
University of New Haven University of New Haven

Digital Commons @ New Haven Digital Commons @ New Haven

Master's Theses Student Works

8-2020

The Use of Low-Cost Sensors and a Convolutional Neural The Use of Low-Cost Sensors and a Convolutional Neural

Network to Detect and Classify Mini-Drones Network to Detect and Classify Mini-Drones

Austin Florio

Follow this and additional works at: https://digitalcommons.newhaven.edu/masterstheses

 Part of the Mechanical Engineering Commons

https://digitalcommons.newhaven.edu/
https://digitalcommons.newhaven.edu/masterstheses
https://digitalcommons.newhaven.edu/studentworks
https://digitalcommons.newhaven.edu/masterstheses?utm_source=digitalcommons.newhaven.edu%2Fmasterstheses%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.newhaven.edu%2Fmasterstheses%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages

The University of New Haven

THE USE OF LOW-COST SENSORS AND A CONVOLUTIONAL NEURAL NETWORK

TO DETECT AND CLASSIFY MINI-DRONES

A THESIS

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

BY

Austin Florio

University of New Haven

West Haven, Connecticut

August 2020

THE USE OF LOW-COST SENSORS AND A CONVOLUTIONAL

NEURAL NETWORK TO DETECT AND CLASSIFY MINI-DRONES

APPROVED BY

 Eric A. Dieckman, Ph.D.
 Committee Chair

 Cheryl Li., Ph.D.
 Committee Member

 Gokhan Egilmez, Ph.D.
 Committee Member

 Cheryl Li, Ph.D.
Program Coordinator

 Ronald S. Harichandran, Ph.D., P.E., F.ASCE
 Dean of the Tagliatela College of Engineering

 Mario Thomas Gaboury, J.D., Ph.D
Interim Provost

Eric A Dieckman

ii

ACKNOWLEDGEMENTS

I would like to acknowledge everyone who has helped with the completion of this thesis.

First, this research would not have been possible to complete without my advisor, Dr. Eric

Dieckman, for his guidance and continuous support throughout this project. His expertise was

invaluable, and he has imparted a depth of knowledge to me that I will carry with me throughout

my life and future career.

Secondly, I am indebted to Dr. Cheryl Li for providing me with a strong foundation in the

background knowledge of both mechatronics and programming throughout my mechatronics

concentration.

Thirdly, I am extremely thankful to my grandmother, Phyllis Cardullo, for proofreading and

recommending the grammar revisions that would have the best impact for the reader.

Lastly, I would like to thank my friends and family for their constant and loyal support.

i

Abstract

The increasing commercial availability of mini-drones and quadrotors has led to their

greater usage, highlighting the need for detection and classification systems to ensure safe

operation. Instances of drones causing serious complications since 2019 alone include shutting

down airports [1-2], spying on individuals [3-4], and smuggling drugs and prohibited items across

borders and into prisons [5-6]. Some regulatory measures have been taken, such as registration of

drones above a specific size and the establishment of no-fly zones in sensitive areas such as

airports, military bases, and national parks. While commercial systems exist to detect drones [7-

8], they are expensive, unreliable, and often rely on a single sensor. This thesis will explore the

practicality of using low-cost, Commercial-off-the-shelf (COTS) sensors and machine learning to

detect and classify drones.

 A Red, Green, and Blue (RGB) USB camera [9], FLIR Lepton 3.0 thermal camera [10],

miniDSP UMA-16 acoustic microphone array [11], and a Garmin LIDAR [12] were mounted on

a robotic sensor platform and integrated using a Minisforum Z83-F with 4GB RAM and Intel Atom

x5-Z8350 CPU to collect data from drones operating in unstructured, outdoor, and real-world

environments. Approximately 1,000 unique measurements were taken from three mini-drones –

Parrot Swing, Parrot Quadcopter, and Tello Quadcopter – using the RGB, thermal, and acoustic

sensors. Deep Convolutional Neural Network (CNNs), based on Resnet-50 [13-14], trained to

classify the drones, achieved accuracies of 96.6% using the RGB images, 82.9% using the thermal

images, and 71.3% using the passive acoustic microphone array.

ii

Table of Contents
Chapter 1. Existing Approaches to Detect and Classify Mini-Drones .. 1

Chapter 2. Building a Robotic Sensor Platform .. 10

Sensors .. 10

Mobile Sensor Platform .. 12

Sensors and GUI Programming Outline ... 13

Chapter 3. Data Collection .. 16

Drones ... 16

Capturing Data .. 17

Variation and Noise .. 23

Potential Machine Learning Issues ... 27

Chapter 4. Machine Learning Application .. 31

Neural Network Background .. 31

Convolutional Operation Background .. 35

Convolutional Neural Network Background .. 38

Chapter 5. Machine Learning Implementation ... 40

Machine Learning Mel Frequency Cepstrum Coefficients Background .. 40

Machine Learning Program Testing ... 43

Machine Learning for Drone Classification .. 47

Modified Machine Learning Accuracy and Loss .. 71

Chapter 6. Conclusion ... 73

Project Overview .. 73

Project Results .. 74

Future Works .. 76

Appendices .. 77

iii

Appendix A: Robot Detailed Drawing.. 77

Appendix B: Sensor Technical Specifications .. 78

Appendix C: Machine Learning Process Evaluation .. 81

Appendix D: Machine Learning Process 2 ... 83

Appendix E: Machine Learning Process 4 .. 89

Appendix F: Overall Time Performances ... 95

Appendix G: Modified Machine Learning Process .. 96

Appendix H: Data Collecting Program ... 102

Appendix I: Data Transfer and Audio Processing Program.. 110

Appendix J: Machine Learning Program .. 113

References ... 123

iv

List of Tables
Table 1: Results of Deep Learning-Based Strategies for Detection and Tracking of Drones Using Several
Cameras .. 4

Table 2: Results of Multiple Drone Detection and Acoustic Scene Classification with Deep Learning 7

Table 3: Overall Data Collection .. 18

Table 4: Overall Machine Learning Process Inputs .. 48

Table 5: Overall Machine Learning Validation Accuracy .. 50

Table 6: Acoustic Two-Classes VS Three-Classes ... 72

Table B-1: ELP USB 2.0 Webcam 2 Mega Pixels Specifications .. 78

Table B-2: FLIR Lepton 3.0 Specifications .. 78

Table B-3: UMA-16 miniDSP Specifications .. 79

Table B-4: LIDAR Lite v3 Performance Specifications 1 .. 79

Table B-5: LIDAR Lite v3 Performance Specifications 2 .. 80

Table C-1: First Input Set Evaluation ... 81

Table C-2: Second Input Set Evaluation ... 81

Table C-3: Third Input Set Evaluation .. 82

Table C-4: Fourth Input Set Evaluation .. 82

Table C-5: Fifth Input Set Evaluation ... 82

Table F-1: Overall Time Performances .. 95

v

List of Figures
Figure 1: Sensors Diagram. ... 11

Figure 2: Robot’s Lower Section .. 13

Figure 3: Graphical User Interface. ... 14

Figure 4: Parrot Swing, Parrot Quadcopter, Tello Quadcopter ... 17

Figure 5: Data Collecting Setup .. 19

Figure 6: First Location Data Sample ... 20

Figure 7: Second Location Data Sample ... 21

Figure 8: Third Location Data Sample ... 21

Figure 9: Fourth Location Data Sample .. 22

Figure 10: Fifth Location Data Sample ... 23

Figure 11: Location 1 Car Variations ... 24

Figure 12: Location 1 People Walking Dog Variation ... 24

Figure 13: Location 1 Temperature Variation .. 25

Figure 14: Location 2 Temperature Variation .. 25

Figure 15: Location 3 Bird Variance .. 26

Figure 16: Location 3 Thermal Time-lapse .. 26

Figure 17: Location 5 Biker .. 27

Figure 18: Location 5 Camera Distance Issue .. 28

Figure 19: Camera Distance Issue .. 29

Figure 20: Thermal Roof Issue ... 30

Figure 21: Roof Heat Issue 2 .. 30

Figure 22: Perceptron Diagram ... 32

Figure 23: Neural Network Diagram .. 33

Figure 24: Patch Diagram ... 36

vi

Figure 25: Triangle and Filter Diagram .. 37

Figure 26: Feature Map ... 38

Figure 27: Convolutional Neural Network ... 39

Figure 28: Mel Frequency Cepstral Coefficient Process .. 40

Figure 29: Filterbank on a Mel-Scale ... 41

Figure 30: Filterbank Vs Mel Frequency Cepstral Coefficient ... 42

Figure 31: Practice RGB Training and Validation Over Time ... 44

Figure 32: Practice RGB Confusion Matrix ... 45

Figure 33: Practice Acoustic Training and Validation Over Time. .. 46

Figure 34: Practice Acoustic Confusion Matrix ... 47

Figure 35: RGB Machine Learning Process Up to the First Location .. 51

Figure 36: Thermal Machine Learning Process Up to the First Location ... 52

Figure 37: Acoustic Machine Learning Process Up to the First Location .. 53

Figure 38: Process 1 RGB Training Confusion Matrix. ... 54

Figure 39: Process 1 Thermal Training Confusion Matrix ... 54

Figure 40: Process 1 Acoustic Training Confusion Matrix .. 55

Figure 41: Process 1 RGB Post-Training Confusion Matrix .. 55

Figure 42: Process 1 Thermal Post-Training Confusion Matrix ... 56

Figure 43: Process 1 Acoustic Post-Training Confusion Matrix .. 56

Figure 44: RGB Machine Learning Process Up to the Third Location .. 58

Figure 45: Thermal Machine Learning Process Up to the Third Location ... 59

Figure 46: Acoustic Machine Learning Process Up to the Third Location .. 60

Figure 47: Process 3 RGB Training Confusion Matrix .. 61

Figure 48: Process 3 Thermal Training Confusion Matrix ... 61

Figure 49: Process 3 Acoustic Training Confusion Matrix .. 62

vii

Figure 50: Process 3 RGB Post-Training Confusion Matrix .. 62

Figure 51: Process 3 Thermal Post-Training Confusion Matrix ... 63

Figure 52: Process 3 Acoustic Post-Training Confusion Matrix .. 63

Figure 53: RGB Machine Learning Process Up to the Fifth Location.. 65

Figure 54: Thermal Machine Learning Process Up to the Fifth Location .. 66

Figure 55: Acoustic Machine Learning Process Up to the Fifth Location .. 67

Figure 56: Process 5 RGB Training Confusion Matrix .. 68

Figure 57: Process 5 Thermal Training Confusion Matrix ... 68

Figure 58: Process 5 Acoustic Training Confusion Matrix .. 69

Figure 59: Process 5 RGB Post-Training Confusion Matrix. ... 69

Figure 60: Process 5 Thermal Post-Training Confusion Matrix ... 70

Figure 61: Process 5 Acoustic Post-Training Confusion Matrix .. 70

A-1: Robot Design Detailed Drawing. .. 77

D-1: RGB Machine Learning Process Up to the Second Location ... 83

D-2: Thermal Machine Learning Process Up to the Second Location ... 84

D-3: Acoustic Machine Learning Process Up to the Second Location ... 85

D-4: Process 2 RGB Training Confusion Matrix .. 86

D-5: Process 2 Thermal Training Confusion Matrix .. 86

D-6: Process 2 Acoustic Training Confusion Matrix .. 87

D-7: Process 2 RGB Post-Training Confusion Matrix ... 87

D-8: Process 2 Thermal Post-Training Confusion Matrix .. 88

D-9: Process 2 Acoustic Post-Training Confusion Matrix ... 88

E-1: RGB Machine Learning Process Up to the Fourth Location .. 89

E-2: Thermal Machine Learning Process Up to the Fourth Location. .. 90

E-3: Acoustic Machine Learning Process Up to the Fourth Location. ... 91

viii

E-4: Process 4 RGB Training Confusion Matrix .. 92

E-5: Process 4 Thermal Training Confusion Matrix ... 92

E-6: Process 4 Acoustic Training Confusion Matrix .. 93

E-7: Process 4 RGB Post-Training Confusion Matrix .. 93

E-8: Process 4 Thermal Post-Training Confusion Matrix ... 94

E-9: Process 4 Acoustic Post-Training Confusion Matrix .. 94

G-1: Modified Acoustic Process 3 .. 96

G-2: Modified Acoustic Process 4 .. 97

G-3: Modified Acoustic Process 5 .. 98

G-4: Modified Process 3 Acoustic Training Confusion Matrix. ... 99

G-5: Modified Process 3 Acoustic Post-Training Confusion Matrix. ... 99

G-6: Modified Process 4 Acoustic Training Confusion Matrix. ... 100

G-7: Modified Process 4 Acoustic Post-Training Confusion Matrix. ... 100

G-8: Modified Process 5 Acoustic Training Confusion Matrix. ... 101

G-9: Modified Process 5 Acoustic Post-Training Confusion Matrix. ... 101

1

Chapter 1. Existing Approaches to Detect and Classify Mini-Drones

The increasing availability of low-cost, easy-to-fly drones and quadcopters have led to their

use in criminal activities including disrupting air travel, spying on neighbors, and smuggling drugs

and contraband. In 2019, a drone was spotted in the airspace of Newark airport, causing the

temporary suspension of all flights and leaving dozens of aircraft circling the airport [1]. Serious

invasions of privacy include instances of voyeurism that can happen to anyone who is not aware

that drones are in the area [4]. Drones were intercepted attempting to smuggle $306,000 worth of

drugs across the United States’ border from Mexico [5] and illicit materials into the Fort Dix prison

over at least seven separate incidents [6].

There is a clear need to prevent such incidents from occurring. Drone detection and

classification applications have been gaining in popularity over the years, and a number of systems

have been developed to detect and classify drones. These include systems based on passive

monitoring of Radio Frequency (RF) communications, active radar, optical sensors in the visible

and infrared spectrum, passive and active acoustic sensors, and active LiDAR.

Passive radio frequency-based detection of drones has successfully been proven both cost-

effective and feasible throughout the years. One example this research involved detecting and

classifying Unmanned Aerial Vehicles (UAVs) using a multistage detector system to distinguish

the signals from the UAV controller from both background noise and interference signals. The

first stage of this research has a Markov models-based naïve Bayes decision mechanism to detect

any RF signals that obtained a detection accuracy of 99.8% with a false alarm of 2.8%. The second

stage detects whether there are any signals from WI-FI and Bluetooth emitters through the

bandwidth and modulation features of the acquired RF signal. Once the UAV controller signal is

2

detected, the signal’s three most significant features are determined through the neighborhood

component analysis and is then inputted into five different machine learning techniques, obtaining

a classification accuracy of 98.13% through the k-nearest neighborhood classifier [15]. Another

research involves RF-based low-signal-to-noise UAV classification using convolutional neural

networks. This research uses fifteen off-the-shelf drone RF signals to obtain RF time-series images

and spectrograms for the training of the convolutional neural network. The spectrogram drastically

outperformed the time-series images when the Signal to Noise Ratio (SNR) was reduce. The

overall classification accuracy of the spectrogram-based CNN varied from 92% to 100% for a

signal-to-noise ratio range of -10 dB to 30 dB [16]. An example of another research using cost-

effective RF-based detection of drones includes exploring the areas of active tracking and passive

listening. These approaches were validated and could observe that the drone’s propellers emitted

frequency of less than 100 Hz. [17]. Unfortunately, this radio frequency-based detection relies

heavily on communication between the drone and operator, which would not be required for future

drones in implementing artificial intelligence (AI) systems.

The standard active radar system has difficulty detecting and classifying mini-drones due

to the drones’ small radar cross section and resemblance to birds, which are of similar physical

size flying at equivalent altitude and speed. However, recent studies have shown positive results

incorporating micro-Doppler effects, which are frequency modulations on the return signal caused

by the target’s mechanical vibration or rotation [18]. The components on a small consumer drone

that are non-plastic, such as the battery, motors, and camera, have a significant return in radar

signature compared to the plastic materials, such as propellers [19]. A further study collected data

on different birds and drones using K-band and W-bands, and by incorporating the micro-Doppler

effect, the study showed a significant difference between their signatures [20].

3

Another type of approach is to use optical sensor that are usually incorporated with a

machine learning technique. One research integrated a static wide-angle camera and a lower-

angle camera mounted on a rotating turret with YOLOv3 architecture to autonomously detect

and track drones. The overall system has the static wide-angle camera mounted on a stationary

platform that is able to adjust the angle depending on the demand, a narrow-angle camera, with

zoom capability, mounted on a rotating turret, and the connected to the main computational

device through ethernet with the YOLO architecture. These cameras are the same model RGB

high performance industrial cameras, except for the professional zooming capability on the

narrow-angled camera. The static wide-angle camera’s output frame was overlaid with the

zoomed camera’s output frame to use memory and time efficiently. This system was compared

with the two conventional object detection approaches: the Haar classifier with Adaboost

algorithm, and the Gaussian mixture model background subtraction algorithm. These object

detection approaches were used on 20 videos containing 800 frames of complex background and

containing various objects such as different birds and planes. The results showed that the YOLO

system had a 91% true positive, which is 7% lower than the highest detection approach, and this

model had no false alarms, unlike the other approaches [21]. The results of this experiment can

be seen in Table 1.

4

Table 1: Results of Deep Learning-Based Strategies for Detection and Tracking of Drones Using Several Cameras. The

results of the RGB camera system involving the static camera and rotating zoom camera are shown below with the different types

object detection techniques.

