
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2020

Exploring Information for Quantum Machine Learning Models Exploring Information for Quantum Machine Learning Models

Michael Telahun
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Data Science Commons, Numerical Analysis and Scientific Computing Commons, Other

Computer Sciences Commons, and the Quantum Physics Commons

Recommended Citation Recommended Citation
Telahun, Michael, "Exploring Information for Quantum Machine Learning Models" (2020). Electronic
Theses and Dissertations. Paper 3433.
Retrieved from https://ir.library.louisville.edu/etd/3433

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=ir.library.louisville.edu%2Fetd%2F3433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ir.library.louisville.edu%2Fetd%2F3433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.library.louisville.edu%2Fetd%2F3433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.library.louisville.edu%2Fetd%2F3433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=ir.library.louisville.edu%2Fetd%2F3433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd/3433?utm_source=ir.library.louisville.edu%2Fetd%2F3433&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu

1

Exploring Information for Quantum

Machine Learning Models

By Michael Telahun

Master of Engineering Thesis

Director: Daniel Sierra-Sosa

Co-Director: Adel S. Elmaghraby

Department of Computer Science and Engineering

J.B. Speed Scientific School of Engineering

University of Louisville

Louisville KY, USA, 40292

December 2020

Exploring Information for Quantum Machine Learning Models

2

Exploring Information for Quantum Machine
Learning Models

Abstract
Quantum computing performs calculations by using physical phenomena and quantum

mechanics principles to solve problems. This form of computation theoretically has been shown

to provide speed ups to some problems of modern-day processing. With much anticipation the

utilization of quantum phenomena in the field of Machine Learning has become apparent. The

work here develops models from two software frameworks: TensorFlow Quantum (TFQ) and

PennyLane for machine learning purposes. Both developed models utilize an information encoding

technique amplitude encoding for preparation of states in a quantum learning model. This thesis

explores both the capacity for amplitude encoding to provide enriched state preparation in learning

methods and a deep analysis of data properties that provide insights into training data using a

Variational Quantum Classifier (VQC). The advent of these new methods begs the question of

how to best use these tools, we aim to give some overview explanation for the applicable state of

quantum machine learning given actual device constraints. The results show there is a clear

advantage for using amplitude encoding over other methods as we show using a hybrid quantum-

classical neural network in TFQ. Additionally, there are several steps of preprocessing that can

lead to more feature rich data when utilizing a VQC, in essence the no free lunch theorem holds

true for quantum learning methods as it does in classical techniques. Information albeit encoded

in a quantum form does not change the steps of preparing data but involves new ways to

comprehend and appreciate these novel methods.

Exploring Information for Quantum Machine Learning Models

3

Acknowledgements
I would first like to thank my mother and father for supporting me through my journey in

life so far. I would like to thank my advisor, Dr. Adel Elmaghraby for allowing me the opportunity

to work in this exciting and innovative field of Quantum Machine Learning.

Additionally, I would like to thank my advisor, Dr. Daniel Sierra-Sosa who without his

guidance and mentorship I would likely never have working knowledge of this topic let alone have

anything tangle to show for my effort. Through the ups and downs I appreciate what you all have

done for me.

Exploring Information for Quantum Machine Learning Models

4

Table of Contents
Abstract ... 2

Acknowledgements .. 3

1. Introduction... 6

2. Theoretical Background .. 8

2.1 Classical Overview of Data Processing ... 8

2.1.1 Raw Data as a Whole... 8

2.1.2 Feature Dependent Processing... 9

2.2 Post Analysis...10

2.3 Machine Learning ..11

2.3.1 Learning Methods ..12

2.3.2 Learning – Optimization and Loss ..15

2.4 Quantum Computing ..18

2.5 Quantum Machine Learning...21

2.5.1 Parametric Quantum Classifiers ...23

3. Background ..24

3.1 Literature Review...24

3.2 Programming & Frameworks ...26

3.2.1 TensorFlow Quantum ...27

3.2.2 PennyLane ..27

3.2.3 Development & Non-Quantum Packages ...28

4. Datasets ...30

4.1 Scikit-Learn Generator Datasets ...30

4.1.1 Make Blobs Dataset..30

4.1.2 Make Circles Dataset ..31

4.1.3 Make Moons Dataset ..31

4.1.4 Make Swiss Role Dataset ..32

4.2 Toy Datasets ...33

4.2.1 Iris Dataset..33

4.2.2 Wine Dataset ...34

5. Experiments ...35

5.1 Quantum State Preparation ..35

5.1.1 Basis Encoding ..35

Exploring Information for Quantum Machine Learning Models

5

5.1.2 Angle Encoding ...36

5.1.3 Amplitude Encoding...37

5.2 TFQ Experimental Setup ...38

5.3 Analysis of TFQ Experiments – Hybrid Models ..41

5.3.1 Experiment: Eight-epochs ...42

5.3.2 Experiment: Fifty-epochs ..45

5.4 Transformation for Learning in Quantum Models..49

5.4.1 Analysis of Make Blobs Dataset ...49

5.4.2 Additional Analysis Leading to Future Work..54

6. Conclusion ...57

6.1 Future Discussion...57

Appendix X ...58

References ...59

Exploring Information for Quantum Machine Learning Models

6

1. Introduction
Quantum Machine Learning (QML) is an interdisciplinary field that merges Quantum

Computing (QC) and Machine Learning (ML). There are many algorithms present in the field of

QC such as Grover’s and Bernstein-Vazirani which have presented speedups to a number of

problems such as integer factorization and database search. These algorithms are beginning to see

the light of day now that devices coined Noisy Intermediate Scale Quantum (NISQ) have become

a genuine implementation of Quantum Processing Units (QPU)s [1,2]. NISQ era devices have

opened up the door for researchers to begin the process of developing these algorithms in earnest.

These devices have also raised the interest around the topic, significantly spanning to domains

outside of the typical computational thesis such as into finance, chemistry, biology, among others

[3, 4, 5, 6, 7]. New developments in quantum technologies are beginning to spawn, and

implementations of learning models for these new devices is growing. NISQ era devices provide

the unique opportunity to test and develop QML techniques which were not physically possible

before [2].

At the cornerstone of QC research and physical implementations, NISQ era devices have

brought about the development of several programming suites for simulated quantum devices.

Together with modern processing power these allow for a much richer experience when preparing

to perform experiments on a real quantum device as well as trying to understand realistic

expectations of current systems. In this realm we have two major components in terms of

Application Programable Interfaces (APIs): the supporting code for development of circuits and

the compilation code that runs on the physical device. Major organizations such as IBM, Google,

and Xanadu allow development of models on both simulated and real quantum devices [8, 9, 10].

These software suites allow for the fundamental device-agnostic gate implementations that can be

used to build quantum algorithms. With the developmental code there is the ability to create

circuits and oracles out of gates. Oracles are considered “black boxes” in a quantum circuit which

apply some set of gates to perform a change to the computational basis of a quantum state(s) [11,

12]. Some of these languages include Qiskit Aer, Cirq, and PennyLane. These are created and

supported by IBM, Google, and Xanadu respectively. There is also so to speak the “backend”

which needs to handle both software and physical problems. The backend handles aspects such as,

transpiling of code, mapping of qubits to device topology, and noise during execution of an

experiment. Each of these code sets handles these backend steps in their own ways.

There are several other companies that are also joining and excelling the race in the space

of QC. In some cases these companies are developing their own QCs while others are developing

software suites such as Amazon with BraKet [13], Microsoft with Q# [14], and Honeywell who

uses the open Quantum Assembler (QASM) API [15]. Industry is beginning to bow to this

quantum race as projections suggest a quantum supremacy just on the horizon. We are speeding

towards a state where quantum computers will perform intensive computational tasks faster than

classical devices [16]. The recent announcement of the experiment on Google’s Sycamore QC

showed achieving quantum dominance over a classical device could happen any day now.

Exploring Information for Quantum Machine Learning Models

7

Some of these key players in QML have developed open source frameworks such as IBM’s

Qiskit & Q Experience, Google’s TensorFlow Quantum, and Xandu’s PennyLane. These three are

used in the work presented here primarily because they have the most extensive packages, support,

and involved communities for QML. Each of these frameworks has capabilities to extend their

software suites by utilizing tertiary APIs as well as utilize their frameworks on devices outside of

their respective companies. For example, TensorFlow (classic) and PyTorch can both be used to

train neural networks utilizing PennyLane. Additionally, circuits written with PennyLane, QASM,

or Cirq can be run on IBM’s quantum devices [10]. These abilities make developing QML

experiments and models as natural as their classical counterparts. It should be noted that we are

still not at the point where we can say that QML on NISQ devices surpasses classical methods;

however, with these new tools, increased funding of research, and interest in the topic growing

rapidly, we are getting closer to an inevitable outperformance of current leading technologies.

Much of the work presented here relates to the processing both before and after a learning

methodology is applied, perhaps one of the most fundamental requirements for utilizing QML, or

ML for that matter, is a firm foundation in general data mining procedures. Apart from developing

models for quantum systems there is the body of work that will need to answer the questions: How

do we improve results?, When do we use a method of embedding over a method of encoding?,

Why did a model perform the way it did?, etc. Several methods we will develop are classical and

help to answer these questions. One quantum method used here has been come to be known as

amplitude encoding. This method as we will show is far superior to other methods of encoding

raw classical data into a quantum state [17].

This thesis is organized with the following sections. We further develop a simple

introduction of classical data processing methods, machine learning methods, and quantum

computing in the Theoretical Background. A literature review, description of the technologies

used, and the individual frameworks for quantum machine learning are given in the section

Technical Background. We continue with the datasets explored both generated and toy datasets in

our exploration of utilizing quantum machine learning in the section Datasets. The section

Experiments covers the work in applications of data processing, development of quantum learning

models, and what we have come to understand as some advantages/disadvantages. Finally, a

conclusion on presented material and discussions for future work are given in the Conclusions

section.

Exploring Information for Quantum Machine Learning Models

8

2. Theoretical Background
There are many components that make up this highly specialized f ield of QML. The goal

of this section is to give enough background to the reader by briefly developing several these topics

before moving on to a more technical overview.

2.1 Classical Overview of Data Processing
Preprocessing and post analysis of data are essential for gaining a firm awareness of

information that will be explored or learned from. We will describe several of these methods that

can be used before applying a learning technique, and after, methods that are used to understand

the results. Briefly, the data storage system in this thesis was Comma Separated Values (CSV) and

JavaScript Object Notation (JSON). We exclude a through explanation into data collection and

data storage methods as they are not the focus.

2.1.1 Raw Data as a Whole

Raw data from a system or software is often captured without any pretext other than its

immediate intended use. There are a number of different forms data can take such as continuous

real variables, categorical discrete variables, binary variables, non-structured text, multimedia

(audio, images, and video), among others. In their raw form, data are often not ready to be learned

from or utilized in an analytical way. Even just grasping the bare meaning of the data can often be

daunting without some level clarification or set of steps that simplify and facilitate an

understanding of the information [18].

Three issues often associated with data processing involve missing records, imbalanced

classes, and outliers. Missing records pose a very difficult problem as they would otherwise

contain information that would be valuable to a learning technique. There are several methods for

dealing with missing data such as replacing them with the mean of the feature, but this also causes

potentially useful contents to be lost. Imbalanced classes are also a major issue when handling data

especially when applied to a learning heuristic. Class imbalance occurs when a set of classes or a

single class has more samples than other classes. Simply the population of a single class is greater

than another. In the extreme case there is the possibility a technique will simply judge all the data

as the majority class over the minority [18]. To alleviate this issue data can be balanced simply by

dropping records from the majority class to match the minority class. Additionally, methods for

oversampling the minority class have been developed such as Synthetic Minority Oversampling

Technique (SMOTE) and Tomek Links [19, 20]. The third issue of outliers is often more complex

in its analysis and handling. An outlier exists when there are data on the edge of the distribution

of the samples. Simply put the data that does not conform to the same general behavior of the data

[18, 21]. In the simplest case this can be handled by excluding samples greater than some number

of standard deviations. In this thesis we handle all three issues in different circumstances. As we

will discuss later the Scikit-Learn datasets which we generated fortunately do not have many of

these issues but others such as the Wine dataset face some of these issues.

Exploring Information for Quantum Machine Learning Models

9

2.1.2 Feature Dependent Processing

Direct methods that transform and manipulate data in the preprocessing phase are regularly

needed to clarify the information in some features. A few of these methods include discretization,

normalization, and smoothing. As we describe further in the body of the experimentation each of

these results in dramatic changes to a model’s learning behavior when utilizing QML techniques.

2.1.3 Discretization

Feature discretization is a method for transforming raw continuous variables to a discrete

and less complex feature space. In general, this can be considered as value reduction where there

are two questions that we want to answer: where to stop or start a discrete set or interval? and how

to determine what represents a discrete set or interval? The simplest method for discretization is

to simply sort the data and then split it based on bins of size m where m is the number of elements

in a bin. The bin value then becomes the mean of each bin and then the values are converted to

those bin values. This method struggles with finding what size m needs to be to achieve the best

results and can require several iterations of trial and error [18].

A second method known as the ChiMerge Technique has three steps for discretization: first

sort the data in ascending order, define an initial interval such that only one value is in each interval

(using the mean of every pair of values), for every adjacent interval compute 𝑋2 of each interval

and determine if the 𝑋2 value is below the threshold, finally, if 𝑋2 is below a certain threshold

merge the two intervals, if not, the intervals cannot be merged. The lower bound of the first interval

and upper bound of the second interval will replace the bounds o f a new merged interval. To

implement the ChiMerge a contingency table must be constructed that uses the number of classes

in the dataset to determine the values used in the calculation of 𝑋2 . This makes the method typically

useful for only classification methods. The ChiMerge Technique provides a statistical method for

determining the intervals and results in significantly different results than the method for binning

above.

2.1.4 Normalization

Normalization is one of the most common, yet important transformations applied to data.

Normalization scales data between some predetermined range such as [0, 1]. The values are

arrange based on some method which considers all of the samples for one feature. Therefore,

normalization occurs column wise across the whole dataset where applicable [18]. This is because

each feature’s values are independent of every other feature. The concept of normalization is to

simplify the impact any singular value can have on biasing a learning techniques behavior when

observing the sample. If a technique sees that in certain cases a value is very large/small, it may

over/under weigh the importance of a feature’s value and misguide the learning process.

Before normalizing, outliers of data must be removed as it can cause the normalization to

reduce most of the data to a small interval of values. Although normalization reduces the interval

of values to some range, if outliers are included a learning technique may have a harder time

understanding the other features of the data. If they are included, they also weigh in on the scale

for normalization. Without removing outliers utilizing normalization can lead to errors that become

harder to comprehend further in the pipeline of analysis. Normalization takes several forms such

Exploring Information for Quantum Machine Learning Models

10

as standard deviation normalization, decimal normalization, and minimum-maximum (min-max)

normalization. These equations are shown in Table 1.

Table 1. Normalization methods for scaling data.

