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Abstract 
Quantum computing performs calculations by using physical phenomena and quantum 

mechanics principles to solve problems. This form of computation theoretically has been shown 

to provide speed ups to some problems of modern-day processing.  With much anticipation the 

utilization of quantum phenomena in the field of Machine Learning has become apparent. The 

work here develops models from two software frameworks: TensorFlow Quantum (TFQ) and 

PennyLane for machine learning purposes. Both developed models utilize an information encoding 

technique amplitude encoding for preparation of states in a quantum learning model. This thesis 

explores both the capacity for amplitude encoding to provide enriched state preparation in learning 

methods and a deep analysis of data properties that provide insights into training data using a 

Variational Quantum Classifier (VQC). The advent of these new methods begs the question of 

how to best use these tools, we aim to give some overview explanation for the applicable state of 

quantum machine learning given actual device constraints. The results show there is a clear 

advantage for using amplitude encoding over other methods as we show using a hybrid quantum-

classical neural network in TFQ. Additionally, there are several steps of preprocessing that can 

lead to more feature rich data when utilizing a VQC, in essence the no free lunch theorem holds 

true for quantum learning methods as it does in classical techniques. Information albeit encoded 

in a quantum form does not change the steps of preparing data  but involves new ways to 

comprehend and appreciate these novel methods.  
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1. Introduction 
Quantum Machine Learning (QML) is an interdisciplinary field that merges Quantum 

Computing (QC) and Machine Learning (ML). There are many algorithms present in the field of 

QC such as Grover’s and Bernstein-Vazirani which have presented speedups to a number of 

problems such as integer factorization and database search. These algorithms are beginning to see 

the light of day now that devices coined Noisy Intermediate Scale Quantum (NISQ) have become 

a genuine implementation of Quantum Processing Units (QPU)s [1,2]. NISQ era devices have 

opened up the door for researchers to begin the process of developing these algorithms in earnest. 

These devices have also raised the interest around the topic, significantly spanning to domains 

outside of the typical computational thesis such as into finance, chemistry, biology, among others 

[3, 4, 5, 6, 7]. New developments in quantum technologies are beginning to spawn, and 

implementations of learning models for these new devices is growing. NISQ era devices provide 

the unique opportunity to test and develop QML techniques which were not physically possible 

before [2].  

At the cornerstone of QC research and physical implementations, NISQ era devices have 

brought about the development of several programming suites for simulated quantum devices. 

Together with modern processing power these allow for a much richer experience when preparing 

to perform experiments on a real quantum device as well as trying to understand realistic 

expectations of current systems. In this realm we have two major components in terms of 

Application Programable Interfaces (APIs): the supporting code for development of circuits and 

the compilation code that runs on the physical device. Major organizations such as IBM, Google, 

and Xanadu allow development of models on both simulated and real quantum devices [8, 9, 10]. 

These software suites allow for the fundamental device-agnostic gate implementations that can be 

used to build quantum algorithms. With the developmental code there is the ability to create 

circuits and oracles out of gates. Oracles are considered “black boxes” in a quantum circuit which 

apply some set of gates to perform a change to the computational basis of a quantum state(s) [11, 

12]. Some of these languages include Qiskit Aer, Cirq, and PennyLane. These are created and 

supported by IBM, Google, and Xanadu respectively. There is also so to speak the “backend” 

which needs to handle both software and physical problems. The backend handles aspects such as, 

transpiling of code, mapping of qubits to device topology, and noise during execution of an 

experiment. Each of these code sets handles these backend steps in their own ways. 

There are several other companies that are also joining and excelling the race in the space 

of QC. In some cases these companies are developing their own QCs while others are developing 

software suites such as Amazon with BraKet [13], Microsoft with Q# [14], and Honeywell who 

uses the open Quantum Assembler (QASM) API [15]. Industry is beginning to bow to this 

quantum race as projections suggest a quantum supremacy just on the horizon. We are speeding 

towards a state where quantum computers will perform intensive computational tasks faster than 

classical devices [16]. The recent announcement of the experiment on Google’s Sycamore QC 

showed achieving quantum dominance over a classical device could happen any day now. 
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Some of these key players in QML have developed open source frameworks such as IBM’s 

Qiskit & Q Experience, Google’s TensorFlow Quantum, and Xandu’s PennyLane. These three are 

used in the work presented here primarily because they have the most extensive packages, support, 

and involved communities for QML. Each of these frameworks has capabilities to extend their 

software suites by utilizing tertiary APIs as well as utilize their frameworks on devices outside of 

their respective companies. For example, TensorFlow (classic) and PyTorch can both be used to 

train neural networks utilizing PennyLane. Additionally, circuits written with PennyLane, QASM, 

or Cirq can be run on IBM’s quantum devices [10]. These abilities make developing QML 

experiments and models as natural as their classical counterparts. It should be noted that we are 

still not at the point where we can say that QML on NISQ devices surpasses classical methods; 

however, with these new tools, increased funding of research, and interest in the topic growing 

rapidly, we are getting closer to an inevitable outperformance of current leading technologies. 

Much of the work presented here relates to the processing both before and after a learning 

methodology is applied, perhaps one of the most fundamental requirements for utilizing QML, or 

ML for that matter, is a firm foundation in general data mining procedures. Apart from developing 

models for quantum systems there is the body of work that will need to answer the questions: How 

do we improve results?, When do we use a method of embedding over a method of encoding?, 

Why did a model perform the way it did?, etc. Several methods we will develop are classical and 

help to answer these questions. One quantum method used here has been come to be known as 

amplitude encoding. This method as we will show is far superior to other methods of encoding 

raw classical data into a quantum state [17].  

This thesis is organized with the following sections. We further develop  a simple 

introduction of classical data processing methods, machine learning methods, and quantum 

computing in the Theoretical Background. A literature review, description of the technologies 

used, and the individual frameworks for quantum machine learning are given in the section  

Technical Background. We continue with the datasets explored both generated and toy datasets in 

our exploration of utilizing quantum machine learning in the section Datasets. The section 

Experiments covers the work in applications of data processing, development of quantum learning 

models, and what we have come to understand as some advantages/disadvantages. Finally, a 

conclusion on presented material and discussions for future work are given in the Conclusions 

section. 
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2. Theoretical Background 
There are many components that make up this highly specialized f ield of QML. The goal 

of this section is to give enough background to the reader by briefly developing several these topics 

before moving on to a more technical overview. 

2.1 Classical Overview of Data Processing 
Preprocessing and post analysis of data are essential for gaining a firm awareness of 

information that will be explored or learned from. We will describe several of these methods that 

can be used before applying a learning technique, and after, methods that are used to understand 

the results. Briefly, the data storage system in this thesis was Comma Separated Values (CSV) and 

JavaScript Object Notation (JSON). We exclude a through explanation into data collection and 

data storage methods as they are not the focus.  

2.1.1 Raw Data as a Whole 

Raw data from a system or software is often captured without any pretext other than its 

immediate intended use. There are a number of different forms data can take such as continuous 

real variables, categorical discrete variables, binary variables, non-structured text, multimedia 

(audio, images, and video), among others. In their raw form, data are often not ready to be learned 

from or utilized in an analytical way. Even just grasping the bare meaning of the data can often be 

daunting without some level clarification or set of steps that simplify and facilitate an 

understanding of the information [18].  

Three issues often associated with data processing involve missing records, imbalanced 

classes, and outliers. Missing records pose a very difficult problem as they would otherwise 

contain information that would be valuable to a learning technique. There are several methods for 

dealing with missing data such as replacing them with the mean of the feature, but this also causes 

potentially useful contents to be lost. Imbalanced classes are also a major issue when handling data 

especially when applied to a learning heuristic. Class imbalance occurs when a set of classes or a 

single class has more samples than other classes. Simply the population of a single class is greater 

than another. In the extreme case there is the possibility a technique will simply judge all the data 

as the majority class over the minority [18]. To alleviate this issue data can be balanced simply by 

dropping records from the majority class to match the minority class. Additionally, methods for 

oversampling the minority class have been developed such as Synthetic Minority Oversampling 

Technique (SMOTE) and Tomek Links [19, 20]. The third issue of outliers is often more complex 

in its analysis and handling. An outlier exists when there are data on the edge of the distribution 

of the samples. Simply put the data that does not conform to the same general behavior of the data 

[18, 21]. In the simplest case this can be handled by excluding samples greater than some number 

of standard deviations. In this thesis we handle all three issues in different circumstances. As we 

will discuss later the Scikit-Learn datasets which we generated fortunately do not have many of 

these issues but others such as the Wine dataset face some of these issues. 

 



Exploring Information for Quantum Machine Learning Models 

 

9 
 

2.1.2 Feature Dependent Processing 

Direct methods that transform and manipulate data in the preprocessing phase are regularly 

needed to clarify the information in some features. A few of these methods include discretization, 

normalization, and smoothing. As we describe further in the body of the experimentation each of 

these results in dramatic changes to a model’s learning behavior when utilizing QML techniques.  

2.1.3 Discretization 

Feature discretization is a method for transforming raw continuous variables to a discrete 

and less complex feature space. In general, this can be considered as value reduction where there 

are two questions that we want to answer: where to stop or start a discrete set or interval? and how 

to determine what represents a discrete set or interval? The simplest method for discretization is 

to simply sort the data and then split it based on bins of size m where m is the number of elements 

in a bin. The bin value then becomes the mean of each bin and then the values are converted to 

those bin values. This method struggles with finding what size m needs to be to achieve the best 

results and can require several iterations of trial and error [18].  

