τ − ε, τ]. In interval (τ, T],
the dynamics is the same before applying the perturbation since the controls are the same.

Now, it is necessary to consider how the perturbation vτ propagates. Thus, define for
t ≥ τ:

vε
t :=

1
ε
(xτ,ε

t − x∗t ) ,

and:
vt := lim

ε→0
vε

t ,
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vt is well-defined for almost every t, which are every Lebesgue point of the map t 7→ x∗(t),
and it satisfies the following linearised equation:{

v̇t = ∇x f (x∗t , θ∗t )
Tvt , t ∈ (τ, T]

vτ = f (x∗τ , ω)− f (x∗τ , θ∗τ) .
(30)

In particular, v(T) represents the perturbation of the final state introduced by this
control. By the optimality assumption of θ∗, it follows that:

Eµ0 Φ(xτ,ε
T , y0) ≥ Eµ0 Φ(x∗T , y0) .

Assumptions 1 and 2 (p. 13) imply ∇xΦ is bounded. By the dominated convergence
theorem, we know that:

0 ≤ lim
ε→0

1
ε
Eµ0 [Φ(xτ,ε

T , y0)−Φ(x∗T , y0)]

= Eµ0

d
dε

Φ(xε,τ
T , y0)

∣∣∣
ε=0+

= Eµ0∇xΦ(xε,τ
T , y0) · vT . (31)

Let us define p? as the solution of the adjoint of Equation (30), hence:

ṗ∗t = −∇x f (x∗s , θ∗s )p∗t , p∗T = −∇xΦ(x∗T , y0) .

By Equation (31), it follows that Eµ0 p∗T · vT ≤ 0, and moreover, for all t ∈ [τ, t]:

d
dt
(p∗t · vt) = ṗ∗t · vt + v̇t · p∗t = 0;

thus,
Eµ0 p∗τ · vt = Eµ0 p∗T · vT ≤ 0 , ∀t ∈ [τ, T] ,

so that taking t = τ:
Eµ0 p∗τ · f (x∗τ , θ∗τ) ≥ Eµ0 p∗T · f (x∗τ , ω) .

Since ω is arbitrarily chosen, this completes the proof by recalling that H(x, p, θ) =
p · f (x, θ). See [5] (Theorem 3, pp. 23–24) for more details.

MF-PMP refers only to the control of the open-loop type; Equation (27) is a feed-
forward ODE, describing the state dynamics under optimal controls θ∗. Equation (28)
defines the evolution of the co-state variable p∗s , characterizing the evolution of an adjoint
variational condition backwards in time. It is interesting to note how the optimality
condition described in Equation (29) does not involve first order partial derivatives, being
expressed in terms of expectations. In particular, it requires that optimal solutions must
globally maximize the Hamiltonian function. This aspect allows considering also cases
of non-differentiable dynamics w.r.t. the controls weights, as well as cases characterized
by optimal weights lying on the boundary of the training set Θ. Moreover, the usual first
order optimality condition can be derived from (29). Comparing this MF formulation to
the classical PMP, we can see that the main difference lies in the fact that the maximization
condition is expressed in terms of the expectation above a probability density µ0. The
latter result is not surprising, since the mean-field-optimal control must depend on the
probability distribution of input-target pairs.

Let us also note that the mean-field PMP expressed in Theorem 2 can be written
more compactly as follows. For each control process θ ∈ L∞([0, T], Θ), we denote by
xθ := {xθ

t : 0 ≤ t ≤ T} and pθ := {pθ
t : 0 ≤ t ≤ T} the solutions of Hamilton’s
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Equations (27) and (28), and we enforce the control expressed by the random variables
(x0, yT) ∼ µ0, through:

ẋθ
t = f (xθ

t , θt), xθ
0 = x0 ,

ṗθ
t = −∇x H(xθ , pθ

t , θt), pθ = −∇xΦ(xθ
T , yt) .