Normalization

Method

Standard Deviation

Decimal

Min-Max

Equation

𝑣𝑖 − mean(𝑣)

𝑣𝑖

10𝑘

𝑣𝑖 − min (𝑣𝑖)

max(𝑣𝑖) − min (𝑣𝑖)

Where the column being normalized is 𝑣 and the column value is 𝑣𝑖 . The value 𝑘 in decimal

normalization is the power needed to make the largest value in the column less than or equal to

one and 𝑠𝑡𝑑 is standard deviation. Each of these methods can be modified to fit the data

appropriately. For example, when using standard deviation normalization you may want to

decrease the weight of values and apply a coefficient in the denominator, or in minimum-maximum

normalization you may choose to normalize between [0, 1] or [-1, 1] depending on the

classification task [18]. In either case normalization and its application is data dependent and

should be evaluated before and after the learning process. We develop the normalizations in more

detail as we build upon the process of preparing different procedures in the Experiments.

2.2 Post Analysis
 After training a model, post analysis of results is a critical component as it explains the

learning outcomes of an applied technique. In almost every case the best way to perform analysis

of a learning method in either the classical or quantum realm is on a holdout or test set of samples

which have not been used anywhere in the learning process. This requires the dataset be split into

at least two groups such as training and testing or in some cases three groups where we have

training, validation, and testing [18]. The validation set as we will is used in some methods to

validate and provide feedback to a learning method while it is actively learning. Testing on the

validation set should not be done as the technique will be privy to this set. The holdout or testing

set again must never be used by the model. The holdout set must also be prepared using the same

methods as the training data. This means the same preprocessing steps such as normalization and

discretization must also be applied. From a practical implementation point of view, it is best to

split the testing set from the data immediately prior to beginning any training, this way one can be

sure all the necessary steps have been applied correctly.

 The most common metric used here is Accuracy of the learning model on the new testing

set. We also consider Precision, Recall, F1-Score, Confusion matrices (True Positive, True

Negative, False Positive, and False Negative), and Receiver Operator Curves (ROC) when

evaluating a model’s results. We will show how these metrics imply the learning outcome of an

amplitude encoded dataset using TFQ significantly outperforms other state preparation methods

[17]. We will also show how different transformations to data in quantum models can significantly

change the metric scores gathered. The main reason for using accuracy is that we primarily work

Exploring Information for Quantum Machine Learning Models

11

with synthetic data here and as we have control over the data. For example, with an imbalanced

dataset it would make sense to maximize and concern ourselves with F1-score [18]. Due to the

lack of abnormalities in the data such as imbalances and outliers, accuracy is less questionable.

That is not to say we did not evaluate almost all the data using the aforementioned methods, but

due to the behavior of datasets we worked with, accuracy was an appropriate choice. In most cases

we still evaluate results using all the metrics.

 Post analysis of data can be tricky as it is tries to explain the output of the learning

technique. It does not try to explain the learning process of an applied technique but the outcome.

In this thesis the general goal of post analysis is to show which f orms of encoding and

transformations result in better performance in terms of a model’s ability to learn the data in a

quantum space/representation. For this reason, we fully define and develop the post analysis tools

later in the section Experiments. We will also show that graphical results in some cases are able to

capture the behavior of a technique which can make these numerical metrics misleading at a

glance.

2.3 Machine Learning
 Learning methods in modern times have grown very complex with new hardware paving

the way for Deep Learning and advancements in Artificial Intelligence. Given these advancements,

many of the underlying methods for learning have stayed the same. We cannot cover the entirety

of machine learning in our brief overview but cover some of the basic components. We also discuss

some simple methods, albeit old still perform exceedingly well.

 In a broad sense machine leaning techniques can be categorized into three types: prediction,

classification, and clustering. These three types although complex in their various implementations

can be simplified in their explanation. In general, prediction is a task which aims to determine with

some level of exactness or accuracy a value given a set of inputs. Both prediction and classification

are concerned with accuracy in a similar way, but prediction accuracy is measured against the

immediate result of a prediction. Classification aims to determine which class (whether there be

two or two hundred) a sample identifies or corresponds to. Accuracy in terms of a classification

model is determined based on the set of correctly classified samples. Clustering methods are

typically based on some kind of distance metric which considers a “spatial” component of the data

such that those closer or spatially nearer to each other in n-dimensional space are clustered together

[22]. The goal of clustering is the most different from the three. It aims to produce some

measurable explanation within a dataset by organizing or grouping subsets together, often it is

used as a descriptive method before prediction or classification [18, 22].

 An additional split in machine learning definitions comes with the approach for supervised

and unsupervised learning. Supervised learning is a process by which samples of data are fed to a

method with the class label or expected output. For any method of supervised learning the goal is

to let the method run, applying whatever methods are available to it, and with its current state of

knowledge try to make a guess about the expected output. The result or set of results from these

guesses is then measured against the true output, internal functions or often model parameters are

minutely updated, and the process begins again. This is essentially how most how machine

Exploring Information for Quantum Machine Learning Models

12

learning and recently deep learning methods attain their highest results. Unsupervised learning

such as clustering approaches the problem differently as its applications are generally not the same

as supervised learning. They do not have labels to measure against after an iteration or part of

learning. That is not to say clustering is only unsupervised, when applied correctly clustering

techniques are among the top performers for classification in many cases [23]. Unsupervised

methods typically have the goal of making some formal descriptions about data. An example of

this is the Restricted Boltzmann Machines (RBM) which learn probability distributions of a dataset

and the Apriori algorithm for market-basket analysis. For completeness, there is also semi-

supervised learning which takes elements from both supervised and unsupervised learning [24].

2.3.1 Learning Methods

One machine learning technique which has its roots in statistical learning theory is a

Support Vector Machines (SVM) [25]. SVMs are a method of supervised learning which in its

basic form is a linear classifier that separates two classes from one another via a hyperplane. A

hyperplane is defined based on the dot product of input vectors. This is one of the reasons why the

method Quantum Support Vector Machine (QSVM) has become popular in the field of QML [26].

Several hyperplanes exist between classes so an SVM also seeks to maximize the distance between

classes. This maximally spaced hyperplane exists when it is furthest away from the closest sample

from both (all) classes. A margin is also important component to an SVM as it provides the ability

to compromise when data is not perfectly separable as in most cases. The margin is the boundary

space, containing the hyperplane, between the classes but with additional support for allowing

overlap between classes. Optimization of these hyperplanes is performed using a Lagrangian

transformation in most cases. Support vector machines have been expanded to include nonlinear

classifiers based on what are called kernel tricks/methods/functions. Perhaps the most popular of

these kernel methods is the radial basis function or RBF. These kernel methods replace the dot

products into more robust nonlinear generalizations of SVMs [18]. In Figure 1. we plot three of

these kernel methods: LINEAR, POLYNOMIAL, and RBF. SVMs are largely dependent on these

functions and choosing the best one is data driven. The example contains ten samples, five for each

class. In the figure the solid white lines are the separating hyperplanes, and the dotted white lines

are the margins.

Figure 1. Application of SVM kernel methods on ten samples showing the different boundaries, margins, and

hyperplanes for the same dataset. RBF is the only kernel which is almost able to classify all 10 samples correctly.

Exploring Information for Quantum Machine Learning Models

13

 For clustering there are several techniques that fall into categories such as hierarchical

methods, partitional methods, and density-based methods. One of the most well-known clustering

methods is a partitional method called the KMEANs algorithm [27]. This method is rather

straightforward as it tries to cluster data into k groups of equal variances by reducing the inertia or

within-cluster sum-of-squares. The algorithm requires that a user pick the value of k which is often

found either by trial and error, expert opinion, class labels, or a combination of these. Inertia is

calculated by applying the Equation 1. where 𝑥𝑖 is the sample and 𝑢𝑗 is the cluster mean the sample

is in. The naïve approach is performed by assigning clusters based on k and then updating the

centroids or cluster centers by calculating the least squared Euclidean distance of the samples.

∑ min (||𝑥𝑖 − 𝑢𝑗||
2

)

𝑛

𝑖=0

 (1)

Visualization of clustering methods also makes them attractive when attempting to explain the

method or gain intuition. Figure 2. shows the results of the KMEANs algorithm on a very simple

two-dimensional sample with four clusters. These results are visually well grouped and easily

distinguishable in comparison to other datasets.

Figure 2. Four classes clustered by the KMEANs algorithm. The simple dataset here shows the capability of

descriptive mining methods on convex data.

 Deep learning’s path has been primarily paved by way of the perceptron or multilayer

perceptron (MLP). The perceptron was developed in 1958 making it over 60 years old [28, 29].

Later in this work we will apply an MLP to a quantum technique making it quantum-classical

implementation. At its core a perceptron is a simple function which takes as an input a vector and

takes its dot product with a real-valued weight. In the case of binary classification, the output value

will be one when the dot product is greater than zero and zero otherwise. A perceptron is very

simple and because of this it is not able to solve nonlinear problems [28]. The graphic in Figure 3.

shows that there is not one single hyperplane that can separate the red triangles from the orange

dots. This example shows that even a simple XOR logic gate is not linearly separable. To solve

Exploring Information for Quantum Machine Learning Models

14

this problem we can add multiple perceptrons stacked together in the form of a “layer”, several

layers (typically three or more) create an MLP. An MLP allows for nonlinear approximations to

be learned. An MLP connects each of its nodes (neurons) with all other nodes and is dubbed a fully

connected layer or dense layer [18, 28, 29].

Figure 3. Classical problem on XOR gate that shows a simple perceptron cannot solve nonlinear problems. An MLP
solves this by selecting the samples inside the boundary (dots) as one group and samples outside the boundary

(triangles) as the second group.

Multiple “layers” of MLPs are the very basics of so-called deep learning as we are at a depth of

typically several (sometimes hundreds/thousands) of layers. With this representation we also have

the notion of a hidden layer which is any layer between the input and output layers of the network.

The MLP used in [17] uses two dense layers of 64 and 32 neurons and one neuron in the output

layer, a visualization of this can be seen in Figure 4. We have scaled it to ¼ the size due to the

space limit of a page. The output layer of a perceptron can be extensively modified with software

packages. It can not only perform binary classification but multiclass classification or continuous

value regression. This behavior is controlled by an activation function which we will discuss later

in this section [30].

Figure 4. Artificial Neural Network (ANN) with 16, 8, 1 perceptrons for the input, hidden, and output layers
respectively. The model used in the TFQ experimentations uses a similar network with four times the nodes in the

first two layers.

Exploring Information for Quantum Machine Learning Models

15

2.3.2 Learning – Optimization and Loss

 Although the recipes of different learning techniques can range from subtle to poles apart

to even contradicting the underlying ingredient is optimization. Optimization is what breathes the

concept of learning into any of these techniques. In terms of learning an optimization means

solving for either a non-linear or linear equation of some feature space such as y = ax + b in the

linear case. We cannot begin to cover the vast number of optimization functions that exist. But in

general optimization has the goal of finding or ‘fitting’ to the equation that predicts, classifies, or

clusters a dataset in the best possible way. To do this we introduce two concepts the learner or

heuristic and the loss function.

 If optimization is the method for learning than we can define the learning method as a

heuristic. The heuristic is given control of a special type of parameters called hyperparameters. In

the SVM this might be the tolerance for the margin or in the case of deep learning the number of

neurons. Initially the one who is designing or implementing a technique will setup these

hyperparameters which cannot be changed during training. These hyperparameters are used to

develop the learner as they determine how to calculate and optimize the applied model [31]. These

are often decided using additional heuristics, trial and error, or a combination of both. The learner

uses these parameters within the model to determine or calculate its own model parameters which

are unseen to the user. Model parameters are not imaginary or conceptual. In a simple algorithm

we can show and precisely define the values these parameters will produce; however, as models

scale to larger datasets and more complex feature spaces the size and number of these parameters

tends toward combinatorial explosion [32].

 One frequently applied optimization which in deep learning is the Stochastic Gradient

Descent (SGD). SGD is an iterative method that tries to converge at some minima (local or

minimal) within a function that fits to the data [32]. It has two main parameters to compute the

gradient of a function: 𝑤 or weight and 𝜂 which is the learning rate or step size. SGD is a

differentiable function which takes the form of a summation of gradients. It is computed using

Equation 2. where 𝑄(𝑤) is the function being minimized 𝑄𝑖(𝑤) is therefore the 𝑖𝑡ℎ example of

loss of the sample.

𝑤 ≔ 𝑤 − 𝜂∇Q(w) = w −
𝜂

𝑛
∑ ∇Qi(𝑤)

𝑛

𝑖=1

 (2)

In its process the SGD outputs a new weight for after every iteration . An illustrative example of

this process is shown in Figure 5 (a). and in this case the optimizer will find a local minimum in

place of the true global minimum. Although we would like our optimizer to reach the lowest point

this is contingent on several factors. In terms of data we would like our data to exhibit some convex

behavior in order to more frequently reach the global minimum. As this is data dependent, we are

stuck tunning parameters, in the case of Figure 5. we show two examples of how two different

learning rates would can impact SGD. The graphic in Figure 5 (a). shows the application of a large

learning rate and below we can see a small learning rate in (b). Determining which is better is often

data dependent. As the graphic depicts, a bigger learning rate is susceptible to jumping behavior

Exploring Information for Quantum Machine Learning Models

16

and will likely skip over/not find a “good” local minimum. On the other hand, small learning rates

are much smoother but might get trapped in any minimum such as the next minimum (#2 in the

graphic). The key here is balance, the SGD needs to be able to be large such that it can move out

of “poor” minimums and small enough to not bounce out of “good” minimums [28].

Figure 5. Example of gradient based methods. Learning rate of the top figure (a) is set to high which may result in
jumping behavior. Bottom figure (b) has small learning rate which may lead to getting trapped in poor local

minima.

We have labeled the minima in this diagram to show that there are four local minimums three of

which are “good” minimums and #3 is the global minima. With a big learning rate, it would not

be surprising to see the end result end up in the second or fifth minima. With a small learning rate

the function may never exit the first minima. In our example this would by chance be an acceptable

outcome. Later in the Experiments section we will discuss Adaptive Moment Estimation (Adam)

Optimizer. Other optimizers apply additional parameters to control the learning behavior such as

momentum to solve issues that SGD struggles with, like saddle points [33]. As always there is a

tradeoff between choosing one method over another. In general, stochastic optimizers are the bread

winner of optimizers.

Conceptually a “guide” is implemented in the form of a loss function to steer the optimizer

towards these local minima [34]. They do not take the optimizer out of a minimum so to speak but

attempt to make them tend toward the minima. Loss can be applied in the middle of an iteration,

on a batch, and/or the end of an epoch. In general, loss determines how the heuristic has done thus

far. By implementing loss, we can determine how learning is increasing or decreasing the overall

results. It also helps explain what is known as overfitting if the learner has gone too far or in the

wrong direction. The loss function of a neural network or other learning methods are fed values

that have been weighted by the model, these weighted values are produced from a neuron or node

by an activation function that shapes the output to some desired form. There are several activation

functions that can be applied to a neuron. Three very popular choices are shown in Table 2., both

equations and graphics are shown. Of these three, Rectified Linear Unit or ReLU has made waves

in the deep learning community for showing that it is capable of converging faster than the other

Exploring Information for Quantum Machine Learning Models

17

two [34]. Once each neuron has had an activation applied to it then the loss function can be applied

to the layer or entire network. At the end of any training instance or rather a pair of training

instances a decrease in loss signifies an increase in performance, typically accuracy, this implies

that the heuristic has learned some component of the data [35]. As we develop in the Experiments

section the loss function can also imply training has taken a turn for the worse and begun to,

rightfully named, overfit.