A second method known as the ChiMerge Technique has three steps for discretization: first 

sort the data in ascending order, define an initial interval such that only one value is in each interval 

(using the mean of every pair of values), for every adjacent interval compute 𝑋2  of each interval 

and determine if the 𝑋2 value is below the threshold, finally, if 𝑋2  is below a certain threshold 

merge the two intervals, if not, the intervals cannot be merged. The lower bound of the first interval 

and upper bound of the second interval will replace the bounds o f a new merged interval. To 

implement the ChiMerge a contingency table must be constructed that uses the number of classes 

in the dataset to determine the values used in the calculation of 𝑋2 . This makes the method typically 

useful for only classification methods. The ChiMerge Technique provides a statistical method for 

determining the intervals and results in significantly different results than the method for binning 

above. 

2.1.4 Normalization 

Normalization is one of the most common, yet important transformations applied to data. 

Normalization scales data between some predetermined range such as [0, 1]. The values are 

arrange based on some method which considers all of the samples for one feature. Therefore, 

normalization occurs column wise across the whole dataset where applicable [18]. This is because 

each feature’s values are independent of every other feature. The concept of normalization is to 

simplify the impact any singular value can have on biasing a learning techniques behavior when 

observing the sample. If a technique sees that in certain cases a value is very large/small, it may 

over/under weigh the importance of a feature’s value and misguide the learning process. 

Before normalizing, outliers of data must be removed as it can cause the normalization to 

reduce most of the data to a small interval of values. Although normalization reduces the interval 

of values to some range, if outliers are included a learning technique may have a harder time 

understanding the other features of the data. If they are included, they also weigh in on the scale 

for normalization. Without removing outliers utilizing normalization can lead to errors that become 

harder to comprehend further in the pipeline of analysis. Normalization takes several forms such 
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as standard deviation normalization, decimal normalization, and minimum-maximum (min-max) 

normalization.  These equations are shown in Table 1. 

Table 1. Normalization methods for scaling data. 

Normalization 

Method 

Standard Deviation 

 
Decimal 

Min-Max 

 

 
Equation 

 

 
𝑣𝑖 − mean(𝑣)

 

 

 
𝑣𝑖

10𝑘  

 
𝑣𝑖 − min (𝑣𝑖)

max(𝑣𝑖) − min (𝑣𝑖)
 

 

 

Where the column being normalized is 𝑣 and the column value is 𝑣𝑖 . The value 𝑘 in decimal 

normalization is the power needed to make the largest value in the column less than or equal to 

one and 𝑠𝑡𝑑 is standard deviation. Each of these methods can be modified to fit the data 

appropriately. For example, when using standard deviation normalization you may want to 

decrease the weight of values and apply a coefficient in the denominator, or in minimum-maximum 

normalization you may choose to normalize between [0, 1] or [-1, 1] depending on the 

classification task [18]. In either case normalization and its application is data dependent and 

should be evaluated before and after the learning process. We develop the normalizations in more 

detail as we build upon the process of preparing different procedures in the Experiments. 

2.2 Post Analysis 
 After training a model, post analysis of results is a critical component as it explains the 

learning outcomes of an applied technique. In almost every case the best way to perform analysis 

of a learning method in either the classical or quantum realm is on a holdout or test set of samples 

which have not been used anywhere in the learning process. This requires the dataset be split into 

at least two groups such as training and testing or in some cases three groups where we have 

training, validation, and testing [18]. The validation set as we will is used in some methods to 

validate and provide feedback to a learning method while it is actively learning. Testing on the 

validation set should not be done as the technique will be privy to this set. The holdout or testing 

set again must never be used by the model. The holdout set must also be prepared using the same 

methods as the training data. This means the same preprocessing steps such as normalization and 

discretization must also be applied. From a practical implementation point of view, it is best to 

split the testing set from the data immediately prior to beginning any training, this way one can be 

sure all the necessary steps have been applied correctly.  

 The most common metric used here is Accuracy of the learning model on the new testing 

set. We also consider Precision, Recall, F1-Score, Confusion matrices (True Positive, True 

Negative, False Positive, and False Negative), and Receiver Operator Curves (ROC) when 

evaluating a model’s results. We will show how these metrics imply the learning outcome of an 

amplitude encoded dataset using TFQ significantly outperforms other state preparation methods 

[17].  We will also show how different transformations to data in quantum models can significantly 

change the metric scores gathered. The main reason for using accuracy is that we primarily work 
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with synthetic data here and as we have control over the data. For example, with an imbalanced 

dataset it would make sense to maximize and concern ourselves with F1-score [18]. Due to the 

lack of abnormalities in the data such as imbalances and outliers, accuracy is less questionable. 

That is not to say we did not evaluate almost all the data using the aforementioned methods, but 

due to the behavior of datasets we worked with, accuracy was an appropriate choice. In most cases 

we still evaluate results using all the metrics. 

 Post analysis of data can be tricky as it is tries to explain the output of the learning 

technique. It does not try to explain the learning process of an applied technique but the outcome. 

In this thesis the general goal of post analysis is to show which f orms of encoding and 

transformations result in better performance in terms of  a model’s ability to learn the data in a 

quantum space/representation. For this reason, we fully define and develop the post analysis tools 

later in the section Experiments. We will also show that graphical results in some cases are able to 

capture the behavior of a technique which can make these numerical metrics misleading at a 

glance.  

2.3 Machine Learning 
 Learning methods in modern times have grown very complex with new hardware paving 

the way for Deep Learning and advancements in Artificial Intelligence. Given these advancements, 

many of the underlying methods for learning have stayed the same. We cannot cover the entirety 

of machine learning in our brief overview but cover some of the basic components. We also discuss 

some simple methods, albeit old still perform exceedingly well.  

 In a broad sense machine leaning techniques can be categorized into three types: prediction, 

classification, and clustering. These three types although complex in their various implementations 

can be simplified in their explanation. In general, prediction is a task which aims to determine with 

some level of exactness or accuracy a value given a set of inputs. Both prediction and classification 

are concerned with accuracy in a similar way, but prediction accuracy is measured against the 

immediate result of a prediction. Classification aims to determine which class (whether there be 

two or two hundred) a sample identifies or corresponds to. Accuracy in terms of a classification 

model is determined based on the set of correctly classified samples. Clustering methods are 

typically based on some kind of distance metric which considers a “spatial” component of the data 

such that those closer or spatially nearer to each other in n-dimensional space are clustered together 

[22]. The goal of clustering is the most different from the three. It aims to produce some 

measurable explanation within a dataset by organizing or grouping subsets together, often it is 

used as a descriptive method before prediction or classification [18, 22].  

 An additional split in machine learning definitions comes with the approach for supervised 

and unsupervised learning. Supervised learning is a process by which samples of data are fed to a 

method with the class label or expected output. For any method of supervised learning the goal is 

to let the method run, applying whatever methods are available to it, and with its current state of 

knowledge try to make a guess about the expected output. The result or set of results from these 

guesses is then measured against the true output, internal functions or often model parameters are 

minutely updated, and the process begins again. This is essentially how most how machine 
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learning and recently deep learning methods attain their highest results. Unsupervised learning 

such as clustering approaches the problem differently as its applications are generally not the same 

as supervised learning. They do not have labels to measure against after an iteration or part of 

learning. That is not to say clustering is only unsupervised, when applied correctly clustering 

techniques are among the top performers for classification in many cases [23]. Unsupervised 

methods typically have the goal of making some formal descriptions about data.  An example of 

this is the Restricted Boltzmann Machines (RBM) which learn probability distributions of a dataset 

and the Apriori algorithm for market-basket analysis. For completeness, there is also semi-

supervised learning which takes elements from both supervised and unsupervised learning [24].  

2.3.1 Learning Methods 

One machine learning technique which has its roots in statistical learning theory is a 

Support Vector Machines (SVM) [25]. SVMs are a method of supervised learning which in its 

basic form is a linear classifier that separates two classes from one another via a hyperplane. A 

hyperplane is defined based on the dot product of input vectors. This is one of the reasons why the 

method Quantum Support Vector Machine (QSVM) has become popular in the field of QML [26]. 

Several hyperplanes exist between classes so an SVM also seeks to maximize the distance between 

classes. This maximally spaced hyperplane exists when it is furthest away from the closest sample 

from both (all) classes. A margin is also important component to an SVM as it provides the ability 

to compromise when data is not perfectly separable as in most cases. The margin is the boundary 

space, containing the hyperplane, between the classes but with additional support for allowing 

overlap between classes. Optimization of these hyperplanes is performed using a Lagrangian 

transformation in most cases. Support vector machines have been expanded to include nonlinear 

classifiers based on what are called kernel tricks/methods/functions. Perhaps the most popular of 

these kernel methods is the radial basis function or RBF. These kernel methods replace the dot 

products into more robust nonlinear generalizations of SVMs [18]. In Figure 1. we plot three of 

these kernel methods: LINEAR, POLYNOMIAL, and RBF. SVMs are largely dependent on these 

functions and choosing the best one is data driven. The example contains ten samples, five for each 

class. In the figure the solid white lines are the separating hyperplanes, and the dotted white lines 

are the margins. 

 

Figure 1. Application of SVM kernel methods on ten samples showing the different boundaries, margins, and 

hyperplanes for the same dataset. RBF is the only kernel which is almost able to classify all 10 samples correctly. 