 True Positive False Alarm

Lightweight YOLO 0.91 0

Cascaded Haar 0.95 0.42

Gaussian Mixture Model Back. Sub. 0.98 0.31

 A different optical research integrates thirty HD cameras and thirty microphones into an

array to detect and classify aircrafts using YOLO and CNN. The dataset includes multiple fixed-

wing aircrafts, helicopters, and consumer drones. The fixed-wing aircrafts, helicopters, and some

of the images of the drones were from the FGVC-aircraft dataset, while the drone dataset is also

extracted from the captured camera array. The test images included 300 drone images, 100

helicopter images, and 100 fixed-wing aircrafts. The classification results show that the

“Aeroplane” class obtained a 96.03% accuracy, the “Helicopter” class received a 90.47%

accuracy, and the “Drone” class obtained a 52.13% accuracy. The reasoning for the low

percentage in drone accuracy is due to the complexity of the backgrounds and the need for more

images to be collected [22].

A very popular use of drone classification methods is the use of acoustic sensors. One

research incorporated acoustic sensors to be used alongside feature extraction and Support

Vector Machines (SVMs) to classify UAVs at distances of up to 50 m. based on vehicle noise

[23]. A similar project using feature extraction in both the time and frequency domains to deal

with noisy environments resulted in classification accuracy above 96% [24]. Another drone

5

detection research explored incorporating low-cost hardware components, comprised of two

different arrays of three or six microphones, to identify and classify drones using nearest

neighbor rule. These arrays consist of low-cost omnidirectional miniature microphones, the

processor STM32F405RG, and the drones that are included in the project are the Quadcopter DJI

P3, Quadcopter CX 10, and the Sennheiser MKH 8040. Advanced array processing methods are

utilized to obtain the normalized Power Spectral Density that is unique to each of the drones. The

nearest neighbor rule estimates the closest similarity to each drone using the normalized

spectrum over the frequency and time and the library data stored on the flash memory of the

microcontroller. The use of this detection and classification system “has yet to fail” in a noise

free environment for the preliminary experiments; however, this system still needs to be tested in

realistic environments [25].

 A very well detailed acoustic research that is relatable to this thesis is the creation of an

audio pattern recognition system capable of detecting the number of DJI phantoms on scene with

Convolutional Neural Networks. The equipment involved in the experiment are the two DJI

phantoms standard 3’s and the Sony ECM-DS70p-portable stereo. With the Sony EXM-DS70p,

the audio samples collected were used to create the raw spectrograms, log-Mel-spectrograms,

harmonic-percussive source separation and raw audio waveforms. Using both custom and

augmented datasets, the experiments performed are: PCA and TSNE visualization of the

SMILE988 features, Random Forest Algorithm applied to the SMILE988 features, Deep Neural

Network with SMILE988 features, Deep Neural Network with SMILE988 reduced features,

Convolutional Neural Network with 3-channel spectrograms, and Convolutional Neural Network

with 2-channel Spectrograms with Harmonic and Percussive content into individual channels. An

additional two experiments are included in the custom collected dataset, which are:

6

Convolutional Neural Network with Raw audio waveforms, and Generative Adversarial

Networks for Data Augmentation. The convolutional neural network’s average accuracy

performed better with the augmented dataset over the custom collected dataset, as shown in

Table 2. The main difference between this acoustic research and this thesis is that the acoustic

research used multiple methods to classify audio samples to the classes: one drone, two drones,

or background noise; while this thesis explores the classification of each individual drone in

different settings [26].

7

Table 2: Results of Multiple Drone Detection and Acoustic Scene Classification with Deep Learning. The acoustic

research performed different experiments using custom and augmented datasets. The table shows the average classification

percentage obtained for the dataset and experiment.

Average Classification Accuracy (%)
Custom

Dataset

Augmented

Dataset

Random Forest Algorithm with SMILE988 Features 73.3 63.3

DNN with SMILE988 Features 84.2 76

DNN with SMILE200 Features 91.3 69

CNN Raw Spectrograms 66.3 90.3

CNN Log Spectrograms 57.3 91

CNN with Mel-Spectrograms with 128 Mels 68 73.6

CNN with Log-Mel Spectrograms with 40 Mels 72 85.6

CNN with Log-Mel Spectrograms with 60 Mels 73.3 87

CNN with Log-Mel Spectrograms with 80 Mels 66.3 87

CNN with Log-Mel Spectrograms with 128 Mels 72.7 85.3

CNN with Log-Mel Spectrograms with 200 Mels 73.7 87

Harmonic Percussive Source Separation 79 81

CNN with Raw Audio Files 70.6 N/A

Light Detection and Ranging (LiDAR) and Laser Detection and Ranging (LADAR)

sensors, one of the newest techniques to detect and classify drones, measures the distance between

the sensor and target by emitting a light and having it reflect off the surface back to the sensor.

One example of research conducted is the fusion of a 3D LiDAR sensor integrated with a pair of

8

cameras that is used for object detection and classification in maritime environments. The LiDAR

initiates the object detection and classification by obtaining the spatially distinct features, and then

the global LiDAR frame is converted to the camera frame, which allows the camera to extract the

color-based features in the region. Both the Support Vector Machine (SVM) and Multi-Variant

Gaussian (MVG) classifiers had amazing classification accuracies detecting objects, such as a

specific tower, dock, and different buoys [27]. A research was performed to develop a new 3D

LADAR to detect small drones up to 2 km. using the Variable Radially Bounded Nearest Neighbor

(V-RBNN) method. The V-RBNN was proven to be much more reliable when compared to the

conventional Radially Bounded Nearest Neighbor (RBNN) clustering method, which had

difficulty due to the variation of the drone’s shape and size at different distances. This experiment

was based only on augmented datasets and future work for this research would include adding data

for birds, as well as acquiring real sensor data [28]. Another research was performed to expand the

tracking, detection, and classification of low flying objects, such as mini-UAVs in real-time using

LiDAR. The UAV’s have typical movement patterns that can be analyzed, allowing a precise

prediction of the movement and UAV classification. Experimental data using the LiDAR was

collected in the field with several different mini UAVs, using four 360° LiDAR sensors mounted

to a car. This system allowed the car to be protected from the UAV threats withing the radius of

35 m. [29].

Combinations of sensors have also been studied to improve classification over a range of

environmental conditions. A very similar research to this thesis is the integration of the RGB

images, thermal images, acoustic data, and transmitters and receivers to detect, classify, and track

drones using convolutional neural networks. This research incorporated a FLIR Breach PTQ136

thermal sensor, Sony HDR-CX405 video camera, a Boya BY-MM1 acoustic sensor, and a

9

NooElec Nano 2+ Software Defined Radio receiver and G-STAR IV BU-353S4 GPS receiver to

track active ADS-B transponders on airborne devices. Data collected from the Hubsan H107D+,

DJI Phantom 4 Pro, and DJI Flame Wheel F450 drones was evaluated using convolutional neural

networks to compare performance from sensor fusion to each individual sensor. The fused data

classified the drone correctly for 78% of the detection opportunities, with a more robust system.

The equipment cost in this research greatly exceeded the cost of equipment in this thesis, primarily

because the purpose of this thesis was to explore the performance of low-cost sensors [30].

10

Chapter 2. Building a Robotic Sensor Platform

Sensors

Using a variety of sensor types is necessary to create a robust system that can work in a

variety of environmental conditions. The sensors integrated into this project included optical (ELP

2.0-megapixel USB camera, $65), thermal (Lepton FLIR 3.0, $240), acoustic (miniDSP UMA-16

microphone array, $275), and LiDAR (LiDAR-Lite v3HP, $150) sensors, as shown in Figure 1.

Years ago, these sensors were extremely expensive, but affordable low-cost sensors are now easily

obtainable in the marketplace. The cost of whole drone detection systems cost thousands of dollars,

which prevents these systems from being widespread. The purpose of this project is to create a

system that gives comparable or reasonable performance at a much lower cost. By the end of this

project, the outcome will quantify the limitations of each sensor modality to steer future work in

optimization of sensors and machine learning processing to create a low-cost drone detection

system.

11

Figure 1: Sensors Diagram. The diagram of the sensors, on the left, shows the UMA-16, RGB camera, thermal camera, and

LiDAR sensors. These sensors are attached to a pan and tilt mount that provides 180° to both the horizontal and vertical

direction. The right image shows the front profile of the robot with the sensors.

The ELP 2.0 megapixel USB camera provides a max resolution of 1920x1080 at 50 FPS,

with a 70° Field of View (FOV) [10]. The minimum illumination for this camera is 0.1 lux, with

signal to noise ratio of 40 dB and of 65 dB of dynamic range. The overall dimensions are 38 x 38

x 25mm and the camera requires 5 Vdc. Additional specifications are given in Table B-1.

The Lepton FLIR 3.0 is an enhanced infrared sensor with 160 x 120 active pixels and

thermal sensitivity of less than 50 mK [9]. The f/1.1 lens provides a horizontal FOV of 57° and

diagonal FOV of 71°. The output allows 14-bit video over SPI, 8-bit with Automatic Gain Control

(AGC) applied, or 24-bit with AGC and colorization applied. This thermal sensor has a low

operating power of 140 mW (typ), 650 mW during shutter event, and 5mW during standby. The

overall dimensions are 11.8 x 12.7 x 7.2 mm. Unfortunately, this model does not have the

12

radiometry temperature feature, which allows temperature scales in the thermal images. Additional

specifications are given in Table B-2.

The miniDSP UMA-16 is a sixteen-channel rectangular microphone array using Knowles

SPH1668LM4H MEMS capsule microphones laid out in a Uniform Rectangular Array (URA)

[11,32]. The acoustic array contains a nanoSharc kit that has a 400MHz SHARC ADSP21489

+500MHZ multicore CPU that provides significant processing power for high SNR PDM to PCM

conversions and multichannel low latency USB audio. This sensor has 24-bit resolution and a

sampling rate of up to 48kHz. Additional specifications are given in Table B-3.

Lastly, the LiDAR-Lite v3HP has a range of 5 cm to 40 m. with a resolution of +/- 1.0 cm

[12,31]. The typical accuracy is +/- 2.5 cm at distances greater than 2 m, and +/- 5 cm at distances

less than 2 m, indicating that this sensor performs better at distances greater than 2 m. The LiDAR

has a greater than 1 kHz update rate and an optical aperture of 12.5 mm. This sensor has a nominal

wavelength of 905 nm, 1.3 W peak laser power, beam diameter of 12x2 mm, and beam divergence

of 8 mRadian. The device communicates through Inter-Integrated Circuit (I2C) and Pulse Width

Modulation (PWM). The overall dimensions of the unit are 40.18 x 54.99 x 35 mm. Additional

specifications are given in Table B-4 - B-5.

Mobile Sensor Platform

The robot kit IG42-SB4, a four-wheel differential-drive all-terrain robot platform, was

purchased from SuperDroid Robots. This kit included the aluminum chassis, motor plates, wheels,

motors, motor drivers, transmitter and receiver, 12V batteries, hardware kit, and a roll-cage that

was reimplemented as a sensor rack. The wheel motors, 10A regulated fuse, kill switch, and motor

driver were secured to the enclosed lower level of the robot, as can be seen in Figure 2, while the

12V batteries and sensor electronics are mounted in the middle section.

13

Figure 2: Robot’s Lower Section. The lower section is where the motor controller, fuse, kill switch, and motors are stored. This is

enclosed and prevents any of the components from potential damages.

The sensor rack was used to mount all the sensors, servo motors, and the monitor that

displaced the graphical user interface. Custom mounts were 3D printed to incorporate the sensors

as one unit attached to two servo motors (RobotGeek RGS-13) to give a 180° vertical and

horizontal view. A FlySki I6 receiver is used to drive the robot and control the pan-tilt sensor

mount.

Sensors and GUI Programming Outline

 The data collection routines and Graphical User Interface (GUI) were built in Python and

Arduino, while the machine learning processing was performed offline using Matlab. Data

collection from the RGB video, thermal camera, and acoustic microphone array uses a Raspberry

Pi 3 B+, while the LiDAR sensor was programmed using an Arduino Mega 2560. Unfortunately,

the LiDAR became unresponsive during testing, and no data was collected for analysis. This issue

was most likely due to the LiDAR’s hardware due to the LiDAR lack of response to the any of the

successfully programs that previously worked with the LiDAR.

14

The GUI was created in Python using Tkinter and showed streaming data from the RGB

video camera (as both RGB and HSV values), the thermal camera, and an acoustic waveform from

a single microphone channel (Figure 3) [33-34]. This streaming data could be recorded to disk in

timestamped files for offline analysis.

Figure 3: Graphical User Interface. The GUI shows the RGB camera produced the RGB and HSV images in the top left and top

middle section, the thermal camera was displayed in the top right, the acoustic signal displayed in the bottom right, and the

controls on the bottom left.

While the Raspberry Pi was able to handle the computational tasking from each sensor

individually, it was not up to task for data collection from the entire suite of sensors. Instead a

Minisforum Z83-F minicomputer with 4 GB RAM, Intel Atom Quad-Core CPU, and 64 GB

storage was configured to be dual boot between Windows 10 and Linux Mint and used to collect

all data.

15

However, the program then had to be compacted due to the time delay in the video stream

in order to obtain as much real-time data as possible. The issue was the length of time the acoustic

array required to process all the data points and plot on the GUI, preventing the other sensors from

performing. The primary solution to fix this issue was the creation of a multi-threading process

allowing the cameras and acoustic sensors to perform simultaneously.

 While the GUI is unable to be considered real-time data, the program comes close to it.

Either a more powerful minicomputer or further optimization of the program would be required to

accomplish this fully. The data collection program can be seen in Appendix H.

16

Chapter 3. Data Collection

Drones

Three drones were obtained and used for the data collection process: the Parrot Quadcopter,

the Parrot Swing, and the Tello Quadcopter (Figure 4). The Parrot Quadcopter is formally known

as the Parrot Mambo Fly that has a 550 mAH. battery pack, ultrasonic vertical stabilization,

horizontal camera stabilization, a range of 100 m. with Parrot Flypad, and a 60 FPS. vertical

camera. The Parrot Mambo is 7.1 x 7.1 x in. with bumpers and weighs 2.22 oz [35]. The Parrot

Swing has a max speed of speed of 19 mph., a 60 FPS. vertical camera for speed measurement,

ultrasonic vertical stabilization, horizontal camera stabilization, a 550 mAh. battery, and a range

of 60 m. with the Parrot Flypad. The dimensions are 13 x 5 x 5 in. and a weight of 10.4 oz [36-

37]. The Tello Quadcopter has a max speed of 8 m/s. and connects to the Tello app on the iPhone

or android devices and requires Wi-Fi. The drone has built in functions that include: Range Finder,

Barometer, LED, Vision System, Wi-Fi, and 720p Live View. Also, the battery is 1.1 Ah., the

overall dimensions are 3.9 x 3.6 x 1.6 in.; and the weight is approximately 80 g [38].

17

Figure 4: Parrot Swing, Parrot Quadcopter, Tello Quadcopter. The Parrot Swing is in the back, the Parrot Quadcopter is in the

front right, and the Tello Quadcopter is in the front left.

Each of the drones was flown separately and at different angles to the sensors. The quadcopters

were relatively easy to fly but the Parrot Swing was more challenging, especially if there was any

wind causing the drones to leave the area of the sensors. All drones fly typically in the same

manner, with the propellers parallel to the ground, with the side dipping downward in a certain

direction allowing movement in that direction. The main reason these drones were included in the

project is that the Parrot Swing is different size and shape compared to the two mini-quadcopters,

which are very similar in size and appearance. However, the Parrot Swing is very similar in

appearance to the Parrot Quadcopter at certain flight angles.

Capturing Data

 Approximately 1,000 measurements were recorded from each of the video camera,

thermal camera, and acoustic microphone array for each of the three drones (Table 3). Since

creation of a robust machine learning algorithm requires training on data from realistic real-

18

world environments, data was collected from five different scenes. These scenes were

determined by including different variations of areas in which drones could possibly appear,

using a street-based view to a sky-based view with variations in backgrounds. All data was

manually filtered to make sure the drone was visible in the RGB or thermal image (partially

occluded views were allowed).

Table 3: Overall Data Collection. The table shows the amount of the filtered data obtained from each sensor at the

different locations. The total amount of the filtered data of each sensor is located at the right side of the table. For instance, the

total amount of RGB images collected at Location 1 was 132 images, and the overall total amount of images collected was 992

images.

The first data collection location was in the front yard angled towards the right side of a house

(Figure 5). The RGB camera had a good background view of the trees, the street, grass, and the

sky. Due to mounting and FOV differences, the thermal camera always shows a slightly smaller

 Location 1 Location 2 Location 3 Location 4 Location 5 Total

Parrot Quad. RGB 132 121 277 146 316 992

Parrot Swing RGB 60 70 523 65 456 1174

Tello Quad. RGB 155 119 299 80 403 1056

Parrot Quad. Thermal 128 120 250 154 328 980

Parrot Swing Thermal 56 61 439 62 495 1113

Tello Quad. Thermal 132 115 295 82 418 1042

Parrot Quad. Acoustic 112 122 232 131 160 757

Parrot Swing Acoustic 45 64 428 57 365 959

Tello Quad. Acoustic 138 116 227 66 313 860

19

portion of the image at a slightly different angle. Ideally, throughout the data collection people

were walking by or riding bikes, cars were driving by, and other realistic noise sources are captured

in the data set. A sample of the RGB and thermal image for the first location can be seen in Figure

6. The closer the drone came to the sensors, the less it could move due to its quickly disappearing

out of the picture frame quickly.

Figure 5: Data Collecting Setup. The general setup for the collecting process of the drones at the first location.

20

Figure 6: First Location Data Sample. These images represent the data from the sensors obtained from the first location with the

Parrot Quadcopter. The left image is the obtained RGB image and the right image is the collect thermal camera. The images

above are within the same second of each other.