Table 2. Common Activation functions for artificial neural networks.

Activation Function Plot

Sigmoid
1

1 + 𝑒−𝑥

Hyperbolic
Tangent

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

ReLU f(x) = max(0, x)

 Overfitting is the state when a learning function has over optimized or in a sense

memorized the training data it is privy to. This problem does not arise because the heuristic is

attempting to memorize the data but rather that fitting to a function draws this behavior from an

optimizer. Overfitting is an issue and without a holdout or validation set of data it is impossible to

realize a model has overfit. When overfitting the optimizer has stopped fitting to feature

information and started to optimize for decreasing the loss function on the training samples. Simply

adding a validation dataset to use within the model will not mend the situation as the problem lies

in the method or application of the method itself. But it can help spotting the problem much easier

as we show in the Figure 6. using the public University of California Irvine Wine dataset. On the

left the figure shows that while the training loss is continuing to decrease the validation loss is not

matching this behavior, and similarly the accuracy (right) appears to drop back to its initial value

for validation. This model has been intentionally overfit to show this issue. There are several

methods for managing a model that overfits. The main issue of overfitting in this thesis occurs

when data has been fit as best as it can, or simply the model has trained for too long. The issue has

several solutions such as decreasing the complexity of the learning method, decreasing the training

Exploring Information for Quantum Machine Learning Models

18

time, and/or forgetting some of the information learned in an epoch. Better yet, as we show from

our paper using TensorFlow quantum, using the wrong quantum state preparation techniques will

lead to underfitting [18].

Figure 6. Example of a model overfitting on the Wine dataset. Noting the red are training metrics and orange are

validation metrics. This is an over simplified model that needs tuning or better preprocessing of the data.

2.4 Quantum Computing
Quantum computation has had a longer history than many may be led to believe; however,

it was in the early 1980’s when suggestions regarding analog quantum computers by Richard

Feynman, Paul Benioff, and Yuri Manin began to appear [36, 37]. In the following years,

contributions led to the development of the first algorithms by Deutsch and Jozsa [38]. It was not

until Peter Shor’s algorithm for integer factorization and discrete logarithms in 1994 [39] that

interest of Quantum Computing stirred within the scientific community. What is known now as

Shor’s Factoring algorithm showed that cryptanalysis techniques could exponentially be sped up,

jeopardizing methods used to protect stored data and communication in both civil and

governmental applications.

Among the many technical challenges associated with the physical implementation of

quantum computers [40], one of these challenges is that quantum gates should be faster than the

loss of information to the environment; this is known as decoherence. This phenomenon, imposes

a constraint on computing, making some algorithms impractical. The development of

superconducting metals allows for the creation of resonant circuits capable of providing coherent

lifetimes of milliseconds, making quantum processors a reality. Although a large-scale noise free

quantum computer seems beyond the horizon, there are several quantum algorithms that can be

executed with current technologies [41].

The research done on Noisy Intermediate Scale Quantum devices, known as NISQ,

produces algorithms and simulations for the current technology and hardware development state.

With classical computers, tasks such as tracking and describing qubits in quantum s imulations

would be impossible; quantum computers are able to do this with ease. Without NISQ,

comprehending qubits would require an exponentially large set of classical numbers, something

quantum computers are readily able to produce. At a fundamental level this is why classical

Exploring Information for Quantum Machine Learning Models

19

computers fail to perform many of the tasks that researchers and theorists believe quantum

computing can [36].

Quantum Mechanics postulates are of algebraic nature, meaning there exists an intrinsic

relation between quantum computation and algebraic operations [ref]. Multiple advances in the

field of quantum information processing have provided promising prospects relying on that

advantage. Therefore, it has been proven that Quantum Computing could lead to exponential

speed-up in different data processing and machine learning methods, including Principal

Component Analysis (PCA) [42, 43], K-means Clustering [44] and regularized Support Vector

Machines (SVM) [45]. Advances in NISQ devices imply the development of more diverse and

meaningful applications, increasing the relevance of conducting research in this area.

In the 1990s physicists began to analyze and consider what aspects would be needed to

develop a quantum computer and with that how to program one. The result of this early thinking

has led to the concept of qubits or the quantum dual of the binary bit and quantum circuits. Qubits

or quantum bits are represented as the state |𝜓⟩ (read state psi or ket psi). A qubit is defined by a

set of probability amplitudes 𝛼𝑛 where 𝑛 is the number of basis states. A generalization for a qubit

is given in Equation 3. and the constraints for 𝑛 are given in Equation 4., where the probability

amplitudes must sum to one.

 |𝜓⟩ = 𝛼0|0 … 00⟩ + 𝛼1 |0 … 01⟩ + ⋯ 𝛼𝑛|1 … 1⟩ (3)

∑|𝑥𝑖|2 = 1

𝑛

𝑖=0

 (4)

The need for quantum computing comes from the desire to model the real world with much

greater detail. Computationally the classical computer has grown into quite a powerful tool which

has been able to solve a myriad of tasks [36, 46]. In the most basic case, a few qubits are

computationally intractable for classical devices to simulate and track. That is not to say classical

devices will be obsolete when/if quantum devices reach supremacy over them. In fact, as we will

show, classical devices and quantum devices both have their part to play. Quantum devices can be

viewed as a secondary computational unit outside of the typical Computing Processing Unit (CPU)

which handles calculations with much greater complexity like a Graphics Processing Unit (GPU).

 One way quantum devices are able to perform intractable calculations that classical devices

cannot is by taking advantage of what is known as the Hilbert space. A Hilbert space is a

generalization of vector space with the structure of an inner product, it is a complete space [36,

46]. A Hilbert space is a real or complex inner product space that is also a complete metric space

with respect to the distance function induced by the inner product. The following properties satisfy

a Hilbert space:

1. The inner product of a pair of elements is equal to the complex conjugate of the inner

product of the swapped elements. ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩̅̅ ̅̅ ̅̅ ̅

2. The inner product is linear in its first argument and for all complex numbers 𝑎 and 𝑏.

⟨𝑎𝑥1 + 𝑏𝑥2, 𝑦⟩ = 𝑎⟨𝑥1,𝑦⟩ + 𝑏⟨𝑥2,𝑦⟩

Exploring Information for Quantum Machine Learning Models

20

3. The inner product of an element with itself is positive definite.

{
⟨𝑥, 𝑥⟩ > 0 𝑥 ≠ 0
⟨𝑥, 𝑥⟩ = 0 𝑥 = 0

The Hilbert space allows for generalizations of change of basis and linear operations which are

requirements to achieve quantum computation [36, 46]. To oversimplify, quantum devices are not

constrained to singular values as their minimum computational unit like classical devices. Their

fundamental unit is a vector space. Quantum devices are not constructed to logics gates that utilize

Boolean algebra instead they leverage quantum gates which resemble matrix operations and utilize

linear algebra.

Quantum computers today take the form of Noisy Intermediate Scale Quantum (NISQ)

devices. These devices by no means are the final state of quantum computer, but a steppingstone

to prepare, develop, and test algorithms. Scaling these devices poses several challenges, although

it is not the purpose of this thesis it must be mentioned. Physical systems are prone to error due to

issues such as stochastic noise. Research in this area is referred to as quantum error correction and

it works to increase the fidelity of quantum systems under these unideal circumstances [40, 47].

Quantum computing devices when created using a lithographic process have a physical

connection between qubits called a Josephson junction [48]. The Josephson junction is a tunnel

junction composed of two superconducting metals separated by an insulation barrier. The

phenomenon is a product of quantum tunneling [36]. Quantum devices with this characteristic

include IBM devices such as those in Figure 7. These devices have a different number of qubits

but that does not directly relate to their compute capabilities. IBM has dubbed the term quantum

volume [49] to indicate the capacity of a quantum computer taking into consideration several

factors such as number of qubits, circuit depth before the level of error is to large, topological

connectivity, crosstalk, U gate error, CNOT error, among others [50].

Figure 7. Three IBM quantum device topologies, taken from IBM Q Experience. The coloring of connections and qub its is

indicative of their error rates. Darker colors indicate higher error rates. The devices are regularly reset which changes the error

rates for better or worse. Error rates are also displayed for fundamental gates in the IBM Q Experience application.

Before discussing quantum machine learning, we wrap up the discussion of quantum
computing and quantum information with a basic data transformation. Data can be transformed to
represent quantum states using any arbitrary change to the computational basis of a qubit. A simple

dataset such as {𝑥, 𝑦, 𝑧} can apply what is known as a unitary gate or 𝑈 gate. A unitary is operated

Exploring Information for Quantum Machine Learning Models

21

over a set of inputs producing some set of outputs to obtain a new set of transformed states. This
concept or schema for applying a unitary to data is given in Figure 8.

Figure 8. Unitary gate applied to create state changes.

2.5 Quantum Machine Learning
The term quantum machine learning (QML) can have more than one meaning depending on its use.

What we will mean by it in this thesis is the use of machine learning on quantum devices (simulators) or

quantum-assisted machine learning. The goal of this marriage is to discover whether the addition of

quantum components can be leveraged to increase the learning of classical methods. It seeks to answer

whether there are patterns that quantum information is better suited for, if with less information can

similar/better results be achieved, or if quantum computers speedup the learning in certain classical

optimization problems. The QML models we will apply in this work are all performed on simulated

quantum devices so we will mainly focus our attention in the second meaning, quantum-assisted machine

learning. This type of learning can be split into a number of different arrangements but perhaps the clearest

example is given in [46] as a four-quadrant map. The map in Figure 9. represents the four types of quantum-

assisted machine learning approaches that can be taken. The components are a combination of two letters

where the first is the data archetype and the second is the computing device. The first letter is either quantum

“Q” or classical “C” data and the second letter is either quantum “Q” or classical “C” devices. Therefore,

the combination of QC only in this section is an abbreviation meaning quantum data on a classical device.

Figure 9. Quadrant map of data and system relationship "Q" is quantum and C is classical. First character represents the data

source and the second represents the device. CQ is read classical data on a quantum device.

Computing in QML has mostly evolved to a state where there are several working models

that have been theoretically developed and maintained in a quantum “Zoo” online [41]. These

methods share crossover from standard classical models and in some cases are simply adaptations

of quantum data in a classical model. Two of these models are implemented here they are the

Exploring Information for Quantum Machine Learning Models

22

Quantum Convolutional Neural Network (QCNN) [46] and a Variation Quantum Classifier (VQC)

[46]. In general, we discuss supervised learning algorithms in this research. As we will develop

the QCNN in the section TFQ Experimental Setup we mainly discuss the VQC model here. Both

of these models are characterized as parametric quantum optimizations. Parametric meaning that

some value, in our case a sample’s values from a dataset, can be fed as parameters to a quantum

circuit and the behavior of the evolved state can be estimated and then optimized.

One method we will discuss later applies the notion of “shots” in their learning

methodology [51]. The concept of shots or repeated experiment runs is a method for handling the

noise in NISQ era devices. Shots are performed such that a distribution of the probabilities for the

outcomes can be ascertained. The value in the distribution of outcomes with the largest value is

considered the true value output of an experiment. For example, in Figure 10. we have the

distribution of outputs in Grover’s algorithm for four qubits. These outputs suggest that the circuit

is outputting the key value 1111 or 15.

Figure 10. Grover's algorithm for four qubits using over 600 gates an example of a circuit that needs a high number of shots in

order to be sure about the final value. An output layer for binary outputs needs a sufficient number of shots to ensure loss in the

correct direction.

The application of shots in terms of a QML model is applied per iteration of a model. In

this way if we perform twenty iterations of optimization with a batch size of five and ten shots, we

will perform a total of 1,000 experiments on a quantum device. This is indicative of the state of

QML on NISQ era devices and it is a rather large number of experiments. The number of shots

needed is dependent on the complexity of the circuit and how infrequently we expect to get a noisy

output from the system. We implemented the experiment in Figure 10. showing a circuit that

searches for the binary value of 1111. The circuit is a four-qubit variation of Grover’s algorithm

that required 632 gates. We show the example on both Qiskit and Q# as the problem with shots is

device/language agnostic. The number of experiments performed in both cases is 8,192. As you

can see 15 is the result of the system roughly 1/3 of the time. This implies 15 was the value we

were searching for.

Exploring Information for Quantum Machine Learning Models

23

2.5.1 Parametric Quantum Classifiers

We now introduce the topic of parametric quantum classifiers using the variational

quantum classifier (VQC). We have shown that in order to calculate the value in Grover’s

algorithm several shots must be performed due to issues with error correction. Variational circuits

and more specifically the VQC algorithm do not have this issue directly [46]. Instead VQC applies

a hybrid application to the learning process by performing the optimization update within a

classical device. This significantly decreases the complexity of a fully quantum circuit

There are three components to this methodology, following Havlíček et al [51]: a feature

map applied to the data, a variational circuit, and the optimization. Like the SGD algorithm, VQC

is an iterative method. Coincidentally the optimization of the model in a classical device produces

a new source of error mitigation even when inputs to the classical devices are noisy measurements.

As we will show in our experiments, we follow the steps from [46, 51] for state preparation using

amplitude encoding, a proven method for VQC applications. In Figure 11. we show the

architecture used in a typical VQC implementation.

Figure 11. Pipeline for a VQC model. Once data has been preprocessed the feature map 𝜈𝜙
(𝑥) is applied to the data for robust

learning in Hilbert spaces. The variational quantum circuit is then applied. Results from the circuit are fed to an optimizer on a

classical device which will update the parameter 𝜃.

In Figure 11. we can see the feature map is applied before performing the optimization on

the variational circuit. The feature map maps the classical data input into a higher-dimensional

Hilbert space for the quantum system. The feature map in Havlíček’s work is a “black-box”

encoding of classical data to a quantum state |𝜓(𝑥𝑖)⟩ that is performed using transformations to the

ground state |0⟩𝑛. This implementation of the feature map is given in Equation 5. where H is the applied

Hadamard gate and Equation 6. is the diagonal gate in the Pauli-Z basis.

𝜈𝜙(𝑥) = 𝑈𝜙𝐻⊗𝑛𝑈𝜙(𝑥) 𝐻⊗𝑛 (5)

𝑈𝜙(𝑥) = exp(𝑖 ∑ 𝜙𝑠(𝑥)
𝑠⊆[𝑛]

∏ 𝑍𝑖

𝑖∈𝑆

)

Exploring Information for Quantum Machine Learning Models

24

3. Background
This section is a combination of a literature review and a background into the frameworks

we utilized to program our experiments. The literature review is primarily concerned with

discussing recent works in the realm of quantum information and quantum assisted machine

learning. We present several recent research efforts in this domain. We conclude this section with

the background knowledge of the programing “stacks” used to prepare quantum experiments in

this thesis. This spans both quantum related frameworks and non-quantum specific packages. The

code for this thesis can be found in Michael Telahun’s GitHub repository. This is listed in the

Appendix.