Exploring Information for Quantum Machine Learning Models 

 

13 
 

 For clustering there are several techniques that fall into categories such as hierarchical 

methods, partitional methods, and density-based methods. One of the most well-known clustering 

methods is a partitional method called the KMEANs algorithm [27]. This method is rather 

straightforward as it tries to cluster data into k groups of equal variances by reducing the inertia or 

within-cluster sum-of-squares. The algorithm requires that a user pick the value of k which is often 

found either by trial and error, expert opinion, class labels, or a combination of these. Inertia is 

calculated by applying the Equation 1. where 𝑥𝑖 is the sample and 𝑢𝑗 is the cluster mean the sample 

is in. The naïve approach is performed by assigning clusters based on k and then updating the 

centroids or cluster centers by calculating the least squared Euclidean distance of the samples. 

∑ min (||𝑥𝑖 − 𝑢𝑗||
2

)

𝑛

𝑖=0

                                                             (1) 

Visualization of clustering methods also makes them attractive when attempting to explain the 

method or gain intuition. Figure 2. shows the results of the KMEANs algorithm on a very simple 

two-dimensional sample with four clusters. These results are visually well grouped and easily 

distinguishable in comparison to other datasets. 

 

Figure 2. Four classes clustered by the KMEANs algorithm. The simple dataset here shows the capability of 

descriptive mining methods on convex data. 

 Deep learning’s path has been primarily paved by way of the perceptron or multilayer 

perceptron (MLP). The perceptron was developed in 1958 making it over 60 years old [28, 29]. 

Later in this work we will apply an MLP to a quantum technique making it quantum-classical 

implementation. At its core a perceptron is a simple function which takes as an input a vector and 

takes its dot product with a real-valued weight. In the case of binary classification, the output value 

will be one when the dot product is greater than zero and zero otherwise. A perceptron is very 

simple and because of this it is not able to solve nonlinear problems [28]. The graphic in Figure 3. 

shows that there is not one single hyperplane that can separate the red triangles from the orange 

dots. This example shows that even a simple XOR logic gate is not linearly separable. To solve 
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this problem we can add multiple perceptrons stacked together in the form of a “layer”, several 

layers (typically three or more) create an MLP. An MLP allows for nonlinear approximations to 

be learned. An MLP connects each of its nodes (neurons) with all other nodes and is dubbed a fully 

connected layer or dense layer [18, 28, 29]. 

 

Figure 3. Classical problem on XOR gate that shows a simple perceptron cannot solve nonlinear problems. An MLP 
solves this by selecting the samples inside the boundary (dots) as one group and samples outside the boundary 

(triangles) as the second group. 

Multiple “layers” of MLPs are the very basics of so-called deep learning as we are at a depth of 

typically several (sometimes hundreds/thousands) of layers. With this representation we also have 

the notion of a hidden layer which is any layer between the input and output layers of the network. 

The MLP used in [17] uses two dense layers of 64 and 32 neurons and one neuron in the output 

layer, a visualization of this can be seen in Figure 4. We have scaled it to ¼ the size due to the 

space limit of a page. The output layer of a perceptron can be extensively modified with software 

packages. It can not only perform binary classification but multiclass classification or continuous 

value regression. This behavior is controlled by an activation function which we will discuss later 

in this section [30]. 

   

Figure 4. Artificial Neural Network (ANN) with 16, 8, 1 perceptrons for the input, hidden, and output layers 
respectively. The model used in the TFQ experimentations uses a similar network with four times the nodes in the 

first two layers. 
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2.3.2 Learning – Optimization and Loss 

 Although the recipes of different learning techniques can range from subtle to poles apart 

to even contradicting the underlying ingredient is optimization. Optimization is what breathes the 

concept of learning into any of these techniques. In terms of learning an optimization means 

solving for either a non-linear or linear equation of some feature space such as y = ax + b in the 

linear case. We cannot begin to cover the vast number of optimization functions that exist. But in 

general optimization has the goal of finding or ‘fitting’ to the equation that predicts, classifies, or 

clusters a dataset in the best possible way. To do this we introduce two concepts the learner or 

heuristic and the loss function. 

 If optimization is the method for learning than we can define the learning method as a 

heuristic. The heuristic is given control of a special type of parameters called hyperparameters. In 

the SVM this might be the tolerance for the margin or in the case of deep learning the number of 

neurons. Initially the one who is designing or implementing a technique will setup these 

hyperparameters which cannot be changed during training. These hyperparameters are used to 

develop the learner as they determine how to calculate and optimize the applied model [31]. These 

are often decided using additional heuristics, trial and error, or a combination of both. The learner 

uses these parameters within the model to determine or calculate its own model parameters which 

are unseen to the user. Model parameters are not imaginary or conceptual. In a simple algorithm 

we can show and precisely define the values these parameters will produce; however, as models 

scale to larger datasets and more complex feature spaces the size and number of these parameters 

tends toward combinatorial explosion [32].  

 One frequently applied optimization which in deep learning is the Stochastic Gradient 

Descent (SGD). SGD is an iterative method that tries to converge at some minima (local or 

minimal) within a function that fits to the data [32]. It has two main parameters to compute the 

gradient of a function: 𝑤 or weight and 𝜂 which is the learning rate or step size. SGD is a 

differentiable function which takes the form of a summation of gradients. It is computed using 

Equation 2. where 𝑄(𝑤) is the function being minimized 𝑄𝑖(𝑤) is therefore the 𝑖𝑡ℎ example of 

loss of the sample. 

𝑤 ≔ 𝑤 − 𝜂∇Q(w) = w −
𝜂

𝑛
∑ ∇Qi(𝑤)

𝑛

𝑖=1

                                (2) 

In its process the SGD outputs a new weight for after every iteration . An illustrative example of 

this process is shown in Figure 5 (a). and in this case the optimizer will find a local minimum in 

place of the true global minimum. Although we would like our optimizer to reach the lowest point 

this is contingent on several factors. In terms of data we would like our data to exhibit some convex 

behavior in order to more frequently reach the global minimum. As this is data dependent, we are 

stuck tunning parameters, in the case of Figure 5. we show two examples of how two different 

learning rates would can impact SGD. The graphic in Figure 5 (a). shows the application of a large 

learning rate and below we can see a small learning rate in (b). Determining which is better is often 

data dependent. As the graphic depicts, a bigger learning rate is susceptible to jumping behavior 
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and will likely skip over/not find a “good” local minimum. On the other hand, small learning rates 

are much smoother but might get trapped in any minimum such as the next minimum (#2 in the 

graphic). The key here is balance, the SGD needs to be able to be large such that it can move out 

of “poor” minimums and small enough to not bounce out of “good” minimums [28]. 

 

Figure 5. Example of gradient based methods. Learning rate of the top figure (a) is set to high which may result in 
jumping behavior. Bottom figure (b) has small learning rate which may lead to getting trapped in poor local 

minima. 

We have labeled the minima in this diagram to show that there are four local minimums three of 

which are “good” minimums and #3 is the global minima. With a big learning rate, it would not 

be surprising to see the end result end up in the second or fifth minima. With a small learning rate 

the function may never exit the first minima. In our example this would by chance be an acceptable 

outcome. Later in the Experiments section we will discuss Adaptive Moment Estimation (Adam) 

Optimizer. Other optimizers apply additional parameters to control the learning behavior such as 

momentum to solve issues that SGD struggles with, like saddle points [33]. As always there is a 

tradeoff between choosing one method over another. In general, stochastic optimizers are the bread 

winner of optimizers. 

Conceptually a “guide” is implemented in the form of a loss function to steer the optimizer 

towards these local minima [34]. They do not take the optimizer out of a minimum so to speak but 

attempt to make them tend toward the minima. Loss can be applied in the middle of an iteration, 

on a batch, and/or the end of an epoch. In general, loss determines how the heuristic has done thus 

far. By implementing loss, we can determine how learning is increasing or decreasing the overall 

results. It also helps explain what is known as overfitting if the learner has gone too far or in the 

wrong direction. The loss function of a neural network or other learning methods are fed values 

that have been weighted by the model, these weighted values are produced from a neuron or node 

by an activation function that shapes the output to some desired form. There are several activation 

functions that can be applied to a neuron. Three very popular choices are shown in Table 2., both 

equations and graphics are shown. Of these three, Rectified Linear Unit or ReLU has made waves 

in the deep learning community for showing that it is capable of converging faster than the other 
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two [34]. Once each neuron has had an activation applied to it then the loss function can be applied 

to the layer or entire network. At the end of  any training instance or rather a pair of training 

instances a decrease in loss signifies an increase in performance, typically accuracy, this implies 

that the heuristic has learned some component of the data [35]. As we develop in the Experiments 

section the loss function can also imply training has taken a turn for the worse and begun to, 

rightfully named, overfit.  

Table 2. Common Activation functions for artificial neural networks. 