Then, θ∗ satisfies the PMP if and only if:

Eµ0 H(xθ∗
t , pθ∗

t , θ∗t ) ≥ Eµ0 H(xθ∗
t , pθ∗

t , θ), ∀θ ∈ Θ . (32)

Furthermore, observe that the mean-field PMP includes, as a special case, the necessary
conditions for the optimality of the sampled optimal control problem (17). In order to point
out this aspect, define the empirical measure:

µN
0 :=

1
N

N

∑
i=1

δ(xi
0,yi

T)
,

and apply the mean-field PMP with µN
0 in place of µ0 to obtain:

1
N

N

∑
i=1

H(xθ∗ ,i
t , pθ∗ ,i

t , θ∗t ) ≥
1
N

N

∑
i=1

H(xθ∗ ,i
t , pθ∗ ,i

t , θ) , ∀θ ∈ Θ , (33)

where xθ∗ ,i
t and pθ∗ ,i

t are defined through the input-target pair (xi
0.yi

T). Moreover, since µN
0 is

a random measure, (33) is a random equation whose solutions correspond to random vari-
ables.

Concerning possible numerical analysis of the DL algorithm based on the maximum
principle, we refer to [4] (pp. 13–15), where a comparison can be found between usual
gradient approaches to the discrete formulation of the Mean-Field PMP stated in Theorem
2, with a loss function based on Equation (24). The test and train losses of some variants
of SGD algorithms are compared to the mean-field algorithm based on the discrete PMP.
It is possible to observe that the latter algorithm is characterized by a better convergence
rate, being then faster. This improvement is mainly due to the fact that it allows avoiding
possibly getting stuck, caused by the flat regions, as clearly shown by the graphs reported
in [4] (p. 14).

3.4. Connection between the HJB Equation and the PMP

In what follows, we provide connections between the global and local formulation of
the HJB formalism via the PMP, exploiting the connection between Hamilton’s canonical
equations (ODEs) and the Hamilton–Jacobi equations (PDEs). The Hamiltonian dynamics
of Equations (27) and (28) describe the trajectory of a random variable that is completely
determined by random variables (x0, yT). On the other hand, the optimality condition
described by Equation (29) does not depend on the particular probability measure of the
initial input-target pairs. Notice that the maximum principle can be expressed in terms of a
Hamiltonian flow that depends on a probability measure in a suitable Wasserstein space
and where Equation (29) is the corresponding lifting version. Analogously, in order to have
both solutions in the same functional space, HJB has to be lifted in the L2(Ω,Rd+l) space.

Starting from the lifted Bellman Equation (23), lying in L2(Ω,Rd+l), it is possible
to apply the method of the characteristics and define the following system of equations,
after introducing Pt = DV(t, ξt):{

ξ̇t = DPH(ξt, Pt)

Ṗt = −DξH(ξt, Pt) .
(34)
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Suppose Equation (34) has a solution that satisfies an initial condition given by:

Pξ0 = µ0 ,

and a terminal one involving Bellman equation given by:

PT = ∇wΦ̄(ξT) .

We also assume that θ̄(ξ, P) is the optimal control achieving the infimum in (21), as an
interior point of Θ, then we can explicitly write the equation of the Hamiltonian w.r.t. the
optimal control as:

H = E[P · f̄ (ξ, θ̄(ξ, P)) + L̄(ξ, θ̄(ξ, P))] .