The second data collection location was in the front yard with the sensors aimed towards

the sky (Figure 7). The RGB and thermal camera have shots of moving tree branches and clouds,

with relatively stationary trees and telephone wires in the background. Other background noise

variables included birds, cars driving by, people mowing lawns, or people talking. There was a

considerable amount of wind during this time that hindered the drones from being stable in front

of the sensor.

21

Figure 7: Second Location Data Sample. These are sample images that were obtained from the second location with the Parrot

Swing. The left image is the RGB image and the right is the thermal image within the same second of data collection.

The third data collection location was in the backyard, angled toward a wide-open sky

(Figure 8). There were plenty of clouds to have a moving background, with a few tree branches in

view. Other possible random noises were children playing, dogs barking, birds, and people doing

yard work.

Figure 8: Third Location Data Sample. These are sample images that were obtained from the third location with the Parrot

Swing. The left image is the RGB image and the right is the thermal image within the same second of data collection. This utilizes

the moving clouds for constant changing background more than the other locations.

22

For the fourth location, the robot’s sensors were in the direction that had the camera view

a majority of trees with the sky visible, allowing the clouds to roam the background (Figure 9).

The visible variations were ideally based around birds and clouds, while the acoustic noise was

ideally based on neighborhood sounds. Unfortunately, this was a windy day, and the Parrot Swing

collided with a tree, fracturing the propeller and grounding the drone. A replacement Parrot Swing

was used for the remaining measurements. This new model had a wing material that was softer

and more elastic, which made it noticeably more comfortable to control but likely caused

significant variation in the Parrot Swing dataset.

Figure 9: Fourth Location Data Sample. These are sample images that were obtained from the fourth location with the Tello

Quadcopter. The left image is the RGB image and the right is the thermal image within the same second of data collection. The

tree and moving clouds background provide decent variance for both sensors shown.

The fifth data collection location was the front yard with the camera lens incorporating a

house, the street, parked cars, plants, power lines, garbage bins, trees, plants, and the sky (Figure

10). There are many variations in this scenery with the noise variance of the neighborhood, cars,

people walking or riding bikes, and animals. This location allowed for the greatest distances of

fifty to ninety feet away from the sensors.

23

Figure 10: Fifth Location Data Sample. These are sample images that were obtained from the fifth location with the Parrot

Quadcopter. The left image is the RGB image and the right is the thermal image within the same second of data collection. The

inclusion of the hot roof of the house and cars were to help determine thermal sensor capabilities, with the temperature reaching

to 89° F that day.

Variation and Noise

Variations and noises are critical for the machine learning process to learn and prevent

overfitting. Real data is not perfect, and in the case of detecting the drone, the drone does not

contain only a sky background. There are also people, cars, animals, and much more that will be

in a real application of the machine learning process. With no variation, the prediction of a drone

with a lamp post may cause severe problems with the prediction method.

For the first location, one of the main visual variations were cars and people walking their

dogs. For acoustic, there were cars driving by, people walking, construction on a house across the

street and two houses to the left, as well as other neighborhood sounds were occurring. For the

thermal images, the drone was flown into different conditions, such as the hot and cold regions of

the visual sensor. A few examples of these variations and noises can be seen in the following

figures, Figures 11 - 13.

24

Figure 11: Location 1 Car Variations. Data collection of the Parrot Quadcopter, top center of both images, with a vehicle

driving in the background. This type of variation is common for visual and noise variance with all drones and throughout all

locations.

Figure 12: Location 1 People Walking Dog Variation. The data collection of the Tello Quadcopter, top center of both images,

with people walking dogs in the background at the first location. This is difficult to see on the thermal camera, but the heat

signatures moving are still visible and, as a result, help the machine learning process.

25

Figure 13: Location 1 Temperature Variation. The series of images are the Parrot Swing thermal variations in size and position

throughout the heatmap at first location. This type of variation is performed on all drones at all locations. However, there are

different heat intensities at each location.

For the second location, the variations and noises were very similar to the first: the

variations and related noise involved the drone flying in a different setting, the distance of the

drone, the wind blowing the trees, cars driving, neighborhood sounds, and flying the drone in hot

and cold regions of the thermal image. The top portion of the vehicles can be seen in the RGB

camera; however, the thermal camera was angled too high to include the vehicle in the thermal

images. A temperature variation of the second location can be seen in Figure 14.

Figure 14: Location 2 Temperature Variation. The series of images of the Tello Quadcopter were collected and show the thermal

variations in distance and position throughout the heatmap at the second location. The drone is very difficult to see the more heat

intense areas in the thermal images as the drone is flown further away from the sensors.

 For the third location, the drone’s visible variations were the clouds moving in the

background, the tree branches swaying, birds flying, and the drone moving in all areas of thermal

intensity regions. The noise variance was neighborhood noise, which included cars, people talking,

26

and people mowing the lawn. In order to help show some of these variations and noise variance,

Figure 15 – Figure 16 are shown below. Figure 15 shows the sample at the given time with a bird

in the background. Figure 16 shows the time-lapse of the sky over 30 seconds with the Tello

Quadcopter on the top section with the calm sky, and the Parrot Swing on the bottom section with

the cloudy sky.

Figure 15: Location 3 Bird Variance. During the data collection of the Parrot Quadcopter the drone was able to fly with a bird

further behind the drone at the second location (a circle was inserted to help identify the bird). On the thermal camera, the drone

is hard to see due to the size, and the bird is not visible.

Figure 16: Location 3 Thermal Time-lapse. Tello Quadcopter and Parrot Swing thermal time-lapse over 30 seconds.

27

 The fourth location’s variations and noise variance included the standard variations as

above with the drone in all thermal regions and neighborhood noises. Uniquely, the fifth location

captured a significant number of vehicles passing by compared to the previous locations, a person

on a bike, a new Parrot Swing, as well as having the drone go much farther than the previous data

collection processes. Also, the neighborhood noise variance was still accounted for in this process.

A person can be seen riding the bike on a hot day next to the Parrot Quadcopter in Figure 17. The

roofs of the houses are so hot that the thermal images are much harder to see compared to the other

location's thermal images.

Figure 17: Location 5 Biker. Parrot Quadcopter next to a person on a bike at fifth location.

Potential Machine Learning Issues

 When the data was being filtered, a few potential issues in the machine learning process

were likely to happen. The first issue was the drone’s distance from the camera. The drones were

in the frame of the camera beyond 50 ft., and they were hard to distinguish from the background

with human eyes. For instance, Figure 18 shows the Parrot Quadcopter in the middle of the road,

and the drone is small and blurry. The distance from the sensors to the opposite end of the street

was approximately 50 ft., and the distance from the sensors to the fence was approximately 90 ft.

28

In Figure 19, the two other drones were having the same issue without the fence, the Tello

Quadcopter on the top section and the Parrot Swing on the bottom section. The drones never went

past the fence, and for the majority of the time were around the lamp post to respect the neighbor’s

property. When the quadcopters were across the street, the trees made it extremely difficult to

detect the drone with the human eye. The white Parrot Swing had similar issue, with the features

becoming difficult to distinguish at the same distance, especially if the drone was in front of the

white house.

Figure 18: Location 5 Camera Distance Issue. The quadcopter has landed in the middle of the road.

29

Figure 19: Camera Distance Issue. Tello Quadcopter and Parrot Swing near lamp post. However, the RGB camera is difficult to

see and the thermal camera does not appear to detect the drones.

 The second potential issue is the reliability of the thermal images when exposed to an

intense area of heat, such as the roof of the house. This issue makes detecting the drones with the

human eye incredibly hard. A Parrot Swing was flown directly in front of the sensor while

maintaining the roof of the house in the image, and the drone was still hard to visualize, as shown

in Figure 20. In the midrange, the drones were still having the same issue; even the cars were hard

to distinguish, as shown in Figure 21 with the Tello Quadcopter on the top section and the Parrot

30

Swing on the bottom section. The roof of the house is expected to significantly skew the data of

the machine learning process due to its being too hot.

Figure 20: Thermal Roof Issue. The Parrot Swing is close to sensors with extreme thermal intensity background, and it is difficult

to see defined features of the drone.

Figure 21: Roof Heat Issue 2. Tello Quadcopter and Parrot Swing with vehicles in extreme thermal intensity background. The

drones and vehicle are difficult to detect in the images.

31

Chapter 4. Machine Learning Application

Neural Network Background

 Artificial intelligence – creating computers which demonstrate human behavior – can be

thought of as a level above machine learning, which is enabling computers to automatically detect

patterns in data and use these “learned” patterns to predict the outcome when given new data

without explicitly being programmed. One of the main types of machine learning is the predictive

or supervised approach. This approach involves training a system with training sets along with the

known outputs. Another main type of machine learning is the descriptive or unsupervised learning

approach. This approach involves providing the machine learning algorithm with only inputs and

to try to find the patterns in the data.

Traditionally, machine learning algorithms tried to define a set of rules by hand-

engineered, but easily explainable, data features, leading to a time-consuming, brittle process that

is not scalable in practice. More current deep learning techniques use algorithms inspired by the

human brain, such as neural networks, to extract patterns from a set of data1. The tradeoff is a

limited view into what the computer is “learning”, which require large, varied datasets to create

robust models.

The goal of a deep learning network is to turn input x into output y in a manner that can be

altered to achieve the anticipated results (this is the “training” process). Once the system is trained,

this learned set of “weights” allows the correct prediction of output given a new input value. Neural

1 This background of this chapter is borrowed from Alexander Amini and Ava Soleimany MIT
6.S191: Introduction to Deep Learning, which presented a clear and concise explanation and
simplification of the definition of the convolutional network down to the perceptron.

32

networks accomplish this by combining multiple single neurons, called perceptrons (Figure 22),

each of which create output y given input x as

 𝑦̂ = 𝑔(∑ 𝑥 𝑤 + 𝑏𝑖𝑎𝑠), (1)

Where w are the corresponding weights that are altered in the training process. The nonlinear

activation function g increases system accuracy by adding in real-world nonlinearities. Commonly

used activation functions are the sigmoid, hyperbolic tangent, and rectified linear unit functions.

Figure 22: Perceptron Diagram. The figure shows the summation of the inputs, x, being multiplied by the weights, w, with the

bias applied, and going through a nonlinear activation function, g, to produce the output, 𝑦̂.

A neural network is created by combining perceptrons, the inputs, and weights, and

collapsing them into separate vectors X and W, and then the output is defined as

 𝑦̂ = 𝑔(𝑋 𝑊 + 𝑏𝑖𝑎𝑠). (2)

When another perceptron is added, it connects to the previous layer with a difference in the

weights. These layers are often referred to as dense layers due to all the inputs being densely

33

connected to all of the outputs. The previous figure is then expanded to a single layer neural

network shown in Figure 23.

Figure 23: Neural Network Diagram. This shows multiple inputs, perceptrons, and outputs layers in the network.

The hidden layer’s output can be determined by

𝑧 = 𝑥 𝑤 ,

()
+ 𝑏𝑖𝑎𝑠() (3)

and the output layer can be determined by

 𝑦̂ = 𝑔 ∑ 𝑥 𝑤 ,
()

+ 𝑏𝑖𝑎𝑠() . (4)

The reason the center is called a hidden layer is that these layers are not directly enforced or

observable, unlike the input and output layers, which means that the hidden layer is learned and

34

can be probed to determine what is going on inside the network. The variables w(1) and w(2)

represent the weights corresponding to the first or second layer. In order to make the neural

network a deep neural network, more hidden layers are incorporated to create a more hierarchical

model.

Once the user has labeled, the next step would be to train the model. The first step in

achieving this is to tell the network when the prediction is wrong, and this is done by quantifying

the error, also known as the loss. There are different types of losses, depending on whether it is

classification or regression. When the output is categorical, the system is defined as classification

or pattern recognition. However, if the output is real-valued, then the system is known as

regression. For classification, the cross-entropy loss would produce an output between 0 and 1 by

 𝐿𝑜𝑠𝑠 = ∑ 𝑦 𝑙𝑜𝑔 𝑓 𝑥 ; 𝑊 + 1 − 𝑦 𝑙𝑜𝑔 1 − 𝑓(𝑥 ; 𝑊) . (5)

In determining the loss of regression, a popular loss is the mean square error, which is

 𝐿𝑜𝑠𝑠 = ∑ (𝑦 − 𝑦̂) . (6)

The y represents the actual and 𝑦̂ the predicted output. The next objective is to find the

ideal set of weights that would result in the minimum amount of loss for the model. The loss is

optimized by using the process of gradient descent that maps the set of weights and tries to find

the lowest point on the map, known as the local minimum of the loss. This process uses backward

propagation to determine the best direction to move with a given loss and a given set of weights

[39].

35

Convolutional Operation Background

Now that this brief description of neural networks can be understood, the idea of how a

computer sees an image must be explained. A picture is made of thousands or even millions of

pixels. Pixels are the smallest point in the image, and these pixels are displayed in columns and

rows to display the image. Depending on the type of image, the pixel is then translated to a number

and is able to be processed. Two very common types of images are grayscale and RGB images. In

a grayscale image, the pixels are able to be represented by a single number, converting the image

into a two-dimensional matrix of numbers based on the brightness values. For an RGB, three two-

dimensional matrixes are concatenated on top of each other, one to represent each of the red, green,

and blue channels.

For classification, the computer would need to recognize the unique differences between

pictures. Each classification class has a set of unique characteristics, called features. If the

computer is able to detect enough of the features in that class, the computer would be able to

determine what class the image would belong to with high probability. A good approach is to learn

the visual features directly from the data and learn the hierarchy of these features as well. In doing

so, it would be possible to reconstruct a representation of the class label. Convolution is then used

to extract the features and patterns. Rather than having every pixel as its own layer in a neural

network, a patch would go through the pixels and connect the patches to the neurons of the hidden

layer. A representation of how a patch region influences a single neuron can be seen in Figure 24.

36

Figure 24: Patch Diagram. The image shows a patch sliding along pixels. Instead of every pixel being set to an individual

neuron, the pixels within the patch are incorporated into the neuron.

The patch is slid across the image to define the connections across the input. By doing this, the

spatial structure and information are maintained. To learn visual features, those connections in the

patches are then weighted and then summed for the input to the following layer.

Images are not strictly compared to another image; there will be certain types of

deformations to the images, scale, shift, or rotation. To compensate, the images will be compared

patch by patch. Features are the important patches the network looks for, and if rough matches are

found, the probability is high that they are the same image class. If the two images share a high

number of features, then the objects have a high probability of being the same object. These

features are like mini-images and are often referred to as filters. These filters have a set of weights

for each pixel and are slid along the image. An example of a triangle being compared to a similar

image can be seen in Figure 25.

37

Figure 25: Triangle and Filter Diagram. The filters are unique features that are slid across the pixel to try to find close

representations.

When the patch is on top of the image, the output of the hidden neuron layer can be determined by

elementwise multiplication of every pixel that the image and filter overlap, and then by totaling all

of the numbers to produce the overall output. An example can be seen in Figure 26.

38

Figure 26: Feature Map. The black pixels are -1 and the white pixels are 1. Applying the filter to an image produces a feature

map through elementwise multiplication.

The figure above can be seen with a 3x2 filter and is placed on the image. The elementwise

multiplication is performed for every overlapping pixel; since this is a perfect overlap, it is all

ones, and they are added to the feature map. Then the overall output of the hidden neural layer is

the sum of all the numbers in the feature map to produce 6, the max output of that filter. Changing

the weights in the features will significantly impact the feature map and can help sharpen the image

or be used for edge detection [40].

Convolutional Neural Network Background

A convolutional neural network process can be described as two sections, the feature

learning, and the classification. In feature learning, there are three main steps to consider—first,

the convolution operation of extracting features in the image. A single convolutional layer can

have multiple different filters, which makes the output layer of a convolution a volume of images

39

that represents the different filters. The number of filters to detect at every layer in a convolutional

neural network is set by the programmer and not the network. The rectified linear unit nonlinearity

activation function is commonly used to shift all the negative values by zero. Second, the

nonlinearity has to be applied to allow the neural network to handle nonlinear data, which enables

the network to handle more complex tasks. Finally, the pooling operations has the spatial

resolution of the image downsampled and also handles multiple scales of the features within the

image. A common pooling technique is max pooling, where another patch is slid along the matrix

and takes the maximum value. This is repeated until the image is downsized, and this allows the

maintaining of the spatial structure while shrinking the spatial dimension. The classification

section then takes the learned features and feeds them into a dense layer to represent the final

output of producing the probability distribution of the membership of the image of the different

classes. A classic convolution neural network architecture can be seen in Figure 27.

Figure 27: Convolutional Neural Network. This image shows the image of a car as an input. The convolution process is

performed and is then sent to the neural networks for classification [41].

40

Chapter 5. Machine Learning Implementation

Machine Learning Mel Frequency Cepstrum Coefficients Background

Mel Frequency Cepstrum Coefficients (MFCC), illustrated in Figure 28, is a technique

for audio processing and is commonly used for speech recognition [42].

Figure 28: Mel Frequency Cepstral Coefficient Process. This shows the overall process to obtain the Mel Frequency Cepstral

Coefficient [44].

A time domain signal is first passed through a high pass filter to reduce noise. The signal

is sliced into small frames where it is assumed that the frequency is stationary (typically the frame

size range 20 - 40 ms for speech) and a Hamming window is applied to each of the frames to

reduce spectral leakage. The N-point Fast Fourier transform is performed on each of the frames to

produce the frequency spectrum. The next step is to produce filter banks by applying triangular

filters on a Mel-scale to the power spectrum to extract frequency bands. The Mel-scale objective

is replicate the human ear’s logarithmic perception of sound by being more discriminative at lower

frequencies than higher frequencies. Each of the triangular filters in the filterbank has a response

of 1 at the center frequency and decreases linearly until it reaches 0 at the center of the adjacent

frequency filter, as shown in Figure 29.