Activation Function Plot 

Sigmoid 
1

1 + 𝑒−𝑥  

  

Hyperbolic 
Tangent 

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥  

 

ReLU f(x) = max(0, x) 

 

 

 Overfitting is the state when a learning function has over optimized or in a sense 

memorized the training data it is privy to. This problem does not arise because the heuristic is 

attempting to memorize the data but rather that fitting to a function draws this behavior from an 

optimizer. Overfitting is an issue and without a holdout or validation set of data it is impossible to 

realize a model has overfit. When overfitting the optimizer has stopped fitting to feature 

information and started to optimize for decreasing the loss function on the training samples.  Simply 

adding a validation dataset to use within the model will not mend the situation as the problem lies 

in the method or application of the method itself. But it can help spotting the problem much easier 

as we show in the Figure 6. using the public University of California Irvine Wine dataset. On the 

left the figure shows that while the training loss is continuing to decrease the validation loss is not 

matching this behavior, and similarly the accuracy (right) appears to drop back to its initial value 

for validation. This model has been intentionally overfit to show this issue. There are several 

methods for managing a model that overfits. The main issue of overfitting in this thesis occurs 

when data has been fit as best as it can, or simply the model has trained for too long. The issue has 

several solutions such as decreasing the complexity of the learning method, decreasing the training 
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time, and/or forgetting some of the information learned in an epoch. Better yet, as we show from 

our paper using TensorFlow quantum, using the wrong quantum state preparation techniques will 

lead to underfitting [18].  

 

Figure 6. Example of a model overfitting on the Wine dataset. Noting the red are training metrics and orange are 

validation metrics. This is an over simplified model that needs tuning or better preprocessing of the data. 

2.4 Quantum Computing 
Quantum computation has had a longer history than many may be led to believe; however, 

it was in the early 1980’s when suggestions regarding analog quantum computers by Richard 

Feynman, Paul Benioff, and Yuri Manin began to appear [36, 37]. In the following years, 

contributions led to the development of the first algorithms by Deutsch and Jozsa [38]. It was not 

until Peter Shor’s algorithm for integer factorization and discrete logarithms in 1994 [39] that 

interest of Quantum Computing stirred within the scientific community. What is known now as 

Shor’s Factoring algorithm showed that cryptanalysis techniques could exponentially be sped up, 

jeopardizing methods used to protect stored data and communication in both civil and 

governmental applications. 

Among the many technical challenges associated with the physical implementation of 

quantum computers [40], one of these challenges is that quantum gates should be faster than the 

loss of information to the environment; this is known as decoherence. This phenomenon, imposes 

a constraint on computing, making some algorithms impractical. The development of 

superconducting metals allows for the creation of resonant circuits capable of providing coherent 

lifetimes of milliseconds, making quantum processors a reality. Although a large-scale noise free 

quantum computer seems beyond the horizon, there are several quantum algorithms that can be 

executed with current technologies [41]. 

The research done on Noisy Intermediate Scale Quantum devices, known as NISQ, 

produces algorithms and simulations for the current technology and hardware development state. 

With classical computers, tasks such as tracking and describing qubits in quantum s imulations 

would be impossible; quantum computers are able to do this with ease. Without NISQ, 

comprehending qubits would require an exponentially large set of classical numbers, something 

quantum computers are readily able to produce. At a fundamental level this is why classical 
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computers fail to perform many of the tasks that researchers and theorists believe quantum 

computing can [36]. 

Quantum Mechanics postulates are of algebraic nature, meaning there exists an intrinsic 

relation between quantum computation and algebraic operations [ref]. Multiple advances in the 

field of quantum information processing have provided promising prospects relying on that 

advantage. Therefore, it has been proven that Quantum Computing could lead to exponential 

speed-up in different data processing and machine learning methods, including Principal 

Component Analysis (PCA) [42, 43], K-means Clustering [44] and regularized Support Vector 

Machines (SVM) [45]. Advances in NISQ devices imply the development of more diverse and 

meaningful applications, increasing the relevance of conducting research in this area.   

In the 1990s physicists began to analyze and consider what aspects would be needed to 

develop a quantum computer and with that how to program one. The result of this early  thinking 

has led to the concept of qubits or the quantum dual of the binary bit and quantum circuits. Qubits 

or quantum bits are represented as the state |𝜓⟩ (read state psi or ket psi). A qubit is defined by a 

set of probability amplitudes 𝛼𝑛 where 𝑛 is the number of basis states. A generalization for a qubit 

is given in Equation 3. and the constraints for 𝑛 are given in Equation 4., where the probability 

amplitudes must sum to one. 

          |𝜓⟩ =  𝛼0|0 … 00⟩ + 𝛼1 |0 … 01⟩ + ⋯ 𝛼𝑛|1 … 1⟩                                              (3) 

∑|𝑥𝑖|2 = 1

𝑛

𝑖=0

                                                                              (4) 

The need for quantum computing comes from the desire to model the real world with much 

greater detail. Computationally the classical computer has grown into quite a powerful tool which 

has been able to solve a myriad of tasks [36, 46]. In the most basic case, a few qubits are 

computationally intractable for classical devices to simulate and track. That is not to say classical 

devices will be obsolete when/if quantum devices reach supremacy over them. In fact, as we will 

show, classical devices and quantum devices both have their part to play. Quantum devices can be 

viewed as a secondary computational unit outside of the typical Computing Processing Unit (CPU) 

which handles calculations with much greater complexity like a Graphics Processing Unit (GPU). 

 One way quantum devices are able to perform intractable calculations that classical devices 

cannot is by taking advantage of what is known as the Hilbert space. A Hilbert space is a 

generalization of vector space with the structure of an inner product, it is a complete space [36, 

46]. A Hilbert space is a real or complex inner product space that is also a complete metric space 

with respect to the distance function induced by the inner product. The following properties satisfy 

a Hilbert space:  

1. The inner product of a pair of elements is equal to the complex conjugate of the inner 

product of the swapped elements. ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩̅̅ ̅̅ ̅̅ ̅ 

2. The inner product is linear in its first argument and for all complex numbers 𝑎 and 𝑏. 

⟨𝑎𝑥1 + 𝑏𝑥2, 𝑦⟩ = 𝑎⟨𝑥1,𝑦⟩ + 𝑏⟨𝑥2,𝑦⟩ 
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3. The inner product of an element with itself is positive definite.  

{
⟨𝑥, 𝑥⟩ > 0      𝑥 ≠ 0
⟨𝑥, 𝑥⟩ = 0      𝑥 = 0

 

The Hilbert space allows for generalizations of change of basis and linear operations which are 

requirements to achieve quantum computation [36, 46]. To oversimplify, quantum devices are not 

constrained to singular values as their minimum computational unit like classical devices. Their 

fundamental unit is a vector space. Quantum devices are not constructed to logics gates that utilize 

Boolean algebra instead they leverage quantum gates which resemble matrix operations and utilize 

linear algebra.  

Quantum computers today take the form of Noisy Intermediate Scale Quantum (NISQ) 

devices. These devices by no means are the final state of quantum computer, but a steppingstone 

to prepare, develop, and test algorithms. Scaling these devices poses several challenges, although 

it is not the purpose of this thesis it must be mentioned. Physical systems are prone to error due to 

issues such as stochastic noise. Research in this area is referred to as quantum error correction and 

it works to increase the fidelity of quantum systems under these unideal circumstances [40, 47].  

Quantum computing devices when created using a lithographic process have a physical 

connection between qubits called a Josephson junction [48]. The Josephson junction is a tunnel 

junction composed of two superconducting metals separated by an insulation barrier. The 

phenomenon is a product of quantum tunneling [36]. Quantum devices with this characteristic 

include IBM devices such as those in Figure 7. These devices have a different number of qubits 

but that does not directly relate to their compute capabilities. IBM has dubbed the term quantum 

volume [49] to indicate the capacity of a quantum computer taking into consideration several 

factors such as number of qubits, circuit depth before the level of error is to large, topological 

connectivity, crosstalk, U gate error, CNOT error, among others [50]. 

 

Figure 7. Three IBM quantum device topologies, taken from IBM Q Experience. The coloring of connections and qub its is 

indicative of their error rates. Darker colors indicate higher error rates. The devices are regularly reset which changes the error 

rates for better or worse. Error rates are also displayed for fundamental gates in the IBM Q Experience application. 

Before discussing quantum machine learning, we wrap up the discussion of quantum 
computing and quantum information with a basic data transformation. Data can be transformed to 
represent quantum states using any arbitrary change to the computational basis of a qubit. A simple 

dataset such as {𝑥, 𝑦, 𝑧} can apply what is known as a unitary gate or 𝑈 gate. A unitary is operated 
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over a set of inputs producing some set of outputs to obtain a new set of transformed states. This 
concept or schema for applying a unitary to data is given in Figure 8. 
 

 
Figure 8. Unitary gate applied to create state changes. 

2.5 Quantum Machine Learning 
The term quantum machine learning (QML) can have more than one meaning depending on its use. 

What we will mean by it in this thesis is the use of machine learning on quantum devices (simulators) or 

quantum-assisted machine learning. The goal of this marriage is to discover whether the addition of 

quantum components can be leveraged to increase the learning of classical methods. It seeks to answer 

whether there are patterns that quantum information is better suited for, if with less information can 

similar/better results be achieved, or if quantum computers speedup the learning in certain classical 

optimization problems. The QML models we will apply in this work are all performed on simulated 

quantum devices so we will mainly focus our attention in the second meaning, quantum-assisted machine 

learning. This type of learning can be split into a number of different arrangements but perhaps the clearest 

example is given in [46] as a four-quadrant map. The map in Figure 9. represents the four types of quantum-

assisted machine learning approaches that can be taken. The components are a combination of two letters 

where the first is the data archetype and the second is the computing device. The first letter is either quantum 

“Q” or classical “C” data and the second letter is either quantum “Q” or classical “C” devices. Therefore, 

the combination of QC only in this section is an abbreviation meaning quantum data on a classical device.  