3.1 Literature Review
Schuld and Lloyd, who are veterans in this upcoming research field, present a quantum

embedding method for increasing the performance of learning in high-dimensional Hilbert spaces

in [52]. This is done by a paradigm shift in the way we consider optimizing a model where instead

of fitting to the objective function the goal is to maximally separate two classes in the Hilbert

space. The first component creates a quantum feature map to encode classical samples into

quantum states, as we will discuss later amplitude encoding is one of these methods. The second

component is a quantum measurement that gets returned from the model. Optimization of the

quantum feature map is done by a parametric circuit, in this case a variational quantum classifier

(VQC) that separates data based on the measurement performed. They describe a fidelity

measurement and a Helstrøm measurement. The fidelity measure is a set of SWAP gates

performing an inversion to the state of the samples. This method of measurement will maximize

the Hilbert-Schmidt distance, or loss function in this case, ensuring the minimization of empirical

risk or fidelity. The second component requires knowledge of which objective function is needed

to minimize the classification loss [52]. Not all datasets can utilize the Hilbert-Schmit distance, in

the specific case of this work the data appears to only contain a few features and the task is binary

classification. In general, this work presents a practical enhancement and a solution for parametric

classifiers on NISQ era devices. The authors also show their method is able to combine in a

quantum-classical model that utilizes ResNet, a backbone deep learning set of model weights, for

a Quantum Approximate Optimization Algorithm (QAOA) model [52].

Havlíček et al propose two binary classifiers to process data that is provided classically that

uses the quantum state spaces as feature spaces [51]. The first approach is a variational quantum

circuit which applies a binary measurement. The second approach follows from the classical SVM

utilizing the construction of hyperplanes to estimate a kernel method. These experiments are

performed on a five-qubit quantum processor from IBM. Their circuit and methodology have been

embedded into the Qiskit API and Qiskit documentation as a fundamental example for quantum

machine learning on NISQ era devices [51]. Perhaps the most striking component of this work is

the highly nonlinear kernel method that must be constructed in order for a high accuracy to be

achieved. The circuit is able achieve 100% accuracy on the generated dataset using the circuit

shown in Figure 12. and it is one of several attempts to solve a similar problem [51]. They define

the variational classifier in four steps: first map data to a quantum state by a feature map, second

Exploring Information for Quantum Machine Learning Models

25

apply a short quantum circuit to the feature state, next apply a measurement in the Z-basis or via a

Z-gate, and finally apply a decision rule by performing several “shots” or runs to obtain an

empirical distribution of outcomes and assign the label for the largest probability [51]. Their

method draws upon the notion of shots due to the noise and current capabilities of NISQ era

devices.

Figure 12. Havlíček quantum circuit for classifying a small highly nonlinear dataset.

Rebentrost et al derive the quantum equivalent of the gradient descent, an iterative

optimization which tries to minimize a function, by considering the curvature information [53].

They apply Newton’s method for the gradient descent which often improves convergence and can

be useful in high dimensional problems that require a small number of iterations. The authors work

with a class of polynomials which are constrained by sparsity conditions, meaning the

optimizations can be used for certain smaller order functions. The authors also mention that the

input dimensions of the vectorized data should conform to a binary space, or2𝑁. This paper

mentions annealing to show that their quantum gradient descent is agnostic of the device. They

point out that the by applying Newton’s method they are able to circumvent orthogonal movement

in relation to the contour lines of a gradient and instead can also evaluate curvature. This method

takes advantage of projecting the descent into spherical constraints . They implement three

quantum oracles as different variations of their quantum gradient descent [53]. Under spherical

constraints they have also extended their method to optimize a class of polynomials constrained

by sparsity conditions of Hamiltonian simulation methods. Because the method for optimization

exploits Newton’s method they theorize that a highly accurate solution for any convex problem

can be found within 5-25 iterations. They also mention similar issues to classical optimization such

as “saddle points” in high dimensional space for Newton’s method. They alleviate the saddle point

issue by replacing the eigenvalues of the Hessian with absolute values. They conclude by stating

theoretically their method will lead to exponential improvements to classical gradient descent-

based methods [53].

Kiloran et al discuss methods for continuous variable (CV) quantum neural network

architectures using parametric quantum circuits following the principal of a fully connected layer.

They design a fully connected quantum scheme for a neural network with the availability for

classical neural network support i.e. quantum-classical networks. They show that a CV architecture

is capable of handling a fully connected (FC) network as well as several other network types such

as Recurrent Networks (RNN), Convolutional Networks (CNN), and Residual Networks (ResNet).

They train four models two of which use hybrid quantum/classical architectures with the remaining

two strictly quantum architectures. In the development of these four models one major component

of their work is the generation of cost functions. Aside from the curve fitting model [54] they

develop a cost function for each model. The curve fitting model use mean square error (MSE) as

the loss function. This is a common loss function we utilize later in the TFQ work.

Exploring Information for Quantum Machine Learning Models

26

The first hybrid model was trained using supervised learning to detect fraudulent

transactions in credit card purchases. They use an exponential linear unit or ELU as their activation

function and define their cost function in this model as Equation 7.,

𝐶 = ∑ (1 − 𝑝𝑖

𝑖𝜖𝑑𝑎𝑡𝑎

)2 (7)

where 𝑝𝑖 is the probability of the single photon being detected as “on” or “off” correctly [54]. They

show that given the constraints of the quantum simulator used, simplicity of the network, and

restriction to both size and depth of the quantum circuit their results are a proof of principle. This

is clearly shown by their results in false negatives. The second hybrid architecture is an

autoencoder which they state has a resemblance to a variational autoencoder. It consists of 25

layers and tries to generate the Fock states |0⟩, |1⟩, |2⟩) based on the one-hot vector representation
(0,0,1), (0,1,0), (1,0,0) that is input to the network. Here their cost function is identical to the cost

function they use for the fully quantum neural network for the Tetris game shapes. This cost

function is in Equation 8. where 𝛾 = 100 and |𝐴⟩ are the input states of the three Fock states, and

𝑃 is the trace penalty. The results of this network were 99.5% when tested only on the quantum

decoder.

𝐶 = ∑(|⟨𝑖|𝜓𝑖⟩|2 − 1) 2 + 𝛾𝑃({|𝜓𝑖⟩}) (8)

2

𝑖=0

The second fully quantum method they explore tries to generate “LOTISJZ” tetromino shapes in

the form of images for the game Tetris. They use the cost function from Equation 9. where 𝛾 =

100 and |𝐴⟩ are the seven input image states for each tetromino, and 𝑃 is the trace penalty. Visually

these results appear just as the tetromino shapes do in the game Tetris. They use 11 photons in the

simulation [54]. They use Strawberry Fields from Xanadu to implement all their experiments.

𝐶 = ∑|⟨𝜓𝑖|𝐴𝑖⟩|2 + 𝛾𝑃({|𝜓𝑖⟩}) (9)

7

𝑖=1

3.2 Programming & Frameworks
Quantum computing packages are fundamental to developing QML techniques. There are

several packages and libraries which give us the capability of doing so. The ones we discuss here

are widely used and provide through groundwork in not only machine learning but also quantum

computing’s various components. Utilizing these packages for QML requires working knowledge

of both quantum computing and machine learning; however, with libraries such as TFQ and

PennyLane many of the computational components are ready to use out of the box. Similar to data

analysis packages for commercial and research purposes, quantum computing libraries contain

many of the underlying components or functions to create basic gates, use a simulator, measure

results, create oracles, among other things. QML libraries on the other hand provide a different set

of tools which can be used on top of QC packages. Two packages stand more in the eye of this

work than others, these are TensorFlow Quantum and PennyLane. These libraries as we show use

Exploring Information for Quantum Machine Learning Models

27

elements from machine learning on top of quantum computing libraries. The leveraging of either

library was suited to the experiments we conduct in the section Experiments.

3.2.1 TensorFlow Quantum

 TensorFlow Quantum (TFQ) was announced by Google at the beginning of 2020 as a new

library for quantum machine learning. Its implementation and current support are for the Python

Language only. TFQ is made publicly accessible, guidelines for how to develop, test, and design

simple models are provided in their documentation. The TFQ library builds upon its base

TensorFlow (TF) which has become a notorious leader for deep learning development. Deep

learning libraries such as TF and PyTorch have also been included as plugins to the stack for

PennyLane and can be integrated with Qiskit but the TFQ library is an entire computing platform

much like the original TensorFlow. TFQ intends to provide rapid prototyping of hybrid quantum-

classical machine learning models [9]. The TFQ library works in conjunction with two other

libraries for symbolic mathematics [55] and quantum logic circuit design [56], Sympy and Cirq

respectively. These libraries are fundamental in order to create learning models in TFQ. Because

TFQ requires these other packages to perform QML they must also be developed as part of the

software stack for our experiments later.

Cirq as we have mentioned is a circuit design package which provides several of the same

capabilities as QASM, Qiskit Aer, and PennyLane. Cirq is a couple years older, released in 2018,

than TFQ. It was developed by the Google AI Quantum Team. At its core it is the component of

the software stack that allows for quantum computing. Cirq was intended to be usable on local

simulators of users’ machines [56]. As it performs universal quantum operations, if transpiled

correctly, it can be device agnostic when used on actual quantum devices. In our work we used

Cirq for the very thing, in our TFQ model it was used to implement amplitude encoding and the

circuits for quantum convolutions.

Sympy is a library for symbolic mathematics and is a full-featured Computer Algebra

System (CAS) with a longer history than recent quantum computing libraries. Sympy is meant to

be leveraged by those in need of true mathematical computation. The uses include Calculus,

Discrete mathematics, Geometry, Physics, Combinatorics, among others [55]. Sympy was initially

released in 2006 and is not a result of Google’s venture into the quantum space. The usage of

Sympy in our work was to control parameters within the quantum model. They are different than

typical parameters as the TensorFlow library builds upon the two components namely placeholders

and the TensorFlow graph for computation of deep learning models. Sympy is used within the

graph as a the parametric quantum variable placeholders for intermediate values provided by the

quantum calculation within the model.

3.2.2 PennyLane

 PennyLane is a cross-platform library for differentiable programming of quantum

computers. The language is supported by the company Xanadu in Toronto, CA. PennyLane is

essentially designed for machine learning techniques in quantum computers. It allows for most

other quantum and non-quantum machine learning libraries to interact with it making it perhaps

the most robust framework currently available [10]. It is able to interface with IBM devices,

Exploring Information for Quantum Machine Learning Models

28

Google devices, Rigetti devices, and is prepared to hand Microsoft devices. PennyLane is all

encompassing and uses the same code to create low level instructions like gates and circuits unlike

TFQ and Cirq. PennyLane provides automatic differentiation of quantum circuits to create both

hybrid quantum-classical and fully quantum models. Many of the functions and type interfacing

are done by way of NumPy which is a linear algebra library we use extensively in the development

of our experiments [10].

 PennyLane also offers prebuilt algorithms for many quantum learning algorithms. These

include: Variational Quantum Classifiers (VQC), Quantum Approximate Optimization Algorithm

(QAOA), Quadratic Unconstrained Binary Optimization (QUBO), Variational Quantum Eigen

solvers (VQE), Ensemble Classification, Quantum Generative Adversarial Neural Networks

(QGANN), Quantum Convolutional Neural Networks (QCNN), Variational Quantum Linear

Solvers (VQLS), among several others. Each of these models is given a robust introduction in their

documentation [10, 57].

 Xanadu produces another framework called Strawberry Fields which is targeted at more

low-level logical functions. The framework is intended to work with error mitigation and hardware

optimization. Both PennyLane and Strawberry fields are designed to run on the Xanadu photonic

quantum computers which are different from other super conducting devices. Companies such as

IBM and Google use super conducting devices. Briefly, the advantage to these devices over super

conductors is that they can run at room temperature making them a more versatile implementation.

It contains an interface which is similar to the IBM Quantum Experience user interface which

allows you to drag, drop, and run circuits in a web application [10].

3.2.3 Development & Non-Quantum Packages
Coding, experimentation, and development of this thesis was done in Python3 for the

portion of work in TFQ we used Python 3.6.10 and we used Python 3.7.8 for the portion in

PennyLane. Anaconda is a program which allows for simple package management and

environment control, it was used to create separate environments for both TFQ and PennyLane.

Most packages were installed using either the main ‘anaconda’ channel or ‘conda-forge’, when

these two channels did not have a specific package the Package Installer for Python (PIP) was

used. We used Visual Studio Code and Jupyter Notebook as the Integrated Development

Environments when developing code.

Numpy is a library for linear algebra and vector/matrix operations, it was extensively used

both in applying several of the preprocessing steps and post analysis. Scikit-Learn was used for

creating the datasets, splitting data, and performing many of the post analysis steps. We will

discuss the creation of these data sets in the section Scikit-Learn Generator Datasets later as well

as the toy datasets such as Iris. The Scikit-Learn library is a large library with sub modules for

imbalanced datasets, image processing, and many data mining tasks. It is a library generally

revolving around generalized learning methods, preparation of data for learning methods, and

predictive analytics. It is built using Matplotlib, Numpy, and Scipy [58, 59]. Scikit-Learn was

additionally used in the post analysis steps for generating ROC/AUC curves and gathering the

metrics of the learning outcomes. Several of the preprocessing steps defined in the Experiments

Exploring Information for Quantum Machine Learning Models

29

section were done using the Scikit-Learn library. We used the Pandas library to manipulate and

view data by way of DataFrames which make handling and transforming data simpler. DataFrames

also allow for functions to be applied column wise making many complex steps easy.

Visualization was a key component for facilitating understanding of many of the

transformations. It is also the major primary medium for expressing the preprocessing steps, and

the results of this thesis. Matplotlib was used for most of the plotting and is largely tied to Numpy

both in practical application and internal development [58]. It provides functions for plots such as

scatter, line, histogram, density, pie charts, among others. Seaborn was also used for plotting, it

extends Matplotlib by adding styling and some additional plotting functions when using Pandas

DataFrames. Poincare plotting was done using Plotly, we use these plots in our analysis of Stokes

parameters. Plotly is a multilanguage visualization library with extensive plotting capabilities like

Matplotlib. For storing results and data we used both comma separated value (CSV) and JavaScript

Object Notation (JSON) files. CSVs make viewing data very simple when being shared and

evaluated individually. Both CSV and JSON are simple to use in Python and have built in libraries

for handling both. The writing was done using Microsoft Word and the online Overleaf editor for

LaTeX. We used Microsoft Visio to create graphics unique from plots of data.

Exploring Information for Quantum Machine Learning Models

30

4. Datasets
In exploring datasets with quantum methods, we wanted to test an appropriate number of

different distributions and shapes. The datasets we worked with are in the majority of synthetic

and some popular toy datasets. The reason we use synthetic datasets is to show how different the

quantum learning methods behave on them. We also wanted to control the shape of the data when

developing the datasets to answer our hypothesis. We generate several datasets using the Scikit-

Learn Generator methods. Additionally, we use ‘toy’ datasets which are often a utility before

testing methods on real datasets. The ‘toy’ datasets we use are the Iris dataset which we will discuss

in much detail as it is critical to our analysis, and the Wine dataset. One key component of the

datasets, mostly the generator datasets, is that we use very few features. The primary reason for

this is the faultiness of quantum devices. To work with a dataset that is large in dimensionality on

a simulator is possible. But with the limited capabilities of physical NISQ devices these datasets

would perform poorly. With the interest of testing and working with real systems we avoid large

datasets here.

