University of New Haven

University of D|g|ta| Commons @ New Haven

New Haven

Master's Theses Student Works

8-2020

The Use of Low-Cost Sensors and a Convolutional Neural
Network to Detect and Classify Mini-Drones

Austin Florio

Follow this and additional works at: https://digitalcommons.newhaven.edu/masterstheses

b Part of the Mechanical Engineering Commons

https://digitalcommons.newhaven.edu/
https://digitalcommons.newhaven.edu/masterstheses
https://digitalcommons.newhaven.edu/studentworks
https://digitalcommons.newhaven.edu/masterstheses?utm_source=digitalcommons.newhaven.edu%2Fmasterstheses%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.newhaven.edu%2Fmasterstheses%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages

The University of New Haven

THE USE OF LOW-COST SENSORS AND A CONVOLUTIONAL NEURAL NETWORK

TO DETECT AND CLASSIFY MINI-DRONES

A THESIS

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

BY

Austin Florio

University of New Haven

West Haven, Connecticut

August 2020

THE USE OF LOW-COST SENSORS AND A CONVOLUTIONAL

NEURAL NETWORK TO DETECT AND CLASSIFY MINI-DRONES

APPROVED BY

£ o A

Eric A. Dieckman, Ph.D.
Committee Chair

A Lty

Cheryl Li., Ph.D.
Committee Member

%wééa» C;f»/mg

Gokhan Egilmez, Ph.D.
Committee Member

A Lty

Cheryl Li, Ph.D.
Program Coordinator

Ronald S. Harichandran, Ph.D., P.E., F.ASCE
Dean of the Tagliatela College of Engineering

Mario Thomas Gaboury, J.D., Ph.D
Interim Provost

Eric A Dieckman

ACKNOWLEDGEMENTS

I would like to acknowledge everyone who has helped with the completion of this thesis.

First, this research would not have been possible to complete without my advisor, Dr. Eric
Dieckman, for his guidance and continuous support throughout this project. His expertise was
invaluable, and he has imparted a depth of knowledge to me that I will carry with me throughout

my life and future career.

Secondly, I am indebted to Dr. Cheryl Li for providing me with a strong foundation in the
background knowledge of both mechatronics and programming throughout my mechatronics

concentration.

Thirdly, I am extremely thankful to my grandmother, Phyllis Cardullo, for proofreading and

recommending the grammar revisions that would have the best impact for the reader.

Lastly, I would like to thank my friends and family for their constant and loyal support.

Abstract

The increasing commercial availability of mini-drones and quadrotors has led to their
greater usage, highlighting the need for detection and classification systems to ensure safe
operation. Instances of drones causing serious complications since 2019 alone include shutting
down airports [1-2], spying on individuals [3-4], and smuggling drugs and prohibited items across
borders and into prisons [5-6]. Some regulatory measures have been taken, such as registration of
drones above a specific size and the establishment of no-fly zones in sensitive areas such as
airports, military bases, and national parks. While commercial systems exist to detect drones [7-
8], they are expensive, unreliable, and often rely on a single sensor. This thesis will explore the
practicality of using low-cost, Commercial-off-the-shelf (COTS) sensors and machine learning to

detect and classify drones.

A Red, Green, and Blue (RGB) USB camera [9], FLIR Lepton 3.0 thermal camera [10],
miniDSP UMA-16 acoustic microphone array [11], and a Garmin LIDAR [12] were mounted on
arobotic sensor platform and integrated using a Minisforum Z83-F with 4GB RAM and Intel Atom
x5-78350 CPU to collect data from drones operating in unstructured, outdoor, and real-world
environments. Approximately 1,000 unique measurements were taken from three mini-drones —
Parrot Swing, Parrot Quadcopter, and Tello Quadcopter — using the RGB, thermal, and acoustic
sensors. Deep Convolutional Neural Network (CNNs), based on Resnet-50 [13-14], trained to
classify the drones, achieved accuracies of 96.6% using the RGB images, 82.9% using the thermal

images, and 71.3% using the passive acoustic microphone array.

Table of Contents

Chapter 1. Existing Approaches to Detect and Classify Mini-Drones.............cccceveeveerenenieninenienenenene 1
Chapter 2. Building a Robotic Sensor PlatfOrm.............cccveriirienieiienieeiecieeie et 10
SEIISOTS ..ttt ettt ettt ettt et e s bt e s bt e e bt s bt s bt bt e at e e et e et e et e et e bt e bt e bt e bt e bt e sheesheesatesaeeeaee 10
Mobile SenSOT PLAtfOTIIo..eeuiiiiiieiee ettt sb e et 12
Sensors and GUI Programming OULINEcc.cociieiiiiiiiiiiie ettt ree e et sireeeveeesrae e 13
Chapter 3. Data CollECtION.ceiiiiiiieeciiieeieectee et et e et e e tteestbeeebeeestaeeeseessseeessesessseesssesasseeessseessses 16
DITOMES ...ttt et ettt et e bt et e e e bt e eh e e e bt e e ateeab e eat e eat e e te e bt e be e bt e bt enbeenaeas 16
CaAPLUIING DALeiiiiieeiie ettt et e et e e tbeestbeesbeeesaee e tbeessseassseeassaeeasseessseeassaeesssaessseesseenns 17
Variation and INOISEceoueruiruieiiiiet ettt ettt b ettt ee et e bt sh e et e s bt e st et e sbeeatebesbeeneebeebeeneenee 23
Potential Machine Learning [SSUEScccvvvvirriieriieiiieiieieesieesteseestesresreereenreenseesseesseessaessaesseesseesses 27
Chapter 4. Machine Learning APPLICALION..........ccvecvieriierierierienieseestestesreeseeseeseesseesseesseesseessaesseesseens 31
Neural Network Back@rOUNGc.cocuveiiiiiiieiieiieieeeie ettt st enseessessbeesbaessaesseensaenseas 31
Convolutional Operation BacK@roundcceeecuiiiiiiiiiiiiiie ettt eesereesbeesvee e 35
Convolutional Neural Network Backgroundccccviiiiiiiiiiiiiiiiie ettt svee e 38
Chapter 5. Machine Learning Implementationccueecuieeriierieesciieeiieesreesreeereeeseeeesveesereesveeeseneessneas 40
Machine Learning Mel Frequency Cepstrum Coefficients Backgroundccccoevvieviiiniiiienieenneenee. 40
Machine Learning Program TESHINEcceecciieeciiiiiiieiieecieeectee et e sreeeteeetee s veessveeeaaeesssaesnseeessaeenens 43
Machine Learning for Drone ClasSifiCation.............ccverieriieriierierienientesee e sre e ssesseeseeseesseeseessens 47
Modified Machine Learning Accuracy and LOSS.........cccveviierierienienienienie st see e sre e ere e eseeneees 71
Chapter 6. CONCIUSION.cccuieiieiieiiereestestesteeteeteeteeteeteasseesseesseesseesseesseesssesseesssesssesssesssessseessenssesssenns 73
PrOJECT OVETVIEW ...euviiiiieiieiiieeiteete et e st ettt et et este e te e te e teessaessaessaesssessseasseanseanseenseensaessaessaesssesssenssennss 73
PTOJECE RESULILS ...viieiiieciie ettt ettt e e et e et e e sab e e e sbaeestbeessbaesaseeessaeessseesssaeensseeseens 74
FULUIE WOTKS ...ttt h e st s et ettt et e e bt e be e beenbeenbeenaeas 76
FaN 0] 01S) 116 (oL RSP RRTRPS 77

Appendix A: Robot Detailed DIawWing.........coceevererieriiiinieiesieeeteesie ettt 77

Appendix B: Sensor Technical SpecifiCations...........ccecierierieriienienienie et eae e eie e sre e es 78
Appendix C: Machine Learning Process Evaluationcccccovcvevieriiniienciesiieieeieeieee e 81
Appendix D: Machine Learning ProCess 2cccuieviieiiieiiiieeiieeeieesieeesieeesiveesveesteeessveeseveesssesessneessnens 83
Appendix E: Machine Learning PrOCESS 4........ccoeeivieiiieiiiieeiieecieeeieeertee e sveeeieeeseneeseveesveeeeaeessaeas 89
Appendix F: Overall Time Performancesccocicuiiiiieiiiieiiie et esree e sveesreeeeaeeseneesnveas 95
Appendix G: Modified Machine Learning PrOCESSccccuieriieeiieiiiieiie ettt sree e e 96
Appendix H: Data Collecting PrOgrami.............cccoecvieviieiieeniieniiesieesienieseesee e snesaesressesseessaensaesseens 102
Appendix I: Data Transfer and Audio Processing Program...........c.ccoceveririenininienininenenceeee 110
Appendix J: Machine Learning Programi...........c.cccvecveeriieriienienieenienieniesee e seesvesvesseeseesseensaesseens 113
RETETEICES ...ttt et b ettt st a et e s bt e st e bt s bt et et e e bt enaenteebeeneens 123

List of Tables

Table 1: Results of Deep Learning-Based Strategies for Detection and Tracking of Drones Using Several

CAITIETAS ...ttt ettt ettt sttt s ettt ettt et et e e bt e bt e bt e beesbeesbeesa bt sat e s ate et e e bt et e bt enbeenbeesbeesaeenaee 4
Table 2: Results of Multiple Drone Detection and Acoustic Scene Classification with Deep Learning......7
Table 3: Overall Data COLIECTIONccuiiuirieriiitieiee ettt sttt sttt b e et sbeeseeee e 18
Table 4: Overall Machine Learning Process INPULS.........cccvieeiieiiiieeiiieciieciee sttt 48
Table 5: Overall Machine Learning Validation ACCUIACYccccveeeerieeiiieniieiieeeieeeireesveesveeeseeeseveesenes 50
Table 6: Acoustic Two-Classes VS Three-Classes.........cecuieuierieirienienienienie ettt 72
Table B-1: ELP USB 2.0 Webcam 2 Mega Pixels Specifications..........ccceeeveerieeecieeerieeniieciee e eseve e 78
Table B-2: FLIR Lepton 3.0 SPECIfiCAtIONS.cccvirierierierierteeieeteeieeteeteeseeseesseessaesseesssessnessnesssesnnes 78
Table B-3: UMA-16 MiniDSP SPECIfiCAtIONSceevvieriierierierieiiesieeieeieeie et eteeseesseeseeeseeessnessnesnnesnnes 79
Table B-4: LIDAR Lite v3 Performance SpecifiCations 1.........ccccvvvvirrieeriieriieniienienienienee e seeesne e 79
Table B-5: LIDAR Lite v3 Performance SpecifiCations 2.........c.ccccvvvvvevieerieerieenieesieneeseeseeseeseesnesneannes 80
Table C-1: First Input Set EValUationccc.ooiiiiiiiiiiie ettt eseva e s veeeseae e 81
Table C-2: Second Input Set EValUation...........cccviiiiiiiiiiiiiieeciie ettt sree et et e e e s veeeeveesebeesveeeseneenes 81
Table C-3: Third Input Set EValuation.............cccuiiiiiiiiiiiiieeie ettt eeaee v e e serae s 82
Table C-4: Fourth Input Set EValuation............cccviiiiiiiiiiiiiicie ettt e e s e s 82
Table C-5: Fifth Input Set EVAlUation.........cccvieiiiiiiiiiiie ettt e sve e s eereeesabeesaree e 82
Table F-1: Overall Time Performancescocovirirrieriiieeneeeesee ettt 95

List of Figures

Figure 1: Sensors DIQ@IAM......cccueiiiiiiiiiiiieeiieeeiteeiteenieesseessitessbeesbeessaeeesiseesabeessbaesssseesaseesnsaessssessseennns 11
Figure 2: RODOt’S LOWET SECHIOMc.veevieieiiirieieriisiiete sttt ese e e s s e e nesne s 13
Figure 3: Graphical User INtEITaCE.uivvcieiiriieiiiiiieeriee sttt ettt sibee s reae s sbe e sabe e sbaeenaaeesabeeenns 14
Figure 4: Parrot Swing, Parrot Quadcopter, Tello QUadCOPLer.........coverririererinieere e 17
Figure 5: Data Collecting SETUD......eveeierereerieiiie ettt s e e sr e e nne e 19
Figure 6: First Location Data SAmPIec.ceeciiiiiiiiieinieinniee ettt steeeste e s staeesbeesbaessieeesabeesnnesnes 20
Figure 7: Second Location Data Sample.........cccceveriirinieieiiiieiee e 21
Figure 8: Third Location Data SAmMPIEccecveiiiiiiiiiiiiiie ettt sre e sbeesbae s sne e s 21
Figure 9: Fourth Location Data Sample..........ccocevvueriiieieninieeneneresneeree e e e 22
Figure 10: Fifth Location Data SAmMPIe........cccueveiririiirieriieieseseeseese et e s s 23
Figure 11: Location 1 Car VATTIAtIONSccccueerevieriieerieesiieesiieesieesieesreeessseessseesssesssssessssessssessssesssssesssssesns 24
Figure 12: Location 1 People Walking Dog Variationcccceeereereeneneeieenineeseeseneesee e 24
Figure 13: Location 1 Temperature VAriationcceeereeeriueeriueersiesnieesieesieeesieeesseesssesessessssessssessssseenes 25
Figure 14: Location 2 Temperature VAriatiOoncceeereeeriueerieesseesnieesieesieeesieeessesssesessesenssessssessssseenes 25
Figure 15: Location 3 Bird VATIANCEc.ccevreeiiiriieierenieeieeiese ettt seeere e r e s s eseesne s s 26
Figure 16: Location 3 Thermal Time-lapSeccovcuvirviiirniiirniieeiiieeesieeesiieesieesiressireesieesbeessieessieeesaseeensesnns 26
Figure 17: Location 5 BiKeTcueoiiiriiiiriieiese ettt st e 27
Figure 18: Location 5 Camera DiStance [SSUEc.ccvreeveririeenenieecenieeecee e 28
Figure 19: Camera DIStance ISSUEc.ceveuierriieiiiiririeeenieesitesiteesieeesiteesitessitessabessbaesteessatessabessnseeenseeennns 29
Figure 20: Thermal ROOT ISSUEc.eouiruiiiiiiiciesiieeteeee ettt e 30
Figure 21: ROOT HEAt ISSUE 2uviiiiiiiieeiiieesiiee st siee ettt st site s stte e sabe e sate e s stae e sateesabaeenatesnabeesnbeeensaeenses 30
Figure 22: Perceptron DIagIaml......c.cccceiircieeiniiiriiiiiiiieesiteessieeesiteesreesteessuseessseessssessseesssseesasesssssessssessssessnns 32
Figure 23: Neural Network DIagrammccceevereiirieiiieceeneeeese st 33
Figure 24: PatCh DIagramccocceiiiiiiiieiiiiieiieenie ettt ste e ste e sste e s teesabeesabaesbaessabaesabaessbaessbaeesasaesnseesnses 36

Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:

Figure 49:

Triangle and Filter DIagramcccovciiiriiiriieeniiinieieieesieessiee st siveessitessbeestaesaeessabessveaenes 37
Feature Map......ccooiiiiiiiii i 38
Convolutional Neural NetWOTKccceovieiiiiiiiiiiieie et 39
Mel Frequency Cepstral CoeffiCient PrOCESScovvveeriiiiiiiiiniiieniee st sieesrieeeseeesieesieessneeens 40
Filterbank on @ MEI-SCaleooiiiiiiiiiiiiie ettt e 41
Filterbank Vs Mel Frequency Cepstral Coefficient.........coevvvervieiiniiiiniiieniie e e esieesiee s 42
Practice RGB Training and Validation OVer Timecoccevererieninienienieneeree e 44
Practice RGB Confusion MAatTiXcccceeieeriiiniienieeie et sttt st st ebe e b e eeee 45
Practice Acoustic Training and Validation Over Time.ccccceeevveenieiniiieenieenieenies e sieeens 46
Practice Acoustic CONfUSION MALTIX ..co.eirieriiriiiieeierieeiee et ettt sttt ete e sre e sae e saee e 47
RGB Machine Learning Process Up to the First Locationccccceeveeevnerinieiniieinnieeeiiee e 51
Thermal Machine Learning Process Up to the First Location.........cccccevveeeerveeinieiniiennienniiennnns 52
Acoustic Machine Learning Process Up to the First LOCationcccceverveeninieesenenieesenienenne 53
Process 1 RGB Training Confusion MatriX.cccceercveirrieeeniieennieennieesieesneeeseeesveesssessineenas 54
Process 1 Thermal Training Confusion MatriXceceererversienenieenineeeee e e s 54
Process 1 Acoustic Training Confusion MatTiXccccevereerererernieneeeeneneeese e ereseseeenee e 55
Process 1 RGB Post-Training Confusion MatriXccecuevrveeiieeinieeenieesiiesneeessesssseeeseeesneeens 55
Process 1 Thermal Post-Training Confusion MatriXcccccueevveerieeecieenieenieesreeeveeeseveesenens 56
Process 1 Acoustic Post-Training Confusion MatriXccceeeeeeerireniieeecieeenieesveesreeeveeeenas 56
RGB Machine Learning Process Up to the Third Locationcccccveeeereneniienencncienenenee. 58
Thermal Machine Learning Process Up to the Third Locationc.cecevereenencninncnenennee. 59
Acoustic Machine Learning Process Up to the Third Locationccceceeeeevininienencnnenenne. 60
Process 3 RGB Training Confusion MAatliXc.ceccvereerieerienienieneeseesseseessesseeseeseesseenses 61
Process 3 Thermal Training Confusion MatriXccveeeieeriiieeiieesieeriee e eseeeeseveesreeeeeeeenas 61
Process 3 Acoustic Training Confusion MAatriXccceeevieeiiierieeriieeecieereeeereesreeeveeeseveesenens 62

Vi

Figure 50: Process 3 RGB Post-Training Confusion MatriXcccccoerierireniienenieienenceiesie e 62

Figure 51: Process 3 Thermal Post-Training Confusion MatriX..........coceeeeerererienienenieneneeeeenceeeee e 63
Figure 52: Process 3 Acoustic Post-Training Confusion MatriXccevvveriiereenieneeneenresnennesnesneennes 63
Figure 53: RGB Machine Learning Process Up to the Fifth Location............ccccceeveiiiiciiieniiiniieciee e, 65
Figure 54: Thermal Machine Learning Process Up to the Fifth Locationcccocveveeieniineccininecneennene. 66
Figure 55: Acoustic Machine Learning Process Up to the Fifth Location.........ccocceeveeieviiiniieinieeinieennenn, 67
Figure 56: Process 5 RGB Training Confusion MatriXcceceeeeriereenineeneeneninee e seeenee e 68
Figure 57: Process 5 Thermal Training Confusion MatriXcccceeveereerineeneneneeseneseese e 68
Figure 58: Process 5 Acoustic Training Confusion MatriXcccecceercreeinieeniieenieesneesnieeseesssseeesresssseesas 69
Figure 59: Process 5 RGB Post-Training Confusion MatriX.cceceereerereeninenseeneneneeseesreeeesne e 69
Figure 60: Process 5 Thermal Post-Training Confusion MatriXcceccueerieeriveenirienniiesniieesieesssieeensveessveenns 70
Figure 61: Process 5 Acoustic Post-Training Confusion MatriXcc.ccceeriveeriveeriieeenieeenieeesiiessseessoreessneeens 70
A-1: Robot Design Detailed DIaWing........c.cceceeeerreeiierenineeneisreeesre st see s esee e s nesresneens 77
D-1: RGB Machine Learning Process Up to the Second Location.........cocceervieeinieernieeniieeinieeeneeesveesineenns 83
D-2: Thermal Machine Learning Process Up to the Second Locationc.cccceeeeerereecienieneceeneneeiieene 84
D-3: Acoustic Machine Learning Process Up to the Second Location..........ceceeeereeneenineeneenenincee e 85
D-4: Process 2 RGB Training Confusion MatliX.......ccerveeeriuieriuieriieeniieesiieesiieesieessieessseesssesssesssesessseenes 86
D-5: Process 2 Thermal Training Confusion MAatriXccoceeereererienieniinineene e 86
D-6: Process 2 Acoustic Training Confusion MatliX.......cceeceerreerrveeerreeersieenieessreenieesseeeseesssseesseeesneenas 87
D-7: Process 2 RGB Post-Training Confusion MatriXcceeecuuerniieenieesiieenieenieesseesseeesieessieesseessssesnns 87
D-8: Process 2 Thermal Post-Training Confusion MatriXccceeeeereereneeneenenieseeneneesee e 88
D-9: Process 2 Acoustic Post-Training Confusion MatriXccceereeeerriiiriienniierineesneeesieeseeesseeessvesssseenas 88
E-1: RGB Machine Learning Process Up to the Fourth LoCationcecveveeeeneneeneeninenieesenenee e 89
E-2: Thermal Machine Learning Process Up to the Fourth Location.cccevveeeriereeienenenicnc e 90
E-3: Acoustic Machine Learning Process Up to the Fourth Location.cccccceveieriveiinerineninieennee e 91

vii

E-4: Process 4 RGB Training Confusion MatriXcccceccveerireeriieerieeeneeesiseesiireesseesssesssseeessseessessssesssseenes 92
E-5: Process 4 Thermal Training Confusion MatriX........ccccevereererieieeniinieeeneseerere e 92
E-6: Process 4 Acoustic Training Confusion MaLIIXcccceeveerrieersiernieeniriennieeenreessieesseeeseeesseesssesssseesns 93
E-7: Process 4 RGB Post-Training Confusion MatliXc.cceercveerreeerrieesnieennireenressneeeseeeseeesssessseeesseeses 93
E-8: Process 4 Thermal Post-Training Confusion MatriX..........cceceroeereerrineeneneneeseneseesesresreeee e 94
E-9: Process 4 Acoustic Post-Training Confusion MatriXccceeceueerieernerenieenieenneeenieeeseeessseessresssseenas 94
G-1: Modified ACOUSHIC PIOCESS 3viiuiiiiiiiiiie ettt ettt ettt sae e bbbt e st e satesabeeaes 96
G-2: MOdified ACOUSHIC PIOCESS 4eoiuiiiiiiiieie ettt ettt ettt e et sbee bt sbe e st e s tesbeeaes 97
G-3: Modified ACOUSHIC PIOCESS 5eeiueiiiiiiiiieiiieieet ettt sttt ettt st s st e 98
G-4: Modified Process 3 Acoustic Training Confusion MatTiX.cccceeeereererieereinenseereseneenee e e 99
G-5: Modified Process 3 Acoustic Post-Training Confusion MatriX........cccevveeerueenseeriieenieeneeesineessveenens 99
G-6: Modified Process 4 Acoustic Training Confusion MatriX.cccocveervverniierriieeniieeenineenieesseeeseeesnens 100
G-7: Modified Process 4 Acoustic Post-Training Confusion MatriX.........ceeeeeveerereeneenenieeseeneseesenseenees 100
G-8: Modified Process 5 Acoustic Training Confusion MatliX.ccceeveerveeriiesniieenieeenineenreenseeeseeesnens 101
G-9: Modified Process 5 Acoustic Post-Training Confusion MatriX.........ceeeeeveeereenenenieeseeseseeneneenees 101

viii

Chapter 1. Existing Approaches to Detect and Classify Mini-Drones

The increasing availability of low-cost, easy-to-fly drones and quadcopters have led to their
use in criminal activities including disrupting air travel, spying on neighbors, and smuggling drugs
and contraband. In 2019, a drone was spotted in the airspace of Newark airport, causing the
temporary suspension of all flights and leaving dozens of aircraft circling the airport [1]. Serious
invasions of privacy include instances of voyeurism that can happen to anyone who is not aware
that drones are in the area [4]. Drones were intercepted attempting to smuggle $306,000 worth of
drugs across the United States’ border from Mexico [5] and illicit materials into the Fort Dix prison

over at least seven separate incidents [6].