 

Figure 9. Quadrant map of data and system relationship "Q" is quantum and C is classical. First character represents the data 

source and the second represents the device. CQ is read classical data on a quantum device. 

Computing in QML has mostly evolved to a state where there are several working models 

that have been theoretically developed and maintained in a quantum “Zoo” online  [41]. These 

methods share crossover from standard classical models and in some cases are simply adaptations 

of quantum data in a classical model. Two of these models are implemented here they are the 
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Quantum Convolutional Neural Network (QCNN) [46] and a Variation Quantum Classifier (VQC) 

[46]. In general, we discuss supervised learning algorithms in this research. As we will develop 

the QCNN in the section TFQ Experimental Setup we mainly discuss the VQC model here. Both 

of these models are characterized as parametric quantum optimizations. Parametric meaning that 

some value, in our case a sample’s values from a dataset, can be fed as parameters to a quantum 

circuit and the behavior of the evolved state can be estimated and then optimized.  

One method we will discuss later applies the notion of “shots” in their learning 

methodology [51]. The concept of shots or repeated experiment runs is a method for handling the 

noise in NISQ era devices. Shots are performed such that a distribution of the probabilities for the 

outcomes can be ascertained. The value in the distribution of outcomes with the largest value is 

considered the true value output of an experiment. For example, in Figure 10. we have the 

distribution of outputs in Grover’s algorithm for four qubits. These outputs suggest that the circuit 

is outputting the key value 1111 or 15. 

 

Figure 10. Grover's algorithm for four qubits using over 600 gates an example of a circuit that needs a high number of shots in 

order to be sure about the final value. An output layer for binary outputs needs a sufficient number of shots to ensure loss in the 

correct direction. 

The application of shots in terms of a QML model is applied per iteration of a model. In 

this way if we perform twenty iterations of optimization with a batch size of five and ten shots, we 

will perform a total of 1,000 experiments on a quantum device. This is indicative of the state of 

QML on NISQ era devices and it is a rather large number of experiments. The number of shots 

needed is dependent on the complexity of the circuit and how infrequently we expect to get a noisy 

output from the system. We implemented the experiment in Figure 10. showing a circuit that 

searches for the binary value of 1111. The circuit is a four-qubit variation of Grover’s algorithm 

that required 632 gates. We show the example on both Qiskit and Q# as the problem with shots is 

device/language agnostic. The number of experiments performed in both cases is 8,192.  As you 

can see 15 is the result of the system roughly 1/3 of the time. This implies 15 was the value we 

were searching for. 
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2.5.1 Parametric Quantum Classifiers 

We now introduce the topic of parametric quantum classifiers using the variational 

quantum classifier (VQC). We have shown that in order to calculate the value in Grover’s 

algorithm several shots must be performed due to issues with error correction. Variational circuits 

and more specifically the VQC algorithm do not have this issue directly [46]. Instead VQC applies 

a hybrid application to the learning process by performing the optimization update within a 

classical device. This significantly decreases the complexity of a fully quantum circuit  

There are three components to this methodology, following Havlíček et al [51]: a feature 

map applied to the data, a variational circuit, and the optimization. Like the SGD algorithm, VQC 

is an iterative method. Coincidentally the optimization of the model in a classical device produces 

a new source of error mitigation even when inputs to the classical devices are noisy measurements. 

As we will show in our experiments, we follow the steps from [46, 51] for state preparation using 

amplitude encoding, a proven method for VQC applications. In Figure 11. we show the 

architecture used in a typical VQC implementation.  

 

Figure 11. Pipeline for a VQC model. Once data has been preprocessed the feature map 𝜈𝜙
(𝑥) is applied to the data for robust 

learning in Hilbert spaces. The variational quantum circuit is then applied. Results from the circuit are fed to an optimizer  on a 

classical device which will update the parameter 𝜃. 

In Figure 11. we can see the feature map is applied before performing the optimization on 

the variational circuit. The feature map maps the classical data input into a higher-dimensional 

Hilbert space for the quantum system. The feature map in Havlíček’s work is a “black-box” 

encoding of classical data to a quantum state  |𝜓(𝑥𝑖 )⟩ that is performed using transformations to the 

ground state |0⟩𝑛.  This implementation of the feature map is given in Equation 5. where H is the applied 

Hadamard gate and Equation 6. is the diagonal gate in the Pauli-Z basis. 

𝜈𝜙(𝑥) = 𝑈𝜙𝐻⊗𝑛𝑈𝜙(𝑥) 𝐻⊗𝑛                                                         (5)  

𝑈𝜙(𝑥) = exp(𝑖 ∑ 𝜙𝑠(𝑥)
𝑠⊆[𝑛]

∏ 𝑍𝑖

𝑖∈𝑆

) 
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3. Background 
This section is a combination of a literature review and a background into the frameworks 

we utilized to program our experiments. The literature review is primarily concerned with 

discussing recent works in the realm of quantum information and quantum assisted machine 

learning. We present several recent research efforts in this domain. We conclude this section with 

the background knowledge of the programing “stacks” used to prepare quantum experiments in 

this thesis. This spans both quantum related frameworks and non-quantum specific packages. The 

code for this thesis can be found in Michael Telahun’s GitHub repository. This is listed in the 

Appendix. 

3.1 Literature Review 
Schuld and Lloyd, who are veterans in this upcoming research field, present a quantum 

embedding method for increasing the performance of learning in high-dimensional Hilbert spaces 

in [52]. This is done by a paradigm shift in the way we consider optimizing a model where instead 

of fitting to the objective function the goal is to maximally separate two classes in the Hilbert 

space. The first component creates a quantum feature map to encode classical samples into 

quantum states, as we will discuss later amplitude encoding is one of these methods. The second 

component is a quantum measurement that gets returned from the model. Optimization of the 

quantum feature map is done by a parametric circuit, in this case a variational quantum classifier 

(VQC) that separates data based on the measurement performed. They describe a fidelity 

measurement and a Helstrøm measurement. The fidelity measure is a set of SWAP gates 

performing an inversion to the state of the samples. This method of measurement will maximize 

the Hilbert-Schmidt distance, or loss function in this case, ensuring the minimization of empirical 

risk or fidelity. The second component requires knowledge of which objective function is needed 

to minimize the classification loss [52]. Not all datasets can utilize the Hilbert-Schmit distance, in 

the specific case of this work the data appears to only contain a few features and the task is binary 

classification. In general, this work presents a practical enhancement and a solution for parametric 

classifiers on NISQ era devices. The authors also show their method is able to combine in a 

quantum-classical model that utilizes ResNet, a backbone deep learning set of model weights, for 

a Quantum Approximate Optimization Algorithm (QAOA) model [52]. 

Havlíček et al propose two binary classifiers to process data that is provided classically that 

uses the quantum state spaces as feature spaces [51].  The first approach is a variational quantum 

circuit which applies a binary measurement. The second approach follows from the classical SVM 

utilizing the construction of hyperplanes to estimate a kernel method. These experiments are 

performed on a five-qubit quantum processor from IBM. Their circuit and methodology have been 

embedded into the Qiskit API and Qiskit documentation as a fundamental example for quantum 

machine learning on NISQ era devices [51]. Perhaps the most striking component of this work is 

the highly nonlinear kernel method that must be constructed in order for a high accuracy to be 

achieved. The circuit is able achieve 100% accuracy on the generated dataset using the circuit 

shown in Figure 12. and it is one of several attempts to solve a similar problem [51]. They define 

the variational classifier in four steps: first map data to a quantum state by a feature map, second 



Exploring Information for Quantum Machine Learning Models 

 

25 
 

apply a short quantum circuit to the feature state, next apply a measurement in the Z-basis or via a 

Z-gate, and finally apply a decision rule by performing several “shots” or runs to obtain an 

empirical distribution of outcomes and assign the label for the largest probability [51]. Their 

method draws upon the notion of shots due to the noise and current capabilities of NISQ era 

devices. 

 

Figure 12. Havlíček quantum circuit for classifying a small highly nonlinear dataset. 

Rebentrost et al derive the quantum equivalent of the gradient descent, an iterative 

optimization which tries to minimize a function, by considering the curvature information [53]. 

They apply Newton’s method for the gradient descent which often improves convergence and can 

be useful in high dimensional problems that require a small number of iterations. The authors work 

with a class of polynomials which are constrained by sparsity conditions, meaning the 

optimizations can be used for certain smaller order functions. The authors also mention that the 

input dimensions of the vectorized data should conform to a binary space, or2𝑁. This paper 

mentions annealing to show that their quantum gradient descent is agnostic of the device.  They 

point out that the by applying Newton’s method they are able to circumvent orthogonal movement 

in relation to the contour lines of a gradient and instead can also evaluate curvature. This method 

takes advantage of projecting the descent into spherical constraints . They implement three 

quantum oracles as different variations of their quantum gradient descent [53]. Under spherical 

constraints they have also extended their method to optimize a class of polynomials constrained 

by sparsity conditions of Hamiltonian simulation methods. Because the method for optimization 

exploits Newton’s method they theorize that a highly accurate solution for any convex  problem 

can be found within 5-25 iterations. They also mention similar issues to classical optimization such 

as “saddle points” in high dimensional space for Newton’s method. They alleviate the saddle point 

issue by replacing the eigenvalues of the Hessian with absolute values. They conclude by stating 

theoretically their method will lead to exponential improvements to classical gradient descent-

based methods [53]. 