Therefore, by the first order condition, we have:

E[∇θ f̄ (ξ, θ̄(ξ, P))P +∇θ L̄(ξ, θ̄(ξ, P))] = 0 ,

so that, taking into consideration Equation (34), we obtain the Hamilton-type equations:{
ξ̇t = f̄ (ξt, θ̄(ξt, Pt))

Ṗt = −∇w f̄ (ξt, θ̄(ξt, Pt))Pt −∇w L̄(ξt, θ̄(ξt, Pt)) .
(35)

Use w = (x, y) as concatenated variable and θ∗ = θ̄(ξt, Pt) to remark that the last l
components of f̄ are zero and by considering only the first d components:{

ẋt = f (ξt, θ∗)

ṗt = −∇x f (xt, θ∗)pt −∇xL(xt, θ∗t ) .
(36)

Summing up: Hamilton’s equation of the system (36) can be viewed as the charac-
teristic equations of the HJB equation in its lifted formulation described by Equation (23).
Essentially, the PMP gives a necessary condition for any characteristic of the HJB equation:
any characteristic originating from µ0, that is the initial law of the random variables, must
satisfy a local necessary optimal condition constituted by the mean-field PMP. This justifies
the claim that the PMP constitutes a local condition if compared to the HJB equation.

3.5. Small-Time Uniqueness

A natural question is to understand when the PMP solutions also provide sufficient
conditions to have optimality. We start by considering that the uniqueness of the solution
implies sufficiency, and we investigate which assumptions are needed to have a unique
solution of the mean-field PMP equations. Equations (27) and (28) model highly non-
linear two-point boundary value problems in terms of x∗ and p∗, which are also coupled
through their laws. In general, even without the coupling, this kind of PDE is known to
not have a unique solution; see, e.g., Ch. 7 of [22]. In order to prove the uniqueness, strong
assumptions are needed to prove the small-time case.

Theorem 3 (Small-time uniqueness). Suppose that:

• f is bounded;
• f , L and Φ are continuously differentiable w.r.t. both x and θ with bounded and Lipschitz

partial derivatives;
• the distribution µ0 has bounded support in Rd ×Rl , which means there exists M > 0 such

that µ{ (x, y) ∈ Rd ×Rl : ||x||+ ||y|| ≤ 1 } = 1;
• H(x, p, θ) is strongly concave in θ and uniformly in x, p ∈ Rd, i.e.,∇2

xx H(x, p, θ) + λ0 � 0
for some λ0 ≥ 0.

Then, for sufficiently small T, if θ∗1 and θ∗2 are solutions of the mean-field PMP derived in
Theorem 2, then θ∗1 = θ∗2.
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Before proving the theorem, we report the following lemma, which provides an
estimate of the difference between flow-maps driven by two different controls in terms of
the small-time parameter T:

Lemma 1. Let θ1, θ2 ∈ L∞([0, T], Θ). Then, there exists a constant T0 such that for all T ∈
[0, T0), it holds that:

||xθ1 − xθ2 ||L∞ + ||pθ1 − pθ2 ||L∞ ≤ C(T)||θ1 − θ2||L∞ ,

where C(T) > 0 satisfies C(T)→ 0 as T → 0.

Proof of Lemma 1. We denote δθ := θ1 − θ2, δx := xθ1 − xθ2
and δp = pθ1 − pθ2

, respec-
tively. Since xθ1

0 = xθ1

2 = x0, integrating the respective ODEs while considering the first
two assumptions of Theorem 6 leads to:

||δxt|| ≤
∫ t

0
|| f (xθ1

s , θ1
s )− f (xθ1

s , θ2
s )||ds ≤ KL

∫ T

0
||δxs||ds + KL

∫ T

0
||δps||ds ,

and so:
||δx||L∞ ≤ KLT||δx||∞ + KLT||δθ||∞ .

Now, if T ≤ T0 :=
1

KL
. We then have:

||δx||L∞ ≤ KLT
1− KLT

||δθ||L∞ . (37)

Similarly:

||δpt|| ≤ KL||δxT ||+ KL

∫ T

t
||δxs||ds + KL

∫ T

t
||δps||ds

||δp|| ≤ (KL + KLT)||δx||L∞ + KLT||δp||L∞ ,

and hence:

||δp||L∞ ≤ KL(1 + T)
1− KLT

||δx||L∞ ,

which combined with Equation (37) proves the lemma.

Through the above estimate, it is now possible to prove Theorem 3.