There is a clear need to prevent such incidents from occurring. Drone detection and
classification applications have been gaining in popularity over the years, and a number of systems
have been developed to detect and classify drones. These include systems based on passive
monitoring of Radio Frequency (RF) communications, active radar, optical sensors in the visible

and infrared spectrum, passive and active acoustic sensors, and active LiDAR.

Passive radio frequency-based detection of drones has successfully been proven both cost-
effective and feasible throughout the years. One example this research involved detecting and
classifying Unmanned Aerial Vehicles (UAVs) using a multistage detector system to distinguish
the signals from the UAV controller from both background noise and interference signals. The
first stage of this research has a Markov models-based naive Bayes decision mechanism to detect
any RF signals that obtained a detection accuracy of 99.8% with a false alarm of 2.8%. The second
stage detects whether there are any signals from WI-FI and Bluetooth emitters through the

bandwidth and modulation features of the acquired RF signal. Once the UAV controller signal is

detected, the signal’s three most significant features are determined through the neighborhood
component analysis and is then inputted into five different machine learning techniques, obtaining
a classification accuracy of 98.13% through the k-nearest neighborhood classifier [15]. Another
research involves RF-based low-signal-to-noise UAV classification using convolutional neural
networks. This research uses fifteen off-the-shelf drone RF signals to obtain RF time-series images
and spectrograms for the training of the convolutional neural network. The spectrogram drastically
outperformed the time-series images when the Signal to Noise Ratio (SNR) was reduce. The
overall classification accuracy of the spectrogram-based CNN varied from 92% to 100% for a
signal-to-noise ratio range of -10 dB to 30 dB [16]. An example of another research using cost-
effective RF-based detection of drones includes exploring the areas of active tracking and passive
listening. These approaches were validated and could observe that the drone’s propellers emitted
frequency of less than 100 Hz. [17]. Unfortunately, this radio frequency-based detection relies
heavily on communication between the drone and operator, which would not be required for future

drones in implementing artificial intelligence (AI) systems.

The standard active radar system has difficulty detecting and classifying mini-drones due
to the drones’ small radar cross section and resemblance to birds, which are of similar physical
size flying at equivalent altitude and speed. However, recent studies have shown positive results
incorporating micro-Doppler effects, which are frequency modulations on the return signal caused
by the target’s mechanical vibration or rotation [18]. The components on a small consumer drone
that are non-plastic, such as the battery, motors, and camera, have a significant return in radar
signature compared to the plastic materials, such as propellers [19]. A further study collected data
on different birds and drones using K-band and W-bands, and by incorporating the micro-Doppler

effect, the study showed a significant difference between their signatures [20].

Another type of approach is to use optical sensor that are usually incorporated with a
machine learning technique. One research integrated a static wide-angle camera and a lower-
angle camera mounted on a rotating turret with YOLOV3 architecture to autonomously detect
and track drones. The overall system has the static wide-angle camera mounted on a stationary
platform that is able to adjust the angle depending on the demand, a narrow-angle camera, with
zoom capability, mounted on a rotating turret, and the connected to the main computational
device through ethernet with the YOLO architecture. These cameras are the same model RGB
high performance industrial cameras, except for the professional zooming capability on the
narrow-angled camera. The static wide-angle camera’s output frame was overlaid with the
zoomed camera’s output frame to use memory and time efficiently. This system was compared
with the two conventional object detection approaches: the Haar classifier with Adaboost
algorithm, and the Gaussian mixture model background subtraction algorithm. These object
detection approaches were used on 20 videos containing 800 frames of complex background and
containing various objects such as different birds and planes. The results showed that the YOLO
system had a 91% true positive, which is 7% lower than the highest detection approach, and this
model had no false alarms, unlike the other approaches [21]. The results of this experiment can

be seen in Table 1.

Table 1: Results of Deep Learning-Based Strategies for Detection and Tracking of Drones Using Several Cameras. The
results of the RGB camera system involving the static camera and rotating zoom camera are shown below with the different types

object detection techniques.

True Positive False Alarm
Lightweight YOLO 0.91 0
Cascaded Haar 0.95 0.42
Gaussian Mixture Model Back. Sub. 0.98 0.31

A different optical research integrates thirty HD cameras and thirty microphones into an
array to detect and classify aircrafts using YOLO and CNN. The dataset includes multiple fixed-
wing aircrafts, helicopters, and consumer drones. The fixed-wing aircrafts, helicopters, and some
of the images of the drones were from the FGVC-aircraft dataset, while the drone dataset is also
extracted from the captured camera array. The test images included 300 drone images, 100
helicopter images, and 100 fixed-wing aircrafts. The classification results show that the
“Aeroplane” class obtained a 96.03% accuracy, the “Helicopter” class received a 90.47%
accuracy, and the “Drone” class obtained a 52.13% accuracy. The reasoning for the low
percentage in drone accuracy is due to the complexity of the backgrounds and the need for more

images to be collected [22].

A very popular use of drone classification methods is the use of acoustic sensors. One
research incorporated acoustic sensors to be used alongside feature extraction and Support
Vector Machines (SVMs) to classify UAVs at distances of up to 50 m. based on vehicle noise
[23]. A similar project using feature extraction in both the time and frequency domains to deal

with noisy environments resulted in classification accuracy above 96% [24]. Another drone

detection research explored incorporating low-cost hardware components, comprised of two
different arrays of three or six microphones, to identify and classify drones using nearest
neighbor rule. These arrays consist of low-cost omnidirectional miniature microphones, the
processor STM32F405RG, and the drones that are included in the project are the Quadcopter DJI
P3, Quadcopter CX 10, and the Sennheiser MKH 8040. Advanced array processing methods are
utilized to obtain the normalized Power Spectral Density that is unique to each of the drones. The
nearest neighbor rule estimates the closest similarity to each drone using the normalized
spectrum over the frequency and time and the library data stored on the flash memory of the
microcontroller. The use of this detection and classification system “has yet to fail” in a noise
free environment for the preliminary experiments; however, this system still needs to be tested in

realistic environments [25].

A very well detailed acoustic research that is relatable to this thesis is the creation of an
audio pattern recognition system capable of detecting the number of DJI phantoms on scene with
Convolutional Neural Networks. The equipment involved in the experiment are the two DJI
phantoms standard 3’s and the Sony ECM-DS70p-portable stereo. With the Sony EXM-DS70p,
the audio samples collected were used to create the raw spectrograms, log-Mel-spectrograms,
harmonic-percussive source separation and raw audio waveforms. Using both custom and
augmented datasets, the experiments performed are: PCA and TSNE visualization of the
SMILE98S features, Random Forest Algorithm applied to the SMILE988 features, Deep Neural
Network with SMILE988 features, Deep Neural Network with SMILE988 reduced features,
Convolutional Neural Network with 3-channel spectrograms, and Convolutional Neural Network
with 2-channel Spectrograms with Harmonic and Percussive content into individual channels. An

additional two experiments are included in the custom collected dataset, which are:

Convolutional Neural Network with Raw audio waveforms, and Generative Adversarial
Networks for Data Augmentation. The convolutional neural network’s average accuracy
performed better with the augmented dataset over the custom collected dataset, as shown in
Table 2. The main difference between this acoustic research and this thesis is that the acoustic
research used multiple methods to classify audio samples to the classes: one drone, two drones,
or background noise; while this thesis explores the classification of each individual drone in

different settings [26].

Table 2: Results of Multiple Drone Detection and Acoustic Scene Classification with Deep Learning. The acoustic
research performed different experiments using custom and augmented datasets. The table shows the average classification

percentage obtained for the dataset and experiment.

Custom Augmented
Average Classification Accuracy (%)

Dataset Dataset

Random Forest Algorithm with SMILE988 Features 73.3 63.3
DNN with SMILE988 Features 84.2 76
DNN with SMILE200 Features 91.3 69

CNN Raw Spectrograms 66.3 90.3
CNN Log Spectrograms 57.3 91

CNN with Mel-Spectrograms with 128 Mels 68 73.6

CNN with Log-Mel Spectrograms with 40 Mels 72 85.6
CNN with Log-Mel Spectrograms with 60 Mels 73.3 87
CNN with Log-Mel Spectrograms with 80 Mels 66.3 87

CNN with Log-Mel Spectrograms with 128 Mels 72.7 85.3
CNN with Log-Mel Spectrograms with 200 Mels 73.7 87
Harmonic Percussive Source Separation 79 81

CNN with Raw Audio Files 70.6 N/A

Light Detection and Ranging (LiDAR) and Laser Detection and Ranging (LADAR)
sensors, one of the newest techniques to detect and classify drones, measures the distance between
the sensor and target by emitting a light and having it reflect off the surface back to the sensor.

One example of research conducted is the fusion of a 3D LiDAR sensor integrated with a pair of

cameras that is used for object detection and classification in maritime environments. The LIDAR
initiates the object detection and classification by obtaining the spatially distinct features, and then
the global LiDAR frame is converted to the camera frame, which allows the camera to extract the
color-based features in the region. Both the Support Vector Machine (SVM) and Multi-Variant
Gaussian (MVG) classifiers had amazing classification accuracies detecting objects, such as a
specific tower, dock, and different buoys [27]. A research was performed to develop a new 3D
LADAR to detect small drones up to 2 km. using the Variable Radially Bounded Nearest Neighbor
(V-RBNN) method. The V-RBNN was proven to be much more reliable when compared to the
conventional Radially Bounded Nearest Neighbor (RBNN) clustering method, which had
difficulty due to the variation of the drone’s shape and size at different distances. This experiment
was based only on augmented datasets and future work for this research would include adding data
for birds, as well as acquiring real sensor data [28]. Another research was performed to expand the
tracking, detection, and classification of low flying objects, such as mini-UAVs in real-time using
LiDAR. The UAV’s have typical movement patterns that can be analyzed, allowing a precise
prediction of the movement and UAV classification. Experimental data using the LiDAR was
collected in the field with several different mini UAVs, using four 360° LiDAR sensors mounted
to a car. This system allowed the car to be protected from the UAV threats withing the radius of

35 m. [29].

Combinations of sensors have also been studied to improve classification over a range of
environmental conditions. A very similar research to this thesis is the integration of the RGB
images, thermal images, acoustic data, and transmitters and receivers to detect, classify, and track
drones using convolutional neural networks. This research incorporated a FLIR Breach PTQ136

thermal sensor, Sony HDR-CX405 video camera, a Boya BY-MMI acoustic sensor, and a

NooElec Nano 2+ Software Defined Radio receiver and G-STAR IV BU-353S4 GPS receiver to
track active ADS-B transponders on airborne devices. Data collected from the Hubsan H107D+,
DJI Phantom 4 Pro, and DJI Flame Wheel F450 drones was evaluated using convolutional neural
networks to compare performance from sensor fusion to each individual sensor. The fused data
classified the drone correctly for 78% of the detection opportunities, with a more robust system.
The equipment cost in this research greatly exceeded the cost of equipment in this thesis, primarily

because the purpose of this thesis was to explore the performance of low-cost sensors [30].

Chapter 2. Building a Robotic Sensor Platform

Sensors

Using a variety of sensor types is necessary to create a robust system that can work in a
variety of environmental conditions. The sensors integrated into this project included optical (ELP
2.0-megapixel USB camera, $65), thermal (Lepton FLIR 3.0, $240), acoustic (miniDSP UMA-16
microphone array, $275), and LiDAR (LiDAR-Lite v3HP, $150) sensors, as shown in Figure 1.
Years ago, these sensors were extremely expensive, but affordable low-cost sensors are now easily
obtainable in the marketplace. The cost of whole drone detection systems cost thousands of dollars,
which prevents these systems from being widespread. The purpose of this project is to create a
system that gives comparable or reasonable performance at a much lower cost. By the end of this
project, the outcome will quantify the limitations of each sensor modality to steer future work in
optimization of sensors and machine learning processing to create a low-cost drone detection

system.

10

UMA-16 ~——

RGB
Camera

Thermal
Camera

LIDAR

Figure 1: Sensors Diagram. The diagram of the sensors, on the left, shows the UMA-16, RGB camera, thermal camera, and
LiDAR sensors. These sensors are attached to a pan and tilt mount that provides 180° to both the horizontal and vertical

direction. The right image shows the front profile of the robot with the sensors.

The ELP 2.0 megapixel USB camera provides a max resolution of 1920x1080 at 50 FPS,
with a 70° Field of View (FOV) [10]. The minimum illumination for this camera is 0.1 lux, with
signal to noise ratio of 40 dB and of 65 dB of dynamic range. The overall dimensions are 38 x 38

x 25mm and the camera requires 5 Vdc. Additional specifications are given in Table B-1.

The Lepton FLIR 3.0 is an enhanced infrared sensor with 160 x 120 active pixels and
thermal sensitivity of less than 50 mK [9]. The /1.1 lens provides a horizontal FOV of 57° and
diagonal FOV of 71°. The output allows 14-bit video over SPI, 8-bit with Automatic Gain Control
(AGC) applied, or 24-bit with AGC and colorization applied. This thermal sensor has a low
operating power of 140 mW (typ), 650 mW during shutter event, and SmW during standby. The

overall dimensions are 11.8 x 12.7 x 7.2 mm. Unfortunately, this model does not have the

11

radiometry temperature feature, which allows temperature scales in the thermal images. Additional

specifications are given in Table B-2.

The miniDSP UMA-16 is a sixteen-channel rectangular microphone array using Knowles
SPH1668LM4H MEMS capsule microphones laid out in a Uniform Rectangular Array (URA)
[11,32]. The acoustic array contains a nanoSharc kit that has a 400MHz SHARC ADSP21489
+500MHZ multicore CPU that provides significant processing power for high SNR PDM to PCM
conversions and multichannel low latency USB audio. This sensor has 24-bit resolution and a

sampling rate of up to 48kHz. Additional specifications are given in Table B-3.

Lastly, the LIDAR-Lite v3HP has a range of 5 cm to 40 m. with a resolution of +/- 1.0 cm
[12,31]. The typical accuracy is +/- 2.5 cm at distances greater than 2 m, and +/- 5 cm at distances
less than 2 m, indicating that this sensor performs better at distances greater than 2 m. The LiDAR
has a greater than 1 kHz update rate and an optical aperture of 12.5 mm. This sensor has a nominal
wavelength of 905 nm, 1.3 W peak laser power, beam diameter of 12x2 mm, and beam divergence
of 8 mRadian. The device communicates through Inter-Integrated Circuit (I2C) and Pulse Width
Modulation (PWM). The overall dimensions of the unit are 40.18 x 54.99 x 35 mm. Additional

specifications are given in Table B-4 - B-5.

Mobile Sensor Platform

The robot kit 1G42-SB4, a four-wheel differential-drive all-terrain robot platform, was
purchased from SuperDroid Robots. This kit included the aluminum chassis, motor plates, wheels,
motors, motor drivers, transmitter and receiver, 12V batteries, hardware kit, and a roll-cage that
was reimplemented as a sensor rack. The wheel motors, 10A regulated fuse, kill switch, and motor
driver were secured to the enclosed lower level of the robot, as can be seen in Figure 2, while the

12V batteries and sensor electronics are mounted in the middle section.

12

Figure 2: Robot’s Lower Section. The lower section is where the motor controller, fuse, kill switch, and motors are stored. This is

enclosed and prevents any of the components from potential damages.

The sensor rack was used to mount all the sensors, servo motors, and the monitor that
displaced the graphical user interface. Custom mounts were 3D printed to incorporate the sensors
as one unit attached to two servo motors (RobotGeek RGS-13) to give a 180° vertical and
horizontal view. A FlySki 16 receiver is used to drive the robot and control the pan-tilt sensor

mount.

Sensors and GUI Programming Outline

The data collection routines and Graphical User Interface (GUI) were built in Python and
Arduino, while the machine learning processing was performed offline using Matlab. Data
collection from the RGB video, thermal camera, and acoustic microphone array uses a Raspberry
Pi 3 B+, while the LIDAR sensor was programmed using an Arduino Mega 2560. Unfortunately,
the LiIDAR became unresponsive during testing, and no data was collected for analysis. This issue
was most likely due to the LIDAR’s hardware due to the LiDAR lack of response to the any of the

successfully programs that previously worked with the LiDAR.

13

The GUI was created in Python using Tkinter and showed streaming data from the RGB
video camera (as both RGB and HSV values), the thermal camera, and an acoustic waveform from
a single microphone channel (Figure 3) [33-34]. This streaming data could be recorded to disk in

timestamped files for offline analysis.

RGB Camera HSV Camera Thermal Picture

400 +

200

—200 +

~400 -

T T T T ¥ T
5000 10000 15000 20000 25000 30000

o

Figure 3: Graphical User Interface. The GUI shows the RGB camera produced the RGB and HSV images in the top left and top
middle section, the thermal camera was displayed in the top right, the acoustic signal displayed in the bottom right, and the

controls on the bottom lefft.

While the Raspberry Pi was able to handle the computational tasking from each sensor
individually, it was not up to task for data collection from the entire suite of sensors. Instead a
Minisforum Z83-F minicomputer with 4 GB RAM, Intel Atom Quad-Core CPU, and 64 GB
storage was configured to be dual boot between Windows 10 and Linux Mint and used to collect

all data.

14

However, the program then had to be compacted due to the time delay in the video stream
in order to obtain as much real-time data as possible. The issue was the length of time the acoustic
array required to process all the data points and plot on the GUI, preventing the other sensors from
performing. The primary solution to fix this issue was the creation of a multi-threading process

allowing the cameras and acoustic sensors to perform simultaneously.

While the GUI is unable to be considered real-time data, the program comes close to it.
Either a more powerful minicomputer or further optimization of the program would be required to

accomplish this fully. The data collection program can be seen in Appendix H.

15

Chapter 3. Data Collection

Drones

Three drones were obtained and used for the data collection process: the Parrot Quadcopter,
the Parrot Swing, and the Tello Quadcopter (Figure 4). The Parrot Quadcopter is formally known
as the Parrot Mambo Fly that has a 550 mAH. battery pack, ultrasonic vertical stabilization,
horizontal camera stabilization, a range of 100 m. with Parrot Flypad, and a 60 FPS. vertical
camera. The Parrot Mambo is 7.1 x 7.1 x in. with bumpers and weighs 2.22 oz [35]. The Parrot
Swing has a max speed of speed of 19 mph., a 60 FPS. vertical camera for speed measurement,
ultrasonic vertical stabilization, horizontal camera stabilization, a 550 mAh. battery, and a range
of 60 m. with the Parrot Flypad. The dimensions are 13 x 5 x 5 in. and a weight of 10.4 oz [36-
37]. The Tello Quadcopter has a max speed of 8 m/s. and connects to the Tello app on the iPhone
or android devices and requires Wi-Fi. The drone has built in functions that include: Range Finder,
Barometer, LED, Vision System, Wi-Fi, and 720p Live View. Also, the battery is 1.1 Ah., the

overall dimensions are 3.9 x 3.6 x 1.6 in.; and the weight is approximately 80 g [38].

16

~ —
2

Figure 4: Parrot Swing, Parrot Quadcopter, Tello Quadcopter. The Parrot Swing is in the back, the Parrot Quadcopter is in the

front right, and the Tello Quadcopter is in the front left.

Each of the drones was flown separately and at different angles to the sensors. The quadcopters
were relatively easy to fly but the Parrot Swing was more challenging, especially if there was any
wind causing the drones to leave the area of the sensors. All drones fly typically in the same
manner, with the propellers parallel to the ground, with the side dipping downward in a certain
direction allowing movement in that direction. The main reason these drones were included in the
project is that the Parrot Swing is different size and shape compared to the two mini-quadcopters,
which are very similar in size and appearance. However, the Parrot Swing is very similar in

appearance to the Parrot Quadcopter at certain flight angles.

Capturing Data

Approximately 1,000 measurements were recorded from each of the video camera,
thermal camera, and acoustic microphone array for each of the three drones (Table 3). Since

creation of a robust machine learning algorithm requires training on data from realistic real-

17

world environments, data was collected from five different scenes. These scenes were
determined by including different variations of areas in which drones could possibly appear,
using a street-based view to a sky-based view with variations in backgrounds. All data was
manually filtered to make sure the drone was visible in the RGB or thermal image (partially

occluded views were allowed).

Table 3: Overall Data Collection. The table shows the amount of the filtered data obtained from each sensor at the
different locations. The total amount of the filtered data of each sensor is located at the right side of the table. For instance, the
total amount of RGB images collected at Location 1 was 132 images, and the overall total amount of images collected was 992

images.

Location 1 Location2 Location3 Location4 Location5 Total

Parrot Quad. RGB 132 121 277 146 316 992
Parrot Swing RGB 60 70 523 65 456 1174
Tello Quad. RGB 155 119 299 80 403 1056
Parrot Quad. Thermal 128 120 250 154 328 980
Parrot Swing Thermal 56 61 439 62 495 1113
Tello Quad. Thermal 132 115 295 82 418 1042
Parrot Quad. Acoustic 112 122 232 131 160 757
Parrot Swing Acoustic 45 64 428 57 365 959
Tello Quad. Acoustic 138 116 227 66 313 860

The first data collection location was in the front yard angled towards the right side of a house
(Figure 5). The RGB camera had a good background view of the trees, the street, grass, and the

sky. Due to mounting and FOV differences, the thermal camera always shows a slightly smaller

18

portion of the image at a slightly different angle. Ideally, throughout the data collection people
were walking by or riding bikes, cars were driving by, and other realistic noise sources are captured
in the data set. A sample of the RGB and thermal image for the first location can be seen in Figure
6. The closer the drone came to the sensors, the less it could move due to its quickly disappearing

out of the picture frame quickly.