4.1 Scikit-Learn Generator Datasets
 The following four datasets in this section were created using Scikit-Learn. We include

two datasets from the scikit-learn Toy datasets and modify them all from them out of the box

design to fit into the analysis here. These are later elaborated in the section Toy Datasets. The

Datasets in Sickit-Learn’s Generator class have several parameters which can be set to match

whatever objective is trying to be met. Generator functions in Scikit-Learn have controllable

parameters for number of features, number of samples, random state (for reproducibility), number

of repeated values, and a parameter typically unique to the type of data that can be generated by

that function. This parameter typically controls the separation between classes in a dataset.

4.1.1 Make Blobs Dataset
In the Generator MakeBlobs the CenterBox parameter determines how spread out each

sample is within a class. When the number of classes is just two the CenterBox parameter becomes

the centroids of each class along the positive and negative y-axis. In two dimensions, the

CenterBox parameter when equal to (-4.5, 4.5) will result in class one centered around -4.5 and

class two centered around 4.5 both along the y-axis. When the number of classes is larger than two

the CenterBox is no longer a centroid but the bounding box for each cluster center. In both cases

a larger range in the CenterBox parameter implies more compactly distributed samples per class

with generally less overlap, while a smaller range implies more overlap between classes and less

compactness. The value for CenterBox can range from (-10, 10). A two-dimensional sample of the

MakeBlobs data is shown in Figure 13. the CenterBox is (-3, 3). The MakeBlobs Generator was

used for the KMEANs algorithm in the Introduction.

Exploring Information for Quantum Machine Learning Models

31

Figure 13. Scatter plot of MakeBlobs dataset.

4.1.2 Make Circles Dataset

In the Generator MakeCircles the factor parameter determines the space factor between

two concentric circles. The dataset only has two features so when used for three - or four-

dimensional data third and fourth features can either be generated from a normal distribution, via

padding with a constant, or both. With a factor of 0.9 the inner circle will be very close to the outer

circle almost overlapping it. If the factor is small such as 0.2 the inner circle will be much smaller

and have much more distance between it and the outer circle. The MakeCircles generator only

generates two output classes. Noise can also be added to both circles in the form of a standard

deviation for the Gaussian distribution applied when generating the circles. An example of a

generated MakeCircles sample is show in Figure 14., it contains very little noise and is has a very

small factor.

Figure 14. Scatter plot of MakeCircles dataset.

4.1.3 Make Moons Dataset

In the Generator MakeMoons there is no additional parameter to control the shape or

location of the two classes. This generator makes two half-moons or arcs where one end of each

classes’ “moon” is at the crest of the other. The dataset only has two features so when used for

three- or four-dimensional data third and fourth features can either be generated from a normal

distribution, via padding with a constant, or both. Noise can be added to both moons in the form

of a standard deviation for the Gaussian distribution applied when generating the moons. A visual

of MakeMoons is shown in Figure 15., it contains very little noise.

Exploring Information for Quantum Machine Learning Models

32

Figure 15. Scatter plot of MakeMoons dataset.

4.1.4 Make Swiss Role Dataset

In the Generator MakeSwissRole there are a number of controllable parameters to shape

the output dataset. The single most important detail is that there is no class label that defines the

components of the dataset. The SwissRole dataset needs to be classified with a different method

to determine the classes per sample of the data. The method applied follows directly from the

documentation as a method which can be most reproducible, but it must be stated that it most likely

is not the single best method. This adds a layer of complexity as we are applying a clustering

method to generate the class labels for a dataset and then expecting the QML model to recognize

the content from the data when splitting the classes. The entire dataset can be seen in Figure 16.

after it has been clustered using the Agglomerative Clustering method to produce the class labels.

The Agglomerative method produces a total of six class when clustered on the dataset. As we do

not work with multiclass datasets in the QML experiments we reduce these to just two classes

when using the dataset. The data is also reduced from three dimensions to the first two.

Figure 16. Scatterplot of 3D Make Swiss Role dataset.

Exploring Information for Quantum Machine Learning Models

33

4.2 Toy Datasets
Toy datasets are not synthetic data but have some well-behaved trends within them. There

is often little to no missing data or very specific components that lead to near perfect results. They

are typically utilized in the facilitation of discussions and in testing/preparation before applying

techniques to real datasets. These datasets are used only in the work done with PennyLane. They

are publicly available and accessible through Scikit-Learn or from the UCI ML website.

Figure 17. Matrix of scatterplots for each feature pair in the Iris dataset. The diagonals of the matrix

are the distributions of each class for the feature pairs.

4.2.1 Iris Dataset

The Iris Dataset is a public testing or toy dataset which can be found in most software

packages that apply data analysis, data mining, or analytics to some degree. The dataset’s origin

can be found from the public repository of databases on the UCI website for Machine Learning.

The Iris dataset is considered in many frameworks as the go to for a basic application of tools on

a “real” set of steps to apply a model on. This is mainly because it is easy to achieve very high

results for a classification model with this data. It also only contains four features and three output

classes that correspond to the types of Iris flower. The four features Petal Length, Petal Width,

Sepal Length, and Sepal Width correspond to the flower’s physical properties. The three classes

are Setosa, Versicolour, and Virginica. The goal when using the Iris Dataset is to determine which

Exploring Information for Quantum Machine Learning Models

34

class of flower the features represent. This dataset is utilized extensively to develop several of the

conclusions later in this work. As we will see there are several preprocessing steps that can be

applied in order to enhance the performance of a QML model and others that appear to have little

effect. The Iris dataset is plotted in Figure 17. in two forms. The first is the distribution of values

for each feature (along the diagonal) and a scatter plot of each feature pair is also shown. Please

note that the lower and upper triangles of the matrix contain the same scatter plots , both are

included for viewing preference.

4.2.2 Wine Dataset

 The Wine dataset is another public toy dataset which can be found inside of Scikit-Learn

or the UCI website for ML. The Wine data contains 14 features, and the goal is to use these features

to classify one of three types of wine. These classes are given as (0,1,2). The correlation matrix is

given per class in Figure 18. Showing the relationship between every two features in the data. The

correlation matrix shows mainly that for class 0 the features are mostly negatively correlated while

the features in class 2 are mostly positively correlated. We can use this information to create a

classification model for these two classes. We can also see there is somewhat of a good mix of

strongly negative and positively correlated features in the class 1. The dataset contains only

continuous positive values. Features include alcohol, malic_acid, ash, flavonoids, color_intensity,

and hue to name a few. This dataset was initially intended for use in the TFQ model. We did not

retrieve enough conclusive results to apply the dataset there and instead include it in the work we

planned to do with PennyLane.

Figure 18. Wine dataset correlation matrices for each wine class.

Exploring Information for Quantum Machine Learning Models

35

5. Experiments
Experiments are split in general into two separate projects. The first of these was using TensorFlow

Quantum (TFQ) from the work in [17] and the second was with PennyLane. The work done in

PennyLane is mostly disjoint from the TFQ experiments. The experiments from TFQ aim to build

a hybrid quantum-classical model that is able to surpass the results of the TFQ documentation

model for the MakeBlobs dataset. We do this by making some changes to the encoding of the data,

namely applying Amplitude Encoding. This method was developed by Schuld et al and as results

will show are exceedingly better at encoding information [17].

 After developing and building the argument for Amplitude Encoding, we then move to

more concrete data analysis and steps of preprocessing, some of these steps are repeated from the

TFQ section. The premise for preprocessing and transformation made while using PennyLane is

much deeper and covers a large variety of steps and procedures. The work in TFQ is relatively

confined to an analysis of Amplitude Encoding which we take for granted in the section

Transformations for Learning In Quantum Models because it is fully developed through the TFQ

experiments.

5.1 Quantum State Preparation
As we show quantum state preparation is a crucial factor for Quantum Machine Learning

(QML) techniques to be successful. These steps are applied in the preprocessing phase as a means

for encoding information prior to performing any learning. In this section we first develop three

methods of state preparation: basis encoding, angle encoding, and amplitude encoding which are

methods for preparing quantum states from classical data. We follow with the experimental setup

and development of the TFQ models we tested. Finally, we outline the expectations for what we

sought to solidify by using amplitude encoding in place of other methods.

5.1.1 Basis Encoding
 Perhaps the most straightforward method of encoding techniques is basis encoding. Basis

encoding is a method for preparing the computational basis of a qubit using an n-bit-string such as

0101. If a given feature vectors value is 5, we would want something resembling |5⟩ but with basis

encoding we prepare the binary bit-string making the state resemble |0101⟩. It is important to note

here that it is only the representation from decimal to binary that has changed, the feature vector

value is still 5. The written form is |0101⟩ but we are describing a matrix of binary values [46].

 To perform this conversion and then preparation little is needed in terms of computation

power. A simple binary parser will be able to convert a decimal number to binary, for the sake of

brevity this can be done using the Equation 10. where the 𝑘𝑡ℎ value in binary will produce the

binary bit string 𝑥 that is encoded based on the desired precision of the binary string 𝜏 [46].

𝑥 = ∑ 𝑏𝑘

1

2𝑘

𝜏

𝑘=0

 (10)

Exploring Information for Quantum Machine Learning Models

36

Then the super position of the basis states can be prepared to relate the binary input using Equation
9. where the binary string 𝑥𝑚 = (𝑏1

𝑚, … , 𝑏𝑁
𝑚) and 𝑏𝑖

𝑚 ∈ {0,1} for 𝑖 = 1 , … , 𝑁. Resulting in the

superposition of states |𝐷⟩. In Equation 11. this is performed by considering the binary data for

two feature vectors of dimension two, in their binary state, they are 𝑥1 = (00,11) and 𝑥2 =
(10,11).

 |𝐷⟩ =
1

√2
|0011⟩ +

1

√2
|1011⟩ (11)

An amplitude vector therefore will have
1

√𝑚
 for entries of the basis states for a given binary feature

vector and zero in the rest as shown in Equation 12.

𝛼 = (0,0,0,
1

√2
, 0,0,0,0,0,0,0,

1

√2
, 0,0,0,0) (12)

 In general, this is an exceptional way of encoding and preparing data for a quantum device.

However, as the dimensionality grows the method requires more and more qubits. Even for a

simple dataset, if values are continuous the number of qubits required is just to large even with

discretization. For simple categorical variables with few dimensions this method could perhaps be

used. The total number of amplitudes for a feature vector will be 2𝑁𝜏 which certainly makes this

method unsuitable on NISQ era devices with today’s capabilities. The following methods are both

viable options for NISQ era devices granted the same parameter issues on a much smaller scale.

In conclusion basis encoding may never see the light of day because of the large number of qubits

required to effectively prepare a dataset. That said it is also unclear if it performs better than the

following methods as it is not possible to test at this time.

5.1.2 Angle Encoding

Before beginning down the path of amplitude encoding let us introduce the encoding

method it is compared to. In many online packages, TFQ included, another form of information

encoding is applied, simply angle encoding. This name is not necessarily standard but literally

describes the method. Angle encoding is a simple and effective method for information encoding,

but it is not robust, and it does not map information from a classical state in well-defined fashion.

Angle encoding is essentially the most basic form of encoding classical data into a quantum state.

It has good results for problems such as parity checking or working with specific finite ranges of

values that are largely unapplicable to real datasets.

Our explanation of angle encoding is not meant to be discouraging, but rather point out

some of the inefficiencies of this method. Angle encoding is performed by applying a gate rotation

about the x-axis 𝑅𝑥(𝑣𝑖) or y-axis 𝑅𝑦(𝑣𝑖) where 𝑣𝑖 is the value to encode. In a Hilbert space a

rotation about the y-axis applies an angle rotation, usually based on some 𝜋, hence the name angle

encoding. Consider a classical dataset with three features where one record is represented by the

vector 𝑣 = ([0.1], [0.2], [0.3]). In an angle rotation the number of rotations applied will be same

number of features in a dataset, i.e. we apply the 𝑅𝑥 on 𝑣 three times once for each dimension. The

Exploring Information for Quantum Machine Learning Models

37

resulting sample in its gate form is shown in Figure 19. where |𝑞1⟩, |𝑞2⟩, |𝑞3⟩ are the qubits

which will take the new states |𝜓1⟩, |𝜓2⟩, |𝜓3⟩ representing the encoded vector values 𝑣1 , 𝑣2, 𝑣3.

Figure 19. Angle preparation of classical data into the state |𝜓1⟩, for a 3-Dimensional sample. This method is utilized in the

TFQ experiments for the base model following the documentation.

We can now see that an 𝑛-dimensional sample would take 𝑛 number of qubits to generate

the set of quantum states. This method creates a simple representation of the data with roughly the

same complexity as it did in its classical representation. This makes angle encoding attractive for

simple datasets which may have few discrepancies between samples. As we have mentioned NISQ

era devices have a limited number of qubits and keeping more than a few coherent for an

experiment is difficult.

5.1.3 Amplitude Encoding

Amplitude encoding maps classical data into the amplitude of a qubit. Conceptually it can

be thought of as any other encoding that must represent but also losslessly be able to be encoded

and decoded. As an example we use one-hot encoding in classical data preprocessing to take a

dense vector such as ([1], [2], [3]) to a sparse vector like ([0, 0, 1], [0,1,0], [1,0,0]) where each

integer value in the dense vector is represented by a one at the index of the value in the sparse

vector. The difference with amplitude encoding is that it changes the computational basis for

allowing supposition of states differently than basis and angle encoding. One-hot encoding

changes a sample’s form from dense to sparse [46]. In either the classical or quantum case this

preprocessing step can largely impact the performance of a learning method, in some cases it even

determines whether a method will learn at all [46].

The process of applying amplitude encoding begins by converting a dataset to their angle

representations with multi-controlled rotations. This process is performed using the Equation 13.,

where the angle 𝜃 is created via a vector, 𝑣𝑖 represents 𝑖𝑡ℎ classical sample, and 𝛽 is the angle

based on the 𝑎𝑟𝑐𝑠𝑖𝑛 of the number of dimensions in the sample space [46].

|𝜓⟩ = 𝑅(𝑣𝑖 , 𝛽)|𝑞1 … 𝑞𝑠−1⟩|𝑞𝑠⟩ (13)

In the circuit implementation a state |𝜓⟩ is prepared by a “cascade” of 𝑛 𝑅𝑦 rotations where

𝑛 represents the power in binary for encoding a feature vector 𝑣𝑖 . For example, if a dataset has ten

features, 𝑛 needs to be four, because 𝑛 equal to three at most encodes samples with eight features.

The complexity or depth of a circuit can be seen in the circuit of Figure 20. Just by comparing the

Exploring Information for Quantum Machine Learning Models

38

number of gates between Figure 19. and Figure 20. we can see a dramatic difference. With just

three qubits we can also see the limitations of applying amplitude encoding for large datasets in

NISQ era devices. Although the problem does not generally become the number of qubits

representing the state |𝜓⟩, we face the issue of several gate operations, so many that coherence is

again a problem. While in the TFQ work we only use three qubits (amplitude encoding) in place

of four (angle encoding) the number of quantum gates applied is roughly ten times the angle

encoding method [46].