41

Figure 29: Filterbank on a Mel-Scale. [43].

However, the filterbank coefficients contain highly correlated data that has the potential to be

problematic in machine learning systems. This is corrected by applying the discrete cosine

transform that produces a compressed representation of the filterbanks, called the Mel Frequency

Cepstral Coefficients [43]. A comparison of the Mel filterbank image and the Mel Frequency

Cepstral Coefficient can be seen in Figure 30.

42

Figure 30: Filterbank Vs Mel Frequency Cepstral Coefficient. The top image shows an example of the mean normalized

filterbank after the Mel-Scale process and the bottom image shows the mean normalized Mel Frequency Cepstral Coefficient

based on the Filterbank [43].

The audio processing script (Appendix I) reads in recorded .wav files using the ‘librosa’

library, performs the Fast Fourier transfer using ‘numpy’, and creates the Mel Frequency Cepstral

Filterbank and the Mel Frequency Cepstral Coefficient image files using the

‘python_speech_features’ library [45]. The Python default settings for window length and window

step were 25 ms and 10 ms, respectively, and were decreased to 1 ms and 0.4 ms, respectively.

43

This allowed more details of the image to be displayed since the size of the window, and the

amount that the window moves over, are decreased.

Machine Learning Program Testing

An Asus laptop with 12 GB RAM and an Intel Core i5-8250U CPU was used for the

machine learning in Matlab using as inputs the RGB, thermal, and Mel Frequency Cepstral

Coefficient images. The machine learning program incorporates Matlab’s implementation of the

Resnet-50 pre-trained convolutional neural network. The Resnet-50 will be retrained to learn the

classes of the Parrot Swing, Parrot Quadcopter, and the Tello Quadcopter based on the input

categories acoustic, thermal, and RGB of each of the drones. The minimum number of the data in

each category of the three drones will be the max number of data inputs for that category. If a

certain drone’s category is over the max amount of input data, then the data input into the program

will be randomly selected until the max number of input data is reached. After the machine learning

process, the accuracy and loss will be evaluated at the end of the process, and additional measures

will be performed if needed [46].

To indicate how well this program might perform on the data acquired by the sensors, a

test program was created to implement the RGB and acoustic categories from online databases.

The RGB category incorporated a database from Caltech101 that was simplified to only the

following classes: ‘Airplanes’, ‘Helicopter’, ‘Ferry’, and ‘Laptop’ [47]. The Mel Frequency

Cepstral Coefficients were based on instrumental sounds that were obtained from Kaggle for an

audio tagging challenge [48]. The database was simplified to the following classes: ‘Acoustic

guitar’, ‘Clarinet’, ‘Flute’, and ‘Saxophones’.

For the RGB category, the airplanes class contained 800 images, the helicopter class

contained 88 images, the ferry class contained 67 images, and the laptop class contained 81 images.

44

Overall, the max RGB input data for the CNN was 67 images due to the ferry class containing the

lowest amount. This max input is then divided into training and testing images; 70% of the images

from each class were set for training the machine learning model, and the remaining 30% were

dedicated for the validation testing. This training and testing percentage was used for all the

machine learning models in this thesis. It is important for the training images not to contain any of

the validation images. The convolutional neural network was performed three times with an

average validation accuracy of 99.58%. The convolutional neural network model of training and

validation over time is shown in Figure 31. The confusion matrix shows the actual image vs. the

predicted guess, as shown in Figure 32.

Figure 31: Practice RGB Training and Validation Over Time. The accuracy is 100% with very low loss. This would be the ideal

model to achieve.

45

Figure 32: Practice RGB Confusion Matrix. This would be the ideal model to achieve. The blue represents correct predictions

and the darker the blue the better the results, the white is neutral, and red is incorrect predictions.

To test the implementation with acoustic data, the wav files from each of the classes were

processed as described above to obtain the Mel Frequency Cepstral Coefficient images. All the

classes contained 29 wav files, setting that as the max input to the CNN. Unfortunately, this is not

a lot of data, and the model was not expected to be reliant. As shown in Figure 33, the training

accuracy is approximately 87%; however, the validation accuracy is 55.56%. This means that the

test images had the 55.56% accuracy to the training model and that training accuracy and validation

trendline gap represents the acoustic data being overfit and more data with variation would be

needed. The convolutional neural network was performed three times; the maximum and average

validation accuracy obtained was 55.56% and 50.93%, respectively. The confusion matrix of the

validation performed can be seen in Figure 34. The acoustic sensor showed positive results for

very low data. The validation accuracy between four different instruments with low data was more

than twice as accurate than a random guess between the categories.

46

Figure 33: Practice Acoustic Training and Validation Over Time. The accuracy is 55.56% and the loss is high. This is not a good

model to produce.

47

Figure 34: Practice Acoustic Confusion Matrix. There are much more shades of red in this model, which indicates more data is

needed.

Machine Learning for Drone Classification

For our drone classification application, the goal is to train a model that will separate

images into three classes: Parrot Quadcopter, Parrot Swing, and Tello Quadcopter. The Matlab

implementation, shown in Appendix J, creates models for each sensor individually. To determine

how performance depends on the amount of data collected from different locations, the process

was performed for each location, adding data to the overall set with each new measurement

location. For example, the first machine learning performance included the data from the first

location, while the fourth performance included the data from the first, second, third, and fourth

locations. The detailed amount of input data for each of the machine learning performances can be

seen in Table 4. For the final machine learning process including all possible measurements, there

will be a total of 1,056 RGB images, 1,042 thermal images, and 860 Mel Frequency Cepstral

Coefficient images.

48

Table 4: Overall Machine Learning Process Inputs. The inputs of the first machine learning process are the data

obtained from the first location, Process 2 would include the data obtained from the first and second location, and this repeats to

Process 5 including the data obtained from all five locations. The maximum data input to the machine learning process is the

minimum input data from the three drone classes.

These inputs are inputted into the deep convolutional neural network and trained. Due to

the set limit, the images inserted into the machine learning program are random. This results in a

Machine Learning Inputs Parrot Quad. Parrot Swing Tello Quad. Max Input

Process 1 RGB 132 60 155 60

Process 2 RGB 253 130 274 130

Process 3 RGB 530 653 573 530

Process 4 RGB 676 718 653 653

Process 5 RGB 992 1174 1056 992

Process 1 Thermal 128 56 132 56

Process 2 Thermal 248 117 247 117

Process 3 Thermal 498 556 542 498

Process 4 Thermal 652 618 624 618

Process 5 Thermal 980 1113 1042 980

Process 1 Acoustic 112 45 138 45

Process 2 Acoustic 234 109 254 109

Process 3 Acoustic 466 537 481 466

Process 4 Acoustic 597 594 547 547

Process 5 Acoustic 959 757 860 757

49

different validation accuracy. The validation accuracy is determined by taking the input data and

having 70% of the data train and 30% of the data tested on the trained data. However, two data

samples from each of the sensors and each drone at each location were removed from the database

and placed in a separate database for a second validation test. Unlike the first validation test, this

second validation shall remain consistent and given to each process for comparison and when this

second validation test is performed, the machine learning algorithm will be classifying data from

locations it has not learned yet. These data were mostly selected randomly. The RGB and thermal

images are the same, however the acoustic were different. The only data samples that were not

considered for this second database were when the drone exceeded 50 ft. or when the drone was

not visible to the human eye. There was an image where only the drone wing was visible in the

RGB and thermal images that were in the second database. As a result, there are ten images of

each RGB, thermal, and Mel Frequency Cepstral Coefficients for each drone in the new test

database. This second validation test is referred to as the Post-Training Test. Each process was

performed three times for all sensor, and the validation accuracy was compared for all three. The

max training validation accuracy results achieved for each process can be seen in Table 5. The

three evaluations of all the machine learning processes performed are shown in Tables C-1 - C-5.

50

Table 5: Overall Machine Learning Validation Accuracy. The machine learning process is performed with each set of

the input data and is performed three times to compare the accuracy. The results below represent the max validation accuracy

achieved from the machine learning process.

Despite the low amount of data obtained from the first location, the machine learning

program still performed well. The lowest amount of data received was the Parrot Swing in all three

categories. Therefore, the machine learning used a max input number of 58 images for the RGB,

54 images for the thermal, and 43 images from the acoustics, subtraction of two per category due

to the creation of the second validation test. Due to the fact that Parrot and Tello quadcopters

contained data samples over the max input limit, the images that were inputted were randomly

selected to obtain that max number. In Matlab, the function splitEachLabel(dataset, max input

limit, ‘randomize’) would change the dataset to the max input limit by filling that amount with

randomly selected data images from the dataset. The results of the first iteration were very good

for the RGB category and showed the other categories had room to improve. The time duration of

the machine learning task for each of the categories, RGB, thermal, and acoustic, was 4 minutes

and 34 seconds, was 4 minutes and 11 seconds, and 3 minutes and 26 seconds, respectively. Even

though the data was very low, the machine learning program was able to show potential. The

Validation Accuracy (%) RGB Thermal Acoustic

Process 1 94.12 66.67 66.67

Process 2 75.44 72.55 58.06

Process 3 96.60 82.88 71.26

Process 4 78.35 62.66 60.49

Process 5 60.23 43.07 46.58

51

machine learning program required a greater amount of data than provided for the first location,

as well as different scenery and noise to prevent over-fitting the data. The more data that gets

added, the longer it takes to finish the machine learning process. The first machine learning process

performed in each category can be seen in Figures 35 - 37.

Figure 35: RGB Machine Learning Process Up to the First Location.

52

Figure 36: Thermal Machine Learning Process Up to the First Location.

53

Figure 37: Acoustic Machine Learning Process Up to the First Location.

 The confusion matrix for the training of the above categories can be seen in Figures 38 -

40. After the convolutional neural network is trained, 30 test images for each category, ten from

each location, were given to the network to classify. The confusion matrix for post-training can be

seen in Figures 41 - 43.

54

Figure 38: Process 1 RGB Training Confusion Matrix. The first column and row represent the Parrot Swing. The second column

and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure 39: Process 1 Thermal Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

55

Figure 40: Process 1 Acoustic Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure 41: Process 1 RGB Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This includes

variations and the limitations from the fifth location that the network has not seen yet.

56

Figure 42: Process 1 Thermal Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

Figure 43: Process 1 Acoustic Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

57

With the data for the second location being merged with the data from the first, the input

data is now more than twice the amount of the previous machine learning performance. The

limitation was again the Parrot Swing, allowing the max input data to be 126 RGB images, 113

thermal images, and 105 Mel Frequency Cepstral Coefficient images. The validation accuracy for

the RGB category decreased by 18.68 percentage points, the thermal category increased by 5.88

percentage points, and the acoustic category decreased by 8.61 percentage points. The time

duration of the machine learning process was 9 minutes and 37 seconds, 8 minutes and 30 seconds,

and 8 minutes and 11 seconds for the RGB, thermal, and acoustic categories, respectively. The

graphs of the second machine learning processes can be seen in Figures D1 - D3, and the confusion

matrices during the training and post-training can be seen in Figures D-4 - D-9.

The validation accuracy of the RGB and the acoustic data decreased; however, this is a

positive outcome because it shows a more realistic model representation compared to the first

performance due to the increase of the input data by more than double the amount. This increase

in the amount of data and different variations makes the machine learning program more likely to

detect drones in other environments. The thermal validation accuracy increased to be about as

reliable as the RGB camera. As with the previous performance, more data and noise are needed to

be able to obtain a reliable representation of the model. The likelihood of increasing the accuracy

of the machine model validation accuracy with more data and noise is a strong possibility with

only a hundred data points.

 With the data from the third location merged with the data from the other location, the input

data is around four times larger than the previous process. The Parrot Quadcopter is the limiting

class for all three categories. The max number of input data for the RGB category was 524 images,

the thermal category was 492 images, and the acoustic category was 460 images. This machine

58

learning process was excellent overall due to the amount of data and the overall performance

increased with each sensor. The validation accuracy for the RGB category increased by 21.16

percentage points, the thermal category by 10.33 percentage points, and the acoustic category by

13.20 percentage points, compared to the previous performance. The third machine learning

processes’ training and loss graphs can be seen in Figures 44-46.

Figure 44: RGB Machine Learning Process Up to the Third Location.

59

Figure 45: Thermal Machine Learning Process Up to the Third Location.

60

Figure 46: Acoustic Machine Learning Process Up to the Third Location.

According to the post-training image test, the RGB model and thermal category did well with the

second dataset of images, in which slightly less than half are drones in a different scenery not seen

before. This is an accurate model for the drone under 50 ft. The time duration for the completion

of the process was 44 minutes and 13 seconds, 37 minutes and 51 seconds, and 36 minutes and 58

seconds for the RGB, thermal, and acoustic categories, respectively. The third machine learning

the confusion matrices during the training and post-training can be seen in Figures 47-52.

61

Figure 47: Process 3 RGB Training Confusion Matrix. The first column and row represent the Parrot Swing. The second column

and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure 48: Process 3 Thermal Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

62

Figure 49: Process 3 Acoustic Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure 50: Process 3 RGB Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This includes

variations and the limitations from the fifth location that the network has not seen yet.

63

Figure 51: Process 3 Thermal Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

Figure 52: Process 3 Acoustic Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

64

 The data obtained from the fourth location was merged with the data from the previous

locations, and the max input data was increased with the Tello Quadcopter setting the input limit

for each category. The max input data for the RGB category was 645 images, the thermal category

was 616 images, and the acoustic category was 539 images. The validation accuracy for the RGB

category was decreased by 18.25 percentage points, the thermal category decreased by 28.96

percentage points, and the acoustic category decreased by 10.77 percentage points when compared

to the previous performance. The total time for each of the categories to perform was 50 minutes

11 seconds, 47 minutes and 28 seconds, and 41 minutes and 47 seconds for the RGB, thermal, and

acoustic categories, respectively. Even though the drones were exposed to new variations, they

were also exposed to the limitations of the sensors. The distance from the sensors to the fence was

70 ft., and the drone almost went over it multiple times. It is also possible that the input data

involves the limitations of the sensors captured in the previous iterations as well. The graphs of

the fourth machine learning processes can be seen in Figures E-1 - E-3, and the confusion matrices

during the training and post-training can be seen in Figures E-4 - E-7.

 The fifth and final performance was merging and inputting all the data collected into the

machine learning program. The limit of the input data for each of the categories was set by the

Parrot Quadcopter setting the max input for the RGB category at 982 images, thermal category at

970 images, and acoustic category at 747 images. As expected, the new data has made the program

unreliable. The validation accuracy has decreased in all categories: the RGB category by 18.12

percentage points, the thermal category by 12.00 percentage points, and the acoustic category by

20.91 percentage points when compared to the previous performance. The total time for the

categories to complete the performance was 78 minutes and 57 seconds, 77 minutes and 22

seconds, and 60 minutes and 52 seconds for the RGB, thermal, and acoustic category, respectively.

65

The times for each category to complete for all the processes can be seen in Table F-1. The graphs

of the fifth machine learning processes can be seen in Figures 53 - 55.

Figure 53: RGB Machine Learning Process Up to the Fifth Location.

66

Figure 54: Thermal Machine Learning Process Up to the Fifth Location.

67

`

Figure 55: Acoustic Machine Learning Process Up to the Fifth Location.

The confusion matrices during the training and post-training can be seen in Figures 56 - 61. Since

there are three classes, a random guess is 33.33%, so this performance is still better than randomly

picking the drone in all categories. There is a noticeable difference in the accuracy when comparing

the training and post-confusion matrices. As previously stated, the second dataset was selective to

a degree and remained constant to help indicate if there were limitations in the sensors. The poor

accuracy in the confusion matrix based on the primary database and significantly better accuracy

in the second database is a decent indication of the limitations are met in all sensor categories.

68

Figure 56: Process 5 RGB Training Confusion Matrix. The first column and row represent the Parrot Swing. The second column

and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure 57: Process 5 Thermal Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

69

Figure 58: Process 5 Acoustic Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure 59: Process 5 RGB Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

70

Figure 60: Process 5 Thermal Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure 61: Process 5 Acoustic Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

71

Modified Machine Learning Accuracy and Loss

An adjustment was made to the overall program, and more machine learning processes

were performed to validate that the limitations of the acoustic sensor were due to the low validation

accuracy throughout the processes. The adjustment performed was narrowing the drone classes

from the Parrot Swing, Parrot Quadcopter, and Tello Quadcopter to the Parrot Swing and

Quadcopters. The Quadcopters were a combined data sample of the Parrot Quadcopter and Tello

Quadcopter. Since there are only two classes, the random guess between classes increased from

33.33% to 50%. The acoustic category had a validation accuracy of 75.16% for Process 3, 79.83%

for Process 4, and 64.56% for Process 5. The loss was approximately 0.49, 0.47, and 0.75 for

Process 3, 4, and 5, respectively. These performances are shown in Figures G-1 - G-3. The

confusion matrices for these are shown in Figures G-4 - G-9.

The results of the two-classes compared to the three-classes can be seen in Table 6. Since

the random guess would differ greatly between the two systems, the validation accuracy should be

by the system’s random guess for comparison. When factoring in the random guess difference, the

data shows that the best performance is three classes at Process 3 by 12.77 percentage points.

However, with the increase in difference, the two-class system performs better than the three-class

system.