Figure 5: Data Collecting Setup. The general setup for the collecting process of the drones at the first location.

19

Figure 6: First Location Data Sample. These images represent the data from the sensors obtained from the first location with the
Parrot Quadcopter. The left image is the obtained RGB image and the right image is the collect thermal camera. The images

above are within the same second of each other.

The second data collection location was in the front yard with the sensors aimed towards
the sky (Figure 7). The RGB and thermal camera have shots of moving tree branches and clouds,
with relatively stationary trees and telephone wires in the background. Other background noise
variables included birds, cars driving by, people mowing lawns, or people talking. There was a
considerable amount of wind during this time that hindered the drones from being stable in front

of the sensor.

20

Figure 7: Second Location Data Sample. These are sample images that were obtained from the second location with the Parrot

Swing. The left image is the RGB image and the right is the thermal image within the same second of data collection.

The third data collection location was in the backyard, angled toward a wide-open sky
(Figure 8). There were plenty of clouds to have a moving background, with a few tree branches in
view. Other possible random noises were children playing, dogs barking, birds, and people doing

yard work.

Figure 8: Third Location Data Sample. These are sample images that were obtained from the third location with the Parrot
Swing. The left image is the RGB image and the right is the thermal image within the same second of data collection. This utilizes

the moving clouds for constant changing background more than the other locations.

21

For the fourth location, the robot’s sensors were in the direction that had the camera view
a majority of trees with the sky visible, allowing the clouds to roam the background (Figure 9).
The visible variations were ideally based around birds and clouds, while the acoustic noise was
ideally based on neighborhood sounds. Unfortunately, this was a windy day, and the Parrot Swing
collided with a tree, fracturing the propeller and grounding the drone. A replacement Parrot Swing
was used for the remaining measurements. This new model had a wing material that was softer
and more elastic, which made it noticeably more comfortable to control but likely caused

significant variation in the Parrot Swing dataset.

Figure 9: Fourth Location Data Sample. These are sample images that were obtained from the fourth location with the Tello
Quadcopter. The left image is the RGB image and the right is the thermal image within the same second of data collection. The

tree and moving clouds background provide decent variance for both sensors shown.

The fifth data collection location was the front yard with the camera lens incorporating a
house, the street, parked cars, plants, power lines, garbage bins, trees, plants, and the sky (Figure
10). There are many variations in this scenery with the noise variance of the neighborhood, cars,
people walking or riding bikes, and animals. This location allowed for the greatest distances of

fifty to ninety feet away from the sensors.

22

Figure 10: Fifth Location Data Sample. These are sample images that were obtained from the fifth location with the Parrot
Quadcopter. The left image is the RGB image and the right is the thermal image within the same second of data collection. The
inclusion of the hot roof of the house and cars were to help determine thermal sensor capabilities, with the temperature reaching

to 89° F that day.

Variation and Noise

Variations and noises are critical for the machine learning process to learn and prevent
overfitting. Real data is not perfect, and in the case of detecting the drone, the drone does not
contain only a sky background. There are also people, cars, animals, and much more that will be
in a real application of the machine learning process. With no variation, the prediction of a drone

with a lamp post may cause severe problems with the prediction method.

For the first location, one of the main visual variations were cars and people walking their
dogs. For acoustic, there were cars driving by, people walking, construction on a house across the
street and two houses to the left, as well as other neighborhood sounds were occurring. For the
thermal images, the drone was flown into different conditions, such as the hot and cold regions of
the visual sensor. A few examples of these variations and noises can be seen in the following

figures, Figures 11 - 13.

23

Figure 11: Location 1 Car Variations. Data collection of the Parrot Quadcopter, top center of both images, with a vehicle
driving in the background. This type of variation is common for visual and noise variance with all drones and throughout all

locations.

Figure 12: Location 1 People Walking Dog Variation. The data collection of the Tello Quadcopter, top center of both images,
with people walking dogs in the background at the first location. This is difficult to see on the thermal camera, but the heat

signatures moving are still visible and, as a result, help the machine learning process.

24

Figure 13: Location 1 Temperature Variation. The series of images are the Parrot Swing thermal variations in size and position
throughout the heatmap at first location. This type of variation is performed on all drones at all locations. However, there are

different heat intensities at each location.

For the second location, the variations and noises were very similar to the first: the
variations and related noise involved the drone flying in a different setting, the distance of the
drone, the wind blowing the trees, cars driving, neighborhood sounds, and flying the drone in hot
and cold regions of the thermal image. The top portion of the vehicles can be seen in the RGB
camera; however, the thermal camera was angled too high to include the vehicle in the thermal

images. A temperature variation of the second location can be seen in Figure 14.

Figure 14: Location 2 Temperature Variation. The series of images of the Tello Quadcopter were collected and show the thermal
variations in distance and position throughout the heatmap at the second location. The drone is very difficult to see the more heat

intense areas in the thermal images as the drone is flown further away from the sensors.

For the third location, the drone’s visible variations were the clouds moving in the
background, the tree branches swaying, birds flying, and the drone moving in all areas of thermal

intensity regions. The noise variance was neighborhood noise, which included cars, people talking,

25

and people mowing the lawn. In order to help show some of these variations and noise variance,
Figure 15 — Figure 16 are shown below. Figure 15 shows the sample at the given time with a bird
in the background. Figure 16 shows the time-lapse of the sky over 30 seconds with the Tello
Quadcopter on the top section with the calm sky, and the Parrot Swing on the bottom section with

the cloudy sky.

Figure 15: Location 3 Bird Variance. During the data collection of the Parrot Quadcopter the drone was able to fly with a bird
further behind the drone at the second location (a circle was inserted to help identify the bird). On the thermal camera, the drone

is hard to see due to the size, and the bird is not visible.

Figure 16: Location 3 Thermal Time-lapse. Tello Quadcopter and Parrot Swing thermal time-lapse over 30 seconds.

26

The fourth location’s variations and noise variance included the standard variations as
above with the drone in all thermal regions and neighborhood noises. Uniquely, the fifth location
captured a significant number of vehicles passing by compared to the previous locations, a person
on a bike, a new Parrot Swing, as well as having the drone go much farther than the previous data
collection processes. Also, the neighborhood noise variance was still accounted for in this process.
A person can be seen riding the bike on a hot day next to the Parrot Quadcopter in Figure 17. The
roofs of the houses are so hot that the thermal images are much harder to see compared to the other

location's thermal images.

_—

Figure 17: Location 5 Biker. Parrot Quadcopter next to a person on a bike at fifth location.

Potential Machine Learning Issues

When the data was being filtered, a few potential issues in the machine learning process
were likely to happen. The first issue was the drone’s distance from the camera. The drones were
in the frame of the camera beyond 50 ft., and they were hard to distinguish from the background
with human eyes. For instance, Figure 18 shows the Parrot Quadcopter in the middle of the road,
and the drone is small and blurry. The distance from the sensors to the opposite end of the street

was approximately 50 ft., and the distance from the sensors to the fence was approximately 90 ft.

27

In Figure 19, the two other drones were having the same issue without the fence, the Tello
Quadcopter on the top section and the Parrot Swing on the bottom section. The drones never went
past the fence, and for the majority of the time were around the lamp post to respect the neighbor’s
property. When the quadcopters were across the street, the trees made it extremely difficult to
detect the drone with the human eye. The white Parrot Swing had similar issue, with the features
becoming difficult to distinguish at the same distance, especially if the drone was in front of the

white house.

Figure 18: Location 5 Camera Distance Issue. The quadcopter has landed in the middle of the road.

28

Figure 19: Camera Distance Issue. Tello Quadcopter and Parrot Swing near lamp post. However, the RGB camera is difficult to

see and the thermal camera does not appear to detect the drones.

The second potential issue is the reliability of the thermal images when exposed to an
intense area of heat, such as the roof of the house. This issue makes detecting the drones with the
human eye incredibly hard. A Parrot Swing was flown directly in front of the sensor while
maintaining the roof of the house in the image, and the drone was still hard to visualize, as shown
in Figure 20. In the midrange, the drones were still having the same issue; even the cars were hard

to distinguish, as shown in Figure 21 with the Tello Quadcopter on the top section and the Parrot

29

Swing on the bottom section. The roof of the house is expected to significantly skew the data of

the machine learning process due to its being too hot.

Figure 20: Thermal Roof Issue. The Parrot Swing is close to sensors with extreme thermal intensity background, and it is difficult

to see defined features of the drone.

Figure 21: Roof Heat Issue 2. Tello Quadcopter and Parrot Swing with vehicles in extreme thermal intensity background. The

drones and vehicle are difficult to detect in the images.

30

Chapter 4. Machine Learning Application

Neural Network Background

Artificial intelligence — creating computers which demonstrate human behavior — can be
thought of as a level above machine learning, which is enabling computers to automatically detect
patterns in data and use these “learned” patterns to predict the outcome when given new data
without explicitly being programmed. One of the main types of machine learning is the predictive
or supervised approach. This approach involves training a system with training sets along with the
known outputs. Another main type of machine learning is the descriptive or unsupervised learning
approach. This approach involves providing the machine learning algorithm with only inputs and

to try to find the patterns in the data.

Traditionally, machine learning algorithms tried to define a set of rules by hand-
engineered, but easily explainable, data features, leading to a time-consuming, brittle process that
is not scalable in practice. More current deep learning techniques use algorithms inspired by the
human brain, such as neural networks, to extract patterns from a set of data'. The tradeoff is a
limited view into what the computer is “learning”, which require large, varied datasets to create

robust models.

The goal of a deep learning network is to turn input x into output y in a manner that can be
altered to achieve the anticipated results (this is the “training” process). Once the system is trained,

this learned set of “weights” allows the correct prediction of output given a new input value. Neural

1 This background of this chapter is borrowed from Alexander Amini and Ava Soleimany MIT
6.S191: Introduction to Deep Learning, which presented a clear and concise explanation and
simplification of the definition of the convolutional network down to the perceptron.

31

networks accomplish this by combining multiple single neurons, called perceptrons (Figure 22),

each of which create output y given input x as

y = g(Xit1 xiw; + bias), (1
Where w are the corresponding weights that are altered in the training process. The nonlinear
activation function g increases system accuracy by adding in real-world nonlinearities. Commonly

used activation functions are the sigmoid, hyperbolic tangent, and rectified linear unit functions.

L — Non-linear
Inputs Weights Function Acln-'a!lon Qutput
Function

Figure 22: Perceptron Diagram. The figure shows the summation of the inputs, x, being multiplied by the weights, w, with the

bias applied, and going through a nonlinear activation function, g, to produce the output, y.
A neural network is created by combining perceptrons, the inputs, and weights, and

collapsing them into separate vectors X and W, and then the output is defined as

y = g(XTW + bias). ()
When another perceptron is added, it connects to the previous layer with a difference in the

weights. These layers are often referred to as dense layers due to all the inputs being densely

32

connected to all of the outputs. The previous figure is then expanded to a single layer neural

network shown in Figure 23.

Forward Propagation

[
L

Input Layer Hidden Layer Output Layer

A

Backward Propagation

Figure 23: Neural Network Diagram. This shows multiple inputs, perceptrons, and outputs layers in the network.

The hidden layer’s output can be determined by

m
z; = z xiwi(Jl.) + bias™ (3)

i=1

and the output layer can be determined by

v, = g(flzlxl-wi(j) + bias(z)). 4)

The reason the center is called a hidden layer is that these layers are not directly enforced or

observable, unlike the input and output layers, which means that the hidden layer is learned and

33

can be probed to determine what is going on inside the network. The variables w and w2
represent the weights corresponding to the first or second layer. In order to make the neural
network a deep neural network, more hidden layers are incorporated to create a more hierarchical

model.

Once the user has labeled, the next step would be to train the model. The first step in
achieving this is to tell the network when the prediction is wrong, and this is done by quantifying
the error, also known as the loss. There are different types of losses, depending on whether it is
classification or regression. When the output is categorical, the system is defined as classification
or pattern recognition. However, if the output is real-valued, then the system is known as

regression. For classification, the cross-entropy loss would produce an output between 0 and 1 by

Loss = % n . ytlog (f(xi; W)) + (1 —yHlog(1 - Fxi;W)). (5)

In determining the loss of regression, a popular loss is the mean square error, which is

Loss = -3, (vi = ¥)% (6)
The y represents the actual and y the predicted output. The next objective is to find the
ideal set of weights that would result in the minimum amount of loss for the model. The loss is
optimized by using the process of gradient descent that maps the set of weights and tries to find
the lowest point on the map, known as the local minimum of the loss. This process uses backward

propagation to determine the best direction to move with a given loss and a given set of weights

[39].

34

Convolutional Operation Background

Now that this brief description of neural networks can be understood, the idea of how a
computer sees an image must be explained. A picture is made of thousands or even millions of
pixels. Pixels are the smallest point in the image, and these pixels are displayed in columns and
rows to display the image. Depending on the type of image, the pixel is then translated to a number
and is able to be processed. Two very common types of images are grayscale and RGB images. In
a grayscale image, the pixels are able to be represented by a single number, converting the image
into a two-dimensional matrix of numbers based on the brightness values. For an RGB, three two-
dimensional matrixes are concatenated on top of each other, one to represent each of the red, green,

and blue channels.

For classification, the computer would need to recognize the unique differences between
pictures. Each classification class has a set of unique characteristics, called features. If the
computer is able to detect enough of the features in that class, the computer would be able to
determine what class the image would belong to with high probability. A good approach is to learn
the visual features directly from the data and learn the hierarchy of these features as well. In doing
so0, it would be possible to reconstruct a representation of the class label. Convolution is then used
to extract the features and patterns. Rather than having every pixel as its own layer in a neural
network, a patch would go through the pixels and connect the patches to the neurons of the hidden

layer. A representation of how a patch region influences a single neuron can be seen in Figure 24.

35

S R SRR R RS S R
S R R R R R
4444404400444
R R R R

Figure 24: Patch Diagram. The image shows a patch sliding along pixels. Instead of every pixel being set to an individual

neuron, the pixels within the patch are incorporated into the neuron.

The patch is slid across the image to define the connections across the input. By doing this, the
spatial structure and information are maintained. To learn visual features, those connections in the

patches are then weighted and then summed for the input to the following layer.

Images are not strictly compared to another image; there will be certain types of
deformations to the images, scale, shift, or rotation. To compensate, the images will be compared
patch by patch. Features are the important patches the network looks for, and if rough matches are
found, the probability is high that they are the same image class. If the two images share a high
number of features, then the objects have a high probability of being the same object. These
features are like mini-images and are often referred to as filters. These filters have a set of weights
for each pixel and are slid along the image. An example of a triangle being compared to a similar

image can be seen in Figure 25.

36

Is it a Triangle?

sniien

Filter 1
Black = -1
White = 1 ! \ |
1 1
1 1 1
Filter 2

Figure 25: Triangle and Filter Diagram. The filters are unique features that are slid across the pixel to try to find close

representations.

When the patch is on top of the image, the output of the hidden neuron layer can be determined by
elementwise multiplication of every pixel that the image and filter overlap, and then by totaling all

of the numbers to produce the overall output. An example can be seen in Figure 26.

37

Filter 1

Elementwise Multiplication

1 1 X 1 = 1
1 | 1
Feature Map Output
1 1 1
= 6
1 1 1

Figure 26: Feature Map. The black pixels are -1 and the white pixels are 1. Applying the filter to an image produces a feature
map through elementwise multiplication.

The figure above can be seen with a 3x2 filter and is placed on the image. The elementwise
multiplication is performed for every overlapping pixel; since this is a perfect overlap, it is all
ones, and they are added to the feature map. Then the overall output of the hidden neural layer is
the sum of all the numbers in the feature map to produce 6, the max output of that filter. Changing
the weights in the features will significantly impact the feature map and can help sharpen the image

or be used for edge detection [40].

Convolutional Neural Network Background

A convolutional neural network process can be described as two sections, the feature
learning, and the classification. In feature learning, there are three main steps to consider—first,
the convolution operation of extracting features in the image. A single convolutional layer can
have multiple different filters, which makes the output layer of a convolution a volume of images

38

that represents the different filters. The number of filters to detect at every layer in a convolutional
neural network is set by the programmer and not the network. The rectified linear unit nonlinearity
activation function is commonly used to shift all the negative values by zero. Second, the
nonlinearity has to be applied to allow the neural network to handle nonlinear data, which enables
the network to handle more complex tasks. Finally, the pooling operations has the spatial
resolution of the image downsampled and also handles multiple scales of the features within the
image. A common pooling technique is max pooling, where another patch is slid along the matrix
and takes the maximum value. This is repeated until the image is downsized, and this allows the
maintaining of the spatial structure while shrinking the spatial dimension. The classification
section then takes the learned features and feeds them into a dense layer to represent the final
output of producing the probability distribution of the membership of the image of the different

classes. A classic convolution neural network architecture can be seen in Figure 27.

A
- T ."I X : s
\ $

iy [—sicreLs

< INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN ey SOFTMAX

/ \‘ CD:HN!CIED
b 3 '3
HIDDEN LAYERS CLASSIFICATION

Figure 27: Convolutional Neural Network. This image shows the image of a car as an input. The convolution process is

performed and is then sent to the neural networks for classification [41].

39

Chapter 5. Machine Learning Implementation

Machine Learning Mel Frequency Cepstrum Coefficients Background

Mel Frequency Cepstrum Coefficients (MFCC), illustrated in Figure 28, is a technique

for audio processing and is commonly used for speech recognition [42].

- e PN I

I

pr(1) log(ps(1)) (1)
Ps(2) log(ps(2)) (2)

[o) | 2@ I,ny/(,lf/(:f)b o(3)
I TEPVVNATATATAW |]'/(:gm log(ps(26)) c(12)
Mel Filterbank Log() DCT()

Figure 28: Mel Frequency Cepstral Coefficient Process. This shows the overall process to obtain the Mel Frequency Cepstral

Coefficient [44].

A time domain signal is first passed through a high pass filter to reduce noise. The signal
is sliced into small frames where it is assumed that the frequency is stationary (typically the frame
size range 20 - 40 ms for speech) and a Hamming window is applied to each of the frames to
reduce spectral leakage. The N-point Fast Fourier transform is performed on each of the frames to
produce the frequency spectrum. The next step is to produce filter banks by applying triangular
filters on a Mel-scale to the power spectrum to extract frequency bands. The Mel-scale objective
is replicate the human ear’s logarithmic perception of sound by being more discriminative at lower
frequencies than higher frequencies. Each of the triangular filters in the filterbank has a response
of 1 at the center frequency and decreases linearly until it reaches O at the center of the adjacent

frequency filter, as shown in Figure 29.

40

Amplitude
o o e =
S o) =]

o
(8]

e
=}

3000 3500 4000

Frequency

Figure 29: Filterbank on a Mel-Scale. [43].

However, the filterbank coefficients contain highly correlated data that has the potential to be
problematic in machine learning systems. This is corrected by applying the discrete cosine
transform that produces a compressed representation of the filterbanks, called the Mel Frequency

Cepstral Coefficients [43]. A comparison of the Mel filterbank image and the Mel Frequency

Cepstral Coefficient can be seen in Figure 30.

41

a) Normalized Mel Filterbank

I Id1::;:# l{j |1IJ1|+;;;

MFCC Coefficients

]

3.0 35

‘ Time (s)

b) Normalized Mel Frequency Cepstral Coefficient

Figure 30: Filterbank Vs Mel Frequency Cepstral Coefficient. The top image shows an example of the mean normalized
filterbank after the Mel-Scale process and the bottom image shows the mean normalized Mel Frequency Cepstral Coefficient

based on the Filterbank [43].

The audio processing script (Appendix I) reads in recorded .wav files using the ‘librosa’
library, performs the Fast Fourier transfer using ‘numpy’, and creates the Mel Frequency Cepstral
Filterbank and the Mel Frequency Cepstral Coefficient image files using the
‘python_speech features’ library [45]. The Python default settings for window length and window

step were 25 ms and 10 ms, respectively, and were decreased to 1 ms and 0.4 ms, respectively.

42

This allowed more details of the image to be displayed since the size of the window, and the

amount that the window moves over, are decreased.

Machine Learning Program Testing

An Asus laptop with 12 GB RAM and an Intel Core 15-8250U CPU was used for the
machine learning in Matlab using as inputs the RGB, thermal, and Mel Frequency Cepstral
Coefficient images. The machine learning program incorporates Matlab’s implementation of the
Resnet-50 pre-trained convolutional neural network. The Resnet-50 will be retrained to learn the
classes of the Parrot Swing, Parrot Quadcopter, and the Tello Quadcopter based on the input
categories acoustic, thermal, and RGB of each of the drones. The minimum number of the data in
each category of the three drones will be the max number of data inputs for that category. If a
certain drone’s category is over the max amount of input data, then the data input into the program
will be randomly selected until the max number of input data is reached. After the machine learning
process, the accuracy and loss will be evaluated at the end of the process, and additional measures

will be performed if needed [46].

To indicate how well this program might perform on the data acquired by the sensors, a
test program was created to implement the RGB and acoustic categories from online databases.
The RGB category incorporated a database from Caltech101 that was simplified to only the
following classes: ‘Airplanes’, ‘Helicopter’, ‘Ferry’, and ‘Laptop’ [47]. The Mel Frequency
Cepstral Coefficients were based on instrumental sounds that were obtained from Kaggle for an
audio tagging challenge [48]. The database was simplified to the following classes: ‘Acoustic

guitar’, ‘Clarinet’, ‘Flute’, and ‘Saxophones’.

For the RGB category, the airplanes class contained 800 images, the helicopter class

contained 88 images, the ferry class contained 67 images, and the laptop class contained 81 images.

43

Overall, the max RGB input data for the CNN was 67 images due to the ferry class containing the
lowest amount. This max input is then divided into training and testing images; 70% of the images
from each class were set for training the machine learning model, and the remaining 30% were
dedicated for the validation testing. This training and testing percentage was used for all the
machine learning models in this thesis. It is important for the training images not to contain any of
the validation images. The convolutional neural network was performed three times with an
average validation accuracy of 99.58%. The convolutional neural network model of training and
validation over time is shown in Figure 31. The confusion matrix shows the actual image vs. the

predicted guess, as shown in Figure 32.

Final

Accuracy (%)

20 Accuracy

Training (smoothed)

20— Training

- ~@— = Validation

Epoch 1 ﬁpoch 2 Epoi:h 3 Epot:hld Epoch 5 ! Epoch 6 |
0
0 20 40 60 80 100
Results Leration Validation
Validation accuracy: 100.00% Frequency: 18 iterations
Training finished: Reached final iteration Patience: Inf
Loss
Training (smoothed)
Training
- ~@— =~ Validation
g
-
EpochS.. _ g Epoch6_ , ~B
80 100

Iteration

Figure 31: Practice RGB Training and Validation Over Time. The accuracy is 100% with very low loss. This would be the ideal

model to achieve.