Figure 20. Amplitude encoding of the state |𝜓1⟩, for a 3-Dimensional sample. Noting that the complexity of this method is clearly

larger than a simple angle preparation method.

In summarization to encode a sample using amplitude encoding there are two steps: (1)

compute the angle using Equation 13. then (2) apply the cascade of 𝑅𝑦 on the computed angles

such as in Figure. For large datasets, this method has been generalized recently by Araujo et al.

and takes into account both steps [60]. They exploit the classical divide and conquer algorithm to

encode n-dimensional samples.

 With these three encoding methods we have developed a basis for converting classical data

into quantum states. As basis encoding suggests the method is essentially to exhaustive for NISQ

era devices albeit theoretically a powerful solution. Following this we showed that angle encoding

is a rather mundane solution as it simply encodes a feature vector to a set of qubits by applying the

a rotation to the values. This method we consider as the simplest approach for preparing a quantum

state and other gates could be used in place of 𝑅𝑦 such as 𝑅𝑥. In terms of performance we show

this method is noisy and hard to interpret [17]. On the other hand, with amplitude encoding we

apply a much more complex solution which only grows more complex as the dimensionality of a

dataset increases. With a more complex circuit or increased circuit depth amplitude encoding

begins to be concerned with issues such as decoherence. With time and developments in QC

amplitude encoding will likely become more broadly adopted. This method is vastly superior to

angle encoding and we show these findings in our experiments.

5.2 TFQ Experimental Setup
 Although the experiments in this portion are performed in a classical device which simulate

a quantum computer the methodology and setup are the same. Again, this was done mainly because

there is currently no quantum computer publicly made available from Google for TFQ. We

perform two sets of experiments based on the number of training epochs the first being eight-

epochs (experiment one) and the second is fifty-epochs (experiment two). In both cases the task is

to classify the two classes -1 and +1. Our hypothesis was to evaluate the training behavior in order

to show (i) amplitude encoding leads to a model which will converge at a higher accuracy sooner

and (ii) that amplitude encoding leads less erratically and therefore more effective training over

time.

Exploring Information for Quantum Machine Learning Models

39

Figure 21. Simplified architecture implemented for each TFQ model. This is the entire architecture for the QCNN model we

develop here uses. The additional two models add an MLP between the 'Readout' and 'MSE' blocks.

The models we mainly compare in this section are of the type quantum-classical meaning

that a portion of the network is developed using quantum methods and another portion is classically

developed. As we have said the classical component is an MLP. The model’s quantum component

is a Quantum Convolution Neural Network (QCNN). The QCNN model architecture we used is

shown in Figure 21. This is the core of our model which can be found in the TFQ documentation

and it is also used in the analysis but left unchanged as a baseline. The model consists of some

number of one dimensional quantum convolutions (QConv1D) as the, in our case there are two,

with a quantum pooling (QPool) layer immediately following each QConv1D. Readout of the

quantum state performed after the circuit is done by applying a 𝑍 gate on the qubits after the final

layer of pooling. The circuit for QConv1D is shown at the top of Figure 22. as well as the QPool

circuit which is below. As you may notice the QPool layer is non-parametric, it simply applies the

Pauli X, Y, and Z gates to the circuit.

Figure 22. Quantum circuits used in the QCNN for parametric 1D quantum convolution (Top) and quantum pooling (bottom).

Our TFQ experiments here use three models, two of these models follow from TFQ’s

documentation for Quantum Convolutional Neural Networks (QCNN). The third is of our own

design. We call TFQ’s models (a) QCNN as the base model which contains the fundamental

quantum layers in all three models, (b) Angle-Hybrid which applies angle encoding for state

preparation, and (c) Amplitude-Hybrid which applies amplitude encoding for state preparation.

The latter two are hybrid models so they will contain the QCNN and MLP in a sequential order.

Our methodology is applied to the MakeBlobs datasets shown in Figure 23. In total, for both eight

and fifty-epochs, we use eight datasets. Each dataset is given in a two-dimensional plot to show

the range of difficulties based on centroid. The data begins with a centroid of 0.6 where the two

classes are mostly overlapping and ends with a centroid of 2.0 where the two classes are much

Exploring Information for Quantum Machine Learning Models

40

more separable. We do not include any noise for these datasets. The datasets each contain four

features and we split the data to have 2,048 samples for training, 512 for validation within the

model, and 512 for testing or evaluation after training.

Figure 23. The eight MakeBlobs datasets used in throughout the TFQ experiment process. Data Centroid or CenterBox was

moved progressively by 0.2 for each dataset to have a range of complexities.

We next show the models’ function parameters and the metric calculations we apply in the

analysis. We calculate and show the results for loss, accuracy, precision, recall, and F1-score.

Many of the same model functions are applied from the TFQ documentation. The accuracy is

calculated as the sum of correct predictions in Equation 14. and loss is calculated using mean

square error (MSE) in Equation 15.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
∑(𝑦𝑖 = 𝑦�̃�)

𝑛

𝑖=0

 (14)

𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸 =
1

𝑛
𝑅 ∑(𝑦

𝑖
− 𝑦

�̃�
)

2
𝑛

𝑖=0

 (15)

 In both equations for accuracy and loss 𝑦𝑖 is the observed or real value and 𝑦�̃� is the

predicted value. The optimizer used in the MLP of the model is Adaptive Moment Estimation

(Adam) optimizer. We set the learning rate 𝜂 equal to 0.02, following the same approach as the

TFQ documentation. In Equation 16. 𝜃𝑡+1 is the current gradient of the stochastic gradient descent

(SGD) based on the previous gradient 𝜃𝑡 ,

Exploring Information for Quantum Machine Learning Models

41

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣�̂�

𝑚�̂� , (16)

where the weight 𝑣�̂� in Equation 17., and momentum 𝑚�̂� in Equation 18. are defined as:

𝑣�̂� =
𝛽2𝑣𝑡−1 + (1 − 𝐵2)𝑔𝑡

2

1 − 𝛽2
𝑡 (17)

𝑚�̂� =
𝛽1𝑣𝑡−1 + (1 − 𝐵1)𝑔𝑡

1 − 𝛽1
𝑡 . (18)

Therefore, 𝑣�̂� and 𝑚�̂� are estimates of the gradients’ mean and variance respectively, and

𝛽1 and 𝛽 2 are the forgetting factors. Momentum and forgetting are the two key factors which make

Adam widely adopted optimizer over the standard SGD. The final dense layer of each model

(QCNN, Angle Hybrid, and Amplitude-Hybrid) apply a 𝑡𝑎𝑛ℎ as the activation function since the

two classes we are trying to classify are (-1, +1). The tanh function or hyperbolic tangent is defined

using the exponential in Equation 19. where 𝑥 is the current sample weight

tanh(𝑥) =
𝑒𝑥 − 𝑒 −𝑥

𝑒𝑥 + 𝑒−𝑥 . (19)

Precision in Equation 20. is calculated as a ratio of true positive (TP) and false positive (FP)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (20)

whereas recall in Equation 21. is calculated as a ratio of TP and false negative (FN)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (21)

F1-score is calculated as the relationship or harmonic mean between precision and recall in

Equation 22.

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (22)

It can also be shown that F1-score, Precision, and Recall derive accuracy. These last three

Equations 20, 21, and 22. are used to gather additional statistics about each model’s behavior not

only in this section but also later in the section with PennyLane.

5.3 Analysis of TFQ Experiments – Hybrid Models
In our first set of tests we discuss and run the eight datasets for eight-epochs. In general,

we hypothesized that running the model for a short number of epochs with amplitude encoding

would lead to better learning results. This would also imply that fewer training epochs are needed

to achieve better results. The values (-1) and (+1) in the two tables of this subsection header refer

to the class label’s individual metric. The second set of tests we let the model run for fifty-epochs

to get a representative sample of the learning history. The major analysis comes from the

Exploring Information for Quantum Machine Learning Models

42

combination of both the training plots and table. We note that the QCNN model is mostly included

for reference as we go through the analysis. This section is mainly concerned with the two hybrid

models’ ability to perform and the results the two encoding methods provided.

5.3.1 Experiment: Eight-epochs
The training validation results are given in Table 3. These results indicate Amplitude-

Hybrid was the top performer in every evaluation metric. Let us first take a look at the cluster’s

centroid distance as our metric for classification difficulty. For the first two centroids, 0.6 and 0.8,

the most difficult datasets of these experiments, the Amplitude-Hybrid model achieved roughly

2% better results for accuracy than the Angle-Hybrid model. Working down through the table we

see that at 1.4 centroid distance the Amplitude-Hybrid model achieves an accuracy of 90%. In

contrast Angle-Hybrid’s achieves an accuracy of 90% only at the 2.0 centroid distance.

For each model we see that it improves as the centroid distances spreads further apart or as

we move down through the table. For Angle-Hybrid by the time we are at 1.4 centroid distance we

see that almost every metric, excluding loss, for each class is above 90%. What we show in the

plots of Figure 24. are rather interesting when evaluating Angle-Hybrid with Amplitude Hybrid.

These plots show the training validation accuracy and loss of each dataset per each model (QCNN,

Angle-Hybrid, and Amplitude-Hybrid). Plotting here shows that with Angle-Hybrid the models

learning behavior is flat which does not associate steady optimization and learning. The opposite

can be said about the Amplitude-Hybrid models. Aside from the 1.8 and 2.0 centroid distances

(which are the easiest) the models appeared to learn fast and consistently over the eight epochs.

These results with Table 3’s results paint a compelling picture that in just a few epochs a model

using amplitude encoding is far superior.

Averaging the results of Table 3. shows some additional results, these are also in favor of

Amplitude-Hybrid. We determine the best model here again by looking at accuracy and the

combined class results per metric. With the QCNN and Angle-Hybrid results show they are similar

in many cases. These results are not surprising as they utilize the same angle encoding method and

because of this the results are tightly correlated for every difficulty. Therefore, with or without the

addition of the classical/hybrid component there is little accuracy improvement over the eight

epochs. In the best case, Angle-Hybrid was only two percent better in accuracy over the QCNN

model but in the majority of cases the accuracy was within 0.5% for both these models. It follows

that the models utilizing angle encoding limit the ability of overall learning and from Table 3. the

additional components of the Angle-Hybrid model do not improve the performance. In the next

experiment there are similarities that are reminiscent of these results.

43

Table 3. Eight-Epoch Post Analysis Model Metrics.

44

Figure 24. Training histories of each model over eight epochs. Top to bottom are the models QCNN, Angle-Hybrid, and

Amplitude-Hybrid. Left to right we show each model's Accuracy and Loss history.

Exploring Information for Quantum Machine Learning Models

45

5.3.2 Experiment: Fifty-epochs

 We share the same form of output in the plot of Figure 25. and Table 4. for the results here

but this time allow the model to run for fifty epochs. Here we are looking to show consistency over

the learning period and any scenarios that stick out as red flags. First, we recap that over the eight

epochs of training, where things generally looked to be increasing in the right places for each

model. This trend for the most part continues again but it is apparent that a few models performed

worse than they did after fifty epochs. Glancing at Table 3. and comparing it with Table 4. will

show that in some cases Angle-Hybrid overall now appears more appealing than before. We must

mention that arbitrarily training for a larger number of epochs is not always an effective means of

achieving increased accuracy or any other metric for that matter.

 Much of the evaluation is given graphically for the fifty-epoch experiment. This is in part

because we want to look at the history and see what behavior the model exhibits. Why does the

table of metrics not answer these questions? Table 4. results occur after fifty-epochs and shows

the testing of data on the final epoch of the model. These singular values do little to shed light on

the history.

Taking a look at the Amplitude-Hybrid plots at the bottom of Figure 25. the range of 10-

20 epochs is a region that answers our hypothesis. It is in this range that every model appears to

have fit to the data as best as it can, by the peaks in accuracy, drops in loss, and what appears to

be gradual overfitting after. In a sense we wanted to show the model overfitting after some number

of epochs. It is by chance that several of these were in a range of roughly ten epochs. The

appearance of overfitting as we discussed implies the model will begin to retain to much influence

from the training data. Overfitting here signals the model has done all it can to learn the information

present in the data. This behavior to some degree is desirable because it s ignals our model is

learning from the data in a consistent expected behavior whereas we will soon discuss angle

encoding appears to not. Overall, this implies the best learning behavior that can be achieved is by

using Amplitude encoding and it is consistent.

With the QCNN and Angle-Hybrid models we can see the difference in historical outcomes

from epoch to epoch in Figure 25. Results for both indicate these models never had a best fit to the

data. In a few cases the models made good improvements to their overall metrics. However, in

several cases some of the outcomes train well over the first two dozen epochs and then again

appear to improve after another two dozen later. Key to this analysis is this appearance things are

improving. Looking again at the 10-20 epoch region it is clear previous conclusions for Amplitude-

Hybrid cannot be draw here. The Angle-Hybrid model in this region jumps from a “high” accuracy

and then in a few epochs drops 5% to 15%. This occurs not only here but during the entire training

period. This behavior implies that learning is failing as the heuristic tries to “guess” a better

solution than it did in a previous iteration or epoch guessing is a much less consistent behavior we

would want to see in our models.

Now that we have discussed the visual observation of the histories let us go back to Table

4. and make a few more remarks. Reviewing the two hybrid models for centroid distances 1.0, 1.2,

and 1.4 we see that the difference in accuracy, in favor of Amplitude-Hybrid, is 0.0%, 0.976%,

Exploring Information for Quantum Machine Learning Models

46

and 3.125% respectively. Not only accuracy but also the other metrics such as F1-score show there

is little difference between these models. The Recall and Precision of the Angle-Hybrid model is

actually better here than Amplitude-Hybrid. Although this is the case, the information in Table 4.

is misleading and we show it here to disprove any counter arguments for what we have discussed

so far. Over the training period for these datasets we can see each Angle-Hybrid model is bouncing

5-10% epoch to epoch while the Amplitude-Hybrid model is very slightly changing for these

datasets. Again, looking at 1.2 more specifically in terms of Figure 25. we can see that the

Amplitude Model roughly peaks at 14 epochs stays there for a few epochs and slowly declines for

the rest of training. When we look for similar behavior in Amplitude-Hybrid we can see the same

thing is happening for every other dataset. However, this is not visible in the Angle-Hybrid model.

When considered with Table 4. we conclude that the table results are not as strong because of

overfitting. The same is not true for the Angle-Hybrid model. We believe the training in Angle-

Hybrid was so erratic that the model performance cannot be accurately assessed other than to say

it improved over fifty-epochs, though we could go so far as to say this improvement is no more

than coincidence.

47

Table 4. Fifty-Epoch Post Analysis Model Metrics.

48

Figure 25. Training histories of each model over fifty epochs. Top to bottom are the models QCNN, Angle-Hybrid, and

Amplitude-Hybrid. Left to right we show each model's Accuracy and Loss history.