Proof of Theorem 3. In what follows, we exploit [5] (p. 29). By uniform strong concavity,
the function θ → Eµ0 H(xθ1

t , pθ1

t , θ) is strongly concave. Thus, consider a λ0 > 0 such that:

λ0

2
||θ1

t − θ2
t ||2 ≤

[
Eµ0∇H(xθ1

t , pθ1

t , θ2
t ) − Eµ0∇H(xθ1

t , pθ1

t , θ1
t )
]
· (θ1

t − θ2
t ) .

A similar expression holds for θ → Eµ0 H(xθ2

t , pθ2

t , θ), and by combining the two
inequalities, also exploiting the smoothness of functions involved, we have:

λ0||θ1
t − θ2

t ||2 ≤
[
Eµ0∇H(xθ1

t , pθ1

t , θ2
t ) − Eµ0∇H(xθ1

t , pθ1

t , θ1
t )
]
· (θ1

t − θ2
t )

+
[
Eµ0∇H(xθ2

t , pθ2

t , θ1
t ) − Eµ0∇H(xθ2

t , pθ2

t , θ2
t )
]
· (θ1

t − θ2
t )

≤ Eµ0 ||∇H(xθ1

t , pθ1

t , θ1
t )−∇H(xθ2

t , pθ2

t , θ1
t )|| ||θ1

t − θ2
t ||

+Eµ0 ||∇H(xθ1

t , pθ1

t , θ2
t )−∇H(xθ2

t , pθ2

t , θ2
t )|| || ≤ θ1

t − θ2
t ||

KL||δθ||L∞(||δx||L∞ + ||δp||L∞) .
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Combining the above inequality with Lemma 1, we have:

||δθ||2L∞ ≤
KL
λ0

C(T)||δθ||2L∞ .

However, C(T) = o(1), and by taking T sufficiently small, so that KLC(T) < λ0, this
implies that ||δθ||L∞ = 0. For more details, see [5] (Lemma 2, p. 28).

Within the ML setting, the small-period T roughly corresponds to the regime where
the reachable set of the forward dynamics is small. This can be interpreted as the case
where the model has low capacity or low expressive power. In other words, Theorem 3
states that the optimal solution is unique if the network capacity is low, even when there is
a huge number of parameters. It is essential to underline that the hypothesis of the strong
concavity of the Hamiltonian H does not imply convexity for the loss function J, which
can also be highly non-convex due to the non-linear transformation introduced by the
activation functions σ.

4. Conclusions

In this paper, typical NN structures are considered as the evolution of a dynamical
system to rigorously state the population risk minimization problem related to DL. Two
parallel and connected perspectives are followed. The result expressed in Theorem 2 repre-
sents the generalization of the PMP in the calculus of variations and a local characterization
of optimal trajectories derived from HJB Equation (21). Deriving the necessary condition
for the optimality of the PMP provides several advantages: there is no reference to the
derivative w.r.t. the probability measure in the Wasserstein sense; the parameter set Θ is
highly general; maximization is point-wise in t, once x? and p? are known. Moreover, it
allows the possibility to develop a learning algorithm without referring to the classical
methods of DL such as the SGD. As an interest point with a general relevance within
the optimal control theory, we remark that the controls, and then the weights θ, are only
assumed to be measurable and essentially bounded in time. In particular, we allow for
discontinuous terms. Even in the case where the number of parameters is infinite, as in
the MFG setting, it is feasible to derive non-trivial stability estimates. This aspect results
in contrast with generalized bounds based on classical statistical learning, where the in-
creasing number of parameters adversely affects the generalization. On the other hand,
it will be interesting to consider algorithms with weights having only discrete values, e.g.,
binary, values, requiring small memory amounts, with corresponding efficiency and speed
improvements. A further direction of our ongoing research is based on the study of the
PMP from a discrete-time perspective in order to relate the theoretical framework directly
to the applications.
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