44

Pretest: RGB Confusion Matrix of Training Validation

Airplanes 0%

Ferry 0%

True Class

Helicopter 0%

Laptop 0%

Airplanes Ferry Helicopter Laptop
Predicted Class

Figure 32: Practice RGB Confusion Matrix. This would be the ideal model to achieve. The blue represents correct predictions

and the darker the blue the better the results, the white is neutral, and red is incorrect predictions.

To test the implementation with acoustic data, the wav files from each of the classes were
processed as described above to obtain the Mel Frequency Cepstral Coefficient images. All the
classes contained 29 wav files, setting that as the max input to the CNN. Unfortunately, this is not
a lot of data, and the model was not expected to be reliant. As shown in Figure 33, the training
accuracy is approximately 87%; however, the validation accuracy is 55.56%. This means that the
test images had the 55.56% accuracy to the training model and that training accuracy and validation
trendline gap represents the acoustic data being overfit and more data with variation would be
needed. The convolutional neural network was performed three times; the maximum and average
validation accuracy obtained was 55.56% and 50.93%, respectively. The confusion matrix of the
validation performed can be seen in Figure 34. The acoustic sensor showed positive results for
very low data. The validation accuracy between four different instruments with low data was more

than twice as accurate than a random guess between the categories.

45

Accuracy
00[- Training (smoothed)
Training
I~ = -e— - validation
70~
g -
E 9 Final
3 B\ AT /e oAl e p—
o
<
40—
30~
20
10—~
s Eppch 1 \ Echh 2 | Epoch 3 | [Epoch 4 \ Epochls | Epoch 6 | \
0 5 10 15 20 25 30 35 40 45 50
Iteration
Results Validation
Validation accuracy: 55.56% Frequency: 8 lterations
Training finished Reached final d Patience: Inf
2=
15—
- e __—-.--—--_______-
2 XS R ® rinat
—
1FLoss
Training (smocthed)
05k Training
- ~@— = Vakdation
Epoch 1 Eppch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6
A LEpoc 1 PP 1 poch 3 | Epoc 1 pochy | Epo 1 1
0 s 10 15 20 25 30 35 40 as 50

Figure 33: Practice Acoustic Training and Validation Over Time. The accuracy is 55.56% and the loss is high. This is not a good

model to produce.

46

Pretest: Acoustic Confusion Matrix of Training Validation

Acoustic Guitar
Clarinet 8.3% 8.3% 8.3%
n
n
L
O
[
=
=
Flute 2.8% 5.6%
Saxophone 5.6% 2.8% 11.1% 5.6%
Acoustic Guitar Clarinet Flute Saxophone

Predicted Class

Figure 34: Practice Acoustic Confusion Matrix. There are much more shades of red in this model, which indicates more data is
needed.

Machine Learning for Drone Classification

For our drone classification application, the goal is to train a model that will separate
images into three classes: Parrot Quadcopter, Parrot Swing, and Tello Quadcopter. The Matlab
implementation, shown in Appendix J, creates models for each sensor individually. To determine
how performance depends on the amount of data collected from different locations, the process
was performed for each location, adding data to the overall set with each new measurement
location. For example, the first machine learning performance included the data from the first
location, while the fourth performance included the data from the first, second, third, and fourth
locations. The detailed amount of input data for each of the machine learning performances can be
seen in Table 4. For the final machine learning process including all possible measurements, there
will be a total of 1,056 RGB images, 1,042 thermal images, and 860 Mel Frequency Cepstral

Coefficient images.

47

Table 4: Overall Machine Learning Process Inputs. The inputs of the first machine learning process are the data
obtained from the first location, Process 2 would include the data obtained from the first and second location, and this repeats to
Process 5 including the data obtained from all five locations. The maximum data input to the machine learning process is the

minimum input data from the three drone classes.

Machine Learning Inputs Parrot Quad. Parrot Swing Tello Quad. Max Input

Process 1 RGB 132 60 155 60
Process 2 RGB 253 130 274 130
Process 3 RGB 530 653 573 530
Process 4 RGB 676 718 653 653
Process 5 RGB 992 1174 1056 992
Process 1 Thermal 128 56 132 56
Process 2 Thermal 248 117 247 117
Process 3 Thermal 498 556 542 498
Process 4 Thermal 652 618 624 618
Process 5 Thermal 980 1113 1042 980
Process 1 Acoustic 112 45 138 45
Process 2 Acoustic 234 109 254 109
Process 3 Acoustic 466 537 481 466
Process 4 Acoustic 597 594 547 547
Process 5 Acoustic 959 757 860 757

These inputs are inputted into the deep convolutional neural network and trained. Due to

the set limit, the images inserted into the machine learning program are random. This results in a

48

different validation accuracy. The validation accuracy is determined by taking the input data and
having 70% of the data train and 30% of the data tested on the trained data. However, two data
samples from each of the sensors and each drone at each location were removed from the database
and placed in a separate database for a second validation test. Unlike the first validation test, this
second validation shall remain consistent and given to each process for comparison and when this
second validation test is performed, the machine learning algorithm will be classifying data from
locations it has not learned yet. These data were mostly selected randomly. The RGB and thermal
images are the same, however the acoustic were different. The only data samples that were not
considered for this second database were when the drone exceeded 50 ft. or when the drone was
not visible to the human eye. There was an image where only the drone wing was visible in the
RGB and thermal images that were in the second database. As a result, there are ten images of
each RGB, thermal, and Mel Frequency Cepstral Coefficients for each drone in the new test
database. This second validation test is referred to as the Post-Training Test. Each process was
performed three times for all sensor, and the validation accuracy was compared for all three. The
max training validation accuracy results achieved for each process can be seen in Table 5. The

three evaluations of all the machine learning processes performed are shown in Tables C-1 - C-5.

49

Table 5: Overall Machine Learning Validation Accuracy. The machine learning process is performed with each set of
the input data and is performed three times to compare the accuracy. The results below represent the max validation accuracy

achieved from the machine learning process.

Validation Accuracy (%) RGB Thermal Acoustic

Process 1 94.12 66.67 66.67
Process 2 75.44 72.55 58.06
Process 3 96.60 82.88 71.26
Process 4 78.35 62.66 60.49
Process 5 60.23 43.07 46.58

Despite the low amount of data obtained from the first location, the machine learning
program still performed well. The lowest amount of data received was the Parrot Swing in all three
categories. Therefore, the machine learning used a max input number of 58 images for the RGB,
54 images for the thermal, and 43 images from the acoustics, subtraction of two per category due
to the creation of the second validation test. Due to the fact that Parrot and Tello quadcopters
contained data samples over the max input limit, the images that were inputted were randomly
selected to obtain that max number. In Matlab, the function splitEachLabel(dataset, max input
limit, ‘randomize’) would change the dataset to the max input limit by filling that amount with
randomly selected data images from the dataset. The results of the first iteration were very good
for the RGB category and showed the other categories had room to improve. The time duration of
the machine learning task for each of the categories, RGB, thermal, and acoustic, was 4 minutes
and 34 seconds, was 4 minutes and 11 seconds, and 3 minutes and 26 seconds, respectively. Even

though the data was very low, the machine learning program was able to show potential. The

50

machine learning program required a greater amount of data than provided for the first location,
as well as different scenery and noise to prevent over-fitting the data. The more data that gets
added, the longer it takes to finish the machine learning process. The first machine learning process

performed in each category can be seen in Figures 35 - 37.

Accuracy (%)

40 i~

30

Accuracy
Training (smoothed)
201 Traning
- =@~ = Valdation
10—
Epoch 1 h Epoch 4 Epoch h
J poc | Epoch 2 | poch 3 | Epochl Poc 5 | Epoch 6 |
0 10 20 30 40 50 60 70
I
Results feraton Validation
Validation accuracy: 94.12% Frequency: 12 iterations
Training finished: Reached final iteration Patience: Inf

Training (smoothed)
Training
- =@ = Validation

Iteration

Figure 35: RGB Machine Learning Process Up to the First Location.

51

Accuracy (%)

) Training (smocthed)
20|-g- =~ & Training
~ ~@— - Validation

10t~ :

Epoch 1 L Epoch 2 | Epoch 3 L Epoch 4 \ Epoch 5 | Epoch 6 |
0

0 10 20 30 40 50 60

Results LD validation

Validation accuracy: 66.67% Frequency: 11 iterations

Training finished: Reached final iteration Patience: Inf

Final

Loss
Training (smoothed)
Training
~ ~@— = Validation
i Epoch 1 | Epoch 2 | Epoch 3 | Epoch 4 | Epoch5 | _Epoehb~— "
0 10 20 30 40 50 60

Iteration

Figure 36: Thermal Machine Learning Process Up to the First Location.

52

Accuracy
100 I~
Training (smoothed)
Training
90 = - =@ = Validation
80 -
70 -
— @ Final
2 wf-
b
8
5 501
o
<
40 |-
30
20 -
10 p—
Epoch 1 | Epoch 2 Erﬁoch 3 Epot? 4 Epoch 5l Epoch 6
0
0 10 20 30 40 50
Iteration
Results Validation
Validation accuracy: 66.67% Frequency: 9 terations
Training finished: Reached final iteration Patience: Inf
1.6

Final

0.6~ Training (smeothed)
0.4} Training
— -9~ = Vakdation
0.2~
Epoch 1 l!Epc,\ch 2 quch 3 Epoq\ 4 Epoch SI Epoch 6 1
0
0 10 20 30 40 50

Iteration
Figure 37: Acoustic Machine Learning Process Up to the First Location.

The confusion matrix for the training of the above categories can be seen in Figures 38 -
40. After the convolutional neural network is trained, 30 test images for each category, ten from

each location, were given to the network to classify. The confusion matrix for post-training can be

seen in Figures 41 - 43.

53

First Machine Learning Process: RGB Confusion Matrix of Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Swing Tello Quadcopter
Predicted Class

Parrot Quadcopter

Figure 38: Process 1 RGB Training Confusion Matrix. The first column and row represent the Parrot Swing. The second column

and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

First Machine Learning Process: Thermal Confusion Matrix of Training Validation

Parrot Quadcopter 2.1%

Parrot Swing

True Class

Tello Quadcopter

Tello Quadcopter

Parrot Quadcopter Parrot Swing
Predicted Class

Figure 39: Process 1 Thermal Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

54

First Machine Learning Process: Acoustic Confusion Matrix of Training Validation

Parrot Quadcopter 2.6% 5.1%

Parrot Swing 7.7% 7.7%

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure 40: Process 1 Acoustic Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

First Machine Learning Process: RGB Confusion Matrix of Post-Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure 41: Process 1 RGB Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The second
column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This includes

variations and the limitations from the fifih location that the network has not seen yet.

55

First Machine Learning Process: Thermal Confusion Matrix of Post-Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure 42: Process 1 Thermal Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The
second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

First Machine Learning Process: Acoustic Confusion Matrix of Post-Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure 43: Process 1 Acoustic Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The
second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

56

With the data for the second location being merged with the data from the first, the input
data is now more than twice the amount of the previous machine learning performance. The
limitation was again the Parrot Swing, allowing the max input data to be 126 RGB images, 113
thermal images, and 105 Mel Frequency Cepstral Coefficient images. The validation accuracy for
the RGB category decreased by 18.68 percentage points, the thermal category increased by 5.88
percentage points, and the acoustic category decreased by 8.61 percentage points. The time
duration of the machine learning process was 9 minutes and 37 seconds, 8 minutes and 30 seconds,
and 8 minutes and 11 seconds for the RGB, thermal, and acoustic categories, respectively. The
graphs of the second machine learning processes can be seen in Figures D1 - D3, and the confusion

matrices during the training and post-training can be seen in Figures D-4 - D-9.

The validation accuracy of the RGB and the acoustic data decreased; however, this is a
positive outcome because it shows a more realistic model representation compared to the first
performance due to the increase of the input data by more than double the amount. This increase
in the amount of data and different variations makes the machine learning program more likely to
detect drones in other environments. The thermal validation accuracy increased to be about as
reliable as the RGB camera. As with the previous performance, more data and noise are needed to
be able to obtain a reliable representation of the model. The likelihood of increasing the accuracy
of the machine model validation accuracy with more data and noise is a strong possibility with

only a hundred data points.

With the data from the third location merged with the data from the other location, the input
data is around four times larger than the previous process. The Parrot Quadcopter is the limiting
class for all three categories. The max number of input data for the RGB category was 524 images,

the thermal category was 492 images, and the acoustic category was 460 images. This machine

57

learning process was excellent overall due to the amount of data and the overall performance
increased with each sensor. The validation accuracy for the RGB category increased by 21.16
percentage points, the thermal category by 10.33 percentage points, and the acoustic category by
13.20 percentage points, compared to the previous performance. The third machine learning

processes’ training and loss graphs can be seen in Figures 44-46.

Accuracy (%)

30 i

20 =

10 f—

Accuracy

Training (smoothed)
Training

= == = Validation

Epoch 1 ! Epoch 2 Epoch 3 | Epoch 4 | Epoch 5 | Epoch 6 |
o
0 100 200 300 400 500 600
Iteration
Results Validation
Validation accuracy: 96.60% Frequency: 110 iterations
Training finished: Reachad final iteration Pationceo: It
2 Loss.
Training {smoothed)
Training
L5 — ~8— = Vakdation
@
31 |
08— -
=k W W mmmm———————— LT
SIS SR et S e e e, (]
B SHN S B SN NS s Pings EDOCDA) g EPOCHS EPACHS | oo @rn
L] 300 400 500 600

Figure 44: RGB Machine Learning Process Up to the Third Location.

Iteration

58

| |
———+|——-+!——-—-|————é-a

HY ...

70 v
’
g 2
fel
€ so
g
£
a0
30
Accuracy
— Training (umocthed)
20 Traming
~ @~ - Vamdstion
10
| Epoch 2 | Epoch 3 | Epoch 4 | Epoch 5 { Epoch 6 \
[
[100 200 300 00 500 600
| Iteration
| Results validation
| Validation accuracy: 82.66% Frequency: 103 iterations
| Training finished: Reached final iteration Patience: Inf
Loas

Training (smenthed)
Training
— ~#— - Validation

?ﬂnal

Iteration

500

Figure 45: Thermal Machine Learning Process Up to the Third Location.

59

600

Accuracy
100 - Training {smoothed)
Training
90 — -#— - vaidatian
80—
70— e = J_Hika 30 & Final
- -
- =R A By
F oeof- = "' | --_, i [e Y
el U f
fn
€ so ’ !
E [~
40 it
y-
30 ¥
20—
10—
Epoch 1 och 2 och 3 Epoch 4 Epoch 5 Epoch &
i b ke i i) i i) !
0 100 200 300 400 500 600
Iteration
Results validation
Validation accuracy: T1.26% Frequency: 96 terations
" Patience: Inf
Training finished: Reached final teration
Loss
3= Training (smocthed)
Traming
25— — <@~ - Validation
W r\i‘w
Fro -—" - =T ®Final
5 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epogh 6 L
o 100 200 300 400 500 600

Iteration
Figure 46: Acoustic Machine Learning Process Up to the Third Location.

According to the post-training image test, the RGB model and thermal category did well with the
second dataset of images, in which slightly less than half are drones in a different scenery not seen
before. This is an accurate model for the drone under 50 ft. The time duration for the completion
of the process was 44 minutes and 13 seconds, 37 minutes and 51 seconds, and 36 minutes and 58
seconds for the RGB, thermal, and acoustic categories, respectively. The third machine learning

the confusion matrices during the training and post-training can be seen in Figures 47-52.

60

Third Machine Learning Process: RGB Confusion Matrix of Training Validation

Parrot Quadcopter 0.6%

Parrot Swing 2.8% 0.6%

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure 47: Process 3 RGB Training Confusion Matrix. The first column and row represent the Parrot Swing. The second column

and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Third Machine Learning Process: Thermal Confusion Matrix of Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure 48: Process 3 Thermal Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

61

Third Machine Learning Process: Acoustic Confusion Matrix of Training Validation

Parrot Quadcopter 6.1% 2.9% 4.3%
7}
A
% Parrot Swing 3.1% 89 10.4%
=
=
Tello Quadcopter 0.5% 7.5% 49
Parrot Quadcopter Parrot Swing Tello Quadcopter

Predicted Class

Figure 49: Process 3 Acoustic Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Third Machine Learning Process: RGB Confusion Matrix of Post-Training Validation

Parrot Quadcopter 6.7% 6.7%

Parrot Swing

True Class

Tello Quadcopter 6.7% 6.7%

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure 50: Process 3 RGB Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The second
column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This includes

variations and the limitations from the fifth location that the network has not seen yet.

62

Third Machine Learning Pr Thermal Confusion Matrix of Post-Training Validation

Parrot Quadcopter 3.3%
7
o
% Parrot Swing
=
'_
Tello Quadcopter 10.0%
Parrot Quadcopter Parrot Swing Tello Quadcopter

Predicted Class

Figure 51: Process 3 Thermal Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The
second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

Third Machine Learning Process: Acoustic Confusion Matrix of Post-Training Validation

Parrot Quadcopter 3.3% 6.7%
7}
0
% Parrot Swing 6.7%
2
=

Tello Quadcopter
Parrot Quadcopter Parrot Swing Tello Quadcopter

Predicted Class

Figure 52: Process 3 Acoustic Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The
second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

63

The data obtained from the fourth location was merged with the data from the previous
locations, and the max input data was increased with the Tello Quadcopter setting the input limit
for each category. The max input data for the RGB category was 645 images, the thermal category
was 616 images, and the acoustic category was 539 images. The validation accuracy for the RGB
category was decreased by 18.25 percentage points, the thermal category decreased by 28.96
percentage points, and the acoustic category decreased by 10.77 percentage points when compared
to the previous performance. The total time for each of the categories to perform was 50 minutes
11 seconds, 47 minutes and 28 seconds, and 41 minutes and 47 seconds for the RGB, thermal, and
acoustic categories, respectively. Even though the drones were exposed to new variations, they
were also exposed to the limitations of the sensors. The distance from the sensors to the fence was
70 ft., and the drone almost went over it multiple times. It is also possible that the input data
involves the limitations of the sensors captured in the previous iterations as well. The graphs of
the fourth machine learning processes can be seen in Figures E-1 - E-3, and the confusion matrices

during the training and post-training can be seen in Figures E-4 - E-7.

The fifth and final performance was merging and inputting all the data collected into the
machine learning program. The limit of the input data for each of the categories was set by the
Parrot Quadcopter setting the max input for the RGB category at 982 images, thermal category at
970 images, and acoustic category at 747 images. As expected, the new data has made the program
unreliable. The validation accuracy has decreased in all categories: the RGB category by 18.12
percentage points, the thermal category by 12.00 percentage points, and the acoustic category by
20.91 percentage points when compared to the previous performance. The total time for the
categories to complete the performance was 78 minutes and 57 seconds, 77 minutes and 22

seconds, and 60 minutes and 52 seconds for the RGB, thermal, and acoustic category, respectively.

64

The times for each category to complete for all the processes can be seen in Table F-1. The graphs

of the fifth machine learning processes can be seen in Figures 53 - 55.

VvV
E ® Final
1
Z I
g 1
H 1
< |
e &
Training {smoothed)
Training
— - - Validation
10—
Epoch 1 | Epoch 2 | Epoch 3 | Epoch 4 | Epoch 5 | Epoch 6 1
o
o 200 400 600 BOO 1000 1200
Iteration
Results Validation
Validation accuracy: 60.23% Freguency: 206 iterations
| Training finished: Reached final teration Patience: Inf
-
= ST . L S .,———
i S 3 TRRL R il $ 0 T @ =i = i T r
2 —
-__‘__¢-"' éFina\
15 _ L cecmmmm
§ Loss
= - Training (smoothid)
Training
— —#— - Validation
0.5 p—
uEpochl g A . WS VN N =N LW a the th i el o
L] 200 400 600 80O 1000 1200

Iteration

Figure 53: RGB Machine Learning Process Up to the Fifth Location.

65

Accuracy (%)

1l Ny | I S - e S
="
Accuracy
Training (smoothed)
20 S Training
= == = Yalidstion
10
Epoch 1 i Epoch 2 i Epoch 3 | Epoch 4 i Epoch 5 | Epoch 6 |
(/]
L] 200 400 500 800 1000 1200
Iteration
| Results Validation
| Validation accuracy: 43.07% Frequency: 203 iterations
| Training finished: Reached final iteration Patience: Inf
3 ? Final
]
1
]
- I
-———— eyl

Training [smoathed)
Training
= =8 = Validation

st EROSHG B BL 4
1000 1200

Figure 54: Thermal Machine Learning Process Up to the Fifih Location.

66

Accura
100 | i

Training (smoothed)
Training

WOF _ o~ - vaidation

80 —

g oo
>
3
C sol
=
o Final
g U S B ¢
40 EL e il | ==1"1
l' _______ A== L == D e T
SaTeTENIT R S | =TT | | I 1 RS "
30
20—
10—
Epoch 1 ! Epochiz | Epoch 3 | Epoc]h 4 | Epoch 5 | Eploch 6 |
0 100 200 300 400 500 600 700 800 900
Results iteration Validation
Validation accuracy: 46.58% Frequency: 156 iterations
Training finished: Reached final iteration Patience: Inf
Loss
fc Training (smoothed)
Tralning
2k - -@— = Validation
e | S (0| T I I SRR Sy | SR @ Final
wael b L) UM TSRS e - —e=dogo=
§1A5—‘ Alia-r ¥ — et Nl —
1
0.5—
o Epoch 1 | Epoch‘Z | Epoch 3 | Epoc1h 4 | Epoch 5 L Eppch 6 |
0 100 200 300 400 500 600 700 800 900

Iteration

Figure 55: Acoustic Machine Learning Process Up to the Fifth Location.

The confusion matrices during the training and post-training can be seen in Figures 56 - 61. Since
there are three classes, a random guess is 33.33%, so this performance is still better than randomly
picking the drone in all categories. There is a noticeable difference in the accuracy when comparing
the training and post-confusion matrices. As previously stated, the second dataset was selective to
a degree and remained constant to help indicate if there were limitations in the sensors. The poor
accuracy in the confusion matrix based on the primary database and significantly better accuracy

in the second database is a decent indication of the limitations are met in all sensor categories.