Exploring Information for Quantum Machine Learning Models

49

5.4 Transformation for Learning in Quantum Models
The experimentation process of this section is done using the PennyLane Variational

Quantum Classifier (VQC) to evaluate how certain preprocessing steps can impact the training of

fully quantum algorithms. We cannot cover every method that can be applied to the dataset but

test several and evaluate them on different data sources. Most of the methods here stray from any

hyperparameter tunning as that is not the same as preprocessing data. We show one example of

this tuning and note that increased performance would undoubtedly be achieved via

hyperparameter tunning. We want to focus more on generalizations of the methods for

preprocessing and whether there is some commonality among them. Many of the transformations

of the data are easily performed by software packages, here we develop most methods using either

simply Numpy array manipulations or packaged Scikit-Learn functions. Each dataset was created

with a sample size of 400 points and a random state of 11.

5.4.1 Analysis of Make Blobs Dataset
The MakeBlobs generator we have mentioned above has the ability to control several

parameters when generating a dataset. This ability is utilized in the generation of three datasets we

call Blobs-4F, Blobs-3F, and Blobs-2F. The three datasets are created with the intention of

performing binary classification with only two features. The following explanation of the three

blob datasets is given with a note that the reader could implement a similar solution using different

methods. In Blobs-4F we define the number of features to be four and the number of target output

classes (centers in the function parameter list) as three, and set the CenterBox equal to (-3.5, 3.5).

These parameters generate different distributions for the features than if we used two classes and

two features. This different distribution is what we aimed to capture using these features. The plot

of the points below in Figure 26. contains these three datasets. It shows how the points are spread

out differently than intuition would initially guide the user of the generator function to believe.

The third parameter of CenterBox is chosen as reasonably simple so the classifiers would not need

to formulate highly non-linear solutions in determining the decision boundary of the two classes.

Figure 26. Three blobs datasets before any preprocessing or transformations. Left to right are Blobs-4F, Blobs-3F, and Blobs-

2F.

We then select the first two features of the dataset. As the Blobs-4F dataset has four features

this is the zeroth and first columns of the data. We choose these essentially because in Blobs-3F

we must choose two columns again and in Blobs-2F we only have two columns to choose from.

Exploring Information for Quantum Machine Learning Models

50

In general, we are purely interested in gathering three slightly different distributions of points such

that the datasets can vary in complexity and representation. Following the selection of columns,

we begin to formally apply methods of preprocessing and then aim to answer a few questions that

will become apparent and will be elaborated on shortly. So, the reader is comfortable in our

explanation of dataset creation we consider the extreme case of a philosophical dataset we could

have created with fifty-four features and twelve output classes. In this case, we perform the same

selection process where we would choose the zeroth and first columns and just two of the output

classes. The systematic process of this decision must be kept the same for Blobs-3F and Blobs-2F

as different results can be gathered from different features e.g. features twenty seven and thirty

four might be perfectly separable for the two classes with the naked eye while features two and

three may might share large overlap for the two classes.

We now develop the preprocessing that was gathered from the initial investigation into the

Iris dataset and apply additional steps to garner more comprehension of the VQC capacity with

two dimensional datasets for binary classification. The preprocessing steps were applied to the

datasets in different combinations to individually test which combinations would perform better

collectively or individually. Preprocessing is often performed in an iterative manner and we

develop the applications of each method here in an iterative manner. When reading this section,

we build on points made and briefly refer back to them again as they steps are repeated or slightly

changed.

We begin the preprocessing phase by utilizing the MinMaxScalar function on each of the

datasets Blobs-4F, Blobs-3F, and Blobs-2F. MinMaxScalar is applied using the same generalized

minimum maximum normalization in Equation 23. with the additional piece for scaling given in

Equation 24 where 𝑋 is the feature vector or column and 𝑥 is the column value, 𝑥𝑛𝑜𝑟𝑚𝑙𝑖𝑧𝑒𝑑 is the

intermediate min-max normalization performed. Each dataset is therefore normalized roughly

between [0,1]

𝑥𝑛𝑜𝑟𝑚𝑙𝑖𝑧𝑒𝑑 =
𝑥 − min(𝑋)

max(𝑋) − min(𝑋)
 (23)

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥𝑛𝑜𝑟𝑚𝑙𝑖𝑧𝑒𝑑 ∗
1

2
(max(𝑋) − min(𝑋)) + min(𝑋) (24)

Figure 27. Blobs after applying PennyLane normalization. Left to right are Blobs-4F, Blobs-3F, and Blobs-2F.

Exploring Information for Quantum Machine Learning Models

51

The application of the transformation is performed column wise such that each column is

normalized within itself, values from other columns do not have influence outside of their column.

The utilization of MinMaxScalar follows from the Iris dataset. The Iris dataset in the example

online was scaled first using this technique. Additionally, we found that in the preprocessing of

Iris each feature is multiplied by a coefficient; however, the reason for this additional constant

coefficient bewilders the authors comprehension. We test results of this scaling coefficient on

several datasets and, in some cases, it led to better results in several cases. The coefficient is

calculated column wise similar to Equation 22. where the final addition of the minimum of a

column is replaced with division by two. We produced this conclusion after several tests. At best

we understand that this might have been to separate the features from one another making the data

have more space between classes [52], but this essentially rescales the data to a larger feature space

than normalization left it. We include this step of preprocessing as we investigate the methods

further, each dataset set is tested with and without this constant coefficient.

Once scaled via MinMaxScalar and/or multiplied via the coefficients the data is padded to

four dimensions with two columns of all 0.3 and 0.0 for features three and four respectively. This

was done in the Iris example in the PennyLane documentation and padding by the specific value

does not have a large impact on the learning behavior. The padding of the features must be done

here because the VQC function utilizes two qubits. The two qubits encode four features in the

amplitude encoding method by the angle method described above in Quantum State Preparation.

Once in their angle form state preparation is applied and the classifier can be applied to the data to

calculate loss and accuracy as any other learning model. The data by this point looks oldly

dissimilar from the initial blobs of data generated. This is in part because an additional

normalization is applied to the data aside from MinMaxScalar. This follows from PennyLane as

well and is shown in Equation 25. where 𝑥𝑖 is the value of a column.

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = √∑ 𝑥𝑖
2

𝑛

𝑖=0

 (25)

This is applied column wise to each feature in the data. The plot of the data is shown in

Figure 28. where the second row of scatter plots is the zeroth and third features of the padded then

normalized data after applying the angle method. The angles method essentially creates three

angles with the input vector and outputs five values as a feature vector. The values are most heavily

represented in the zeroth and third features of the feature vector.

Exploring Information for Quantum Machine Learning Models

52

Figure 28. Top: blobs datasets after applying MinMaxScalar and padding to four features. Bottom: feature vectors after applying

angle translation method to data above. Note these are only two features of the feature vectors.

We continue here with the model parameters defined in Table 5. below. We use the same

random seed as in the documentation to keep consistent with the starting point of the random batch

values. The same is true for number of layers and starting point of optimizer and the optimizer’s

step size. We do not use any momentum. The training of every model discussed in the following

analysis utilizes this configuration and later an additional two layers are used and discussed.

Table 5. Parameters utilized in basic VQC from PennyLane Documentation

Qubits Layers Optimizer Step Size Optimizer
Shape

Training
Set

Test
Set

Batch
Size

2 6 Nesterov 0.01 (6,2,3) 75% 25% 5

As a method of confirmation, we develop and perform the same preprocessing explained

above as the PennyLane documentation utilizing the Iris dataset within Scikit-Learn and achieve

essentially the same results. This sanity check is a vital component to the rest of the analysis. The

preprocessing of the Iris dataset is not made publicly available, the steps discussed so far were

captured after several iterations of trial and error. Training the Iris dataset with the values as is or

with a different normalization such as L1 normalization or L2 normalization can yield exceptional

post training results for accuracy, precision, recall, and F1-Score. However, the results and the

behavior of training are different from the PennyLane documentation. We admit at this time we

found no reasonable conclusion for scaling the data the way which is given in the Iris dataset and

Exploring Information for Quantum Machine Learning Models

53

also consider the possibility the data was scaled using a set of different steps but produces the same

values of the features. We include the training results for the Iris dataset below in Figure 29. for

the Scikit Learn dataset we processed to match PennyLane’s in the form of the VQC kernel and

hyperplane plotted over both datasets after learning.

Figure 29. VQC decision boundaries for the Iris datasets. Left: PennyLane sample of data from already preprocessed. Right: Scikit-

Learn Iris dataset after discovering and applying the preprocessing methods as the PennyLane dataset.

Before proceeding we describe two final characteristics of the two datasets. The first being

the order of values in the dataset we processed is not the same as PennyLanes. Order of samples

can have some influence on the training behavior and results of the model. We choose to ignore

this as the Iris dataset is not truly focal point of this work and once finding the preprocessing steps

we move on to its application to other datasets. The second is that the output classes (originally

the flower name in the genuine dataset), in the Scikit Learn dataset were converted from (0,1) to

(-1, 1). This involved removing the third class as we mentioned above the problem at hand is binary

classification, therefore only two classes can exist. The values (-1, 1) are specific to quantum

machine learning the polarity of the values is better suited for the Hilbert space than (0, 1) which

is traditionally used in classical techniques.

One change we made is to rotate the datasets by -90 degrees about the origin. This change

was done with the intention of making the dataset separable with a line having slope one. This

intentionally is done to gauge whether the classifier can fit to the simplified decision boundary

better. We assumed this would greatly simplify the fitting function and lead to faster converging

of the classifier. The question we ask here is why is it better at splitting the data this way versus

the same amount of space between the two classes rotated differently? The results are as we

expected, the classifier achieves a significant improvement for each case, even for Blobs-2F.

Although none of the datasets are classified perfectly, we achieve roughly the same results for both

Blobs-4F and Blobs-3F when using the additional two layers. The resulting decision boundaries

for both datasets are also much more linear as we expected.

Interestingly, this is the single best change we make for Blobs-2F dataset. The change in

coordinate space does improves the learning ability. Consider the decision boundaries for the

baseline, additional two layers, and here with a rotation about the origin by -90 degrees. We can

see that even with additional layers the classifier tries to produce a vertical line even though it

Exploring Information for Quantum Machine Learning Models

54

classifies roughly fifty percent of the samples incorrectly. The result when rotating is a again a

vertical line but is much more accurate after the rotation. In the case of the former two, similar

results should have been achieved by some horizontal line. This rotation begs the question of other

rotations, which improve, and which further hinder the classifier? Before answering that question,

we add here that including the coefficients to the features for rotation appeared to show no

additional outstanding improvement with rotations. Therefore, we exclude it in the analysis of

rotations as we continue. The equation for the rotation is show in Equation 26 where 𝑥1 and 𝑦1 are

the two feature values, 𝜃 is the angle to rotate by, and 𝑥0 and 𝑦0 are the coordinates of the origin

(0,0).

𝑟𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛𝑥 = cos𝜃 ∗ (𝑥1 − 𝑥0) − sin 𝜃 ∗ (y1 − y0)

 (26)

𝑟𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛𝑦 = sin 𝜃 ∗ (𝑥1 − 𝑥0) + cos𝜃 ∗ (𝑦1 − 𝑦0)

We hypothesized that some rotations would lead to very poor performance while others

increased it. With this in mind we applied the rotations from -90 to +90 by three in total training

61 times. This was done to evaluation if there is a periodic pattern related to the rotations performed

on the datasets. In Figure 27. we have plotted the AUC score of each training outcome. The figure

below shows that roughly every fifty degrees we end up with repeated behavior. These results are

for Blobs-4F and best results appear to occur every 60 degrees. Although we apply the rotation to

just two features a rotation matrix can be created for n-dimensional datasets applied in a similar

way.

Figure 30. AUC scores of 61 models trained based on rotations of the dataset. Rotations are done every three degrees. Obvious

periodic behavior can be seen from the results roughly every fifty degrees.

5.4.2 Additional Analysis Leading to Future Work
We have covered all of the work developed in this master thesis. Over the experimentation

process we have been left with several partially developed insights. We include this section as it

is not removed from the work we present here, albeit less analytical and more descriptive. We have

Exploring Information for Quantum Machine Learning Models

55

developed several datasets but only discussed MakeBlobs and the transformations applied to Iris.

We continue here with shallow exploration into the other datasets. We will begin with the Wine

dataset and continue with the other generator datasets.

The Wine dataset possess several interesting challenges in order train it using the quantum

methods we have described. The primary problem being which features are best for a quantum

device or more generally which features are separable enough to learn from. In terms of binary

classification this problem is not difficult, and it is trivial to show that the first and third classes

are dissimilar in many of the features. This can be seen in Figure 18. We have trained on several

of these features and applied the basic steps for state preparation and from the Iris dataset. Several

of the training samples performed well but for the features selected these results were expected.

We then selected “less” separable features and the training of these data performed poorly. We

expect these can be improved either by applying rotations or different scaling/normalization

methods. Further analysis here would need to be performed on each of the subsets utilized for

with/without rotations of varying degrees.

We also tested different factors applied to the data after the initial normalization. These

factors were applied to two datasets, Wine and MakeSwissRolls. The factors as we have shown

separate the data more than normalization initially intends. Although there is little evidence for

this application on other datasets, we considered it in our analysis. We note that applying this factor

performed well in many cases, including MakeBlobs, when the factor is a multiple of the computed

factor. Taking that into account, random factors appear to cause poor learning. Simply multiplying

one feature by ten and the other by five cause decreased performance for Iris, Wine, MakeBlobs,

and MakeSwissRolls. Additional analysis should be applied to determine if factors correspond to

a distribution of values and testing of interval values should be evaluated.

We also applied Stokes parameters after padding and then removing the third feature from

the analysis. Stokes parameters have been leveraged in QML methodologies and have shown

applicable results for preprocessing. In terms of effectiveness we applied it to MakeBlobs,

MakeCircles, and MakeMoons. For MakeBlobs the application of Stokes parameters was a top

performer for Blobs-4F but performed worse than the baseline in all other cases. For MakeCircles

Stokes parameters worked only when the data was highly separated which provided little insight.

For MakeCircles the results were poor but marginally worse than the baseline model.

In the majority we have developed and tested our methods on two dimensional samples,

but we have additionally expanded to three, four, and five dimensional datasets. The conclusion

of the experimentation with larger higher dimensional samples is that the simplicity of the VQC

model impedes anything other than a shallow level of optimization across all of the tested datasets.

We tried to apply the VQC to for more than two dimensions of data but basic hyperparameter

tuning and several different preprocessing steps, some of which we have not discussed, appeared

to have no success. This conclusion although useless in terms of quantification shows that the

VQC model is not truly suited for complex feature spaces. More generally, there are several VQC

models in existence and other parametric quantum classifiers such as QSVM and QAOA that are

able to hand a spectrum of problems. We additionally note that the model as presented in the

documentation of PennyLane is misleading. To an extent, the VQC applied to Iris is deceiving and

Exploring Information for Quantum Machine Learning Models

56

has little computational applicability outside of the discussion we have developed. The root of this

stems from the preprocessing applied to the Iris dataset. There is little doubt to the authors that the

data was prepared in the way it was for the applied method.