Kiloran et al discuss methods for continuous variable (CV) quantum neural network 

architectures using parametric quantum circuits following the principal of a fully connected layer. 

They design a fully connected quantum scheme for a neural network with the availability for 

classical neural network support i.e. quantum-classical networks. They show that a CV architecture 

is capable of handling a fully connected (FC) network as well as several other network types such 

as Recurrent Networks (RNN), Convolutional Networks (CNN), and Residual Networks (ResNet). 

They train four models two of which use hybrid quantum/classical architectures with the remaining 

two strictly quantum architectures. In the development of these four models one major component 

of their work is the generation of cost functions. Aside from the curve fitting model [54] they 

develop a cost function for each model. The curve fitting model use mean square error (MSE) as 

the loss function. This is a common loss function we utilize later in the TFQ work.  
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The first hybrid model was trained using supervised learning to detect fraudulent 

transactions in credit card purchases. They use an exponential linear unit or ELU as their activation 

function and define their cost function in this model as Equation 7., 

𝐶 = ∑ (1 − 𝑝𝑖

𝑖𝜖𝑑𝑎𝑡𝑎

)2                                                                (7) 

where 𝑝𝑖  is the probability of the single photon being detected as “on” or “off” correctly [54]. They 

show that given the constraints of the quantum simulator used, simplicity of the network, and 

restriction to both size and depth of the quantum circuit their results are a proof of principle.  This 

is clearly shown by their results in false negatives. The second hybrid architecture is an 

autoencoder which they state has a resemblance to a variational autoencoder. It consists of 25 

layers and tries to generate the Fock states |0⟩, |1⟩, |2⟩) based on the one-hot vector representation 
(0,0,1), (0,1,0), (1,0,0) that is input to the network. Here their cost function is identical to the cost 

function they use for the fully quantum neural network for the Tetris game shapes. This cost 

function is in Equation 8. where 𝛾 = 100 and |𝐴⟩ are the input states of the three Fock states, and 

𝑃 is the trace penalty. The results of this network were 99.5% when tested only on the quantum 

decoder. 

𝐶 = ∑(|⟨𝑖|𝜓𝑖⟩|2 − 1) 2 + 𝛾𝑃({|𝜓𝑖⟩})                                              (8)

2

𝑖=0

 

The second fully quantum method they explore tries to generate “LOTISJZ” tetromino shapes in 

the form of images for the game Tetris. They use the cost function from Equation 9. where 𝛾 =

100 and |𝐴⟩ are the seven input image states for each tetromino, and 𝑃 is the trace penalty. Visually 

these results appear just as the tetromino shapes do in the game Tetris. They use 11 photons in the 

simulation [54]. They use Strawberry Fields from Xanadu to implement all their experiments. 

𝐶 = ∑|⟨𝜓𝑖|𝐴𝑖⟩|2 + 𝛾𝑃({|𝜓𝑖⟩})                                                     (9)

7

𝑖=1

 

3.2 Programming & Frameworks 
Quantum computing packages are fundamental to developing QML techniques. There are 

several packages and libraries which give us the capability of doing so. The ones we discuss here 

are widely used and provide through groundwork in not only machine learning but also quantum 

computing’s various components. Utilizing these packages for QML requires working knowledge 

of both quantum computing and machine learning; however, with libraries such as TFQ and 

PennyLane many of the computational components are ready to use out of the box. Similar to data 

analysis packages for commercial and research purposes, quantum computing libraries contain 

many of the underlying components or functions to create basic gates, use a simulator, measure 

results, create oracles, among other things. QML libraries on the other hand provide a different set 

of tools which can be used on top of QC packages. Two packages stand more in the eye of this 

work than others, these are TensorFlow Quantum and PennyLane. These libraries as we show use 



Exploring Information for Quantum Machine Learning Models 

 

27 
 

elements from machine learning on top of quantum computing libraries. The leveraging of either 

library was suited to the experiments we conduct in the section Experiments. 

3.2.1 TensorFlow Quantum 

 TensorFlow Quantum (TFQ) was announced by Google at the beginning of 2020 as a new 

library for quantum machine learning. Its implementation and current support are for the Python 

Language only. TFQ is made publicly accessible, guidelines for how to develop, test, and design 

simple models are provided in their documentation. The TFQ library builds upon its base 

TensorFlow (TF) which has become a notorious leader for deep learning development. Deep 

learning libraries such as TF and PyTorch have also been included as plugins to the stack for 

PennyLane and can be integrated with Qiskit but the TFQ library is an entire computing platform 

much like the original TensorFlow. TFQ intends to provide rapid prototyping of hybrid quantum-

classical machine learning models [9]. The TFQ library works in conjunction with two other 

libraries for symbolic mathematics [55] and quantum logic circuit design [56], Sympy and Cirq 

respectively. These libraries are fundamental in order to create learning models in TFQ. Because 

TFQ requires these other packages to perform QML they must also be developed as part of the 

software stack for our experiments later.  

Cirq as we have mentioned is a circuit design package which provides several of the same 

capabilities as QASM, Qiskit Aer, and PennyLane. Cirq is a couple years older, released in 2018, 

than TFQ. It was developed by the Google AI Quantum Team. At its core it is the component of 

the software stack that allows for quantum computing. Cirq was intended to be usable on local 

simulators of users’ machines [56]. As it performs universal quantum operations, if transpiled 

correctly, it can be device agnostic when used on actual quantum devices.  In our work we used 

Cirq for the very thing, in our TFQ model it was used to implement amplitude encoding and the 

circuits for quantum convolutions. 

Sympy is a library for symbolic mathematics and is a full-featured Computer Algebra 

System (CAS) with a longer history than recent quantum computing libraries. Sympy is meant to 

be leveraged by those in need of true mathematical computation. The uses include Calculus, 

Discrete mathematics, Geometry, Physics, Combinatorics, among others [55]. Sympy was initially 

released in 2006 and is not a result of Google’s venture into the quantum space. The usage of 

Sympy in our work was to control parameters within the quantum model. They are different than 

typical parameters as the TensorFlow library builds upon the two components namely placeholders 

and the TensorFlow graph for computation of deep learning models. Sympy is used within the 

graph as a the parametric quantum variable placeholders for intermediate values provided by the 

quantum calculation within the model.  
 

3.2.2 PennyLane 

 PennyLane is a cross-platform library for differentiable programming of quantum 

computers. The language is supported by the company Xanadu in Toronto, CA. PennyLane is 

essentially designed for machine learning techniques in quantum computers. It allows for most 

other quantum and non-quantum machine learning libraries to interact with it making it perhaps 

the most robust framework currently available [10]. It is able to interface with IBM devices, 
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Google devices, Rigetti devices, and is prepared to hand Microsoft devices. PennyLane is all 

encompassing and uses the same code to create low level instructions like gates and circuits unlike 

TFQ and Cirq. PennyLane provides automatic differentiation of quantum circuits to create both 

hybrid quantum-classical and fully quantum models. Many of the functions and type interfacing 

are done by way of NumPy which is a linear algebra library we use extensively in the development 

of our experiments [10]. 

 PennyLane also offers prebuilt algorithms for many quantum learning algorithms. These 

include: Variational Quantum Classifiers (VQC), Quantum Approximate Optimization Algorithm 

(QAOA), Quadratic Unconstrained Binary Optimization (QUBO), Variational Quantum Eigen 

solvers (VQE), Ensemble Classification, Quantum Generative Adversarial Neural Networks 

(QGANN), Quantum Convolutional Neural Networks (QCNN), Variational Quantum Linear 

Solvers (VQLS), among several others. Each of these models is given a robust introduction in their 

documentation [10, 57].  

 Xanadu produces another framework called Strawberry Fields which is targeted at more 

low-level logical functions. The framework is intended to work with error mitigation and hardware 

optimization. Both PennyLane and Strawberry fields are designed to run on the Xanadu photonic 

quantum computers which are different from other super conducting devices. Companies such as 

IBM and Google use super conducting devices. Briefly, the advantage to these devices over super 

conductors is that they can run at room temperature making them a more versatile implementation. 

It contains an interface which is similar to the IBM Quantum Experience user interface which 

allows you to drag, drop, and run circuits in a web application [10]. 

3.2.3 Development & Non-Quantum Packages 
Coding, experimentation, and development of this thesis was done in Python3 for the 

portion of work in TFQ we used Python 3.6.10 and we used Python 3.7.8 for the portion in 

PennyLane. Anaconda is a program which allows for simple package management and 

environment control, it was used to create separate environments for both TFQ and PennyLane. 

Most packages were installed using either the main ‘anaconda’ channel or ‘conda-forge’, when 

these two channels did not have a specific package the Package Installer for Python (PIP) was 

used. We used Visual Studio Code and Jupyter Notebook as the Integrated Development 

Environments when developing code.  

Numpy is a library for linear algebra and vector/matrix operations, it was extensively used 

both in applying several of the preprocessing steps and post analysis. Scikit-Learn was used for 

creating the datasets, splitting data, and performing many of the post analysis steps. We will 

discuss the creation of these data sets in the section Scikit-Learn Generator Datasets later as well 

as the toy datasets such as Iris. The Scikit-Learn library is a large library with sub modules for 

imbalanced datasets, image processing, and many data mining tasks. It is a library generally 

revolving around generalized learning methods, preparation of data for learning methods, and 

predictive analytics. It is built using Matplotlib, Numpy, and Scipy [58, 59]. Scikit-Learn was 

additionally used in the post analysis steps for generating ROC/AUC curves and gathering the 

metrics of the learning outcomes. Several of the preprocessing steps defined in the Experiments 
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section were done using the Scikit-Learn library. We used the Pandas library to manipulate and 

view data by way of DataFrames which make handling and transforming data simpler. DataFrames 

also allow for functions to be applied column wise making many complex steps easy. 