67

Fifth Machine Learning Process: RGB Confusion Matrix of Training Validation

Parrot Quadcopter 8.8%

wn
wn
A
< Parrot Swing 7.9%
c
=

Tello Quadcopter 8.1%

Parrot Quadcopter Parrot Swing Tello Quadcopter

Predicted Class

Figure 56: Process 5 RGB Training Confusion Matrix. The first column and row represent the Parrot Swing. The second column

and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Fifth Machine Learning Process: Thermal Confusion Matrix of Training Validation

Parrot Quadcopter 6.8%

Parrot Swing

True Class

Tello Quadcopter

Parrot Swing Tello Quadcopter
Predicted Class

Parrot Quadcopter

Figure 57: Process 5 Thermal Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

68

Fifth Machine Learning Process: Acoustic Confusion Matrix of Training Validation

Parrot Quadcopter 4.9% 5.4%
]
Ao
g Parrot Swing 1.0%
2
[
Tello Quadcopter 1.6%
Parrot Quadcopter Parrot Swing Tello Quadcopter

Predicted Class

Figure 58: Process 5 Acoustic Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Fifth Machine Learning Process: RGB Confusion Matrix of Post-Training Validation

Parrot Quadcopter 3.3% 6.7%
n
n
die
g Parrot Swing 0.0% 3.3%
2
=

Tello Quadcopter
Parrot Quadcopter Parrot Swing Tello Quadcopter

Predicted Class

Figure 59: Process 5 RGB Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

69

Fifth Machine Learning Process: Thermal Confusion Matrix of Post-Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure 60: Process 5 Thermal Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Fifth Machine Learning Process: Acoustic Confusion Matrix of Post-Training Validation

Parrot Quadcopter 6.7%
]
o
3 Parrot Swing 3.3% 0.0
2
=
Tello Quadcopter 10.0% 6.7%
Parrot Quadcopter Parrot Swing Tello Quadcopter

Predicted Class

Figure 61: Process 5 Acoustic Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The

second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

70

Modified Machine Learning Accuracy and Loss

An adjustment was made to the overall program, and more machine learning processes
were performed to validate that the limitations of the acoustic sensor were due to the low validation
accuracy throughout the processes. The adjustment performed was narrowing the drone classes
from the Parrot Swing, Parrot Quadcopter, and Tello Quadcopter to the Parrot Swing and
Quadcopters. The Quadcopters were a combined data sample of the Parrot Quadcopter and Tello
Quadcopter. Since there are only two classes, the random guess between classes increased from
33.33% to 50%. The acoustic category had a validation accuracy of 75.16% for Process 3, 79.83%
for Process 4, and 64.56% for Process 5. The loss was approximately 0.49, 0.47, and 0.75 for
Process 3, 4, and 5, respectively. These performances are shown in Figures G-1 - G-3. The

confusion matrices for these are shown in Figures G-4 - G-9.

The results of the two-classes compared to the three-classes can be seen in Table 6. Since
the random guess would differ greatly between the two systems, the validation accuracy should be
by the system’s random guess for comparison. When factoring in the random guess difference, the
data shows that the best performance is three classes at Process 3 by 12.77 percentage points.
However, with the increase in difference, the two-class system performs better than the three-class

system.

71

Table 6: Acoustic Two-Classes VS Three-Classes. This table shows the comparison between the two classes of Parrot
Swing and Quadcopters to the three classes Parrot Swing, Parrot Quadcopter, and Tello Quadcopter for Process 3, 4, and 5. The
Process Random Difference is the validation accuracy subtracted by the random guess to compare the difference in accuracy

realistically.

Machine Learning Inputs Two Classes Three Classes
Process 3 Validation Accuracy (%) 75.16 71.26
Process 4 Validation Accuracy (%) 79.83 60.49
Process 5 Validation Accuracy (%) 64.56 46.58

Random Guess (%) 50.00 33.33
Process 3 Random Difference (%) 25.16 37.93
Process 4 Random Difference (%) 29.83 27.16
Process 5 Random Difference (%) 14.56 13.25

72

Chapter 6. Conclusion

Project Overview

The beginning stage of this thesis involved the creation of a robot that would be able to
collect data from the drones. The robot was designed in Solidworks, assembled, and wired to be
able to be mobile and fully use the sensors. The graphical user interface, utilizing the RGB camera,
the thermal camera, and the acoustic sensor, was programmed in Python and operational on the
Minisforum minicomputer. The data collecting program was then compacted to this minicomputer
to achieve as close to real-time data as achievable. An additional Python program was created to
gather the data collected and safely transfer the data to the machine learning computer and perform
the audio processing on the acoustic wav files as well. The program for the machine learning
program was then created in Matlab to detect and classify the three drone classes, Parrot Swing,

Parrot Quadcopter, and Tello Quadcopter using the data collected as inputs.

The main priority after the beginning stage of the project was to increase the number of
samples of data collected that were inputted to each sensor’s convolutional neural networks. This
ideally gave the convolutional neural networks the flexibility to obtain a higher validation
accuracy. The samples were collected in different locations, contained moving backgrounds, and
obtained random noise. Some of these moving backgrounds and random noises included vehicles,
clouds, people, lawnmowers, construction work, and people. The second priority was to determine
the limitations of the sensors through the data collection and machine learning process. This was

done by using the different samples and evaluating the results of the validation accuracy and loss.

73

Project Results

The convolutional neural network was successfully able to classify and detect the three
classes of drones using the three categories RGB, thermal, and acoustic. The images that were
obtained in the data collection were inputted into the machine learning program and revealed that
the most accurate sensor was the RGB camera, followed by the acoustic sensor, and then the
thermal camera. However, if the drone is beyond 50 ft., the most reliable prediction model must
have the two quadcopters merge into a single class and rely on the acoustic and RGB sensors,
followed by the thermal camera. When the majority of the data was within 50 ft. and had
approximately 500 input data samples, the RGB camera had a maximum of 96.6% validation
accuracy recorded with the three drone categories. In comparison, the thermal camera and acoustic
sensor had a maximum validation accuracy of 82.9% and 71.3%, respectively, with the same
conditions. When the CNN incorporated much more data of the drone over 50 ft. from the sensors
and exposed to more limitations, the maximum validation accuracy recorded was 60.2% for the
RGB category, 43.1% for the thermal category, and 46.58% for the acoustic category. However,
when the consistent input data from the second database was used to perform the post-validation
test, the post-training confusion matrix was very accurate. The input data from the primary
database is significantly larger when compared to the second database and more data should be
dedicated to the second database for reliability. Regardless, this post-training confusion matrix is
an indication of sensors limitations being met due to the simi-selective nature of the images to
incorporate into the second database. When the quadcopters merged classes, creating two overall
classes in the machine learning process, the maximum validation accuracy of the acoustic category
in the same conditions increased to 75.2% for Process 3, 79.8% for Process 4, and 64.6% for

Process 5. In order to increase these accuracies more with the same conditions, the equipment

74

would need to be upgraded, the sensors would need to stay inside the limitations, or a different

machine learning process would need to be implemented.

Overall, the limitation of the RGB camera was due to range and background. The farther
the drone is from the camera, the smaller and more blurry the drone becomes. This was noticeable
at approximately 50 ft. for this RGB camera. The next factor to consider is the background. The
drone went beyond 50 ft. multiple times in locations before the fifth location; however, the farthest
distance occurred mostly with the sky as a background. When there is an object behind the drone,
then the drone becomes hard to identify with the human eye. This issue became apparent at both

the fourth and fifth locations.

The thermal camera is an advantageous sensor that will work well in conditions which are
not suitable for the RGB camera. However, when the drone is in the hot intensity region of the
image map, the drone is extremely hard to detect. The next limitation is the distance the drone is
from the sensor. Like the RGB camera, the drone becomes smaller and more blurry at
approximately 50 ft. With the combination of these two limitations, the thermal camera struggled
to detect and classify the mini drones. Another limitation of this sensor is the background; if an
object in the background has an extremely hot intensity compared to the drone, then the detection
of the drone is incredibly difficult. These issues became very apparent at the fourth and fifth

locations.

The acoustic sensor limitation was due to the distance and the mini quadcopters. The
distance greatly affected the drone in the 50-ft.-to-90-ft. range. The accuracy dropped drastically
when many of the input data from that range were incorporated. The mini quadcopters were a

limitation due to the drone’s having difficulty differentiating them when the majority of the data

75

was within 50 ft. However, when the mini quadcopters merged into one class, the validation

accuracy in the classification was outstandingly higher.

Future Works

This project is capable of being modified in the future. One of the easy modifications to
this project would be to use different sensors or to upgrade the sensors. Another possible
modification would be to alter the type of input data, such as the Mel Frequency Cepstral
Coefficient, or the machine learning process. The data could also be collected in a park or another
location with different environmental settings or different drones. A modification code-wise could
implement a convolutional neural network to determine which classification the drone is in using
broad classes, and then perform another CNN on the specific type of drone inside that broad
classification previously classified. As pointed out, there is a decent amount of potential to modify

or expand upon this project to acquire additional data on the robotic detection of drones.

76

Appendices

Appendix A: Robot Detailed Drawing

DESCRIPTION

)
2

Tee

DC Motors

12.75" x 3.375" Plexiglass

17.25" x 3.375" Plexiglass

9
32

Batfery

@10

Arduino

*

1

2

3

4

5 L Brackets
s

7

8 Raspberry Fi
9

Motor Confroller

10, LIDAR

1 FLIR Thermo Camera

2| Acoustic Anay Microphone

13 Camera

14 3D Printed Mount

g

~[=l=]=]=[=]=T=]=]=[e]n]n]a]a]

‘Aluminum Roll Cage

N 1 4%“ N

TOP VIEW

10
7
L]
I
L

1T E

143
3;
23"
~ b SECTION A-A
FRONT VIEW

NOTE: SERVO HAS NOT BEEN DRAWN

Figure A-1 Robot Design Detailed Drawing.

77

Appendix B: Sensor Technical Specifications

Model

Sensor

Lens Size

Pixel Size

Max. Resolution
Compression format
Resolution &frame

ELP-SUSB1080PO1-LC1100

IMX291

1/28inch

Z8um X 2.9um

1920{H)X1080{V)

MJPEG [YUV2IYUYV)

1920X1080 MJPEGE S0fps/ USB3.0 1920X1080 YUY2@ S0fps
1280720 MJPEGE 50fps [USB3.0 1280X720 YUY2@ 50fps
640X480MIPEGE S0fps / USE3.0 640X480 YUY2@ 50fps

5/M Ratin 4045

Dynamic Range 65dE

Sensitivity 1900mV/|ux-sec@550nm

Mini illumination 0. 01hux

Shutter Type Electronic rolling shutter / Frame exposure
Connecting Port type USB3.0 High Speed

Free Drive Protocol JSE Video Class{UVC)

AEC Support

AEB Support

AGC Support

Adjustable parameters

Brightness, Contrast, Saturation, Hue, Sharpness, Gamma,

Gain, White balance, Backlight Contrast, Exposure

Lens Parameter

Power supply USE BUS POWER
Operating Voltage DCsY

Working current 1TOmA~210mA
Working temperature 0-70 degree
Board size /Weight 38°38mm

Cable Standard 1M
Qperating system request Wing or above

Mo distortion lens {2.8mm3.6mm/8/12mm lens optional}

Litux with UVC{above linux-2.6.26)

MAC-05% 10.4.8 or later

Android 4.0 or above with UVC

Table B-1: ELP USB 2.0 Webcam 2 Mega Pixels Specifications [11].

Lepton 3.5

Uncooled VOx microbolometer

Longwave infrared, 8 pm to 14 pm

160 x 120, progressive scan

12pm

SPECIFICATIONS
Overview Lepton 3
Sensor technology Uncooled VOx microbolometer
Spectral range Longwave infrared, 8 ym to 14 ym
Array format 160 x 120, progressive scan
Pixel size 12 pm
Effective frame rate 8.7 Hz [commercial application exportable)

8.7 Hz (commercial application exportable)

Thermal sensitivity

<50 mK (0.050° C)

<50 mK (0.050° C)

Temperature compensation

Automatic. Output image independent of camera temperature.

Automatic. Output image it of camera

Radiometric Accuracy

High gain Mode: Greater of +/-5° C or 5% (typical)
Low Gain Mode: Greater of +/- 10° C or 10% (typical)

Non-uniformity corrections

Integral Shutter

Integral Shutter

Scene dynamic range

0°t0120°C

High Gain Mode: -10° to +140° C
Low Gain Mod ° to +400° C (at room temperature)
10 +450° C typical)

Image optimization

Factory configured and fully automated

Factory configured and fully automated

FOV - horizontal 57° 57°
FOV - diagonal ne ne
Lens Type 1.1 fna
User-selectable 14-bit, 8-bit (AGC applied), or 24-bit RGB (AGC | User-selectable 14-bit, 8-bit (AGC applied), or 24-bit RGB (AGC
Qutput format & -
and colorization applied) and colorization applied)
Solar protection Integral Integral

Table B-2: FLIR Lepton 3.0 Specifications [10].

78

Item

Description

Digital Signal Processor

32-bit Floating point Analog Devices SHARC ADSP21489 / 400 MHz - Configuration locked

USB audio input

XMOS Xcore200 asynchronous USB audio up to 192 kHz, USB Audio Class 2 compliont
© ASIO drivers for Windows

© Driverless for Mac OS X

PDM inputs

Up to 16 x MEMS microphone connections (8 x stereo PDM data lines)

MEMS microphone

16 x SPH1668LM4H - Acoustic Overload @ 120dBSPL / High SNR of 65dB / RF shielded

ADC/DAC Sample rate &

Resolution: 24 bit

Resolution

Sample rate: 14.7k/11.025k/12k/16k/22.05k/44.1k/48k
UsB port UsB port type Mini-B for audio streaming and firmware upgrade
Power supply 12 VDC single supply / Header input / 2.5W

Dimensions (H x W x D) mm

132 x 195 x 25 mm

Mounting

4 x M3 holders for front panel mounting / CAD drawings availoble on demand

Table B-3: UMA-16 miniDSP Specifications [32].

Laser Specifications

Specification

Wavelength

Measurement
805 nm (nominal)

Total laser power (peak)

1.3W

Pulse width

0.5 ps (50% duty cycle)

Pulse train repetition frequency

10-20 kHz nominal

Energy per pulse

<280 nJ

Beam diameter at laser aperture

12x 2mm (0.47 = 0.08 in.)

Divergence

B mRad

Table B-4: LIDAR Lite v3 Performance Specifications 1 [31].

79

Specification
Resolution

Measurement
+1cm (0.4 in.)

Accuracy <2 m

+5cm (2 in.) typical

NOTE: Nonlinearity present below
1m(39.4in.)

Accuracy 22 m

+2.5 cm (1 in.) typical
Mean +1% of distance max
Ripple +1% of distance max

Update rate (70% reflective target)

Greater than 1 kHz typical
Reduced sensitivity at high update
rates

User interface

i2C
PWM
External trigger

12C interface

Fast-mode (400 kbys)
Default 7-bit address 0x62
Internal register access and control

PWM interface

External trigger input
PWM output proportional to
distance at 10 microsecond/cm

Water rating

IEC 60529 IPX7*

Important:

The bare wire portion of the
wiring harness is not water
resistant, and can act as a path
for water to enter the device, All
bare-wire connections must
either be made in a water-tight
location or properly sealed.
Water may enter under the
transmitting lens. This could
affect performance, but will not
affect the IEC 680529 IPX7
waler rating.

Table B-5: LIDAR Lite v3 Performance Specifications 2 [31].

80

Appendix C: Machine Learning Process Evaluation

C-1: First Input Set Evaluation. The convolutional neural network was performed three times on the data from

Location 1 and the table shows the validation accuracy for each performance.

Validation Accuracy (%) RGB Thermal Acoustic
Evaluation 1 76.47 45.83 66.67
Evaluation 2 88.24 66.67 45.15
Evaluation 3 94.12 33.33 61.54

Table C-2: Second Input Set Evaluation. The convolutional neural network was performed three times on the data from

Locations 1-2 and the table shows the validation accuracy for each performance.

Validation Accuracy (%) RGB Thermal Acoustic
Evaluation 1 7193 % | 65.69 % | 44.09 %
Evaluation 2 7544 % | 62.75% | 58.06 %
Evaluation 3 67.54 % | 72.55% | 39.78 %

81

C-3: Third Input Set Evaluation. The convolutional neural network was performed three times on the data from

Locations 1-3 and the table shows the validation accuracy for each performance.

Validation Accuracy (%) RGB Thermal Acoustic
Evaluation 1 86.41% | 82.88% | 66.18 %
Evaluation 2 96.60 % | 82.66 % | 71.26 %
Evaluation 3 7792 % | 82.43% | 70.53 %

Table C-4: Fourth Input Set Evaluation. The convolutional neural network was performed three times on the data from

Locations 1-4 and the table shows the validation accuracy for each performance.

Validation Accuracy (%) RGB Thermal Acoustic
Evaluation 1 75.43 53.92 60.49
Evaluation 2 74.57 62.66 56.58
Evaluation 3 78.35 58.47 56.79

Table C-5: Fifth Input Set Evaluation. The convolutional neural network was performed three times on the data from

Locations 1-5 and the table shows the validation accuracy for each performance.

Validation Accuracy (%) RGB Thermal Acoustic
Evaluation 1 60.23 31.84 39.58
Evaluation 2 49.15 41.92 36.31
Evaluation 3 59.55 43.07 46.58

82

Appendix D: Machine Learning Process 2

N—
@ Final
1
f"
2 et
= ==
el
2
£
Accuracy
Teaining {smocthed)
Training
= =@ = Validation
10—
Epoch 1 | Epoch 2 i Enochls fpoch 4 \ Epoch 5 1 Epoch GI
[
o 20 40 60] 100 120 140
lteration
Results Validation
- Validation accuracy: 75.44% | Frequency: 26 iterations
Training finished: Reached final iteration | Patience: Inf
18— Loss
16— Trakning (smoothed)
il Training
bl Lt S = =@ = Validation
il e e L e T e
- =" B -
1 e e e e e -7 =t
“os}- ¢ =
~
0.6 1
0.4 — é Final
02— :
Epoch 1 Epoch3 ; i M Epachigy -~
o
1] 20 40 60 B0 100 120 140
Iteration

Figure D-1: RGB Machine Learning Process Up to the Second Location.

83

Accurscy
100f ——— teamirg tremostien
Tramrg
ag = 8- - Valation
80
70 ? Final
1
Feol-{| A Yy = e)
2 S 1
-~
s = ~<
=
a0 -
B -
Wie-==——""T
20—
10—
Epoch 1 | Epoch 2 | Epoch 3 A Epoch 4 | Epoch q Epofh 6 |
o
o 20 40 e} &0 100 120 140
Iteration
Results validation
Validation accuracy: F255% | Frequency: 23 terations
Training finished: Reached final iteration | Patience: Inf
16—
1.4+
————
128 — e e m—— =
SE— — e 4;
= = 2 b
@ T T ér»ml
Sosf-
0.6
Training (smocthed)
o4 Training
0.2 = == = validation
Epoch 1 | |
o
o 20 40 &0 a0 100 120 140

Iteration

Figure D-2: Thermal Machine Learning Process Up to the Second Location.

84

100

90

80

Accuracy (%}

Accuracy

Training {smoothed)
Training
— ~8— - Validation

Epoch 1 | Epoch 2 | Epoch 3 | Epoch 4 | Epoch 5 1 Epoch 6 |
00 20 40 60 BO 100 120
Iteration
Results Validation
Validation accuracy: 58.06% Frequency: 22 iterations
Training finished: Reached final iteration Patience: Inf
2.5 FLoss
Training (smoothed)
:k Training
— -&— - validation SN e

0.5

n Epoch 1 | Epoch 2 | Epoch 3 | Epoch 4 | Epoch & | Epoch 6 |

1] 20 40 60 B0 100 120

Iteration

Figure D-3: Acoustic Machine Learning Process Up to the Second Location.

85

Second Machine Learning Process: RGB Confusion Matrix of Training Validation

sk

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure D-4: Process 2 RGB Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Second Machine Learning Process: Thermal Confusion Matrix of Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure D-5: Process 2 Thermal Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

86

Second Machine Learning Process: Acoustic Confusion Matrix of Training Validation

Parrot Quadcopter

I}

0

g Parrot Swing 4.2%

=

=

—
Tello Quadcopter |
Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure D-6: Process 2 Acoustic Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Second Machine Learning Pr RGB Confusion Matrix of Post-Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure D-7: Process 2 RGB Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The second
column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This includes

variations and the limitations from the fifih location that the network has not seen yet.

87

Second Machine Learning Process: Thermal Confusion Matrix of Post-Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure D-8: Process 2 Thermal Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The
second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

Second Machine Learning Process: Acoustic Confusion Matrix of Post-Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure D-9: Process 2 Acoustic Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The
second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

88

Appendix E: Machine Learning Process 4

Accuracy (%)

Loss

100 —
90— 4B
A |
® Final
| e — A ———— | e .
0 Pl ot Xt e e el o o e e - ———— ——————— g —— |
’
'l
’
&0 ,’
.
a
50 /
’
g
a0 fi- L
v
d
0 r‘/ | ererasy
| = Tralning (amoothed)
20— | Training
| = == = Validation
10—
Epoch 1l | Epoch 2 | Epccp 3 | Epoch 4 \ Epoch 5 | Epth 6 |
0
1] 100 200 300 400 s00 600 700 a0
Results Iteration Vakdation
Validation accuracy: 78.35% Frequency: 135 iterations
Training finished: Reached final iteration Patience: Inf
18— Loss.
Training (smoothed)
16~ Training
1.4 — == = Valdation
12
1
0.8
_____________ N et SO —
0.6 e g e =
0.4 @ Final
02— !
Epoch 1 - 1 g i
ol
0 100 200 300 400 500 600 100 800
Iteration

Figure E-1: RGB Machine Learning Process Up to the Fourth Location.

89

Accuracy (%)

Tramng (smoctted)
201 Traieg
= =8 = Valdation
-
5 Epoch 1 L Epoch 2 | Epoch 3I Epr:och 4 | Epoch 5 | Epoch 6 { L
o 100 200 300 400 500 600 100 800
Iteration
Results Validation
Validation accuracy: 62.66% Fraquency: 128 iterations
Training finished: Reached final iteration Patience: Inf
Loss
i —— Training (smaathed)
Training
3 = —#— = validation
25
21— ? Final
15 -, = P e]

Figure E-2: Thermal Machine Learning Process Up to the Fourth Location.