72

Table 6: Acoustic Two-Classes VS Three-Classes. This table shows the comparison between the two classes of Parrot

Swing and Quadcopters to the three classes Parrot Swing, Parrot Quadcopter, and Tello Quadcopter for Process 3, 4, and 5. The

Process Random Difference is the validation accuracy subtracted by the random guess to compare the difference in accuracy

realistically.

Machine Learning Inputs Two Classes Three Classes

Process 3 Validation Accuracy (%) 75.16 71.26

Process 4 Validation Accuracy (%) 79.83 60.49

Process 5 Validation Accuracy (%) 64.56 46.58

Random Guess (%) 50.00 33.33

Process 3 Random Difference (%) 25.16 37.93

Process 4 Random Difference (%) 29.83 27.16

Process 5 Random Difference (%) 14.56 13.25

73

Chapter 6. Conclusion

Project Overview

The beginning stage of this thesis involved the creation of a robot that would be able to

collect data from the drones. The robot was designed in Solidworks, assembled, and wired to be

able to be mobile and fully use the sensors. The graphical user interface, utilizing the RGB camera,

the thermal camera, and the acoustic sensor, was programmed in Python and operational on the

Minisforum minicomputer. The data collecting program was then compacted to this minicomputer

to achieve as close to real-time data as achievable. An additional Python program was created to

gather the data collected and safely transfer the data to the machine learning computer and perform

the audio processing on the acoustic wav files as well. The program for the machine learning

program was then created in Matlab to detect and classify the three drone classes, Parrot Swing,

Parrot Quadcopter, and Tello Quadcopter using the data collected as inputs.

The main priority after the beginning stage of the project was to increase the number of

samples of data collected that were inputted to each sensor’s convolutional neural networks. This

ideally gave the convolutional neural networks the flexibility to obtain a higher validation

accuracy. The samples were collected in different locations, contained moving backgrounds, and

obtained random noise. Some of these moving backgrounds and random noises included vehicles,

clouds, people, lawnmowers, construction work, and people. The second priority was to determine

the limitations of the sensors through the data collection and machine learning process. This was

done by using the different samples and evaluating the results of the validation accuracy and loss.

74

Project Results

The convolutional neural network was successfully able to classify and detect the three

classes of drones using the three categories RGB, thermal, and acoustic. The images that were

obtained in the data collection were inputted into the machine learning program and revealed that

the most accurate sensor was the RGB camera, followed by the acoustic sensor, and then the

thermal camera. However, if the drone is beyond 50 ft., the most reliable prediction model must

have the two quadcopters merge into a single class and rely on the acoustic and RGB sensors,

followed by the thermal camera. When the majority of the data was within 50 ft. and had

approximately 500 input data samples, the RGB camera had a maximum of 96.6% validation

accuracy recorded with the three drone categories. In comparison, the thermal camera and acoustic

sensor had a maximum validation accuracy of 82.9% and 71.3%, respectively, with the same

conditions. When the CNN incorporated much more data of the drone over 50 ft. from the sensors

and exposed to more limitations, the maximum validation accuracy recorded was 60.2% for the

RGB category, 43.1% for the thermal category, and 46.58% for the acoustic category. However,

when the consistent input data from the second database was used to perform the post-validation

test, the post-training confusion matrix was very accurate. The input data from the primary

database is significantly larger when compared to the second database and more data should be

dedicated to the second database for reliability. Regardless, this post-training confusion matrix is

an indication of sensors limitations being met due to the simi-selective nature of the images to

incorporate into the second database. When the quadcopters merged classes, creating two overall

classes in the machine learning process, the maximum validation accuracy of the acoustic category

in the same conditions increased to 75.2% for Process 3, 79.8% for Process 4, and 64.6% for

Process 5. In order to increase these accuracies more with the same conditions, the equipment

75

would need to be upgraded, the sensors would need to stay inside the limitations, or a different

machine learning process would need to be implemented.

Overall, the limitation of the RGB camera was due to range and background. The farther

the drone is from the camera, the smaller and more blurry the drone becomes. This was noticeable

at approximately 50 ft. for this RGB camera. The next factor to consider is the background. The

drone went beyond 50 ft. multiple times in locations before the fifth location; however, the farthest

distance occurred mostly with the sky as a background. When there is an object behind the drone,

then the drone becomes hard to identify with the human eye. This issue became apparent at both

the fourth and fifth locations.

The thermal camera is an advantageous sensor that will work well in conditions which are

not suitable for the RGB camera. However, when the drone is in the hot intensity region of the

image map, the drone is extremely hard to detect. The next limitation is the distance the drone is

from the sensor. Like the RGB camera, the drone becomes smaller and more blurry at

approximately 50 ft. With the combination of these two limitations, the thermal camera struggled

to detect and classify the mini drones. Another limitation of this sensor is the background; if an

object in the background has an extremely hot intensity compared to the drone, then the detection

of the drone is incredibly difficult. These issues became very apparent at the fourth and fifth

locations.

The acoustic sensor limitation was due to the distance and the mini quadcopters. The

distance greatly affected the drone in the 50-ft.-to-90-ft. range. The accuracy dropped drastically

when many of the input data from that range were incorporated. The mini quadcopters were a

limitation due to the drone’s having difficulty differentiating them when the majority of the data

76

was within 50 ft. However, when the mini quadcopters merged into one class, the validation

accuracy in the classification was outstandingly higher.

Future Works

 This project is capable of being modified in the future. One of the easy modifications to

this project would be to use different sensors or to upgrade the sensors. Another possible

modification would be to alter the type of input data, such as the Mel Frequency Cepstral

Coefficient, or the machine learning process. The data could also be collected in a park or another

location with different environmental settings or different drones. A modification code-wise could

implement a convolutional neural network to determine which classification the drone is in using

broad classes, and then perform another CNN on the specific type of drone inside that broad

classification previously classified. As pointed out, there is a decent amount of potential to modify

or expand upon this project to acquire additional data on the robotic detection of drones.

77

Appendices

Appendix A: Robot Detailed Drawing

Figure A-1 Robot Design Detailed Drawing.

78

Appendix B: Sensor Technical Specifications

 Table B-1: ELP USB 2.0 Webcam 2 Mega Pixels Specifications [11].

Table B-2: FLIR Lepton 3.0 Specifications [10].

79

Table B-3: UMA-16 miniDSP Specifications [32].

 Table B-4: LIDAR Lite v3 Performance Specifications 1 [31].

80

Table B-5: LIDAR Lite v3 Performance Specifications 2 [31].

81

Appendix C: Machine Learning Process Evaluation

C-1: First Input Set Evaluation. The convolutional neural network was performed three times on the data from

Location 1 and the table shows the validation accuracy for each performance.

Table C-2: Second Input Set Evaluation. The convolutional neural network was performed three times on the data from

Locations 1-2 and the table shows the validation accuracy for each performance.

Validation Accuracy (%) RGB Thermal Acoustic

Evaluation 1 76.47 45.83 66.67

Evaluation 2 88.24 66.67 45.15

Evaluation 3 94.12 33.33 61.54

Validation Accuracy (%) RGB Thermal Acoustic

Evaluation 1 71.93 % 65.69 % 44.09 %

Evaluation 2 75.44 % 62.75 % 58.06 %

Evaluation 3 67.54 % 72.55 % 39.78 %

82

C-3: Third Input Set Evaluation. The convolutional neural network was performed three times on the data from

Locations 1-3 and the table shows the validation accuracy for each performance.

Table C-4: Fourth Input Set Evaluation. The convolutional neural network was performed three times on the data from

Locations 1-4 and the table shows the validation accuracy for each performance.

Table C-5: Fifth Input Set Evaluation. The convolutional neural network was performed three times on the data from

Locations 1-5 and the table shows the validation accuracy for each performance.

Validation Accuracy (%) RGB Thermal Acoustic

Evaluation 1 86.41 % 82.88 % 66.18 %

Evaluation 2 96.60 % 82.66 % 71.26 %

Evaluation 3 77.92 % 82.43 % 70.53 %

Validation Accuracy (%) RGB Thermal Acoustic

Evaluation 1 75.43 53.92 60.49

Evaluation 2 74.57 62.66 56.58

Evaluation 3 78.35 58.47 56.79

Validation Accuracy (%) RGB Thermal Acoustic

Evaluation 1 60.23 31.84 39.58

Evaluation 2 49.15 41.92 36.31

Evaluation 3 59.55 43.07 46.58

83

Appendix D: Machine Learning Process 2

Figure D-1: RGB Machine Learning Process Up to the Second Location.

84

Figure D-2: Thermal Machine Learning Process Up to the Second Location.

85

Figure D-3: Acoustic Machine Learning Process Up to the Second Location.

86

Figure D-4: Process 2 RGB Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure D-5: Process 2 Thermal Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

87

Figure D-6: Process 2 Acoustic Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure D-7: Process 2 RGB Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This includes

variations and the limitations from the fifth location that the network has not seen yet.

88

Figure D-8: Process 2 Thermal Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

Figure D-9: Process 2 Acoustic Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

89

Appendix E: Machine Learning Process 4

Figure E-1: RGB Machine Learning Process Up to the Fourth Location.

90

Figure E-2: Thermal Machine Learning Process Up to the Fourth Location.

91

Figure E-3: Acoustic Machine Learning Process Up to the Fourth Location.

92

Figure E-4: Process 4 RGB Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure E-5 Process 4 Thermal Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

93

Figure E-6: Process 4 Acoustic Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Figure E-7: Process 4 RGB Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This includes

variations and the limitations from the fifth location that the network has not seen yet.

94

Figure E-8: Process 4 Thermal Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

Figure E-9: Process 4 Acoustic Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

95

Appendix F: Overall Time Performances

Table G-1: Overall Time Performances. This table shows the comparison between the two classes of Parrot Swing and

Quadcopters to the three classes Parrot Swing, Parrot Quadcopter, and Tello Quadcopter for Process 3, 4, and 5. The Process

Random Difference is the validation accuracy subtracted by the random guess to compare the difference in accuracy

realistically.

Machine Learning Inputs RGB Thermal Acoustic

Process 1 4min 34s 4min 11s 3min 26s

Process 2 9min 37s 8min 30s 8min 11s

Process 3 44min 13s 37min 51s 36min 58s

Process 4 50 min 11s 47min 28s 41min 47s

Process 5 78min 57s 77min 22s 60min 52s

96

Appendix G: Modified Machine Learning Process

Figure G-1: Modified Acoustic Process 3. The machine learning process up to the third location was modified to contain two

classes (Parrot Swing and Quadcopters).

97

Figure G-2: Modified Acoustic Process 4. The machine learning process up to the fourth location was modified to contain two

classes (Parrot Swing and Quadcopters).

98

`

Figure G-3: Modified Acoustic Process 5. The machine learning process up to the fifth location was modified to contain two

classes (Parrot Swing and Quadcopters).

99

Figure G-4: Modified Process 3 Acoustic Training Confusion Matrix.

Figure G-4: Modified Process 3 Acoustic Post-Training Confusion Matrix.

100

Figure G-5: Modified Process 4 Acoustic Training Confusion Matrix.

Figure G-6: Modified Process 4 Acoustic Post-Training Confusion Matrix.

101

Figure G-7: Modified Process 5 Acoustic Post-Training Confusion Matrix.

Figure G-8: Modified Process 5 Acoustic Post-Training Confusion Matrix.

102

Appendix H: Data Collecting Program

from collections import deque
import numpy as np
import time
import datetime
from PIL import Image, ImageTk
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
from matplotlib.figure import Figure
import wave

import cv2
import os
import pyaudio
#import csv
import tkinter as tk
import threading
import dill
import time
import shutil

######################################
########## Variable Declaration ##########
######################################
user_name='wasp'
usb_name='Flashy'
dirName='/media/%s/%s/Robot_Sensors' %(user_name, usb_name)

Thermal and USB Camera Inputs ##
therm_input=1
usb_cam_input=0
cameras_process=0
acoustic_process=0

aud_prev=[]

counting=0

rec_setup=0
rec_data = False

Acoustic Sensor ###
FORMAT = pyaudio.paInt16 # We use 16 bit format per sample
CHANNELS = 16
RATE = 44100
CHUNK = 1024 # 1024 bytes of data read from the buffer #44100
RECORD_SECONDS = 0.001
WAVE_OUTPUT_FILENAME = ("RobotAcoustic.wav")
Mic_Device_Number=3
audio = pyaudio.PyAudio()

stream = audio.open(format=FORMAT,
 channels=CHANNELS,
 rate=RATE,
 input=True,
 input_device_index = Mic_Device_Number,
 frames_per_buffer=CHUNK)

103

keep_going=True

proceed=1
##Exact positioning
cam_size=320
stn_font='18'
stb_font='15'

quit_x=.01
quit_y=.76875

record_x=.01
record_y=.6

stop_x=.1625
stop_y=.6

rgb_x=0.0885
rgb_y=0
rgb_lx=.011875
rgb_ly=.05125

hsv_x=.43
hsv_y=0
hsv_lx=.3425
hsv_ly=.05125

fps_x=.275
fps_y=.5125

thm_x=.74
thm_y=0
thm_lx=.67375
thm_ly=0.05125

act_x=.375
act_y=.56125
act_lx=.375
act_ly=.56125

class Application(tk.Frame):
 def __init__(self, master):
 tk.Frame.__init__(self,master)

 ###### Buttons ######
 quit_button = tk.Button(master=root, text='End Process', font='Helvetica %s
bold' %stb_font, bg='red', command=lambda: quit_(root))
 quit_button.place(relx=quit_x, rely=quit_y)

 record_button = tk.Button(master=root, text='Record Data', font='Helvetica %s
bold' %stb_font, bg='green', command=lambda: record_data())
 record_button.place(relx=record_x, rely=record_y)

 stop_button = tk.Button(master=root, text='Stop Record', font='Helvetica %s
bold' %stb_font, bg='green', command=lambda: stop_data())
 stop_button.place(relx=stop_x, rely=stop_y)

 self.guiSetup()
 self.main_setup()
 self.main()
 self.after(0,self.main)

104

 def main_setup(self):
 global acoustic_process
 daemonTc=True
 acous_thread=threading.Thread(target=self.audio_stream, daemon=daemonTc)
 acous_thread.start()

 while proceed==1:
 cam_thread=threading.Thread(target=update_image, daemon=daemonTc)
 cam_thread.start()

 try:
 cam_thread.join()
 except:
 pass
 self.convert_image(rgb_image_label)
 self.thermal_vid()

 if acoustic_process==0:
 break
 try:
 acous_thread.join()
 except:
 pass

 plot_data_setup()
 acoustic_process=0
 daemonTc=False

 def main(self):
 print('main loop')
 global acoustic_process
 global aud_prev
 global counting
 daemonTc=True
 acous_thread=threading.Thread(target=self.audio_stream, daemon=daemonTc)
 acous_thread.start()

 while proceed==1:
 cam_thread=threading.Thread(target=update_image, daemon=daemonTc)
 cam_thread.start()

 try:
 cam_thread.join()
 except:
 pass

 self.convert_image(rgb_image_label)
 self.thermal_vid()

 if acoustic_process==0:
 break
 try:
 acous_thread.join()
 except:
 pass

 acoustic_process=0
 print('next')
 daemonTc=False

105

 ax.clear()
 print('plot begin')

 length=range(0,len(aud_prev))
 mlength=max(length)
 length2=range(mlength+1,mlength+len(audio_data)+1)
 mlength2=max(length2)
 ax.plot(length[0:int(mlength*.25)],aud_prev[0:int(mlength*.25)],
linestyle='solid', marker='.', color='b')
 update_image()
 self.convert_image(rgb_image_label)
 self.thermal_vid()

ax.plot(length[int(mlength*.25):int(mlength*.5)],aud_prev[int(mlength*.25):int(mlength
*.5)], linestyle='solid', marker='.', color='b')
 update_image()
 self.convert_image(rgb_image_label)
 self.thermal_vid()

ax.plot(length[int(mlength*.5):int(mlength*.75)],aud_prev[int(mlength*.5):int(mlength*
.75)], linestyle='solid', marker='.', color='b')
 update_image()
 self.convert_image(rgb_image_label)
 self.thermal_vid()
 ax.plot(length[int(mlength*.75):],aud_prev[int(mlength*.75):],
linestyle='solid', marker='.', color='b')
 update_image()
 self.convert_image(rgb_image_label)
 self.thermal_vid()
 ax.plot(length2[0:int(mlength2*.25)],audio_data[0:int(mlength2*.25)],
linestyle='solid', marker='.', color='b')
 update_image()
 self.convert_image(rgb_image_label)
 self.thermal_vid()

ax.plot(length2[int(mlength2*.25):int(mlength2*.5)],audio_data[int(mlength2*.25):int(m
length2*.5)], linestyle='solid', marker='.', color='b')
 update_image()
 self.convert_image(rgb_image_label)
 self.thermal_vid()

ax.plot(length2[int(mlength2*.5):int(mlength2*.75)],audio_data[int(mlength2*.5):int(ml
ength2*.75)], linestyle='solid', marker='.', color='b')
 update_image()
 self.convert_image(rgb_image_label)
 self.thermal_vid()
 ax.plot(length2[int(mlength2*.75):],audio_data[int(mlength2*.75):],
linestyle='solid', marker='.', color='b')
 update_image()
 self.convert_image(rgb_image_label)
 self.thermal_vid()
 canvas.draw()

 plt.close()
 aud_prev=audio_data
 print('plot end')
 counting=counting+1
 print(counting)
 self.after(0,self.main)

 def guiSetup(self):

106

 global canvas
 global ax
 global cam
 global therm_cam
 global rgb_image_label
 global hsv_image_label
 global therm_image_label
 global fps_label
 global canvas
 global li_fig, ax