Visualization was a key component for facilitating understanding of many of the 

transformations. It is also the major primary medium for expressing the preprocessing steps, and 

the results of this thesis. Matplotlib was used for most of the plotting and is largely tied to Numpy 

both in practical application and internal development [58]. It provides functions for plots such as 

scatter, line, histogram, density, pie charts, among others. Seaborn was also used for plotting, it 

extends Matplotlib by adding styling and some additional plotting functions when using Pandas 

DataFrames. Poincare plotting was done using Plotly, we use these plots in our analysis of Stokes 

parameters. Plotly is a multilanguage visualization library with extensive plotting capabilities like 

Matplotlib. For storing results and data we used both comma separated value (CSV) and JavaScript 

Object Notation (JSON) files. CSVs make viewing data very simple when being shared and 

evaluated individually. Both CSV and JSON are simple to use in Python and have built in libraries 

for handling both. The writing was done using Microsoft Word and the online Overleaf editor for 

LaTeX. We used Microsoft Visio to create graphics unique from plots of data. 
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4. Datasets 
In exploring datasets with quantum methods, we wanted to test an appropriate number of 

different distributions and shapes. The datasets we worked with are in the majority of synthetic 

and some popular toy datasets. The reason we use synthetic datasets is to show how different the 

quantum learning methods behave on them. We also wanted to control the shape of the data when 

developing the datasets to answer our hypothesis. We generate several datasets using the Scikit-

Learn Generator methods. Additionally, we use ‘toy’ datasets which are often a utility before 

testing methods on real datasets. The ‘toy’ datasets we use are the Iris dataset which we will discuss 

in much detail as it is critical to our analysis, and the Wine dataset. One key component of the 

datasets, mostly the generator datasets, is that we use very few features. The primary  reason for 

this is the faultiness of quantum devices. To work with a dataset that is large in dimensionality on 

a simulator is possible. But with the limited capabilities of physical NISQ devices  these datasets 

would perform poorly. With the interest of testing and working with real systems we avoid large 

datasets here. 

4.1 Scikit-Learn Generator Datasets 
 The following four datasets in this section were created using Scikit-Learn. We include 

two datasets from the scikit-learn Toy datasets and modify them all from them out of the box 

design to fit into the analysis here. These are later elaborated in the section Toy Datasets. The 

Datasets in Sickit-Learn’s Generator class have several parameters which can be set to match 

whatever objective is trying to be met. Generator functions in Scikit-Learn have controllable 

parameters for number of features, number of samples, random state (for reproducibility),   number 

of repeated values, and a parameter typically unique to the type of data that can be generated by 

that function. This parameter typically controls the separation between classes in a dataset.  

4.1.1 Make Blobs Dataset 
In the Generator MakeBlobs the CenterBox parameter determines how spread out each 

sample is within a class. When the number of classes is just two the CenterBox parameter becomes 

the centroids of each class along the positive and negative y-axis. In two dimensions, the 

CenterBox parameter when equal to (-4.5, 4.5) will result in class one centered around -4.5 and 

class two centered around 4.5 both along the y-axis. When the number of classes is larger than two 

the CenterBox is no longer a centroid but the bounding box for each cluster center. In both cases 

a larger range in the CenterBox parameter implies more compactly distributed samples per class 

with generally less overlap, while a smaller range implies more overlap between classes and less 

compactness. The value for CenterBox can range from (-10, 10). A two-dimensional sample of the 

MakeBlobs data is shown in Figure 13. the CenterBox is (-3, 3). The MakeBlobs Generator was 

used for the KMEANs algorithm in the Introduction. 
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Figure 13. Scatter plot of MakeBlobs dataset. 

4.1.2 Make Circles Dataset 

In the Generator MakeCircles the factor parameter determines the space factor between 

two concentric circles. The dataset only has two features so when used for three - or four-

dimensional data third and fourth features can either be generated from a normal distribution, via 

padding with a constant, or both. With a factor of 0.9 the inner circle will be very close to the outer 

circle almost overlapping it. If the factor is small such as 0.2 the inner circle will be much smaller 

and have much more distance between it and the outer circle. The MakeCircles generator only 

generates two output classes. Noise can also be added to both circles in the form of a standard 

deviation for the Gaussian distribution applied when generating the circles. An example of a 

generated MakeCircles sample is show in Figure 14., it contains very little noise and is has a very 

small factor. 

 

Figure 14. Scatter plot of MakeCircles dataset. 

4.1.3 Make Moons Dataset 

In the Generator MakeMoons there is no additional parameter to control the shape or 

location of the two classes. This generator makes two half-moons or arcs where one end of each 

classes’ “moon” is at the crest of the other. The dataset only has two features so when used for 

three- or four-dimensional data third and fourth features can either be generated from a normal 

distribution, via padding with a constant, or both. Noise can be added to both moons in the form 

of a standard deviation for the Gaussian distribution applied when generating the moons. A visual 

of MakeMoons is shown in Figure 15., it contains very little noise. 
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Figure 15. Scatter plot of MakeMoons dataset. 

 

4.1.4 Make Swiss Role Dataset 

In the Generator MakeSwissRole there are a number of controllable parameters to shape 

the output dataset. The single most important detail is that there is no class label that defines the 

components of the dataset. The SwissRole dataset needs to be classified with a different method 

to determine the classes per sample of the data. The method applied follows directly from the 

documentation as a method which can be most reproducible, but it must be stated that it most likely 

is not the single best method. This adds a layer of complexity as we are applying a clustering 

method to generate the class labels for a dataset and then expecting the QML model to recognize 

the content from the data when splitting the classes. The entire dataset can be seen in Figure 16. 

after it has been clustered using the Agglomerative Clustering method to produce the class labels. 

The Agglomerative method produces a total of six class when clustered on the dataset.  As we do 

not work with multiclass datasets in the QML experiments we reduce these to just two classes 

when using the dataset. The data is also reduced from three dimensions to the first two.  

 

Figure 16. Scatterplot of 3D Make Swiss Role dataset. 
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4.2 Toy Datasets 
Toy datasets are not synthetic data but have some well-behaved trends within them. There 

is often little to no missing data or very specific components that lead to near perfect results. They 

are typically utilized in the facilitation of discussions and in testing/preparation before applying 

techniques to real datasets. These datasets are used only in the work done with PennyLane. They 

are publicly available and accessible through Scikit-Learn or from the UCI ML website. 

 

Figure 17. Matrix of scatterplots for each feature pair in the Iris dataset. The diagonals of the matrix 

are the distributions of each class for the feature pairs. 

4.2.1 Iris Dataset 

The Iris Dataset is a public testing or toy dataset which can be found in most software 

packages that apply data analysis, data mining, or analytics to some degree. The dataset’s origin 

can be found from the public repository of databases on the UCI website for Machine Learning. 

The Iris dataset is considered in many frameworks as the go to for a basic application of tools on 

a “real” set of steps to apply a model on. This is mainly because it is easy to achieve very high 

results for a classification model with this data. It also only contains four features and three output 

classes that correspond to the types of Iris flower. The four features Petal Length, Petal Width, 

Sepal Length, and Sepal Width correspond to the flower’s physical properties.  The three classes 

are Setosa, Versicolour, and Virginica. The goal when using the Iris Dataset is to determine which 
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class of flower the features represent. This dataset is utilized extensively to develop several of the 

conclusions later in this work. As we will see there are several preprocessing steps that can be 

applied in order to enhance the performance of a QML model and others that appear to have little 

effect. The Iris dataset is plotted in Figure 17. in two forms. The first is the distribution of values 

for each feature (along the diagonal) and a scatter plot of each feature pair is also shown.  Please 

note that the lower and upper triangles of the matrix contain the same scatter plots , both are 

included for viewing preference. 

4.2.2 Wine Dataset 

 The Wine dataset is another public toy dataset which can be found inside of Scikit-Learn 

or the UCI website for ML. The Wine data contains 14 features, and the goal is to use these features 

to classify one of three types of wine. These classes are given as (0,1,2). The correlation matrix is 

given per class in Figure 18. Showing the relationship between every two features in the data. The 

correlation matrix shows mainly that for class 0 the features are mostly negatively correlated while 

the features in class 2 are mostly positively correlated. We can use this information to create a 

classification model for these two classes. We can also see there is somewhat of a good mix of 

strongly negative and positively correlated features in the class 1. The dataset contains only 

continuous positive values. Features include alcohol, malic_acid, ash, flavonoids, color_intensity, 

and hue to name a few. This dataset was initially intended for use in the TFQ model. We did not 

retrieve enough conclusive results to apply the dataset there and instead include it in the work we 

planned to do with PennyLane. 

 

Figure 18. Wine dataset correlation matrices for each wine class. 
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5. Experiments 
Experiments are split in general into two separate projects. The first of these was using TensorFlow 

Quantum (TFQ) from the work in [17] and the second was with PennyLane. The work done in 

PennyLane is mostly disjoint from the TFQ experiments. The experiments from TFQ aim to build 

a hybrid quantum-classical model that is able to surpass the results of the TFQ documentation 

model for the MakeBlobs dataset. We do this by making some changes to the encoding of the data, 

namely applying Amplitude Encoding. This method was developed by Schuld et al and as results 

will show are exceedingly better at encoding information [17].  