90

100 — ‘ |
90 — I | | | | ‘ | :| [‘] l [
80 gy -1 11 . 1 1 1 W S I) B
| Wi CTRTEE i g
70 |— d r | i I"' L | | M
| 1 1
F ool ‘ I | :H, a
£ e M - | | i | 2 Final
= 1 =~k 4 ha N 1 -
: | it | 1ok rH T L L Il
E 5 |- I i, \ | Il J I |] T = .=t | | ‘
ol SV liiad ¥ ‘I, i ‘ |AR8 ! J‘
30 | -, ! | | | | |
l \ Aeeursey
I s Tridining | rmsoothad
2 ! Tralning
= == = Vildation
10
Epoch 1 A Epoch 2 | Epoch 3 | Epoch 4 | Epoch 5 | Epuch? |
o
a 100 200 300 400 500 600 700
Iteration
Results Validation
Validation accuracy: 60.49% Frequency; 113 iterations
Training finished: Reached final iteration Patience: Inf
- Lass
Training {smoathed)
25 Training
= =@~ = Validation

| Epoch 2
100 200

| Epoch 4

Final

Epoch q

Iteration

600 700

Figure E-3: Acoustic Machine Learning Process Up to the Fourth Location.

91

Fourth Machine Learning Process: RGB Confusion Matrix of Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure E-4: Process 4 RGB Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Fourth Machine Learning Process: Thermal Confusion Matrix of Training Validation

Parrot Quadcopter 2.6% 2.7%

Parrot Swing

True Class

Tello Quadcopter 10.7%

Parrot Quadcopter Parrot Swing Tello Quadcopter

Predicted Class

Figure E-5 Process 4 Thermal Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

92

Fourth Machine Learning Process: Acoustic Confusion Matrix of Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter

Parrot Swing Tello Quadcopter
Predicted Class

Parrot Quadcopter

Figure E-6: Process 4 Acoustic Training Confusion Matrix. The first column and row represent the Parrot Swing. The second

column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter.

Fourth Machine Learning Process: RGB Confusion Matrix of Post-Training Validation

Parrot Quadcopter 6.79 3.3% 3.3%
n
n
N
‘:J Parrot Swing
=
=
Tello Quadcopter 6.7% 6
Parrot Quadcopter Parrot Swing Tello Quadcopter

Predicted Class

Figure E-7: Process 4 RGB Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The second
column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This includes

variations and the limitations from the fifih location that the network has not seen yet.

93

Fourth Machine Learning Process: Thermal Confusion Matrix of Post-Training Validation

Parrot Quadcopter

Parrot Swing

True Class

Tello Quadcopter 6.7% 3.3%

Parrot Quadcopter Parrot Swing Tello Quadcopter

Predicted Class

Figure E-8: Process 4 Thermal Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The
second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

Fourth Machine Learning Process: Acoustic Confusion Matrix of Post-Training Validation

Parrot Quadcopter 6 3.3% 3.3%
n
n
Ao
<, Parrot Swing 6.7%
=
=
Tello Quadcopter 3.3% 6.7%
Parrot Quadcopter Parrot Swing Tello Quadcopter
Predicted Class

Figure E-9: Process 4 Acoustic Post-Training Confusion Matrix. The first column and row represent the Parrot Swing. The
second column and row represent the Parrot Quadcopter, and the third column and row represent the Tello Quadcopter. This

includes variations and the limitations from the fifth location that the network has not seen yet.

94

Appendix F: Overall Time Performances

Table G-1: Overall Time Performances. This table shows the comparison between the two classes of Parrot Swing and
Quadcopters to the three classes Parrot Swing, Parrot Quadcopter, and Tello Quadcopter for Process 3, 4, and 5. The Process
Random Difference is the validation accuracy subtracted by the random guess to compare the difference in accuracy

realistically.

Machine Learning Inputs RGB Thermal Acoustic
Process 1 | 4min 34s 4min 11s 3min 26s
Process 2| 9min 37s 8min 30s 8min 11s
Process 3| 44min 13s | 37min S1s | 36min 58s
Process 4 | S0 min 11s | 47min 28s | 41min 47s
Process 5| 78min 57s 77min 22s | 60min 52s

95

Appendix G: Modified Machine Learning Process

100 |~ "
' [| l ’ [l
90 - I | e - e ! - =
H | HEETITIL | LU | DAL B
80 }— N x ! . $ 48 - L —
| 1] AL
= || aJls l._ l] ! ‘ Tl = | AN T el B _|_] ® Final
2 T A (i (e ity \nled - el P LAl BAVA'A FOTM O 8 O R 1
;i AW TTW [RININ
Z o LA /1 : LI L LI ‘ L1
il i1 1| H | | |
g sl LT | L} |
v
3 H 1 l l |
30— ‘ l ‘ Accuracy
Training (smoothed)
20— Training
= ~@— = Validation
10
. Epoch 1 \ Epoch Zl IF.poch 3 \ Epoch 4 | Fpo:h 5 | Epoch 6 \ |
0 50 100 150 200 250 300 350 400 450
Iteration
Results Vvalidation
Validation accuracy: 75.16% Frequency: 74 rerations
Training finished: Reached final iteration Patience: Inf
Loss
2 | Training (smoothed)
Training

~ ~@— = Validation

. Epoch 1 | Epoch 2 : (Epoch 3 | Epochd | - fpoch 5
0 50 100 150 200 250 300 350
Iteration

Figure G-1: Modified Acoustic Process 3. The machine learning process up to the third location was modified to contain two

classes (Parrot Swing and Quadcopters).

96

100 I I | l [] ‘ ‘
i IR NI TR TR TS
80| ‘ - . ‘ | lnl.' ! . | T i v AT ""I"'"‘"
[| ~ -k ll I | » - - LR A | il
70 L Lot A [t - I ! === =}l VR
G ol -{- L L/ LI L L UL L1 TN |
£ 60
fil | I .|
3%‘ Al LN LY | l |
1 ’ ‘ ’l |
30 p~ | Accuracy
Training (smoothed)
20— < Training
- =@ = Validation
10~
" Epoch 1 | Epocpz | Epoch 3 \ f.po:h4 \ Epochls | Epoch 6 | \
0 50 100 150 200 250 300 350 400 450 500
Iteration
Results validation
Validation accuracy: 79.83% Frequency: 82 nerations
Training f Reached final Patience: Inf
2 Loss
Tralning (smoothed)
| | Training
15 i 1 | - -~ = Vakdation

Figure G-2: Modified Acoustic Process 4. The machine learning process up to the fourth location was modified to contain two

classes (Parrot Swing and Quadcopters).

97

100 I [| (.
TR 1 SR =
il Il | CD lHl, [Y.',.'l.”.',{,’ | A A
70} | f i, I ('le l v e ‘r.;‘ ;_4{ ! “i"" 8 1|0 ! ‘ ! ‘f‘ _IiAl Jii. :
2 o} gn “,“-—’-_ TV I" wnan AL W hftl‘ il 11 {19 I .‘7‘~~_~__H[_|._,___‘ LN e
3 ot L WLl ll ‘ | (MR E R
o LI S R | |
304 Accuracy
Bt
10~ I = =@ = Validation
Epoch 1 | Epoch 2 | Epochl3 Fpoch 4 | Epoch 5 | Epoch ? L
i) 100 200 300 400 500 600 700 800
Results Recton Validation
Validation accuracy: 64.56% Frequency: 132 iterations
Training finished: hed final | Patience: Inf
-+ B Training (smoothed)

Training

300 400

Iteration

Figure G-3: Modified Acoustic Process 5. The machine learning process up to the fifth location was modified to contain two

classes (Parrot Swing and Quadcopters).

98

Third Machine Learning Process: Modified Acoustic Confusion Matrix of Training Validation

Parrot Swing

True Class

Quadcopters

Quadcopters

Parrot Swing
Predicted Class

Figure G-4: Modified Process 3 Acoustic Training Confusion Matrix.

Third Machine Learning Process: Modified Acoustic Confusion Matrix of Post-Training Validation

Parrot Swing

True Class

Quadcopters

Quadcopters

Parrot Swing
Predicted Class

Figure G-4: Modified Process 3 Acoustic Post-Training Confusion Matrix.

99

True Class

True Class

Fourth Machine Learning Process: Modified Acoustic Confusion Matrix of Training Validation

Parrot Swing

Quadcopters

39.2%

Parrot Swing Quadcopters

Predicted Class

Figure G-5: Modified Process 4 Acoustic Training Confision Matrix.

Fourth Machine Learning Process: Modified Acoustic Confusion Matrix of Post-Training Validation

Parrot Swing

Quadcopters

16.7% 16.7%
13.3% %
Parrot Swing Quadcopters

Predicted Class

Figure G-6: Modified Process 4 Acoustic Post-Training Confusion Matrix.

100

True Class

Fifth Machine Learning Process: Modified Acoustic Confusion Matrix of Training Validation

Parrot Swing

Quadcopters

Parrot Swing Quadcopters

Predicted Class

Figure G-7: Modified Process 5 Acoustic Post-Training Confusion Matrix.

Fifth Machine Learning Process: Modified Acoustic Confusion Matrix of Post-Training Validation

Parrot Swing 10.0% 23.3%

True Class

Quadcopters 6.7%

Quadcopters

Parrot Swing
Predicted Class

Figure G-8: Modified Process 5 Acoustic Post-Training Confusion Matrix.

101

Appendix H: Data Collecting Program

from collections import deque

import numpy as np

import time

import datetime

from PIL import Image, ImageTk
import matplotlib.pyplot as plt
import matplotlib

matplotlib.use ('TkAgg')

from matplotlib.backends.backend tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
from matplotlib.figure import Figure
import wave

import cv2

import os

import pyaudio
#import csv

import tkinter as tk
import threading
import dill

import time

import shutil

A F A R R R

#H### #4444 Variable Declaration #########4#

HEAF AR R R

user name='wasp'

usb name='Flashy'

dirName='/media/%s/%s/Robot Sensors' % (user name, usb_name)

Thermal and USB Camera Inputs
therm input=1

usb cam input=0

cameras_process=0

acoustic process=0

aud prev=[]

counting=0

rec_setup=0
rec _data = False

Acoustic Sensor

FORMAT = pyaudio.paIntl6 # We use 16 bit format per sample
CHANNELS = 16

RATE = 44100

CHUNK = 1024 # 1024 bytes of data read from the buffer #44100
RECORD_SECONDS = 0.001

WAVE OUTPUT FILENAME = ("RobotAcoustic.wav")

Mic Device Number=3

audio = pyaudio.PyAudio ()

stream = audio.open (format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
input device index = Mic Device Number,
frames per buffer=CHUNK)

102

keep going=True

proceed=1

##Exact positioning
cam_size=320

stn font='18"

stb _font="'15"

quit x=.01
quit y=.76875

record x=.01
record y=.6

stop x=.1625
stop y=.6

rgb x=0.0885
rgb y=0

rgb 1x=.011875
rgb 1ly=.05125

hsv x=.43
hsv_y=0

hsv 1x=.3425
hsv_1y=.05125

fps x=.275
fps y=.5125
thm x=.74
thm y=0

thm 1x=.67375
thm 1y=0.05125

act x=.375
act y=.56125
act 1x=.375
act 1ly=.56125

FHEF AR A R R
EE R R i i
class Application(tk.Frame) :

def init (self, master):

bold'

bold'

bold'

tk.Frame. init (self,master)

#H#### Buttons ######

quit button = tk.Button (master=root, text='End Process', font='Helvetica %s
$stb_font, bg='red', command=lambda: quit (root))

quit button.place(relx=quit x, rely=quit y)

record button = tk.Button(master=root, text='Record Data', font='Helvetica %s
%stb _font, bg='green', command=lambda: record data())
record button.place (relx=record x, rely=record vy)

stop button = tk.Button(master=root, text='Stop Record', font='Helvetica %s
%stb font, bg='green', command=lambda: stop data())
stop button.place(relx=stop x, rely=stop y)

self.guiSetup ()
self.main setup ()
self.main ()
self.after(0,self.main)

103

FHAFHF A AR AR A A R R R R
def main_ setup(self):
global acoustic process
daemonTc=True
acous_thread:threading.Thread(target:self.audio_stream, daemon=daemonTc)
acous_ thread.start ()

while proceed==1:
cam thread=threading.Thread(target=update image, daemon=daemonTc)
cam_thread.start ()

try:

cam_thread.join()
except:

pass
self.convert image (rgb image label)
self.thermal vid()

if acoustic process==0:
break
try:
acous_thread.join()
except:
pass

plot data setup ()
acoustic process=0
daemonTc=False

EE R R i
def main(self):
print ('main loop')
global acoustic process
global aud prev
global counting
daemonTc=True
acous_thread=threading.Thread(target=self.audio stream, daemon=daemonTc)
acous_ thread.start ()

while proceed==1:
cam thread=threading.Thread (target=update image, daemon=daemonTc)
cam_thread.start ()

try:
cam_thread.join()
except:
pass

self.convert image(rgb_ image label)
self.thermal vid()

if acoustic process==0:
break
try:
acous_thread.join()
except:
pass

acoustic process=0

print ('next')
daemonTc=False

104

ax.clear ()
print ('plot begin')

length=range (0, len (aud prev))

mlength=max (length)

length2=range (mlength+l,mlength+len (audio_data)+1)

mlength2=max (length?2)

ax.plot (length[0:int (mlength*.25)],aud prev[0:int (mlength*.25)],
linestyle='solid', marker='.', color='b'")

update image ()

self.convert image(rgb image label)

self.thermal vid()

ax.plot (length[int (mlength*.25) :int (mlength*.5)], aud prev[int (mlength*.25) :int (mlength
*.5)], linestyle='solid', marker='.', color='b')

update image ()

self.convert image(rgb image label)

self.thermal vid()

ax.plot (length[int (mlength*.5) :int (mlength*.75)], aud prev[int (mlength*.5) :int (mlength*
.75)]1, linestyle='solid', marker='.', color='b')

update image ()

self.convert image(rgb image label)

self.thermal vid()

ax.plot (length[int (mlength*.75) :],aud prev([int (mlength*.75):],
linestyle='solid', marker='.', color='b"'")

update image ()

self.convert image(rgb image label)

self.thermal vid()

ax.plot (length2[0:int (mlength2*.25)],audio data[0:int (mlength2*.25)],
linestyle='solid', marker='.', color='b')

update image ()

self.convert image(rgb image label)

self.thermal vid()

ax.plot (length2 [int (mlength2*.25) :int (mlength2*.5)],audio data[int (mlength2*.25) :int (m
length2*.5)], linestyle='solid', marker='.', color='b")

update image ()

self.convert image(rgb image label)

self.thermal vid()

ax.plot (length2 [int (mlength2*.5) :int (mlength2*.75)],audio data[int (mlength2*.5) :int (ml
ength2*.75)], linestyle='solid', marker='.', color='b')

update image ()

self.convert image(rgb image label)

self.thermal vid()

ax.plot (length2[int (mlength2*.75) :],audio data[int (mlength2*.75):],
linestyle='solid', marker='.', color='b')

update image ()

self.convert image(rgb image label)

self.thermal vid()

canvas.draw ()

plt.close()

aud prev=audio data
print ('plot end')
counting=counting+l
print (counting)
self.after(0,self.main)

FHA A A S S o
def guiSetup (self):

105

bold'

bold'

bold'

bold'

global canvas

global ax

global cam

global therm cam

global rgb image label
global hsv_image label
global therm image label
global fps label

global canvas

global 1i fig, ax

FhEFHHHS S A
FHEF AR RRR RS RRRRREEEEE Name Labels #######4444444# 444 #HHHHHHHHHHH
FHEF AR R R R

#H##### Camera #####4#
#RGB Image

rgb_image label name=tk.Label (root, text="RGB Camera", font='Helvetica %s

%stn_font)
rgb image label name.place(relx=rgb x, rely=rgb y)

rgb_image label = tk.Label (master=root)
rgb image label.place(relx=rgb 1lx, rely=rgb ly)

#HSV Image

hsv_image label name=tk.Label (root, text="HSV Camera", font='Helvetica %s

%stn_font)
hsv_image label name.place (relx=hsv x, rely=hsv y)

hsv_image label = tk.Label (master=root)
hsv_image label.place(relx=hsv 1x, rely=hsv ly)

#FPS
cam = cv2.VideoCapture (usb_cam input)
fps label = tk.Label (master=root)
fps label. frame times = deque ([0]*5)
fps label.place(relx=fps x, rely=fps vy)

#H##### Thermal Image ######

thermal label name=tk.Label (root, text="Thermal Picture",
%stn_font)

thermal label name.place(relx=thm x, rely=thm y)

#Capture video frames

therm image label = tk.Label (master=root)

therm image label.place(relx=thm 1lx, rely=thm ly)

therm cam = cv2.VideoCapture (therm input)
#####4## Acoustic Wave ######

acoustic label name=tk.Label (root, text="Acoustic Waves",
%stn_font)

acoustic label name.place(relx=act x, rely=act y)

fig=plt.figure(figsize=(7,3))
ax=fig.add subplot (111)

font="'Helvetica

font="'Helvetica

Prepare the Plotting Environment with random starting values

X = np.arange(10000)
y = np.random.randn (10000)

Plot 0 is for raw audio data
1i, = ax.plot(x, V)
ax.set xlim (0, 2*CHUNK)

ax.set ylim({-200,200})

ax.set title("Raw Audio Signal")

106

%s

%s

canvas = FigureCanvasTkAgg (fig, master=root)
canvas.get tk widget () .place(relx=.3125, rely=act ly)
EE R R R i
def convert image(self, rgb image label):
global rgb image
global hsv_image
rgb iml = Image.fromarray(rgb image)
rgb im2 = ImageTk.PhotoImage (image=rgb iml)
rgb image label.configure (image=rgb im2)
rgb image label. image cache = rgb im2
if rec data:
timearrayl=time.strftime ("%d %m %Y SH %M %S")
rgb im3=rgb iml.save ('/media/wasp/Flashy/Robot Sensors/RGB/'
+timearrayl+'.jpeg')

hsv_iml = Image.fromarray (hsv_image)
hsv_im2 = ImageTk.PhotoImage (image=hsv_iml)
hsv _image label.configure (image=hsv im2)
hsv _image label. image cache = hsv_im2
EE R R i i
def thermal vid(self):
global therm cam

_, frame = therm cam.read()

cvZimage = cv2.cvtColor (frame, cv2.COLOR BGRZRGBA)
cv2image = cv2.resize(cv2image, (cam size,cam size))
img = Image.fromarray(cv2image)

imgtk = ImageTk.PhotoImage (image=img)
therm image label.imgtk = imgtk
therm image label.configure (image=imgtk)
imgtk. image cache = imgtk
if rec data:
timearray2=time.strftime ("%d %m %Y SH %M %S")
img = Image.fromarray(cv2image)
img2=img.convert ('RGB")
img2=img2.save ('/media/wasp/Flashy/Robot Sensors/Thermal/'
+timearray2+'.jpeg')
FHEF AR A R R R
def convert thermal (self):
global thermal image
img = Image.fromarray(thermal image)
imgtk = ImageTk.PhotoImage (image=img)
therm image label.imgtk = imgtk
therm image label.configure (image=imgtk)
imgtk. image cache = imgtk
ER R R i
def update fps(self, fps label):

frame times = fps label. frame times

frame times.rotate()

frame times[0] = time.time ()

sum_of deltas = frame times[0] - frame times[-1]
count of deltas = len(frame times) - 1

try:

fps = int(float(count_of_deltas) / sum of deltas)
except ZeroDivisionError:
fps = 0
fps label.configure(text="'FPS: {}'.format (fps))
FHEHHE A R R R R
def audio stream(self):
global acoustic process
global audio data
acoustic process=1
print ('stream begin')

107

if keep going:
stream.start stream()
stream data=stream.read(CHUNK, exception on overflow = False)
stream.stop stream()
audio data = np.fromstring(stream data, np.intl6)
acoustic process=0
print ('stream end')

if rec data:

timearray3=time.strftime ("%d %m %Y %H %M %S")
WAVE_OUTPUT_FILENAME='Acoustic'+timearray3+'.wav'
wf =

wave.open ('/media/wasp/Flashy/Robot Sensors/Acoustics/'+WAVE OUTPUT FILENAME, 'wb')
wf.setnchannels (CHANNELS)
wf.setsampwidth (audio.get sample size (FORMAT))
wf.setframerate (RATE)
wf.writeframes (audio data)
wf.close ()

FhA A A A A A A A A A A A A A AR A AR A A A A A A A o
FHA A S S S o
def quit (root):

global proceed

proceed=0

print ('Ending Python Code')

stream.stop stream/()

stream.close ()

audio.terminate ()

root.destroy ()

os.system("pkill python3")

def record data():
global rec data
global rec_setup
rec data = True

if rec setup==0:
global user name, usb name, dirName
try:
os.makedirs ('%s/RGB' %dirName)
print ("Directory " , dirName , " Created ")
except FileExistsError:
print ("Directory %$s/RGB" &%dirName , " already exists")

try:
os.makedirs ('%s/Thermal'%dirName)
print ("Directory " , dirName , " Created ")
except FileExistsError:
print ("Directory %s/Thermal" %dirName , " already exists")

try:
os.makedirs ('%s/Acoustics'%dirName)
print ("Directory " , dirName , " Created ")
except FileExistsError:
print ("Directory %s/Acoustics" %dirName , " already exists")

print ('Recording Turned ON')
def stop data():
global rec data

rec _data = False
print ('Recording Turned OFF')

108

def status():
if rec data==True:
print ('Record is On')
if rec data==False:
print ('Not Recording')

def update image() :
global cam
global rgb image
global hsv_image
(readsuccessful, f) = cam.read(usb_cam input)
rgb im = cv2.cvtColor (f, cv2.COLOR BGR2ZRGB)
rgb image = cv2Z.resize(rgb im, (cam size,cam size))
hsv _im = cv2.cvtColor (f, cv2.COLOR BGR2HSV)
hsv_image = cv2.resize (hsv_im, (cam size,cam size))

def plot data setup():
global audio data
global aud prev
print ('plot begin S')
length=range (0, len (audio_data))
mlength=max (length)
ax.plot (length,audio data, linestyle='solid', marker='o', color='b'")
canvas.draw ()
plt.close()
aud_prev=audio data
print ('plot end S')

def plot data():
global audio data
global aud prev
ax.clear ()
print ('plot begin')

length:range(O,len(aud_prev))

mlength=max (length)

ax.plot (length,aud prev, linestyle='solid', marker='o', color='b')

ax.plot (range (mlength+l,mlength+len (audio data)+l),audio data, linestyle='solid',
marker='o', color='b'")

canvas.draw ()

plt.close()
aud_prev=audio data
print ('plot end')

FHEF ARSI SE
4

FHEHEHH AR AR R
#HHF A A EEH#HF PROGRAM ########HHH####
FHEHEHH AR AR R
root=tk.Tk ()

root.title ("Drone Data Collecting GUI")
root.geometry ('1600x1250")

print ('root begin')

app=Application (master=root)
app.mainloop ()