 ##
 ############################# Name Labels ##############################
 ##

 ###### Camera ######
 #RGB Image
 rgb_image_label_name=tk.Label(root, text="RGB Camera", font='Helvetica %s
bold' %stn_font)
 rgb_image_label_name.place(relx=rgb_x, rely=rgb_y)

 rgb_image_label = tk.Label(master=root)
 rgb_image_label.place(relx=rgb_lx, rely=rgb_ly)

 #HSV Image
 hsv_image_label_name=tk.Label(root, text="HSV Camera", font='Helvetica %s
bold' %stn_font)
 hsv_image_label_name.place(relx=hsv_x, rely=hsv_y)

 hsv_image_label = tk.Label(master=root)
 hsv_image_label.place(relx=hsv_lx, rely=hsv_ly)

 #FPS
 cam = cv2.VideoCapture(usb_cam_input)
 fps_label = tk.Label(master=root)
 fps_label._frame_times = deque([0]*5)
 fps_label.place(relx=fps_x, rely=fps_y)

 ####### Thermal Image ######
 thermal_label_name=tk.Label(root, text="Thermal Picture", font='Helvetica %s
bold' %stn_font)
 thermal_label_name.place(relx=thm_x, rely=thm_y)

 #Capture video frames
 therm_image_label = tk.Label(master=root)
 therm_image_label.place(relx=thm_lx, rely=thm_ly)
 therm_cam = cv2.VideoCapture(therm_input)
 ####### Acoustic Wave ######
 acoustic_label_name=tk.Label(root, text="Acoustic Waves", font='Helvetica %s
bold' %stn_font)
 acoustic_label_name.place(relx=act_x, rely=act_y)

 fig=plt.figure(figsize=(7,3))
 ax=fig.add_subplot(111)
 # Prepare the Plotting Environment with random starting values
 x = np.arange(10000)
 y = np.random.randn(10000)

 # Plot 0 is for raw audio data
 li, = ax.plot(x, y)
 ax.set_xlim(0,2*CHUNK)
 ax.set_ylim({-200,200})
 ax.set_title("Raw Audio Signal")

107

 canvas = FigureCanvasTkAgg(fig, master=root)
 canvas.get_tk_widget().place(relx=.3125, rely=act_ly)

 def convert_image(self, rgb_image_label):
 global rgb_image
 global hsv_image
 rgb_im1 = Image.fromarray(rgb_image)
 rgb_im2 = ImageTk.PhotoImage(image=rgb_im1)
 rgb_image_label.configure(image=rgb_im2)
 rgb_image_label._image_cache = rgb_im2
 if rec_data:
 timearray1=time.strftime("%d_%m_%Y_%H_%M_%S")
 rgb_im3=rgb_im1.save('/media/wasp/Flashy/Robot_Sensors/RGB/'
+timearray1+'.jpeg')

 hsv_im1 = Image.fromarray(hsv_image)
 hsv_im2 = ImageTk.PhotoImage(image=hsv_im1)
 hsv_image_label.configure(image=hsv_im2)
 hsv_image_label._image_cache = hsv_im2

 def thermal_vid(self):
 global therm_cam
 _, frame = therm_cam.read()
 cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA)
 cv2image = cv2.resize(cv2image, (cam_size,cam_size))
 img = Image.fromarray(cv2image)
 imgtk = ImageTk.PhotoImage(image=img)
 therm_image_label.imgtk = imgtk
 therm_image_label.configure(image=imgtk)
 imgtk._image_cache = imgtk
 if rec_data:
 timearray2=time.strftime("%d_%m_%Y_%H_%M_%S")
 img = Image.fromarray(cv2image)
 img2=img.convert('RGB')
 img2=img2.save('/media/wasp/Flashy/Robot_Sensors/Thermal/'
+timearray2+'.jpeg')

 def convert_thermal(self):
 global thermal_image
 img = Image.fromarray(thermal_image)
 imgtk = ImageTk.PhotoImage(image=img)
 therm_image_label.imgtk = imgtk
 therm_image_label.configure(image=imgtk)
 imgtk._image_cache = imgtk

 def update_fps(self, fps_label):
 frame_times = fps_label._frame_times
 frame_times.rotate()
 frame_times[0] = time.time()
 sum_of_deltas = frame_times[0] - frame_times[-1]
 count_of_deltas = len(frame_times) - 1
 try:
 fps = int(float(count_of_deltas) / sum_of_deltas)
 except ZeroDivisionError:
 fps = 0
 fps_label.configure(text='FPS: {}'.format(fps))

 def audio_stream(self):
 global acoustic_process
 global audio_data
 acoustic_process=1
 print('stream begin')

108

 if keep_going:
 stream.start_stream()
 stream_data=stream.read(CHUNK, exception_on_overflow = False)
 stream.stop_stream()
 audio_data = np.fromstring(stream_data, np.int16)
 acoustic_process=0
 print('stream end')

 if rec_data:
 timearray3=time.strftime("%d_%m_%Y_%H_%M_%S")
 WAVE_OUTPUT_FILENAME='Acoustic'+timearray3+'.wav'
 wf =
wave.open('/media/wasp/Flashy/Robot_Sensors/Acoustics/'+WAVE_OUTPUT_FILENAME, 'wb')
 wf.setnchannels(CHANNELS)
 wf.setsampwidth(audio.get_sample_size(FORMAT))
 wf.setframerate(RATE)
 wf.writeframes(audio_data)
 wf.close()

def quit_(root):
 global proceed
 proceed=0
 print('Ending Python Code')
 stream.stop_stream()
 stream.close()
 audio.terminate()
 root.destroy()
 os.system("pkill python3")

def record_data():
 global rec_data
 global rec_setup
 rec_data = True

 if rec_setup==0:
 global user_name, usb_name, dirName
 try:
 os.makedirs('%s/RGB' %dirName)
 print("Directory " , dirName , " Created ")
 except FileExistsError:
 print("Directory %s/RGB" %dirName , " already exists")

 try:
 os.makedirs('%s/Thermal'%dirName)
 print("Directory " , dirName , " Created ")
 except FileExistsError:
 print("Directory %s/Thermal" %dirName , " already exists")

 try:
 os.makedirs('%s/Acoustics'%dirName)
 print("Directory " , dirName , " Created ")
 except FileExistsError:
 print("Directory %s/Acoustics" %dirName , " already exists")

 print('Recording Turned ON')

def stop_data():
 global rec_data
 rec_data = False
 print('Recording Turned OFF')

109

def status():
 if rec_data==True:
 print('Record is On')
 if rec_data==False:
 print('Not Recording')

def update_image():
 global cam
 global rgb_image
 global hsv_image
 (readsuccessful, f) = cam.read(usb_cam_input)
 rgb_im = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
 rgb_image = cv2.resize(rgb_im, (cam_size,cam_size))
 hsv_im = cv2.cvtColor(f, cv2.COLOR_BGR2HSV)
 hsv_image = cv2.resize(hsv_im, (cam_size,cam_size))

def plot_data_setup():
 global audio_data
 global aud_prev
 print('plot begin S')
 length=range(0,len(audio_data))
 mlength=max(length)
 ax.plot(length,audio_data, linestyle='solid', marker='o', color='b')
 canvas.draw()
 plt.close()
 aud_prev=audio_data
 print('plot end S')

def plot_data():
 global audio_data
 global aud_prev
 ax.clear()
 print('plot begin')

 length=range(0,len(aud_prev))
 mlength=max(length)
 ax.plot(length,aud_prev, linestyle='solid', marker='o', color='b')
 ax.plot(range(mlength+1,mlength+len(audio_data)+1),audio_data, linestyle='solid',
marker='o', color='b')
 canvas.draw()

 plt.close()
 aud_prev=audio_data
 print('plot end')

######################################
############## PROGRAM ###############
######################################
root=tk.Tk()
root.title("Drone Data Collecting GUI")
root.geometry('1600x1250')
print('root begin')
app=Application(master=root)
app.mainloop()

110

Appendix I: Data Transfer and Audio Processing Program

import platform
import os
import sys
import time
import datetime
from tqdm import tqdm
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
from python_speech_features import mfcc, logfbank
import librosa

#User Needs To Define
######################
usb_name='Flashy'
sample_rate=44100
######################
time=time.strftime("%H:%M:%S")
time_array=[str(time[0:])]
dirName = '/home/agent/Desktop/Robot/Data_%s' %datetime.datetime.now().date()+
'_'+time[0:]
dirname_acous='/home/agent/Desktop/Robot/Data_%s' %datetime.datetime.now().date()+
'_'+time[0:]+'/Acoustics'
dirname_sig='/home/agent/Desktop/Robot/Data_%s' %datetime.datetime.now().date()+
'_'+time[0:]+'/Signal_Image'
dirname_fft='/home/agent/Desktop/Robot/Data_%s' %datetime.datetime.now().date()+
'_'+time[0:]+'/FFT_Image'
dirname_fbank='/home/agent/Desktop/Robot/Data_%s' %datetime.datetime.now().date()+
'_'+time[0:]+'/FBank_Image'
dirname_mel='/home/agent/Desktop/Robot/Data_%s' %datetime.datetime.now().date()+
'_'+time[0:]+'/Mel_Image'

mfccs={}
fbank={}
signals={}
ffts={}

def move_files(usb_name, dirname):
 print(dirName)
 try:
 os.makedirs(dirname)
 print("Directory " , dirname , " Created ")

 except FileExistsError:
 print("Directory " , dirname , " already exists")
 print(dirname)

 os.system('mv /media/agent/%s/Robot_Sensors/Acoustics %s' %(usb_name,dirname))
 os.system('mv /media/agent/%s/Robot_Sensors/RGB %s' %(usb_name,dirname))
 os.system('mv /media/agent/%s/Robot_Sensors/Thermal %s' %(usb_name,dirname))
 print('Files moved')

def create_folders():
 try:
 os.makedirs('%s/Signal_Image'%dirName)
 print("Directory " , dirName , " Created ")
 except FileExistsError:
 print("Directory %s/Signal_Image" %dirName , " already exists")

111

 try:
 os.makedirs('%s/FFT_Image'%dirName)
 print("Directory " , dirName , " Created ")
 except FileExistsError:
 print("Directory %s/Mel_Image" %dirName , " already exists")

 try:
 os.makedirs('%s/FBank_Image'%dirName)
 print("Directory " , dirName , " Created ")
 except FileExistsError:
 print("Directory %s/FBank_Image" %dirName , " already exists")

 try:
 os.makedirs('%s/Mel_Image'%dirName)
 print("Directory " , dirName , " Created ")
 except FileExistsError:
 print("Directory %s/Mel_Image" %dirName , " already exists")

def plot_signals(signal):
 plt.close()
 fig, axes = plt.subplots(nrows=1, ncols=1, sharex=False,
 sharey=True, figsize=(15,5))
 fig.suptitle('Signal', size=16)
 axes.set_title('Frequency VS Time')
 axes.plot(signals)
 axes.get_xaxis().set_visible(False)
 axes.get_yaxis().set_visible(False)
 plt.savefig(dirname_sig+('/')+filename[:-4])
 plt.cla
 plt.close()

def plot_fft(Y, freq):
 plt.close()
 fig, axes = plt.subplots(nrows=1, ncols=1, sharex=False,
 sharey=True, figsize=(15,5))
 fig.suptitle('Fourier Transform', size=16)
 axes.set_title('Fourier Transform')
 axes.plot(freq, Y)
 axes.get_xaxis().set_visible(False)
 axes.get_yaxis().set_visible(False)
 plt.savefig(dirname_fft+('/')+filename[:-4])
 plt.cla
 plt.close()

def plot_fbank(fbank):
 plt.close()
 fig, axes = plt.subplots(nrows=1, ncols=1, sharex=False,
 sharey=True, figsize=(15,5))
 fig.suptitle('Filter Bank Coeffienents', size=16)
 axes.set_title('Filter Bank Coeffienents')
 axes.imshow(fbank,
 cmap='hot', interpolation='nearest')
 axes.get_xaxis().set_visible(False)
 axes.get_yaxis().set_visible(False)
 plt.savefig(dirname_fbank+('/')+filename[:-4])
 plt.cla
 plt.close()

def plot_mfccs(mfccs):
 plt.close()
 fig, axes = plt.subplots(nrows=1, ncols=1, sharex=False,
 sharey=True, figsize=(15,5))

112

 fig.suptitle('Mel Frequency Cepstrum Coefficients', size=16)
 axes.set_title('Mel Frequency Cepstrum Coefficients')
 axes.imshow(mfccs,
 cmap='hot', interpolation='nearest')
 axes.get_xaxis().set_visible(False)
 axes.get_yaxis().set_visible(False)
 plt.savefig(dirname_mel+('/')+filename[:-4])
 plt.cla
 plt.close()

def calc_fft(y,rate):
 n = len(y)
 freq=np.fft.rfftfreq(n, d=1/rate)
 Y = abs(np.fft.rfft(y)/n)
 return(Y, freq)

if platform.system() == 'Linux':
 print('LINUX')
 print(usb_name)
 print(dirName)
 move_files(usb_name, dirName)
 create_folders()

 f=0
 total=len(os.listdir(dirname_acous))
 for filename in os.listdir(dirname_acous):
 if filename.endswith(".wav"):
 #print(filename)
 signal, rate = librosa.load(dirname_acous+'/'+filename, sr=sample_rate)
 rate=int(rate)
 ffts=calc_fft(signal, rate)
 windlength=.025/25
 windstep=.01/25
 bank=logfbank(signal[:rate],rate,winstep=windstep, winlen=windlength,
nfilt=26, nfft=1103).T #44100/40
 mfccs = mfcc(signal[:rate],rate,winstep=windstep, winlen=windlength,
numcep=13,nfilt=26,nfft=1103).T
 signals=signal
 fbank=bank
 plot_signals(signals)
 plot_fft(ffts[0],ffts[1])
 plot_fbank(fbank)
 plot_mfccs(mfccs)
 f=f+1
 percent=int(f/total*100)
 print('Pecrent Completed:', percent,'%\t(',f,'out of',total,'files)')

 continue
 else:
 continue
else:
 print('Not Linux')

113

Appendix J: Machine Learning Program

%https://www.mathworks.com/help/deeplearning/ug/train-deep-learning-network-to-
classify-new-images.html
clc
clear all
close all

addpath
'/home/agent/Documents/MATLAB/Examples/R2019b/nnet/TransferLearningUsingGoogLeNetExamp
le';
disp('Lets Begin')

% Choose which category to perform machine learning
% RGB | Thermal | Acoustic
category= "Acoustic";

audioFolder='/home/agent/Desktop/Robot/Machine_Learning/Acoustic_Database';
rgbFolder='/home/agent/Desktop/Robot/Machine_Learning/RGB_Database';
thermFolder='/home/agent/Desktop/Robot/Machine_Learning/Thermal_Database';

aud_categories = {'Swing_Parrot', 'Quad_Parrot', 'Tello'};
rgb_categories = {'Swing_Parrot', 'Quad_Parrot', 'Tello'};
therm_categories = {'Swing_Parrot', 'Quad_Parrot', 'Tello'};

aud_imds = imageDatastore(fullfile(audioFolder, aud_categories),'LabelSource',
'foldernames');
rgb_imds = imageDatastore(fullfile(rgbFolder, rgb_categories),'LabelSource',
'foldernames');
therm_imds = imageDatastore(fullfile(thermFolder, therm_categories),'LabelSource',
'foldernames');

aud_tbl = countEachLabel(aud_imds);
rgb_tbl = countEachLabel(rgb_imds);
therm_tbl = countEachLabel(therm_imds);

aud_minSetCount = min(aud_tbl{:,2});
rgb_minSetCount = min(rgb_tbl{:,2});
therm_minSetCount = min(therm_tbl{:,2});

aud_imds = splitEachLabel(aud_imds,aud_minSetCount,'randomize');
rgb_imds = splitEachLabel(rgb_imds,rgb_minSetCount,'randomize');
therm_imds = splitEachLabel(therm_imds,therm_minSetCount,'randomize');

countEachLabel(aud_imds);
countEachLabel(rgb_imds);
countEachLabel(therm_imds);

aud_black_parrot=find(aud_imds.Labels == 'Swing_Parrot',1);
aud_quad_parrot=find(aud_imds.Labels == 'Quad_Parrrot',1);
aud_tello=find(aud_imds.Labels == 'Tello',1);

rgb_black_parrot=find(rgb_imds.Labels == 'Swing_Parrot',1);
rgb_quad_parrot=find(rgb_imds.Labels == 'Quad_Parrot',1);
rgb_tello=find(rgb_imds.Labels == 'Tello',1);

therm_black_parrot=find(therm_imds.Labels == 'Swing_Parrot',1);
therm_quad_parrot=find(therm_imds.Labels == 'Quad_Parrot',1);

114

therm_tello=find(therm_imds.Labels == 'Tello',1);

[aud_imdsTrain,aud_imdsValidation] = splitEachLabel(aud_imds,0.7);
[rgb_imdsTrain,rgb_imdsValidation] = splitEachLabel(rgb_imds,0.7);
[therm_imdsTrain,therm_imdsValidation] = splitEachLabel(therm_imds,0.7);
net = resnet50();
analyzeNetwork(net)

net.Layers(1)
inputSize = net.Layers(1).InputSize;

if isa(net,'SeriesNetwork')
 lgraph = layerGraph(net.Layers);
else
 lgraph = layerGraph(net);
end

[learnableLayer,classLayer] = findLayersToReplace(lgraph);
[learnableLayer,classLayer]

numClasses = numel(categories(aud_imdsTrain.Labels));
rgb_numClasses = numel(categories(rgb_imdsTrain.Labels));
therm_numClasses = numel(categories(therm_imdsTrain.Labels));

if isa(learnableLayer,'nnet.cnn.layer.FullyConnectedLayer')
 newLearnableLayer = fullyConnectedLayer(rgb_numClasses, ...
 'Name','new_fc', ...
 'WeightLearnRateFactor',10, ...
 'BiasLearnRateFactor',10);

elseif isa(learnableLayer,'nnet.cnn.layer.Convolution2DLayer')
 newLearnableLayer = convolution2dLayer(1,rgb_numClasses, ...
 'Name','new_conv', ...
 'WeightLearnRateFactor',10, ...
 'BiasLearnRateFactor',10);
end

lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);

newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer);

figure('Units','normalized','Position',[0.3 0.3 0.4 0.4]);
plot(lgraph)
ylim([0,10])

layers = lgraph.Layers;
connections = lgraph.Connections;

layers(1:10) = freezeWeights(layers(1:10));
lgraph = createLgraphUsingConnections(layers,connections);

pixelRange = [-30 30];
scaleRange = [0.9 1.1];
imageAugmenter = imageDataAugmenter(...
 'RandXReflection',true, ...
 'RandXTranslation',pixelRange, ...
 'RandYTranslation',pixelRange, ...
 'RandXScale',scaleRange, ...
 'RandYScale',scaleRange);

aud_augimdsTrain = augmentedImageDatastore(inputSize(1:2),aud_imdsTrain, ...