The last transformation we discuss was the applying a transformation typically performed

after Stokes parameters but in this case we did so intentionally without doing so. The plots of this

data are shown in Figure 31. for two of the datasets, although it was applied to each Generator

dataset. This method of preprocessing we will call “Poincare transformation” because it plots the

data to the Poincare sphere without applying Stokes parameters first. The two datasets in Figure

31. originally have two features only. For each generator with only two features we padded a third

feature in two different ways: by a constant or set of constants and by some distribution of values.

We varied the distributions and constants to find interesting samples that may or may not perform

well in a quantum model. The datasets in Figure 31are among the most promising of these

generated datasets. Among these promising datasets are also MakeGaussianQuantiles,

MakeSCurve, and MakeSwissRolls (for certain class pairs). Two of these,

MakeGaussianQuantiles and MakeSCurve we have not developed as they were only tested in this

Poincare transformation unlike the other datasets.

We also applied different normalization methods to some of the Poincare data. The images

in Figure 31 use L-1, L-2, and L-Maximum normalization. We tested these different

normalizations on Iris, MakeBlobs, MakeMoons, and MakeSwissRoll. Of these, Iris was the only

dataset that classified with an accuracy above 90%. The rest of the datasets performed better when

applying MinMaxScalar to the data.

Figure 31. Examples of manipulated datasets in 3D. Left are three transformations applied to the MakeMoons dataset and right

are three similar transformations to the MakeCircles dataset.

Exploring Information for Quantum Machine Learning Models

57

6. Conclusion
We have worked through and implemented components of preprocessing and QML models. In the

first half of our experimentation we have applied and tested the method of state preparation known as

amplitude encoding. We achieved benchmark like results for two applications of state preparation and in

doing so have essentially removed most doubt about other state preparation methods. These experiments

were performed using the TensorFlow Quantum framework. The second half of this work has tried to

explain several steps that make the training of quantum models more robust. These methods in part were

performed as an analysis to understand what needs to be considered in order to prepare methods in the

future for QML. We have applied our methods to several synthetic datasets in this portion of the work using

PennyLane’s framework. We have developed essentially only binary methods in this work as much of the

literature in this field boasts results of the same type. Future work in this area will require expansions into

multiclass classification techniques which are developed enough to be applicable in works such as this one.

6.1 Future Discussion
 Although NISQ era devices are faulty and have a long way to go they are appropriate for

testing datasets with small number features. The utilization of a NISQ device on the

transformations and analysis applied in this thesis would be the immediate next step. There are

many issues with using modern NISQ era devices from noise and decoherence to allotted time and

space constraints. These things among others are what discouraged their use in place of the more

widely available simulated devices. Quantum simulators have come a long way and have provided

viable and we believe acceptable results to move forward using a noisy implementation of a

quantum computer. Due to the capabilities of quantum devices today, we expect the results to be

generally worse. The hope is that similar results or patterns with the learning outcomes appear. We

can say for certain that the methods applied here are not guaranteed to behave the same but with

anticipation expect large similarities.

Exploring Information for Quantum Machine Learning Models

58

Appendix X
Link to code for reproducing many of the components in this thesis:

https://github.com/m0tela01/

The code is open source and has no copyright, so you are free to use it in any capacity. While

cleaning many of the irrelevant notebooks and scripts some of the examples or components may

have been lost. I have tried to comment code as much as it makes sense. Many of the notebooks

use the submodule created in the folder /MEngCode.

https://github.com/m0tela01/
https://github.com/m0tela01/

Exploring Information for Quantum Machine Learning Models

59

References
[1] Britt, Keith A., and Travis S. Humble. “High-performance computing with quantum

 processing units.” ACM Journal on Emerging Technologies in Computing

 Systems (JETC) 13, no. 3 (2017): 1-13.

[2] Preskill, John. "Quantum Computing in the NISQ era and beyond." Quantum 2 (2018):

 79.

[3] Orus, Roman, Samuel Mugel, and Enrique Lizaso. "Quantum computing for finance:

 overview and prospects." Reviews in Physics 4 (2019): 100028.

[4] Cao, Yudong, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.

 Johnson, Mária Kieferová, Ian D. Kivlichan et al. "Quantum chemistry in the age

 of quantum computing." Chemical reviews 119, no. 19 (2019): 10856-10915.

[5] Cory, David G., Amr F. Fahmy, and Timothy F. Havel. "Ensemble quantum computing

 by NMR spectroscopy." Proceedings of the National Academy of Sciences 94, no.

 5 (1997): 1634-1639.

[6] Zeng, William, and Bob Coecke. "Quantum algorithms for compositional na tural

 language processing." arXiv preprint arXiv:1608.01406 (2016).

[7] Patra, Bishnu, Rosario M. Incandela, Jeroen PG Van Dijk, Harald AR Homulle, Lin

 Song, Mina Shahmohammadi, Robert Bogdan Staszewski et al. "Cryo-CMOS

 circuits and systems for quantum computing applications." IEEE Journal of Solid-

 State Circuits 53, no. 1 (2017): 309-321.

[8] Cross, Andrew. "The IBM Q experience and QISKit open-source quantum computing

 software." APS 2018 (2018): L58-003.

[9] Broughton, Michael, Guillaume Verdon, Trevor McCourt, Antonio J. Martinez, Jae Hyeon

 Yoo, Sergei V. Isakov, Philip Massey et al. "Tensorflow quantum: A software

 framework for quantum machine learning." arXiv preprint arXiv:2003.02989

 (2020).

[10] Bergholm, Ville, Josh Izaac, Maria Schuld, Christian Gogolin, M. Sohaib Alam,

 Shahnawaz Ahmed, Juan Miguel Arrazola et al. "Pennylane: Automatic

 differentiation of hybrid quantum-classical computations." arXiv preprint

 arXiv:1811.04968 (2018).

[11] Berthiaume, André, and Gilles Brassard. "Oracle quantum computing." Journal of

 modern optics 41, no. 12 (1994): 2521-2535.

[12] Boneh, Dan, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and

 Mark Zhandry. "Random oracles in a quantum world." In International

 Conference on the Theory and Application of Cryptology and Information

 Security, pp. 41-69. Springer, Berlin, Heidelberg, 2011.

Exploring Information for Quantum Machine Learning Models

60

[13] Amazon. 2019. Quantum computing | Amazon Bracket (AWS). 2019

 https://aws.amazon.com/de/braket/

[14] Quantum Development Kit|Microsoft. Microsoft quantum—US (English).

 https://www.microsoft.com/en-us/quantum/development-kit. Accessed 22 Nov

 2020

[15] Gaebler, John, Bryce Bjork, Dan Stack, Matthew Swallows, Maya Fabrikant, Adam

 Reed, Ben Spaun, Juan Pino, Joan Dreiling, and Caroline Figgatt. "Progress

 toward scalable quantum computing at Honeywell Quantum Solutions." APS

 2019 (2019): S01-103.

[16] Arute, Frank, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends,

 Rupak Biswas et al. "Quantum supremacy using a programmable

 superconducting processor." Nature 574, no. 7779 (2019): 505-510.

[17] Sierra-Sosa, Daniel, Telahun, Michael, and Elmaghraby, Adel S. "TensorFlow Quantum:

 Impacts of Quantum State Preparation on Quantum Machine Learning

 Performance" IEEE Access, doi: 10.1109/ACCESS.2020.3040798.

[18] Kantardzic, Mehmed. Data mining: concepts, models, methods, and algorithms. John

 Wiley & Sons, 2011.

[19] Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.

 "SMOTE: synthetic minority over-sampling technique." Journal of artificial

 intelligence research 16 (2002): 321-357.

[20] Kubat, Miroslav, and Stan Matwin. "Addressing the curse of imbalanced training sets:

 one-sided selection." In Icml, vol. 97, pp. 179-186. 1997.

[21] Asghari, Mohsen, Daniel Sierra-Sosa, Michael Telahun, Anup Kumar, and Adel S.

 Elmaghraby. "Aggregate density-based concept drift identification for dynamic

 sensor data models." Neural Computing and Applications (2020): 1-13.

[22] Xu, Rui, and Donald Wunsch. "Survey of clustering algorithms." IEEE Transactions on

 neural networks 16, no. 3 (2005): 645-678.

[23] Caruana, Rich, and Alexandru Niculescu-Mizil. "An empirical comparison of supervised

 learning algorithms." In Proceedings of the 23rd international conference on

 Machine learning, pp. 161-168. 2006.

[24] Zhu, Xiaojin Jerry. Semi-supervised learning literature survey. University of Wisconsin-

 Madison Department of Computer Sciences, 2005.

[25] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20,

 no. 3 (1995): 273-297.

Exploring Information for Quantum Machine Learning Models

61

[26] Rebentrost, Patrick, Masoud Mohseni, and Seth Lloyd. "Quantum support vector

 machine for big data classification." Physical review letters 113, no. 13 (2014):

 130503.

[27] MacQueen, James. "Some methods for classification and analysis of multivariate

 observations." In Proceedings of the fifth Berkeley symposium on mathematical

 statistics and probability, vol. 1, no. 14, pp. 281-297. 1967.

[28] Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning.

 Vol. 1, no. 2. Cambridge: MIT press, 2016.

[29] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521, no.

 7553 (2015): 436-444.

[30] Cybenko, George. "Approximation by superpositions of a sigmoidal function."

 Mathematics of control, signals and systems 2, no. 4 (1989): 303-314.

[31] MacKay, David JC. "Hyperparameters: optimize, or integrate out?." In Maximum

 entropy and bayesian methods, pp. 43-59. Springer, Dordrecht, 1996.

[32] Robbins, Herbert, and Sutton Monro. "A stochastic approximation method." The annals

 of mathematical statistics (1951): 400-407.

[33] Ge, Rong, Furong Huang, Chi Jin, and Yang Yuan. "Escaping from saddle points—

 online stochastic gradient for tensor decomposition." In Conference on Learning

 Theory, pp. 797-842. 2015.

[34] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted

 boltzmann machines." In ICML. 2010.

[35] Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

 Salakhutdinov. "Dropout: a simple way to prevent neural networks from

 overfitting." The journal of machine learning research 15, no. 1 (2014): 1929-

 1958.

[36] Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum

 information." (2002): 558-559.

[37] Benioff, Paul. "The computer as a physical system: A microscopic quantum mechanical

 Hamiltonian model of computers as represented by Turing machines." Journal of

 statistical physics 22, no. 5 (1980): 563-591.

[38] Deutsch, David, and Richard Jozsa. "Rapid solution of problems by quantum

 computation." Proceedings of the Royal Society of London. Series A:

 Mathematical and Physical Sciences 439, no. 1907 (1992): 553-558.

[39] Shor, Peter W. "Algorithms for quantum computation: discrete logarithms and

 factoring." In Proceedings 35th annual symposium on foundations of computer

 science, pp. 124-134. Ieee, 1994.

Exploring Information for Quantum Machine Learning Models

62

[40] Preskill, John. "Reliable quantum computers." Proceedings of the Royal Socie ty of

 London. Series A: Mathematical, Physical and Engineering Sciences 454, no.

 1969 (1998): 385-410.

[41] Montanaro, Ashley. "Quantum algorithms: an overview." npj Quantum Information 2,

 no. 1 (2016): 1-8.

[42] Wold, Svante, Kim Esbensen, and Paul Geladi. "Principal component analysis."

 Chemometrics and intelligent laboratory systems 2, no. 1-3 (1987): 37-52.

[43] Lloyd, Seth, Masoud Mohseni, and Patrick Rebentrost. "Quantum principal component

 analysis." Nature Physics 10, no. 9 (2014): 631-633.

[44] Xiao, Jing, YuPing Yan, Jun Zhang, and Yong Tang. "A quantum-inspired genetic

 algorithm for k-means clustering." Expert Systems with Applications 37, no. 7

 (2010): 4966-4973.

[45] Rebentrost, Patrick, Masoud Mohseni, and Seth Lloyd. "Quantum support vector

 machine for big data classification." Physical review letters 113, no. 13 (2014):

 130503.

[46] Schuld, Maria. Supervised learning with quantum computers. Springer, 2018.

[47] Knill, Emanuel, Raymond Laflamme, Rudy Martinez, and Camille Negrevergne.

 "Benchmarking quantum computers: the five-qubit error correcting code."

 Physical Review Letters 86, no. 25 (2001): 5811.

[48] Makhlin, Yuriy, Gerd Scöhn, and Alexander Shnirman. "Josephson-junction qubits with

 controlled couplings." nature 398, no. 6725 (1999): 305-307.

[49] Cross, Andrew W., Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta.

 "Validating quantum computers using randomized model circuits." Physical

 Review A 100, no. 3 (2019): 032328.

[50] IBM Quantum Experience|IBM. Quantum on the Cloud—US (English).

 https://www.ibm.com/quantum-computing/experience/. Accessed 29 Nov 2020

[51] Havlíček, Vojtěch, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav

 Kandala, Jerry M. Chow, and Jay M. Gambetta. "Supervised learning with

 quantum-enhanced feature spaces." Nature 567, no. 7747 (2019): 209-212.

[52] Lloyd, Seth, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran. "Quantum

 embeddings for machine learning." arXiv preprint arXiv:2001.03622 (2020).

[53] Rebentrost, Patrick, Maria Schuld, Leonard Wossnig, Francesco Petruccione, and Seth

 Lloyd. "Quantum gradient descent and Newton’s method for constrained

 polynomial optimization." New Journal of Physics 21, no. 7 (2019): 073023.

Exploring Information for Quantum Machine Learning Models

63

[54] Killoran, Nathan, Thomas R. Bromley, Juan Miguel Arrazola, Maria Schuld, Nicolás

 Quesada, and Seth Lloyd. "Continuous-variable quantum neural networks."

 Physical Review Research 1, no. 3 (2019): 033063.

[55] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, OndˇrejˇCertík, Sergey B.

 Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore,

 Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E.Granger, Richard P. Muller,

 Francesco Bonazzi, Harsh Gupta, ShivamVats, Fredrik Johansson, Fabian

 Pedregosa, Matthew J. Curry, Andy R.Terrel, Štˇepán Rouˇcka, Ashutosh Saboo,

 Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy:

 symbolic computing inpython. PeerJ Computer Science, 3:e103, January 2017.

[56] A. Ho and D. Bacon. Announcing cirq: An open source framework for nisq algorithms.

 Google AI Blog.

[57] Schuld, Maria, Alex Bocharov, Krysta M. Svore, and Nathan Wiebe. "Circuit-centric

 quantum classifiers." Physical Review A 101, no. 3 (2020): 032308.

[58] Hunter, John D. "Matplotlib: A 2D graphics environment." Computing in science &

 engineering 9, no. 3 (2007): 90-95.

[59] Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

 Thirion, Olivier Grisel, Mathieu Blondel et al. "Scikit-learn: Machine learning in

 Python." the Journal of machine Learning research 12 (2011): 2825-2830.

[60] Araujo, Israel F., Daniel K. Park, Francesco Petruccione, and Adenilton J. da Silva. "A

 divide-and-conquer algorithm for quantum state preparation." arXiv preprint

 arXiv:2008.01511 (2020).

	Exploring Information for Quantum Machine Learning Models
	Recommended Citation

	Exploring Information for Quantum Machine Learning Models