109

Appendix I: Data Transfer and Audio Processing Program

import
import
import
import time

import datetime

from tgdm import tgdm

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from scipy.io import wavfile

from python speech features import mfcc,
import librosa

platform
os
sys

#User Needs To Define
FHAFEHSH S

usb name='Flashy'

sample rate=44100

FHEFEHFH S
time=time.strftime ("$H:%M:%3S")
time array=[str(time[0:])]
dirName
' '+time[0:]

logfbank

'/home/agent/Desktop/Robot/Data %s' %datetime.datetime.now () .date()+

dzrnameiacous='/home/agent/Desktop/Robot/Datai%s' $datetime.datetime.now () .date () +

' '"+time[0:]+'/Acoustics’

dirname sig='/home/agent/Desktop/Robot/Data %s' %datetime.datetime.now () .date()+

' '+time[0:]+'/Signal Image'

dirname fft='/home/agent/Desktop/Robot/Data %s' %datetime.datetime.now () .date()+

' '"+time[0:]+'/FFT_Image'

dzrnameifbank='/home/agent/Desktop/Robot/Datai%s' %datetime.datetime.now () .date () +

' '"+time[0:]+'/FBank Image'

dirname mel='/home/agent/Desktop/Robot/Data %s' %datetime.datetime.now () .date()+

' '"+time[0:]+'/Mel Image'

mfccs={}
fbank={}
signals={}
ffts={}
def move files(usb _name, dirname):
print (dirName)
try:
os.makedirs (dirname)
print ("Directory " , dirname ,

except FileExistsError:
print ("Directory " ,
print (dirname)

dirname ,

os.system('mv /media/agent/%s/Robot
'mv /media/agent/%s/Robot
os.system('mv /media/agent/%s/Robot

(
os.system(
print ('Files moved')

def create folders():

try:

Created ")

" already exists")

o)

Sensors/Acoustics %s' % (usb_name,dirname))
Sensors/RGB $s' % (usb name,dirname))
Sensors/Thermal %s' % (usb_name,dirname))

os.makedirs ('%$s/Signal Image'$dirName)

print ("Directory "
except FileExistsError:

, dirName ,

print ("Directory %s/Signal Image" %dirName ,

Created ")

" already exists")

110

try:
os.makedirs('%s/FFT_Image'%dirName)

print ("Directory " , dirName , " Created ")
except FileExistsError:

print ("Directory %s/Mel Image" %dirName , " already exists")
try:

os.makedirs('%s/FBank_Image'%dirName)

print ("Directory " , dirName , " Created ")
except FileExistsError:

print ("Directory %s/FBank Image" %dirName , " already exists")
try:

os.makedirs ('%$s/Mel Image'%dirName)

print ("Directory " , dirName , " Created ")
except FileExistsError:

print ("Directory %s/Mel Image" %dirName , " already exists")

def plot signals(signal):
plt.close()
fig, axes = plt.subplots(nrows=1, ncols=1, sharex=False,
sharey=True, figsize=(15,5))
fig.suptitle('Signal', size=16)
axes.set title('Frequency VS Time')
axes.plot (signals)
axes.get xaxis().set visible (False)
axes.get yaxis().set visible(False)
plt.savefig(dirname_sig+('/')+filename[:—4ﬂ
plt.cla
plt.close()

def plot fft(Y, freq):
plt.close()
fig, axes = plt.subplots(nrows=1l, ncols=1, sharex=False,
sharey=True, figsize=(15,5))
fig.suptitle ('Fourier Transform', size=16)
axes.set title('Fourier Transform')
axes.plot (freq, Y)
axes.get xaxis().set visible(False)
axes.get yaxis().set visible(False)
plt.savefig(dirname_fft+('/')+filename[:—4})
plt.cla
plt.close()

def plot fbank (fbank) :
plt.close()
fig, axes = plt.subplots(nrows=1, ncols=1, sharex=False,

sharey=True, figsize=(15,5))
fig.suptitle('Filter Bank Coeffienents', size=16)
axes.set title('Filter Bank Coeffienents')
axes.imshow (fbank,
cmap='hot', interpolation='nearest')

axes.get xaxis().set visible(False)
axes.get yaxis().set visible(False)
plt.savefig(dirname_fbank+('/')+filename[:—4})
plt.cla
plt.close()

def plot mfccs(mfccs):
plt.close()
fig, axes = plt.subplots(nrows=1l, ncols=1, sharex=False,
sharey=True, figsize=(15,5))

111

fig.suptitle('Mel Frequency Cepstrum Coefficients', size=16)
axes.set title('Mel Frequency Cepstrum Coefficients')
axes.imshow (mfccs,
cmap='hot', interpolation='nearest')
axes.get xaxis().set visible(False)
axes.get yaxis().set visible(False)
plt.savefig(dirname mel+('/')+filename[:-4])
plt.cla
plt.close()

def calc fft(y,rate):
n = len(y)
freg=np.fft.rfftfreqg(n, d=1/rate)
Y = abs (np.fft.rfft(y)/n)
return (Y, freq)

if platform.system() == 'Linux':
print ('LINUX")
print (usb name)
print (dirName)
move files (usb _name, dirName)
create folders()

£=0
total=len(os.listdir (dirname_ acous))
for filename in os.listdir(dirname acous) :

if filename.endswith (".wav"):
#print (filename)
signal, rate = librosa.load(dirname acous+'/'+filename, sr=sample rate)

rate=int (rate)

ffts=calc fft(signal, rate)

windlength=.025/25

windstep=.01/25

bank=logfbank (signal[:rate],rate,winstep=windstep, winlen=windlength,
nfilt=26, nfft=1103).T #44100/40

mfccs = mfcc(signal[:rate],rate,winstep=windstep, winlen=windlength,
numcep=13,nfilt=26,nfft=1103).T

signals=signal

fbank=bank

plot signals(signals)

plot fft (ffts[0],ffts[1])

plot fbank (fbank)

plot mfccs (mfccs)

f=f+1

percent=int (f/total*100)

print ('Pecrent Completed:', percent, '$\t(',f,'out of',total,'files)"')

continue
else:
continue
else:
print ('Not Linux')

112

Appendix J: Machine Learning Program

$https://www.mathworks.com/help/deeplearning/ug/train-deep-learning-network-to-
classify-new-images.html

clc

clear all

close all

addpath

' /home/agent/Documents/MATLAB/Examples/R2019b/nnet/TransferLearningUsingGoogLeNetExamp
le';

disp('Lets Begin')

o\

Choose which category to perform machine learning
RGB | Thermal | Acoustic
category= "Acoustic";

oe

audioFolder="'/home/agent/Desktop/Robot/Machine Learning/Acoustic_Database';
rgbFolder='/home/agent/Desktop/Robot/Machine Learning/RGB Database';
thermFolder="'/home/agent/Desktop/Robot/Machine Learning/Thermal Database';

aud categories = {'Swing Parrot', 'Quad Parrot', 'Tello'};

rgb categories = {'Swing Parrot', 'Quad Parrot', 'Tello'};

therm categories = {'Swing Parrot', 'Quad Parrot', 'Tello'};

aud imds = imageDatastore(fullfile(audioFolder, aud categories), 'LabelSource’',
'foldernames') ;

rgb imds = imageDatastore(fullfile(rgbFolder, rgb categories), 'LabelSource',
'foldernames') ;

therm imds = imageDatastore(fullfile(thermFolder, therm categories), 'LabelSource’',
'foldernames') ;

aud tbl = countEachLabel (aud imds) ;
rgb tbl = countEachLabel (rgb_ imds) ;
therm tbl = countEachLabel(therm_imds);

aud minSetCount = min(aud tbl{:,2});

rgb minSetCount = min(rgb tbl{:,2});

therm minSetCount = min(therm tbl{:,2});

aud _imds = splitEachLabel (aud imds,aud minSetCount, 'randomize');

rgb imds = splitEachLabel (rgb imds,rgb minSetCount, 'randomize');

therm imds = splitEachLabel (therm imds, therm minSetCount, 'randomize');

countEachLabel (aud imds) ;
countEachLabel (rgb_ imds) ;
countEachLabel (therm imds) ;

aud black parrot=find(aud imds.Labels == 'Swing Parrot',61l);
aud quad parrot=find(aud imds.Labels == 'Quad Parrrot',61l);
aud tello=find(aud imds.Labels == 'Tello',1);

rgb black parrot=find(rgb imds.Labels == 'Swing Parrot',61);
rgb quad parrot=find(rgb imds.Labels == 'Quad Parrot',1l);
rgb tello=find(rgb imds.Labels == 'Tello',1);

therm black parrot=find(therm imds.Labels == 'Swing Parrot',61l);
therm quad parrot=find(therm imds.Labels == 'Quad Parrot',61l);

113

therm tello=find(therm imds.Labels == 'Tello',61l);

[aud imdsTrain,aud imdsValidation] splitEachLabel (aud imds,0.7);

[rgb_imdsTrain,rgb imdsValidation] = splitEachLabel (rgb imds,0.7);
[therm imdsTrain,therm imdsValidation] = splitEachLabel (therm imds,0.7);
net = resnet50();

analyzeNetwork (net)

net.Layers (1)
inputSize = net.Layers(l).InputSize;

if isa(net, 'SeriesNetwork"')
lgraph = layerGraph (net.Layers);

else
lgraph = layerGraph (net);
end
[learnablelayer,classlLayer] = findLayersToReplace (lgraph) ;

[learnablelayer,classLayer]

numClasses = numel (categories(aud imdsTrain.Labels));
rgb numClasses = numel (categories (rgb imdsTrain.Labels));
therm numClasses = numel (categories (therm imdsTrain.Labels));

if isa(learnablelayer, 'nnet.cnn.layer.FullyConnectedLayer')
newLearnableLayer = fullyConnectedLayer (rgb numClasses,
'Name', 'new fc',
'WeightLearnRateFactor', 10,
'BiasLearnRateFactor',10);

elseif isa(learnablelayer, 'nnet.cnn.layer.Convolution2DLayer')
newLearnableLayer = convolution2dLayer (1,rgb numClasses,
'Name', 'new _conv', .
'WeightLearnRateFactor', 10,
'BiasLearnRateFactor',10);
end

lgraph = replacelayer (lgraph, learnablelayer.Name, newLearnablelayer) ;

newClassLayer = classificationLayer ('Name', 'new classoutput');
lgraph = replacelayer (lgraph,classLayer.Name,newClassLayer);

figure ('Units', 'normalized', 'Position', [0.3 0.3 0.4 0.4]);
plot (lgraph)
ylim([0,10])

layers = lgraph.Layers;
connections = lgraph.Connections;

layers (1:10) = freezeWeights(layers(1:10));
lgraph = createlLgraphUsingConnections (layers,connections);

pixelRange = [-30 30];
scaleRange = [0.9 1.1];
imageAugmenter = imageDataAugmenter (

'RandXReflection', true,
'RandXTranslation', pixelRange,
'RandY¥Translation',pixelRange,
'RandXScale', scaleRange,
'Rand¥Scale', scaleRange) ;

aud augimdsTrain = augmentedImageDatastore (inputSize(1:2),aud imdsTrain,

114

'DataAugmentation', imageAugmenter) ;

aud augimdsValidation = augmentedImageDatastore (inputSize(1:2),aud imdsValidation);

rgb augimdsTrain = augmentedImageDatastore (inputSize(1:2),rgb imdsTrain,
'DataAugmentation', imageAugmenter) ;

rgb augimdsValidation = augmentedImageDatastore (inputSize(l:2),rgb imdsValidation);

therm augimdsTrain = augmentedImageDatastore(inputSize(1l:2),therm imdsTrain,
'DataAugmentation', imageAugmenter) ;

therm augimdsValidation =

augmentedImageDatastore (inputSize (1:2), therm imdsValidation);

miniBatchSize = 10;
imageSize= net.Layers (l) .InputSize;

o\

ACOQUSTICS

if category=="Acoustic"

disp ("Acoustic CNN Starting to Train")

aud valFrequency = floor(numel(aud_augimdsTrain.Files)/miniBatchSize);

aud options = trainingOptions('sgdm',
'MiniBatchSize',miniBatchSize,
'MaxEpochs', 6,
'InitialLearnRate', 3e-4,
'Shuffle', 'every-epoch',
'ValidationData', aud augimdsValidation,
'ValidationFrequency', aud valFrequency,
'Verbose', false,
'Plots', 'training-progress');

aud net = trainNetwork(aud augimdsTrain,lgraph,aud options);
disp ("Acoustics Convolutional Neural Network Trained");

[aud YPred,aud probs] = classify(aud net,aud augimdsValidation);
aud accuracy = mean(aud YPred == aud imdsValidation.Labels);

sprintf ('Acoustic Confusion Matrix: ')
aud confMat = confusionmat (aud imdsValidation.Labels, aud YPred);
aud _confMat mod = bsxfun(@rdivide, aud confMat,sum(aud confMat,2));

aud idx = randperm(numel (aud imdsValidation.Files),4);
figure
for i = 1:4
subplot(2,2,1)
aud I = readimage (aud imdsValidation,aud idx(i)):;
imshow (aud I)
aud label = aud YPred(aud idx(i));

title(string(aud label) + ", " + num2str(100*max (aud probs (aud idx (i),

disp ("Beginning Testing Images");
aud image array={};

1)) ,3) +

aud image array{l}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/Acousti

cl2 04 2020 15 28 04 SParrot Vl.png';

audﬁimagegarray{2T='/home/agent/Desktop/Robot/MachinegLearning/Classifinmages/Acousti

cl2 04 2020 15 37 59 SpParrot Vl.png';

aud image array{3}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/Acousti

cl2 04 2020 16 52 40 SParrot V2.png';

115

aud image array{4}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/Acousti
cl2 04 2020 16 55 22 SParrot V2.png';

aud image array{5}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/Acousti
c25 04 2020 15 44 50 Sparrot V3.png';

aud image array{6}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/Acousti
c25 04 2020 16 13 02 SpParrot V3.png';

aud_ image array{7}='/home/agent/Desktop/Robot/MachinegLearning/Classifinmages/Acousti
c25 04 2020 17 22 10 SpParrot V4.png';

aud _image array{8}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/Acousti
c25 04 2020 17 23 59 SpParrot V4.png';

aud_ image array{9}='/home/agent/Desktop/Robot/MachinegLearning/Classifinmages/Acousti
c27 05 2020 15 03 36 SParrot V5.png';

aud _image array{lO}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/Acoust
ic27 05 2020 15 21 48 SParrot V5.png'

aud_image array{ll}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/Acoust
icl2 04 2020 13 41 27 QParrot V1.png'
aud_lmage_array{IZ}—'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
icl2 04 2020 14 50 46 QParrot V1.png'
aud_image_array{l3}:'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
icl2 04 2020 16 39 44 QParrot V2.png'

aud_image array{l4}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/Acoust
icl2 04 2020 16 41 23 QParrot V2.png'
aud_lmage_array{l5}—'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25_04_2020_15_56_23 QParrot V3.png'
aud_image_array{l6}:'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25 04 2020 16 01 10 QParrot V3.png'

aud_image array{l7}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/Acoust
ic25 04 2020 17 37 07 QParrot V4.png'
aud_lmage_array{IS}—'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic25 04 2020 17 40 31 QParrot V4.png'
aud_image_array{l9}:'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
ic03 05 2020 13 06 07 QParrot V5.png'

aud_image array{20}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/Acoust
ic03 05 2020 13 16 40 QParrot V5.png'
aud_1mage_array{2l}—'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/Acoust
icl2 04 2020 15 02 18 Tello V1.png'

aud image array{22}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/Acoust
icl2 04 2020 15 08 28 Tello V1.png'

aud_ image array{23}='/home/agent/Desktop/Robot/MachineiLearning/ClassifyfImages/Acoust
icl2 04 2020 16 46 32 Tello V2.png'

aud_ image array{24}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/Acoust
icl2 04 2020 16 48 42 Tello V2.png'
audﬁimagegarray{25}='/home/agent/Desktop/Robot/MachineiLearning/Classifyilmages/Acoust
ic25 04 2020 14 33 48 Tello V3.png'

aud_ image array{26}='/home/agent/Desktop/Robot/MachineiLearning/ClassifyfImages/Acoust
ic25 04 2020 14 37 36 Tello V3.png'

aud_ image array{27}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/Acoust
ic25 04 2020 16 37 46 Tello V4.png'
audﬁimagegarray{28}='/home/agent/Desktop/Robot/MachineiLearning/Classifyilmages/Acoust
ic25 04 2020 16 38 17 Tello V4.png'

aud image array{29}='/home/agent/Desktop/Robot/MachineiLearning/ClassifyfImages/Acoust
ic27 05 2020 15 51 30 Tello V5.png'

aud_image array{30}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/Acoust
ic27 05 2020 16 54 22 Tello V5.png'

aud_valLabels:{'Swing_Parrot'; 'Quad Parrot';'Tello'};

i=1;

aud Post Pred={};

aud Post Val={'Swing Parrot';'Swing Parrot';'Swing Parrot';'Swing Parrot';'Swing Parro
t';'Swing Parrot';'Swing Parrot';'Swing Parrot';...

116

'Swing Parrot';'Swing Parrot';'Quad Parrot';'Quad Parrot';'Quad Parrot';'Quad Parrot';
'Quad Parrot'; 'Quad Parrot';'Quad Parrot';...

'Quad Parrot'; 'Quad Parrot';'Quad Parrot';'Tello';'Tello';'Tello';'Tello';'Tello'; 'Tel
lo'; 'Tello';'Tello'; 'Tello'; 'Tello"'};

while (1<31)
aud newImage=imread(aud image array{i});
aud _ds = augmentedImageDatastore (inputSize,
aud newlImage, 'ColorPreprocessing', 'gray2rgb');
[aud YPred,aud probs] = classify(aud_net,aud_ds);
sprintf ('The loaded acoustic image belongs to %s class', aud YPred)

if ('Swing Parrot'==aud YPred)
aud Post Pred{i,l}='Swing Parrot';
end

if ('Quad Parrot'==aud YPred)
aud Post Pred{i,l}='Quad Parrot';
end

if ('Tello'==aud YPred)
aud Post Pred{i,l}='Tello';
end

i=i+1
end

aud Test confMat = confusionmat (aud Post Val, aud Post Pred);
aud Test confMat mod = bsxfun(@rdivide,aud Test confMat,sum(aud Test confMat,2));

figure

aud training cm=confusionchart (aud confMat,aud valLabels);

aud_training cm.ColumnSummary = 'column-normalized';

aud_training cm.RowSummary = 'row-normalized';

aud training cm.Title = 'Fifth Machine Learning Process: Acoustic Confusion Matrix of
Training Validation';

figure

aud post training cm=confusionchart (aud Test confMat,aud valLabels);

aud post training cm.ColumnSummary = 'column-normalized';

aud post training cm.RowSummary = 'row-normalized';

aud post training cm.Title = 'Fifth Machine Learning Process: Acoustic Confusion

Matrix of Post-Training Validation';

end

% RGB

if category == "RGBR"
disp ("RGB CNN Starting to Train")
rgb _valFrequency = floor (numel (rgb augimdsTrain.Files)/miniBatchSize);
rgb options = trainingOptions('sgdm',

'MiniBatchSize',miniBatchSize,
'MaxEpochs', 6,

'InitialLearnRate', 3e-4,

'Shuffle', 'every-epoch',
'ValidationData', rgb augimdsValidation,
'ValidationFrequency', rgb valFrequency,

117

'Verbose', false,
'Plots', 'training-progress');

rgb net = trainNetwork (rgb augimdsTrain, lgraph, rgb options);
disp ("RGB Convolutional Neural Network Trained");

[rgb_YPred, rgb probs] = classify(rgb net,rgb augimdsValidation);
rgb _accuracy = mean(rgb YPred == rgb imdsValidation.Labels);

sprintf ('RGB Confusion Matrix: ')
rgb confMat = confusionmat (rgb imdsValidation.Labels, rgb YPred);
rgb confMat mod = bsxfun(@rdivide, rgb confMat, sum(rgb confMat,2));

rgb idx = randperm(numel (rgb imdsValidation.Files),4);
figure
for i = 1:4
subplot(2,2,1)
rgb I = readimage (rgb imdsValidation,rgb idx(i));
imshow (rgb_ I)
rgb label = rgb YPred(rgb idx(i));
title(string(rgb label) + ", " + num2str(100*max (rgb probs(rgb idx(i),:)),3) +

disp ("Beginning Testing Images");

rgb image array={};

rgb_image array{l}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04 2
020 15 28 05 spParrot rgb V1.jpeg';

rgb_image array{2}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04 2
020 15 28 20 spParrot rgb V1.jpeg';

rgb_image array{3}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04 2
020 16 52 39 spParrot rgb V2.jpeg';

rgb_image array{4}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04 2
020 16 55 24 spParrot rgb V2.jpeg';

rgb_image array{5}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04 2
020 14 45 24 spParrot rgb V3.jpeg';

rgb_image array{6}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04 2
020 15 47 38 sbParrot rgb V3.jpeg';

rgb_image array{7}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04 2
020 17 21 57 SbParrot rgb V4.jpeg';

rgb_image array{8}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04 2
020 17 23 56 SParrot rgb V4.jpeg';

rgb_image array{9}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/27 05 2
020 15 02 48 sbParrot rgb V5.jpeg';

rgb_image array{10}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/27 05
2020 15 22 51 SpParrot rgb V5.jpeg';

rgb_image array{1l1l}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 13 28 37 QParrot rgb Vl1.jpeg';

rgb_image array{12}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 13 41 28 QParrot rgb Vl1.jpeg';

rgb_image array{13}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 16 41 06 QParrot rgb V2.jpeg';

rgb_image array{l4}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 16 41 23 QParrot rgb V2.jpeg';

rgb_image array{15}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04
2020 15 53 24 QParrot rgb V3.jpeg';

rgb_image array{1l6}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04
2020 16 02 03 QParrot rgb V3.jpeg';

rgb_image array{1l7}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04
2020 17 36 _54 QParrot rgb V4.jpeg';

118

rgb_image array{18}="'/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04
2020 17 38 40 QParrot rgb V4.jpeg';

rgb_image array{19}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/03 05
2020 13 02 39 QParrot rgb V5.jpeg';

rgb_image array{20}="'/home/agent/Desktop/Robot/Machine Learning/Classify Images/03 05
2020 13 06 _16 QParrot rgb V5.jpeg';

rgb_image array{21}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 15 02 37 Tello rgb V1.jpeg';

rgb_image array{22}="'/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 15 09 17 Tello rgb V1.jpeg';

rgb_image array{23}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 16 46 43 Tello rgb V2.Jjpeg';

rgb_image array{24}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 16 48 42 Tello rgb V2.jpeg';

rgb_image array{25}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04
2020 14 35 29 Tello rgb V3.Jjpeg';

rgb_image array{26}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04
2020 14 38 01 Tello rgb V3.Jjpeg';

rgb_image array{27}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04
2020 16 37 20 Tello rgb V4.jpeg';

rgb_image array{28}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 04
2020 16 38 10 Tello rgb V4.jpeg';

rgb_image array{29}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/27 05
2020 15 35 20 Tello rgb V5.Jjpeg';

rgb_image array{30}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/27 05
2020 16 50 28 Tello rgb V5.Jjpeg';

rgb valLabels={'Swing Parrot'; 'Quad Parrot'; 'Tello'};

i=1;

rgb Post Pred={};

rgb Post Val={'Swing Parrot';'Swing Parrot';'Swing Parrot';'Swing Parrot';'Swing Parro
t';'Swing Parrot';'Swing Parrot';'Swing Parrot';...