115

 'DataAugmentation',imageAugmenter);
aud_augimdsValidation = augmentedImageDatastore(inputSize(1:2),aud_imdsValidation);

rgb_augimdsTrain = augmentedImageDatastore(inputSize(1:2),rgb_imdsTrain, ...
 'DataAugmentation',imageAugmenter);
rgb_augimdsValidation = augmentedImageDatastore(inputSize(1:2),rgb_imdsValidation);

therm_augimdsTrain = augmentedImageDatastore(inputSize(1:2),therm_imdsTrain, ...
 'DataAugmentation',imageAugmenter);
therm_augimdsValidation =
augmentedImageDatastore(inputSize(1:2),therm_imdsValidation);

miniBatchSize = 10;
imageSize= net.Layers(1).InputSize;

%__________________ ACOUSTICS _______________________________
if category=="Acoustic"
 disp("Acoustic CNN Starting to Train")
 aud_valFrequency = floor(numel(aud_augimdsTrain.Files)/miniBatchSize);
 aud_options = trainingOptions('sgdm', ...
 'MiniBatchSize',miniBatchSize, ...
 'MaxEpochs',6, ...
 'InitialLearnRate',3e-4, ...
 'Shuffle','every-epoch', ...
 'ValidationData',aud_augimdsValidation, ...
 'ValidationFrequency',aud_valFrequency, ...
 'Verbose',false, ...
 'Plots','training-progress');

 aud_net = trainNetwork(aud_augimdsTrain,lgraph,aud_options);

 disp("Acoustics Convolutional Neural Network Trained");

 [aud_YPred,aud_probs] = classify(aud_net,aud_augimdsValidation);
 aud_accuracy = mean(aud_YPred == aud_imdsValidation.Labels);

 sprintf('Acoustic Confusion Matrix: ')
 aud_confMat = confusionmat(aud_imdsValidation.Labels, aud_YPred);
 aud_confMat_mod = bsxfun(@rdivide, aud_confMat,sum(aud_confMat,2));

 aud_idx = randperm(numel(aud_imdsValidation.Files),4);
 figure
 for i = 1:4
 subplot(2,2,i)
 aud_I = readimage(aud_imdsValidation,aud_idx(i));
 imshow(aud_I)
 aud_label = aud_YPred(aud_idx(i));
 title(string(aud_label) + ", " + num2str(100*max(aud_probs(aud_idx(i),:)),3) +
"%");
 end

disp("Beginning Testing Images");
aud_image_array={};
aud_image_array{1}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acousti
c12_04_2020_15_28_04_SParrot_V1.png';
aud_image_array{2}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acousti
c12_04_2020_15_37_59_SParrot_V1.png';
aud_image_array{3}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acousti
c12_04_2020_16_52_40_SParrot_V2.png';

116

aud_image_array{4}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acousti
c12_04_2020_16_55_22_SParrot_V2.png';
aud_image_array{5}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acousti
c25_04_2020_15_44_50_SParrot_V3.png';
aud_image_array{6}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acousti
c25_04_2020_16_13_02_SParrot_V3.png';
aud_image_array{7}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acousti
c25_04_2020_17_22_10_SParrot_V4.png';
aud_image_array{8}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acousti
c25_04_2020_17_23_59_SParrot_V4.png';
aud_image_array{9}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acousti
c27_05_2020_15_03_36_SParrot_V5.png';
aud_image_array{10}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic27_05_2020_15_21_48_SParrot_V5.png';
aud_image_array{11}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic12_04_2020_13_41_27_QParrot_V1.png';
aud_image_array{12}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic12_04_2020_14_50_46_QParrot_V1.png';
aud_image_array{13}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic12_04_2020_16_39_44_QParrot_V2.png';
aud_image_array{14}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic12_04_2020_16_41_23_QParrot_V2.png';
aud_image_array{15}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25_04_2020_15_56_23_QParrot_V3.png';
aud_image_array{16}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25_04_2020_16_01_10_QParrot_V3.png';
aud_image_array{17}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25_04_2020_17_37_07_QParrot_V4.png';
aud_image_array{18}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25_04_2020_17_40_31_QParrot_V4.png';
aud_image_array{19}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic03_05_2020_13_06_07_QParrot_V5.png';
aud_image_array{20}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic03_05_2020_13_16_40_QParrot_V5.png';
aud_image_array{21}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic12_04_2020_15_02_18_Tello_V1.png';
aud_image_array{22}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic12_04_2020_15_08_28_Tello_V1.png';
aud_image_array{23}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic12_04_2020_16_46_32_Tello_V2.png';
aud_image_array{24}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic12_04_2020_16_48_42_Tello_V2.png';
aud_image_array{25}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25_04_2020_14_33_48_Tello_V3.png';
aud_image_array{26}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25_04_2020_14_37_36_Tello_V3.png';
aud_image_array{27}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25_04_2020_16_37_46_Tello_V4.png';
aud_image_array{28}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25_04_2020_16_38_17_Tello_V4.png';
aud_image_array{29}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic27_05_2020_15_51_30_Tello_V5.png';
aud_image_array{30}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic27_05_2020_16_54_22_Tello_V5.png';

aud_valLabels={'Swing_Parrot'; 'Quad_Parrot';'Tello'};

i=1;
aud__Post_Pred={};
aud_Post_Val={'Swing_Parrot';'Swing_Parrot';'Swing_Parrot';'Swing_Parrot';'Swing_Parro
t';'Swing_Parrot';'Swing_Parrot';'Swing_Parrot';...

117

'Swing_Parrot';'Swing_Parrot';'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';
'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';...

'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';'Tello';'Tello';'Tello';'Tello';'Tello';'Tel
lo';'Tello';'Tello';'Tello';'Tello'};

while(i<31)
 aud_newImage=imread(aud_image_array{i});
 aud_ds = augmentedImageDatastore(inputSize, ...
 aud_newImage,'ColorPreprocessing','gray2rgb');
 [aud_YPred,aud_probs] = classify(aud_net,aud_ds);

 sprintf('The loaded acoustic image belongs to %s class', aud_YPred)

 if('Swing_Parrot'==aud_YPred)
 aud_Post_Pred{i,1}='Swing_Parrot';
 end

 if('Quad_Parrot'==aud_YPred)
 aud_Post_Pred{i,1}='Quad_Parrot';
 end

 if('Tello'==aud_YPred)
 aud_Post_Pred{i,1}='Tello';
 end

 i=i+1

end

aud_Test_confMat = confusionmat(aud_Post_Val, aud_Post_Pred);
aud_Test_confMat_mod = bsxfun(@rdivide,aud_Test_confMat,sum(aud_Test_confMat,2));

figure
aud_training_cm=confusionchart(aud_confMat,aud_valLabels);
aud_training_cm.ColumnSummary = 'column-normalized';
aud_training_cm.RowSummary = 'row-normalized';
aud_training_cm.Title = 'Fifth Machine Learning Process: Acoustic Confusion Matrix of
Training Validation';

figure
aud_post_training_cm=confusionchart(aud_Test_confMat,aud_valLabels);
aud_post_training_cm.ColumnSummary = 'column-normalized';
aud_post_training_cm.RowSummary = 'row-normalized';
aud_post_training_cm.Title = 'Fifth Machine Learning Process: Acoustic Confusion
Matrix of Post-Training Validation';

end
%___

%_____________________ RGB __________________________
if category == "RGB"
 disp("RGB CNN Starting to Train")
 rgb_valFrequency = floor(numel(rgb_augimdsTrain.Files)/miniBatchSize);
 rgb_options = trainingOptions('sgdm', ...
 'MiniBatchSize',miniBatchSize, ...
 'MaxEpochs',6, ...
 'InitialLearnRate',3e-4, ...
 'Shuffle','every-epoch', ...
 'ValidationData',rgb_augimdsValidation, ...
 'ValidationFrequency',rgb_valFrequency, ...

118

 'Verbose',false, ...
 'Plots','training-progress');

 rgb_net = trainNetwork(rgb_augimdsTrain,lgraph,rgb_options);

 disp("RGB Convolutional Neural Network Trained");

 [rgb_YPred,rgb_probs] = classify(rgb_net,rgb_augimdsValidation);
 rgb_accuracy = mean(rgb_YPred == rgb_imdsValidation.Labels);

 sprintf('RGB Confusion Matrix: ')
 rgb_confMat = confusionmat(rgb_imdsValidation.Labels, rgb_YPred);
 rgb_confMat_mod = bsxfun(@rdivide, rgb_confMat,sum(rgb_confMat,2));

 rgb_idx = randperm(numel(rgb_imdsValidation.Files),4);
 figure
 for i = 1:4
 subplot(2,2,i)
 rgb_I = readimage(rgb_imdsValidation,rgb_idx(i));
 imshow(rgb_I)
 rgb_label = rgb_YPred(rgb_idx(i));
 title(string(rgb_label) + ", " + num2str(100*max(rgb_probs(rgb_idx(i),:)),3) +
"%");
 end

disp("Beginning Testing Images");
rgb_image_array={};
rgb_image_array{1}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_2
020_15_28_05_SParrot_rgb_V1.jpeg';
rgb_image_array{2}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_2
020_15_28_20_SParrot_rgb_V1.jpeg';
rgb_image_array{3}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_2
020_16_52_39_SParrot_rgb_V2.jpeg';
rgb_image_array{4}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_2
020_16_55_24_SParrot_rgb_V2.jpeg';
rgb_image_array{5}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_2
020_14_45_24_SParrot_rgb_V3.jpeg';
rgb_image_array{6}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_2
020_15_47_38_SParrot_rgb_V3.jpeg';
rgb_image_array{7}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_2
020_17_21_57_SParrot_rgb_V4.jpeg';
rgb_image_array{8}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_2
020_17_23_56_SParrot_rgb_V4.jpeg';
rgb_image_array{9}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/27_05_2
020_15_02_48_SParrot_rgb_V5.jpeg';
rgb_image_array{10}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/27_05_
2020_15_22_51_SParrot_rgb_V5.jpeg';
rgb_image_array{11}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_
2020_13_28_37_QParrot_rgb_V1.jpeg';
rgb_image_array{12}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_
2020_13_41_28_QParrot_rgb_V1.jpeg';
rgb_image_array{13}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_
2020_16_41_06_QParrot_rgb_V2.jpeg';
rgb_image_array{14}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_
2020_16_41_23_QParrot_rgb_V2.jpeg';
rgb_image_array{15}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_
2020_15_53_24_QParrot_rgb_V3.jpeg';
rgb_image_array{16}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_
2020_16_02_03_QParrot_rgb_V3.jpeg';
rgb_image_array{17}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_
2020_17_36_54_QParrot_rgb_V4.jpeg';

119

rgb_image_array{18}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_
2020_17_38_40_QParrot_rgb_V4.jpeg';
rgb_image_array{19}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/03_05_
2020_13_02_39_QParrot_rgb_V5.jpeg';
rgb_image_array{20}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/03_05_
2020_13_06_16_QParrot_rgb_V5.jpeg';
rgb_image_array{21}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_
2020_15_02_37_Tello_rgb_V1.jpeg';
rgb_image_array{22}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_
2020_15_09_17_Tello_rgb_V1.jpeg';
rgb_image_array{23}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_
2020_16_46_43_Tello_rgb_V2.jpeg';
rgb_image_array{24}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04_
2020_16_48_42_Tello_rgb_V2.jpeg';
rgb_image_array{25}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_
2020_14_35_29_Tello_rgb_V3.jpeg';
rgb_image_array{26}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_
2020_14_38_01_Tello_rgb_V3.jpeg';
rgb_image_array{27}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_
2020_16_37_20_Tello_rgb_V4.jpeg';
rgb_image_array{28}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04_
2020_16_38_10_Tello_rgb_V4.jpeg';
rgb_image_array{29}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/27_05_
2020_15_35_20_Tello_rgb_V5.jpeg';
rgb_image_array{30}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/27_05_
2020_16_50_28_Tello_rgb_V5.jpeg';

rgb_valLabels={'Swing_Parrot'; 'Quad_Parrot'; 'Tello'};

i=1;
rgb_Post_Pred={};
rgb_Post_Val={'Swing_Parrot';'Swing_Parrot';'Swing_Parrot';'Swing_Parrot';'Swing_Parro
t';'Swing_Parrot';'Swing_Parrot';'Swing_Parrot';...

'Swing_Parrot';'Swing_Parrot';'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';
'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';...

'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';'Tello';'Tello';'Tello';'Tello';'Tello';'Tel
lo';'Tello';'Tello';'Tello';'Tello'};

while(i<31)
 rgb_newImage=imread(rgb_image_array{i});
 rgb_ds = augmentedImageDatastore(inputSize, ...
 rgb_newImage,'ColorPreprocessing','gray2rgb');
 [rgb_YPred,rgb_probs] = classify(rgb_net,rgb_ds);

 sprintf('The loaded rgb image belongs to %s class', rgb_YPred)
%
 if('Swing_Parrot'==rgb_YPred)
 rgb_Post_Pred{i,1}='Swing_Parrot';
 end

 if('Quad_Parrot'==rgb_YPred)
 rgb_Post_Pred{i,1}='Quad_Parrot';
 end

 if('Tello'==rgb_YPred)
 rgb_Post_Pred{i,1}='Tello';
 end

 i=i+1
end
rgb_Test_confMat = confusionmat(rgb_Post_Val, rgb_Post_Pred);

120

rgb_Test_confMat_mod = bsxfun(@rdivide, rgb_Test_confMat,sum(rgb_Test_confMat,2));

figure
rgb_training_cm=confusionchart(rgb_confMat,rgb_valLabels);
rgb_training_cm.ColumnSummary = 'column-normalized';
rgb_training_cm.RowSummary = 'row-normalized';
rgb_training_cm.Title = 'Fifth Machine Learning Process: RGB Confusion Matrix of
Training Validation';

figure
rgb_post_training_cm=confusionchart(rgb_Test_confMat,rgb_valLabels);
rgb_post_training_cm.ColumnSummary = 'column-normalized';
rgb_post_training_cm.RowSummary = 'row-normalized';
rgb_post_training_cm.Title = 'Fifth Machine Learning Process: RGB Confusion Matrix of
Post-Training Validation';
end
% %___

%_____________________ Thermal __________________________
if category == "Thermal"
 disp("Thermal CNN Starting to Train")
 therm_valFrequency = floor(numel(therm_augimdsTrain.Files)/miniBatchSize);
 therm_options = trainingOptions('sgdm', ...
 'MiniBatchSize',miniBatchSize, ...
 'MaxEpochs',6, ...
 'InitialLearnRate',3e-4, ...
 'Shuffle','every-epoch', ...
 'ValidationData',therm_augimdsValidation, ...
 'ValidationFrequency',therm_valFrequency, ...
 'Verbose',false, ...
 'Plots','training-progress');

 therm_net = trainNetwork(therm_augimdsTrain,lgraph,therm_options);

 disp("Thermal Convolutional Neural Network Trained");

 [therm_YPred,therm_probs] = classify(therm_net,therm_augimdsValidation);
 therm_accuracy = mean(therm_YPred == therm_imdsValidation.Labels);

 sprintf('Thermal Confusion Matrix: ')
 therm_confMat = confusionmat(therm_imdsValidation.Labels, therm_YPred);
 therm_confMat_mod = bsxfun(@rdivide, therm_confMat,sum(therm_confMat,2));

 therm_idx = randperm(numel(therm_imdsValidation.Files),4);
 figure
 for i = 1:4
 subplot(2,2,i)
 therm_I = readimage(therm_imdsValidation,therm_idx(i));
 imshow(therm_I)
 therm_label = therm_YPred(therm_idx(i));
 title(string(therm_label) + ", " +
num2str(100*max(therm_probs(therm_idx(i),:)),3) + "%");
 end

disp("Beginning Testing Images");
therm_image_array={};
therm_image_array{1}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04
_2020_15_28_06_SParrot_therm_V1.jpeg';
therm_image_array{2}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04
_2020_15_28_20_SParrot_therm_V1.jpeg';
therm_image_array{3}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04
_2020_16_52_39_SParrot_therm_V2.jpeg';