'Swing Parrot';'Swing Parrot';'Quad Parrot';'Quad Parrot';'Quad Parrot';'Quad Parrot';

'Quad Parrot'; 'Quad Parrot';'Quad Parrot';...

'Quad Parrot'; 'Quad Parrot';'Quad Parrot';'Tello';'Tello';'Tello';'Tello';'Tello'; 'Tel
lo';'Tello';'Tello';'Tello'; 'Tello'};

while (1<31)
rgb newImage=imread (rgb image array{i}):;
rgb ds = augmentedImageDatastore (inputSize,
rgb newlImage, 'ColorPreprocessing', 'gray2rgb');
[rgb_YPred, rgb probs] = classify(rgb net,rgb ds);

sprintf ('The loaded rgb image belongs to %s class', rgb YPred)

oe

if ('Swing Parrot'==rgb YPred)
rgb Post Pred{i,l}='Swing Parrot';
end

if ('Quad Parrot'==rgb YPred)
rgb Post Pred{i,1l}="'Quad Parrot';
end

if ('Tello'==rgb YPred)
rgb Post Pred{i,1l}='Tello';
end

i=i+l

end
rgb Test confMat = confusionmat (rgb Post Val, rgb Post Pred);

119

rgb Test confMat mod = bsxfun(@rdivide, rgb Test confMat,sum(rgb Test confMat,2));

figure

rgb training cm=confusionchart (rgb confMat,rgb valLabels);

rgb training cm.ColumnSummary = 'column-normalized';

rgb training cm.RowSummary = 'row-normalized';

rgb training cm.Title = 'Fifth Machine Learning Process: RGB Confusion Matrix of
Training Validation';

figure
rgb post training cm=confusionchart (rgb Test confMat,rgb valLabels);
rgb post training cm.ColumnSummary = 'column-normalized';
rgb post training cm.RowSummary = 'row-normalized';
rgb post training cm.Title = 'Fifth Machine Learning Process: RGB Confusion Matrix of
Post-Training Validation';
end
% Thermal
if category == "Thermal"
disp ("Thermal CNN Starting to Train")
therm valFrequency = floor (numel (therm augimdsTrain.Files)/miniBatchSize);
therm options = trainingOptions('sgdm',
'MiniBatchSize',miniBatchSize,
'MaxEpochs', 6,
'InitiallearnRate', 3e-4,
'Shuffle', 'every-epoch',
'ValidationData', therm augimdsValidation,
'ValidationFrequency', therm valFrequency,
'Verbose', false,
'Plots', 'training-progress');
therm net = trainNetwork(therm augimdsTrain, lgraph,therm options);

disp ("Thermal Convolutional Neural Network Trained");

[therm YPred, therm probs] = classify(therm net, therm augimdsValidation);
therm accuracy = mean(therm YPred == therm imdsValidation.Labels);

sprintf ('Thermal Confusion Matrix: ')
therm confMat = confusionmat (therm imdsValidation.Labels, therm YPred);
therm confMat mod = bsxfun(@rdivide, therm confMat, sum(therm confMat,2));

therm idx = randperm(numel (therm imdsValidation.Files),4);

figure

for i = 1:4
subplot(2,2,1)
therm I = readimage (therm imdsValidation,therm idx(i));
imshow (therm I)
therm label = therm YPred(therm idx(i));
title(string(therm label) + ", " +

num2str (100*max (therm probs (therm idx(i),:)),3) + "%");
end

disp ("Beginning Testing Images");

therm image array={};

therm image array{l}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 _15 28 06 _SParrot therm V1.jpeg';

therm image array{2}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 _15 28 20 sParrot therm V1.jpeg';

therm image array{3}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/12 04
2020 _16_52 39 sbParrot therm V2.jpeg';

120

therm image array{4}*'/home/agent/Desktop/Robot/MachinegLearning/Classifyilmages/12704
2020 16 55 24 SParrot therm V2.jpeg'
therm image array{5} '/home/agent/Desktop/Robot/MachinegLearning/Classifyilmages/25704
2020 14 45 24 SParrot therm V3.jpeg'
therm image array{6} '/home/agent/Desktop/Robot/MachinegLearning/Classifyilmages/25704
2020 15 47 38 SParrot therm V3.jpeg'
therm image array{7}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/25 04
2020 17 21 57 SParrot therm V4.jpeg'
therm image array{8}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/25 04
2020 17 23 56 SParrot therm V4.jpeg'
therm _image array{9}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/27 05
2020 15 02 48 SParrot therm V5.jpeg'
therm _image array{lO}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/27 0
5 2020 15 22 51 Sparrot therm V5.jpeg’
therm _image array{ll}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/12 0
4 2020 13 28 37 QParrot therm V1.jpeg'
therm _image array{lZ}—'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_0
4 2020 13 41 28 QParrot therm V1.jpeg'
therm _image array{l3}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/12 0
4 2020 16 41 06 QParrot therm V2.jpeg'
therm _image array{l4}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/12 0
4 2020 16 41 23 QParrot therm V2.jpeg'
therm _image array{l5}—'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_0
4 2020 15 53 24 QParrot therm V3.jpeg'
therm _image array{l6}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/25 0
4 2020 16 02 03 QParrot therm V3.jpeg'
therm _image array{l7}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/25 0
4 2020 17 36 54 QParrot therm V4.jpeg'
therm _image array{l8}—'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/25_0
4 2020 17 38 40 QParrot therm V4.jpeg'
therm _image array{l9}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/03_0
5 2020 13 02 39 QpParrot therm V5.jpeg’
therm _image array{ZO}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/03_0
5 2020 13 06 _16 QParrot therm V5.jpeg’
therm _image array{21}—'/home/agent/Desktop/Robot/Machine_Learning/Classify_Images/12_0
4 2020 15 02 37 Tello therm V1.jpeg';
therm _image array{22}—'/home/agent/Desktop/Robot/Machlne Learning/Classify Images/12 0
4 2020 15 09 17 Tello therm V1.jpeg';
therm _image array{23}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/12 0
4 2020 16 46 43 Tello therm V2.jpeg';
therm image array{24}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/12 0
4 2020 16 48 42 Tello therm V2.jpeg';
therm image array{25}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 0
4 2020 14 35 29 Tello therm V3.jpeg';
therm image array{26}='/home/agent/Desktop/Robot/MachineiLearning/Classifyflmages/2570
4 2020 14 38 01 Tello therm V3.jpeg';
therm _image array{27}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/25 0
4 2020 16 37 20 Tello therm V4.jpeg';
therm image array{28}='/home/agent/Desktop/Robot/Machine Learning/Classify Images/25 0
4 2020 16 38 10 Tello therm V4.jpeg';
therm image array{29}='/home/agent/Desktop/Robot/MachineiLearning/Classifyflmages/2770
5 2020 15 35 20 Tello therm V5.jpeg';
therm image array{30}='/home/agent/Desktop/Robot/Machlne Learning/Classify Images/27 0
5 2020 16 50 28 Tello therm V5.jpeg';

therm_valLabels:{‘Swing_Parrot'; 'Quad Parrot'; 'Tello'};

i=1;

therm Post Pred={};

therm Post Val={'Swing Parrot';'Swing Parrot';'Swing Parrot';'Swing Parrot';'Swing Par
rot';'Swing Parrot';'Swing Parrot';'Swing Parrot';...

121

'Swing Parrot';'Swing Parrot';'Quad Parrot';'Quad Parrot';'Quad Parrot';'Quad Parrot';
'Quad Parrot'; 'Quad Parrot';'Quad Parrot';...

'Quad Parrot'; 'Quad Parrot';'Quad Parrot';'Tello';'Tello';'Tello';'Tello';'Tello'; 'Tel
lo'; 'Tello';'Tello'; 'Tello'; 'Tello"'};

while (1<31)

o

therm newImage=imread (therm image array{i}):;
therm ds = augmentedImageDatastore (inputSize,

therm newImage, 'ColorPreprocessing', 'gray2rgb');
[therm YPred, therm probs] = classify(therm_net,therm_ds);

sprintf ('The loaded thermal image belongs to %s class', therm YPred)

if ('Swing Parrot'==therm YPred)
therm Post Pred{i,1l}='Swing Parrot';
end

if ('Quad Parrot'==therm YPred)
therm Post Pred{i,1l}='Quad Parrot';
end

if ('Tello'==therm YPred)
therm Post Pred{i,1l}="'Tello';
end

i=i+l

end

therm Test confMat = confusionmat (therm Post Val, therm Post Pred);
therm Test confMat mod =

bsxfun (@rdivide, therm Test confMat,sum(therm Test confMat,2));

figure

therm training cm=confusionchart (therm confMat, therm valLabels);

therm training cm.ColumnSummary = 'column-normalized';

therm training cm.RowSummary = 'row-normalized';

therm training cm.Title = 'Fifth Machine Learning Process: Thermal Confusion Matrix of

Training Validation';

figure

therm post training cm=confusionchart (therm Test confMat, therm vallLabels);

therm post training cm.ColumnSummary = 'column-normalized';

therm post training cm.RowSummary = 'row-normalized';

therm post training cm.Title ='Fifth Machine Learning Process: Thermal Confusion

Matrix of Post-Training Validation';

end

122

References

[1]

Ortiz, Erik. “Newark Airport Drone Disruption Could Be Way of the

Future.” NBCNews, NBCUniversal News Group. 23 January 2019.
http://www.nbcnews.com/news/us-news/newark-airport-drone-disruption-could-be-
way-future-n961761 (accessed 1 July 2020).

Kesteloo, Haye. “The Ghost Drone That Shut down Barajas Airport in

Madrid.” DroneDJ. 14 February 2020. https://dronedj.com/2020/02/14/the-ghost-
drone-that-shut-down-barajas-airport-in-madrid/ (accessed 1 July 2020).

Swales, Vanessa. “Drones Used in Crime Fly Under the Law's Radar.” The New York
Times. 3 November 2019. https://www.nytimes.com/2019/11/03/us/drones-
crime.html (accessed 1 July 2020).

Harsha, Keagan. “Centennial Man Accused of Using Drone to Be a 'Peeping

Tom'.” FOX31 Denver. 26 October 2019. https://kdvr.com/news/centennial-man-
accused-of-using-drone-to-be-a-peeping-tom/ (accessed 1 July 2020).

Captain, Sean. “Drones Try to Smuggle over $300K in Drugs across US

Border.” DroneDJ. 5 May 2020. https://dronedj.com/2020/05/05/drones-try-to-
smuggle-over-300k-in-drugs-across-us-border/ (accessed 1 July 2020).

Kesteloo, Haye. “Two New Jersey Men Smuggled Drugs and Phones into Prison with
Drones.” DroneDJ. 16 March 2020. https://dronedj.com/2020/03/16/two-new-jersey-
men-smuggled-drugs-and-cell-phones-into-prison-with-drones/ (accessed 1 July
2020).

“View All Products.” DroneShield. 2020. http://www.droneshield.com/view-all-

products (accessed 2 July 2020).

123

[10]

[11]

[12]

[13]

[14]

“Drone Detection & Defense Systems.” DeTect, Inc. https://detect-inc.com/drone-
detection-defense-systems/ (accessed 25 June 2020)

“ELP USB 3.0 2MP Sony IMX291 50fps High Speed Camera Module USB 3.0
Industrial with No Distortion Lens for Video Conference.” ELP USB Webcam.
http://www.webcamerausb.com/elp-usb-30-2mp-sony-imx291-50fps-high-speed-
camera-module-usb-30-industrial-with-no-distortion-lens-for-video-conference-p-
249 html (accessed 25 September 2019).

“FLIR LEPTON 3 & 3.5.” FLIR. 17 May 2018. https://www.flir.com/globalassets/
imported-assets/document/lepton-3-3.5-datasheet.pdf (accessed 25 September 2019).
“UMA-16 USB mic array.” miniDSP. 2019. https://www.minidsp.com/products/usb-
audio-interface/uma-16-microphone-array (accessed 25 September 2019).

“Garmin LIDAR-Lite v3HP: Distant Measurement Sensor.” Garmin.
https://buy.garmin.com/en-US/US/p/578152 (accessed 25 September 2019).

K. He, X. Zhang, S. Ren, and J. Sun. "Deep Residual Learning for Image
Recognition.”2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Las Vegas, NV. 2016. pp. 770-778. doi: 10.1109/CVPR.2016.90 (accessed
15 February 2020).

“resnet50.” ResNet-50 Convolutional Neural Network - MATLAB, The MathWorks,
Inc. http://www.mathworks.com/help/deeplearning/ref/resnet50.html#:~:text=
ResNet%2D50%201s%20a%20convolutional,%2C%20pencil%2C%20and%20many

%?20animals (accessed 15 February 2020).

124

[15]

[16]

[17]

[18]

[19]

[20]

M. Ezuma, F. Erden, C. Kumar Anjinappa, O. Ozdemir, and I. Guvenc. "Detection
and Classification of UAVs Using RF Fingerprints in the Presence of Wi-Fi and
Bluetooth Interference." IEEE Open Journal of the Communications Society. vol. 1,
pp. 60-76. 2020. doi: 10.1109/0JCOMS.2019.2955889 (accessed 3 August 2020).
Ozturk, Ender, Fatih Erden, and Ismail Guvenc. “RF-Based Low-SNR Classification
of UAVs Using Convolutional Neural Networks.” ResearchGate. 2020 (accessed 28
August 2020).

Nguyen, Phuc, Mahesh Ravindranatha, Anh Nguyen, Richard Han, and Tam Vu.
“Investigating Cost-effective RF-based Detection of Drones.” ResearchGate. 2020.
doi: 17-22. 10.1145/2935620.2935632 (accessed 15 July 2020).

Chen, V.C., Fayin Li, S. S. Ho, and Harry Wechsler. “Micro-Doppler Effect in Radar:
Phenomenon, Model, and Simulation Study.” IEEE Transactions on Aerospace and
Electronic Systems. 2006. doi: 10.1109/TAES.2006.1603402 (accessed 2 August
2020).

Li, Chenchen and Hao Ling. “An Investigation on the Radar Signatures of Small
Consumer Drones.” IEEE Antennas and Wireless Propagation Letters. vol. 16. pp.
649-652.2017. doi: 10.1109/LAWP.2016.2594766 (accessed 2 August 2020).
Rahman, Samiur, and Duncan Robertson. “Radar micro-Doppler signatures of drones
and birds at K-band and W-band.” Scientific Reports. vol. 8. 26 November 2018. doi:
10.1038/s41598-018-35880-9. https://doi.org/10.1038/s41598-018-35880-9 (accessed

3 August 2020).

125

[21]

[22]

[23]

[24]

[25]

Unlu, Eren, Emmanuel Zenou, Nicolas Riviere, and Paul-Edouard Dupuoy. “Deep
learning-based strategies for the detection and tracking of drones using several
cameras.” IPSJ Transactions on Computer Vision and Applications. vol. 11. 24 July
2019. doi: 10.1186/s41074-019-0059-x (accessed 10 June 2020).

Liu, Hao, Fangchao Qu, Yingjin Liu, Wei Zhao, and Yitong Chen. “A drone
detection with aircraft classification based on a camera array.” /OP Conference
Series: Materials Science and Engineering. vol. 322. sp. 052005. 2018. doi:
10.1088/1757-899X/322/5/052005 (accessed 10 June 2020).

Hengkang, Jin, and Yiwen Zhang. “Research on Feature Recognition of UAV
Acoustic Signal Based on SVM.” Journal of Physics: Conference Series. vol. 1302.
sp. 022037. 2019. doi: 10.1088/1742-6596/1302/2/022037 (accessed 10 June 2020).
Bernardini, Andrea, Federica Mangiatordi, Emiliano Pallotti, and Licia Capodiferro.
“Drone detection by acoustic signature identification.” Electronic Imaging. vol.
2017. pp. 60-64. 2017. doi: 10.2352/ISSN.2470-1173.2017.10.IMAWM-168
(accessed 12 June 2020).

Polyzos, Konstantinos D., and E. Dermatas. “Real-Time detection, classification and
DOA estimation of Unmanned Aerial Vehicle.” ResearchGate. 2019. (accessed 28

August 2020).

126

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Vemula, Hari. "Multiple Drone Detection and Acoustic Scene Classification with
Deep Learning." Electronic Thesis or Dissertation, Wright State University. 2018
(accessed 06 September 2020).

Thompson, David John. "Maritime Object Detection, Tracking, and Classification
Using Lidar and Vision-Based Sensor Fusion." Dissertations and Theses, Scholarly
Commons. vol. 377. 2017. https://commons.erau.edu/edt/377 (accessed 7 July 2020).
Kim, Byeong, Danish Khan, Cyril Bohak, Wonju Choi, Hyun Lee, and Min Kim. “V-
RBNN based small drone detection in augmented datasets for 3D LADAR system.”
Sensors, MDPI. vol. 18. sp. 3825. 8 November 2018. doi: 10.3390/s18113825
(accessed 3 June 2020).

Hammer, Marcus, Martin Laurenzis, and Michael Arens. "Lidar-based detection and
tracking of small UAVs." SPIE. vol. 10799. 4 October 2018.

doi: 10.1117/12.2325702 (accessed 17 September 2020).

Svanstrom, Fredrik. “Drone Detection and Classification Using Machine Learning
and Sensor Fusion.” DiVA. 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-
42141 (accessed 21 July 2020).

“OPERATION MANUAL AND TECHNICAL SPECIFICATIONS.” LIDAR-LITE
V3HP, Garmin. http://static.garmin.com/pumac/LIDARLite v3HP Instructions
EN.pdf (accessed 25 September 2019).

“UMA-16 Microphone Array.” miniDSP. http://www.minidsp.com/images/

documents/Product%20Brief-UMA16.pdf (accessed 25 September 2019).

127

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Miller, Zachariah W. “Streaming Audio with Python.” Zachariah W Miller, PHD. 19
June 2017. http://zwmiller.com/projects/streamAudio.html (accessed 20 September
2019).

Williams, Rohan. “Show Webcam Sequence TklInter.” Stackoverflow. 6 June 2013.
stackoverflow.com/questions/16366857/show-webcam-sequence-tkinter (accessed 10
September 2019).

“Parrot Mambo Fly - Code, Pilot and Play.” Amazon.https://www.amazon.com/
Parrot-Mambo-Fly-Code-Pilot/dp/B074TGFML6?th=1 (accessed 1 December 2020).
“Parrot Swing + Flypad.” Amazon. http://www.amazon.com/Parrot-PF727003-
SwingFlypad/dp/BO1JYR44NS/ref=sr 1 4?dchild=1&keywords=parrot%2Bswing%
2Bdrone&qid=1597002227&s=electronics&sr=1-4&th=1 (accessed 1 December
2020).

“Parrot Minidrone Swing with Flypad Controller.” BH #PAIPF727003 « MFR
#IPF727003, B & H Foto & Electronics Corp. http://www.bhphotovideo.com/c/
product/1274641REG/parrot pf727003 minidrone swing with flypad.html/specs
(accessed 1 December 2020).

“TELLO SPECS.” Tello, RYZE. www.ryzerobotics.com/tello/specs (accessed 1
December 2020).

Amini, Alexander, and Ava Soleimany. “Intro to Deep Learning.” 6.5191:
Introduction to Deep Learning. 2020. http://introtodeeplearning.com/ (accessed 15

May 2020).

128

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Amini, Alexander, and Ava Soleimany. “Deep Computer Vision.” 6.5191:
Introduction to Deep Learning. 2020. http://introtodeeplearning.com/ (accessed 17

May 2020).

Chatterjee, Chandra Churh. “Basics of the Classic CNN.” Towards Data Science,
Medium. 31 July 2019. https://towardsdatascience.com/basics-of-the-classic-cnn-
a3dcel225add (accessed 28 July 2020).

Hasan, Md, Mustafa Jamil, Golam Rabbani, and Md Saifur Rahman. “Speaker
Identification Using Mel Frequency Cepstral Coefficients.” Proceedings of the 3rd
International Conference on Electrical and Computer Engineering (ICECE 2004).
2004 (accessed 29 May 2020).

Fayek, Haytham. “Speech Processing for Machine Learning: Filter Banks, Mel-
Frequency Cepstral Coefficients (MFCCs) and What's In-Between.” Haytham Fayek.
21 April 2016. https://haythamfayek.com/2016/04/21/speech-processing-for-
machine-learning.html (accessed 29 May 2020).

Salomons, Etto, and Paul Havinga. “A Survey on the Feasibility of Sound
Classification on Wireless Sensor Nodes.” Sensors, MDPI. vol. 15. pp. 7462-7498. 27
Februrary 2015. doi: 10.3390/s150407462 (accessed 29 May 2020).

Adams, Seth. “Plotting & Cleaning - Deep Learning for Audio Classification p.3.”
Youtube. 24 October 2018. https://www.youtube.com/watch?v=mUXkj 1 BKYkO0&t=
605s (accessed 15 February 2020)

“Train Deep Learning Network to Classify New Images.” MATLAB & Simulink, The
MathWorks, Inc. https://www.mathworks.com/help/deeplearning/ug/train-deep-

learning-network-to-classify-new-images.html (accessed 16 January 2020).

129

[47]

[48]

L. Fei-Fei, R. Fergus, and P. Perona. “Learning generative visual models
from few training examples: an incremental Bayesian approach tested on
101 object categories.” IEEE. CVPR 2004, Workshop on Generative-Model
Based Vision. 2004 (accessed 28 February 2020).

“Freesound General-Purpose Audio Tagging Challenge.” Kaggle. 2018.

www.kaggle.com/c/freesound-audio-tagging (accessed 28 February 2020).

130

	The Use of Low-Cost Sensors and a Convolutional Neural Network to Detect and Classify Mini-Drones
	Austin_Florio_Thesis_07Dec2020
	Austin_Florio_Thesis_signatures
	Austin_Florio_Thesis_07Dec2020