121

therm_image_array{4}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_04
_2020_16_55_24_SParrot_therm_V2.jpeg';
therm_image_array{5}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04
_2020_14_45_24_SParrot_therm_V3.jpeg';
therm_image_array{6}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04
_2020_15_47_38_SParrot_therm_V3.jpeg';
therm_image_array{7}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04
_2020_17_21_57_SParrot_therm_V4.jpeg';
therm_image_array{8}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_04
_2020_17_23_56_SParrot_therm_V4.jpeg';
therm_image_array{9}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/27_05
_2020_15_02_48_SParrot_therm_V5.jpeg';
therm_image_array{10}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/27_0
5_2020_15_22_51_SParrot_therm_V5.jpeg';
therm_image_array{11}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_0
4_2020_13_28_37_QParrot_therm_V1.jpeg';
therm_image_array{12}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_0
4_2020_13_41_28_QParrot_therm_V1.jpeg';
therm_image_array{13}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_0
4_2020_16_41_06_QParrot_therm_V2.jpeg';
therm_image_array{14}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_0
4_2020_16_41_23_QParrot_therm_V2.jpeg';
therm_image_array{15}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_0
4_2020_15_53_24_QParrot_therm_V3.jpeg';
therm_image_array{16}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_0
4_2020_16_02_03_QParrot_therm_V3.jpeg';
therm_image_array{17}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_0
4_2020_17_36_54_QParrot_therm_V4.jpeg';
therm_image_array{18}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_0
4_2020_17_38_40_QParrot_therm_V4.jpeg';
therm_image_array{19}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/03_0
5_2020_13_02_39_QParrot_therm_V5.jpeg';
therm_image_array{20}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/03_0
5_2020_13_06_16_QParrot_therm_V5.jpeg';
therm_image_array{21}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_0
4_2020_15_02_37_Tello_therm_V1.jpeg';
therm_image_array{22}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_0
4_2020_15_09_17_Tello_therm_V1.jpeg';
therm_image_array{23}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_0
4_2020_16_46_43_Tello_therm_V2.jpeg';
therm_image_array{24}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_0
4_2020_16_48_42_Tello_therm_V2.jpeg';
therm_image_array{25}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_0
4_2020_14_35_29_Tello_therm_V3.jpeg';
therm_image_array{26}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_0
4_2020_14_38_01_Tello_therm_V3.jpeg';
therm_image_array{27}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_0
4_2020_16_37_20_Tello_therm_V4.jpeg';
therm_image_array{28}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_0
4_2020_16_38_10_Tello_therm_V4.jpeg';
therm_image_array{29}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/27_0
5_2020_15_35_20_Tello_therm_V5.jpeg';
therm_image_array{30}='/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/27_0
5_2020_16_50_28_Tello_therm_V5.jpeg';

therm_valLabels={'Swing_Parrot'; 'Quad_Parrot'; 'Tello'};

i=1;
therm_Post_Pred={};
therm_Post_Val={'Swing_Parrot';'Swing_Parrot';'Swing_Parrot';'Swing_Parrot';'Swing_Par
rot';'Swing_Parrot';'Swing_Parrot';'Swing_Parrot';...

122

'Swing_Parrot';'Swing_Parrot';'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';
'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';...

'Quad_Parrot';'Quad_Parrot';'Quad_Parrot';'Tello';'Tello';'Tello';'Tello';'Tello';'Tel
lo';'Tello';'Tello';'Tello';'Tello'};

while(i<31)
%
 therm_newImage=imread(therm_image_array{i});
 therm_ds = augmentedImageDatastore(inputSize, ...
 therm_newImage,'ColorPreprocessing','gray2rgb');
 [therm_YPred,therm_probs] = classify(therm_net,therm_ds);

 sprintf('The loaded thermal image belongs to %s class', therm_YPred)

 if('Swing_Parrot'==therm_YPred)
 therm_Post_Pred{i,1}='Swing_Parrot';
 end

 if('Quad_Parrot'==therm_YPred)
 therm_Post_Pred{i,1}='Quad_Parrot';
 end

 if('Tello'==therm_YPred)
 therm_Post_Pred{i,1}='Tello';
 end

 i=i+1

end
therm_Test_confMat = confusionmat(therm_Post_Val, therm_Post_Pred);
therm_Test_confMat_mod =
bsxfun(@rdivide,therm_Test_confMat,sum(therm_Test_confMat,2));

figure
therm_training_cm=confusionchart(therm_confMat,therm_valLabels);
therm_training_cm.ColumnSummary = 'column-normalized';
therm_training_cm.RowSummary = 'row-normalized';
therm_training_cm.Title = 'Fifth Machine Learning Process: Thermal Confusion Matrix of
Training Validation';

figure
therm_post_training_cm=confusionchart(therm_Test_confMat,therm_valLabels);
therm_post_training_cm.ColumnSummary = 'column-normalized';
therm_post_training_cm.RowSummary = 'row-normalized';
therm_post_training_cm.Title ='Fifth Machine Learning Process: Thermal Confusion
Matrix of Post-Training Validation';

end

123

References

[1] Ortiz, Erik. “Newark Airport Drone Disruption Could Be Way of the

Future.” NBCNews, NBCUniversal News Group. 23 January 2019.

http://www.nbcnews.com/news/us-news/newark-airport-drone-disruption-could-be-

way-future-n961761 (accessed 1 July 2020).

[2] Kesteloo, Haye. “The Ghost Drone That Shut down Barajas Airport in

Madrid.” DroneDJ. 14 February 2020. https://dronedj.com/2020/02/14/the-ghost-

drone-that-shut-down-barajas-airport-in-madrid/ (accessed 1 July 2020).

[3] Swales, Vanessa. “Drones Used in Crime Fly Under the Law's Radar.” The New York

Times. 3 November 2019. https://www.nytimes.com/2019/11/03/us/drones-

crime.html (accessed 1 July 2020).

[4] Harsha, Keagan. “Centennial Man Accused of Using Drone to Be a 'Peeping

Tom'.” FOX31 Denver. 26 October 2019. https://kdvr.com/news/centennial-man-

accused-of-using-drone-to-be-a-peeping-tom/ (accessed 1 July 2020).

[5] Captain, Sean. “Drones Try to Smuggle over $300K in Drugs across US

Border.” DroneDJ. 5 May 2020. https://dronedj.com/2020/05/05/drones-try-to-

smuggle-over-300k-in-drugs-across-us-border/ (accessed 1 July 2020).

[6] Kesteloo, Haye. “Two New Jersey Men Smuggled Drugs and Phones into Prison with

Drones.” DroneDJ. 16 March 2020. https://dronedj.com/2020/03/16/two-new-jersey-

men-smuggled-drugs-and-cell-phones-into-prison-with-drones/ (accessed 1 July

2020).

[7] “View All Products.” DroneShield. 2020. http://www.droneshield.com/view-all-

products (accessed 2 July 2020).

124

[8] “Drone Detection & Defense Systems.” DeTect, Inc. https://detect-inc.com/drone-

detection-defense-systems/ (accessed 25 June 2020)

[9] “ELP USB 3.0 2MP Sony IMX291 50fps High Speed Camera Module USB 3.0

Industrial with No Distortion Lens for Video Conference.” ELP USB Webcam.

http://www.webcamerausb.com/elp-usb-30-2mp-sony-imx291-50fps-high-speed-

camera-module-usb-30-industrial-with-no-distortion-lens-for-video-conference-p-

249.html (accessed 25 September 2019).

[10] “FLIR LEPTON 3 & 3.5.” FLIR. 17 May 2018. https://www.flir.com/globalassets/

imported-assets/document/lepton-3-3.5-datasheet.pdf (accessed 25 September 2019).

[11] “UMA-16 USB mic array.” miniDSP. 2019. https://www.minidsp.com/products/usb-

audio-interface/uma-16-microphone-array (accessed 25 September 2019).

[12] “Garmin LIDAR-Lite v3HP: Distant Measurement Sensor.” Garmin.

https://buy.garmin.com/en-US/US/p/578152 (accessed 25 September 2019).

[13] K. He, X. Zhang, S. Ren, and J. Sun. "Deep Residual Learning for Image

Recognition.”2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). Las Vegas, NV. 2016. pp. 770-778. doi: 10.1109/CVPR.2016.90 (accessed

15 February 2020).

[14] “resnet50.” ResNet-50 Convolutional Neural Network - MATLAB, The MathWorks,

Inc. http://www.mathworks.com/help/deeplearning/ref/resnet50.html#:~:text=

ResNet%2D50%20is%20a%20convolutional,%2C%20pencil%2C%20and%20many

%20animals (accessed 15 February 2020).

125

[15] M. Ezuma, F. Erden, C. Kumar Anjinappa, O. Ozdemir, and I. Guvenc. "Detection

and Classification of UAVs Using RF Fingerprints in the Presence of Wi-Fi and

Bluetooth Interference." IEEE Open Journal of the Communications Society. vol. 1,

pp. 60-76. 2020. doi: 10.1109/OJCOMS.2019.2955889 (accessed 3 August 2020).

[16] Ozturk, Ender, Fatih Erden, and Ismail Guvenc. “RF-Based Low-SNR Classification

of UAVs Using Convolutional Neural Networks.” ResearchGate. 2020 (accessed 28

August 2020).

[17] Nguyen, Phuc, Mahesh Ravindranatha, Anh Nguyen, Richard Han, and Tam Vu.

“Investigating Cost-effective RF-based Detection of Drones.” ResearchGate. 2020.

doi: 17-22. 10.1145/2935620.2935632 (accessed 15 July 2020).

[18] Chen, V.C., Fayin Li, S. S. Ho, and Harry Wechsler. “Micro-Doppler Effect in Radar:

Phenomenon, Model, and Simulation Study.” IEEE Transactions on Aerospace and

Electronic Systems. 2006. doi: 10.1109/TAES.2006.1603402 (accessed 2 August

2020).

[19] Li, Chenchen and Hao Ling. “An Investigation on the Radar Signatures of Small

Consumer Drones.” IEEE Antennas and Wireless Propagation Letters. vol. 16. pp.

649-652. 2017. doi: 10.1109/LAWP.2016.2594766 (accessed 2 August 2020).

[20] Rahman, Samiur, and Duncan Robertson. “Radar micro-Doppler signatures of drones

and birds at K-band and W-band.” Scientific Reports. vol. 8. 26 November 2018. doi:

10.1038/s41598-018-35880-9. https://doi.org/10.1038/s41598-018-35880-9 (accessed

3 August 2020).

126

[21] Unlu, Eren, Emmanuel Zenou, Nicolas Riviere, and Paul-Edouard Dupuoy. “Deep

learning-based strategies for the detection and tracking of drones using several

cameras.” IPSJ Transactions on Computer Vision and Applications. vol. 11. 24 July

2019. doi: 10.1186/s41074-019-0059-x (accessed 10 June 2020).

[22] Liu, Hao, Fangchao Qu, Yingjin Liu, Wei Zhao, and Yitong Chen. “A drone

detection with aircraft classification based on a camera array.” IOP Conference

Series: Materials Science and Engineering. vol. 322. sp. 052005. 2018. doi:

10.1088/1757-899X/322/5/052005 (accessed 10 June 2020).

[23] Hengkang, Jin, and Yiwen Zhang. “Research on Feature Recognition of UAV

Acoustic Signal Based on SVM.” Journal of Physics: Conference Series. vol. 1302.

sp. 022037. 2019. doi: 10.1088/1742-6596/1302/2/022037 (accessed 10 June 2020).

[24] Bernardini, Andrea, Federica Mangiatordi, Emiliano Pallotti, and Licia Capodiferro.

“Drone detection by acoustic signature identification.” Electronic Imaging. vol.

2017. pp. 60-64. 2017. doi: 10.2352/ISSN.2470-1173.2017.10.IMAWM-168

(accessed 12 June 2020).

[25] Polyzos, Konstantinos D., and E. Dermatas. “Real-Time detection, classification and

DOA estimation of Unmanned Aerial Vehicle.” ResearchGate. 2019. (accessed 28

August 2020).

127

[26] Vemula, Hari. "Multiple Drone Detection and Acoustic Scene Classification with

Deep Learning." Electronic Thesis or Dissertation, Wright State University. 2018

(accessed 06 September 2020).

[27] Thompson, David John. "Maritime Object Detection, Tracking, and Classification

Using Lidar and Vision-Based Sensor Fusion." Dissertations and Theses, Scholarly

Commons. vol. 377. 2017. https://commons.erau.edu/edt/377 (accessed 7 July 2020).

[28] Kim, Byeong, Danish Khan, Cyril Bohak, Wonju Choi, Hyun Lee, and Min Kim. “V-

RBNN based small drone detection in augmented datasets for 3D LADAR system.”

Sensors, MDPI. vol. 18. sp. 3825. 8 November 2018. doi: 10.3390/s18113825

(accessed 3 June 2020).

[29] Hammer, Marcus, Martin Laurenzis, and Michael Arens. "Lidar-based detection and

tracking of small UAVs." SPIE. vol. 10799. 4 October 2018.

doi: 10.1117/12.2325702 (accessed 17 September 2020).

[30] Svanström, Fredrik. “Drone Detection and Classification Using Machine Learning

and Sensor Fusion.” DiVA. 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-

42141 (accessed 21 July 2020).

[31] “OPERATION MANUAL AND TECHNICAL SPECIFICATIONS.” LIDAR-LITE

V3HP, Garmin. http://static.garmin.com/pumac/LIDARLite_v3HP_Instructions_

EN.pdf (accessed 25 September 2019).

[32] “UMA-16 Microphone Array.” miniDSP. http://www.minidsp.com/images/

documents/Product%20Brief-UMA16.pdf (accessed 25 September 2019).

128

[33] Miller, Zachariah W. “Streaming Audio with Python.” Zachariah W Miller, PHD. 19

June 2017. http://zwmiller.com/projects/streamAudio.html (accessed 20 September

2019).

[34] Williams, Rohan. “Show Webcam Sequence TkInter.” Stackoverflow. 6 June 2013.

stackoverflow.com/questions/16366857/show-webcam-sequence-tkinter (accessed 10

September 2019).

[35] “Parrot Mambo Fly - Code, Pilot and Play.” Amazon.https://www.amazon.com/

Parrot-Mambo-Fly-Code-Pilot/dp/B074TGFML6?th=1 (accessed 1 December 2020).

[36] “Parrot Swing + Flypad.” Amazon. http://www.amazon.com/Parrot-PF727003-

SwingFlypad/dp/B01JYR44NS/ref=sr_1_4?dchild=1&keywords=parrot%2Bswing%

2Bdrone&qid=1597002227&s=electronics&sr=1-4&th=1 (accessed 1 December

2020).

[37] “Parrot Minidrone Swing with Flypad Controller.” BH #PAIPF727003 • MFR

#IPF727003, B & H Foto & Electronics Corp. http://www.bhphotovideo.com/c/

product/1274641REG/parrot_pf727003_minidrone_swing_with_flypad.html/specs

(accessed 1 December 2020).

[38] “TELLO SPECS.” Tello, RYZE. www.ryzerobotics.com/tello/specs (accessed 1

December 2020).

[39] Amini, Alexander, and Ava Soleimany. “Intro to Deep Learning.” 6.S191:

Introduction to Deep Learning. 2020. http://introtodeeplearning.com/ (accessed 15

May 2020).

129

[40] Amini, Alexander, and Ava Soleimany. “Deep Computer Vision.” 6.S191:

Introduction to Deep Learning. 2020. http://introtodeeplearning.com/ (accessed 17

May 2020).

[41] Chatterjee, Chandra Churh. “Basics of the Classic CNN.” Towards Data Science,

Medium. 31 July 2019. https://towardsdatascience.com/basics-of-the-classic-cnn-

a3dce1225add (accessed 28 July 2020).

[42] Hasan, Md, Mustafa Jamil, Golam Rabbani, and Md Saifur Rahman. “Speaker

Identification Using Mel Frequency Cepstral Coefficients.” Proceedings of the 3rd

International Conference on Electrical and Computer Engineering (ICECE 2004).

2004 (accessed 29 May 2020).

[43] Fayek, Haytham. “Speech Processing for Machine Learning: Filter Banks, Mel-

Frequency Cepstral Coefficients (MFCCs) and What's In-Between.” Haytham Fayek.

21 April 2016. https://haythamfayek.com/2016/04/21/speech-processing-for-

machine-learning.html (accessed 29 May 2020).

[44] Salomons, Etto, and Paul Havinga. “A Survey on the Feasibility of Sound

Classification on Wireless Sensor Nodes.” Sensors, MDPI. vol. 15. pp. 7462-7498. 27

Februrary 2015. doi: 10.3390/s150407462 (accessed 29 May 2020).

[45] Adams, Seth. “Plotting & Cleaning - Deep Learning for Audio Classification p.3.”

Youtube. 24 October 2018. https://www.youtube.com/watch?v=mUXkj1BKYk0&t=

605s (accessed 15 February 2020)

[46] “Train Deep Learning Network to Classify New Images.” MATLAB & Simulink, The

MathWorks, Inc. https://www.mathworks.com/help/deeplearning/ug/train-deep-

learning-network-to-classify-new-images.html (accessed 16 January 2020).

130

[47] L. Fei-Fei, R. Fergus, and P. Perona. “Learning generative visual models

from few training examples: an incremental Bayesian approach tested on

101 object categories.” IEEE. CVPR 2004, Workshop on Generative-Model

Based Vision. 2004 (accessed 28 February 2020).

[48] “Freesound General-Purpose Audio Tagging Challenge.” Kaggle. 2018.

www.kaggle.com/c/freesound-audio-tagging (accessed 28 February 2020).

	The Use of Low-Cost Sensors and a Convolutional Neural Network to Detect and Classify Mini-Drones
	Austin_Florio_Thesis_07Dec2020
	Austin_Florio_Thesis_signatures
	Austin_Florio_Thesis_07Dec2020