 After developing and building the argument for Amplitude Encoding, we then move to 

more concrete data analysis and steps of preprocessing, some of these steps are repeated from the 

TFQ section. The premise for preprocessing and transformation made while  using PennyLane is 

much deeper and covers a large variety of steps and procedures. The work in TFQ is relatively 

confined to an analysis of Amplitude Encoding which we take for granted in the section 

Transformations for Learning In Quantum Models because it is fully developed through the TFQ 

experiments. 

5.1 Quantum State Preparation 
As we show quantum state preparation is a crucial factor for Quantum Machine Learning 

(QML) techniques to be successful. These steps are applied in the preprocessing phase as a means 

for encoding information prior to performing any learning. In this section we first develop three 

methods of state preparation: basis encoding, angle encoding, and amplitude encoding which are 

methods for preparing quantum states from classical data. We follow with the experimental setup 

and development of the TFQ models we tested. Finally, we outline the expectations for what we 

sought to solidify by using amplitude encoding in place of other methods. 

5.1.1 Basis Encoding 
 Perhaps the most straightforward method of encoding techniques is basis encoding. Basis 

encoding is a method for preparing the computational basis of a qubit using an n-bit-string such as 

0101. If a given feature vectors value is 5, we would want something resembling |5⟩ but with basis 

encoding we prepare the binary bit-string making the state resemble |0101⟩. It is important to note 

here that it is only the representation from decimal to binary that has changed, the feature vector 

value is still 5. The written form is |0101⟩ but we are describing a matrix of binary values [46]. 

 To perform this conversion and then preparation little is needed in terms of computation 

power. A simple binary parser will be able to convert a decimal number to binary, for the sake of 

brevity this can be done using the Equation 10. where the 𝑘𝑡ℎ value in binary will produce the 

binary bit string 𝑥 that is encoded based on the desired precision of the binary string 𝜏 [46]. 

𝑥 = ∑ 𝑏𝑘

1

2𝑘  

𝜏

𝑘=0

                                                                 (10) 
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Then the super position of the basis states can be prepared to relate the binary input using Equation 
9. where the binary string 𝑥𝑚 = (𝑏1

𝑚, … , 𝑏𝑁
𝑚) and 𝑏𝑖

𝑚  ∈ {0,1}  for 𝑖 = 1 , … , 𝑁. Resulting in the 

superposition of states |𝐷⟩. In Equation 11. this is performed by considering the binary data for 

two feature vectors of dimension two, in their binary state, they are 𝑥1 = (00,11) and 𝑥2 =
(10,11). 

  |𝐷⟩ =
1

√2 
|0011⟩ +

1

√2 
|1011⟩                                                    (11) 

An amplitude vector therefore will have 
1

√𝑚
 for entries of the basis states for a given binary feature 

vector and zero in the rest as shown in Equation 12. 

𝛼 = (0,0,0,
1

√2
, 0,0,0,0,0,0,0,

1

√2
, 0,0,0,0)                                         (12) 

 In general, this is an exceptional way of encoding and preparing data for a quantum device. 

However, as the dimensionality grows the method requires more and more qubits. Even for a 

simple dataset, if values are continuous the number of qubits required is just to large even with 

discretization. For simple categorical variables with few dimensions this method could perhaps be 

used. The total number of amplitudes for a feature vector will be 2𝑁𝜏  which certainly makes this 

method unsuitable on NISQ era devices with today’s capabilities. The following methods are both 

viable options for NISQ era devices granted the same parameter issues on a much smaller scale. 

In conclusion basis encoding may never see the light of day because of the large number of qubits 

required to effectively prepare a dataset. That said it is also unclear if it performs better than the 

following methods as it is not possible to test at this time.  

5.1.2 Angle Encoding 

Before beginning down the path of amplitude encoding let us introduce the encoding 

method it is compared to. In many online packages, TFQ included, another form of information 

encoding is applied, simply angle encoding. This name is not necessarily standard but literally 

describes the method. Angle encoding is a simple and effective method for information encoding, 

but it is not robust, and it does not map information from a classical state in well-defined fashion. 

Angle encoding is essentially the most basic form of encoding classical data into a quantum state. 

It has good results for problems such as parity checking or working with specific finite ranges of 

values that are largely unapplicable to real datasets. 

Our explanation of angle encoding is not meant to be discouraging, but rather point out 

some of the inefficiencies of this method. Angle encoding is performed by applying a gate rotation 

about the x-axis 𝑅𝑥(𝑣𝑖) or y-axis 𝑅𝑦(𝑣𝑖) where 𝑣𝑖  is the value to encode. In a Hilbert space a 

rotation about the y-axis applies an angle rotation, usually based on some 𝜋, hence the name angle 

encoding. Consider a classical dataset with three features where one record is represented by the 

vector 𝑣 = ([0.1], [0.2], [0.3]). In an angle rotation the number of rotations applied will be same 

number of features in a dataset, i.e. we apply the 𝑅𝑥 on 𝑣 three times once for each dimension. The 
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resulting sample in its gate form is shown in Figure 19. where |𝑞1⟩, |𝑞2⟩, |𝑞3⟩ are the qubits 

which will take the new states |𝜓1⟩, |𝜓2⟩, |𝜓3⟩  representing the encoded vector values 𝑣1 , 𝑣2, 𝑣3.  

 

Figure 19. Angle preparation of classical data into the state |𝜓1⟩,  for a 3-Dimensional sample. This method is utilized in the 

TFQ experiments for the base model following the documentation. 

We can now see that an 𝑛-dimensional sample would take 𝑛 number of qubits to generate 

the set of quantum states. This method creates a simple representation of the data with roughly the 

same complexity as it did in its classical representation. This makes angle encoding attractive for 

simple datasets which may have few discrepancies between samples. As we have mentioned NISQ 

era devices have a limited number of qubits and keeping more than a few coherent for an 

experiment is difficult. 

5.1.3 Amplitude Encoding 

Amplitude encoding maps classical data into the amplitude of a qubit. Conceptually it can 

be thought of as any other encoding that must represent but also losslessly be able to be encoded 

and decoded. As an example we use one-hot encoding in classical data preprocessing to take a 

dense vector such as ([1], [2], [3]) to a sparse vector like ([0, 0, 1], [0,1,0], [1,0,0]) where each 

integer value in the dense vector is represented by a one at the index of the value in the sparse 

vector. The difference with amplitude encoding is that it changes the computational basis for 

allowing supposition of states differently than basis and angle encoding. One-hot encoding 

changes a sample’s form from dense to sparse [46]. In either the classical or quantum case this 

preprocessing step can largely impact the performance of a learning method, in some cases it even 

determines whether a method will learn at all [46]. 

The process of applying amplitude encoding begins by converting a dataset to their angle 

representations with multi-controlled rotations. This process is performed using the Equation 13., 

where the angle 𝜃 is created via a vector, 𝑣𝑖 represents 𝑖𝑡ℎ classical sample, and 𝛽 is the angle 

based on the 𝑎𝑟𝑐𝑠𝑖𝑛 of the number of dimensions in the sample space [46]. 

|𝜓⟩ = 𝑅(𝑣𝑖 , 𝛽)|𝑞1 … 𝑞𝑠−1⟩|𝑞𝑠⟩                                                    (13) 

In the circuit implementation a state |𝜓⟩ is prepared by a “cascade” of 𝑛 𝑅𝑦 rotations where 

𝑛 represents the power in binary for encoding a feature vector 𝑣𝑖 . For example, if a dataset has ten 

features, 𝑛 needs to be four, because 𝑛 equal to three at most encodes samples with eight features. 

The complexity or depth of a circuit can be seen in the circuit of Figure 20.  Just by comparing the 
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number of gates between Figure 19. and Figure 20. we can see a dramatic difference. With just 

three qubits we can also see the limitations of applying amplitude encoding for large datasets in 

NISQ era devices. Although the problem does not generally become the number of qubits 

representing the state |𝜓⟩, we face the issue of several gate operations, so many that coherence is 

again a problem. While in the TFQ work we only use three qubits (amplitude encoding) in place 

of four (angle encoding) the number of quantum gates applied is roughly ten times the angle 

encoding method [46].  

 

Figure 20. Amplitude encoding of the state |𝜓1⟩,  for a 3-Dimensional sample. Noting that the complexity of this method is clearly 

larger than a simple angle preparation method. 

In summarization to encode a sample using amplitude encoding there are two steps: (1) 

compute the angle using Equation 13. then (2) apply the cascade of 𝑅𝑦 on the computed angles 

such as in Figure. For large datasets, this method has been generalized recently by Araujo et al. 

and takes into account both steps [60]. They exploit the classical divide and conquer algorithm to 

encode n-dimensional samples. 

 With these three encoding methods we have developed a basis for converting classical data 

into quantum states. As basis encoding suggests the method is essentially to exhaustive for NISQ 

era devices albeit theoretically a powerful solution. Following this we showed that angle encoding 

is a rather mundane solution as it simply encodes a feature vector to a set of qubits by applying the 

a rotation to the values. This method we consider as the simplest approach for preparing a quantum 

state and other gates could be used in place of 𝑅𝑦 such as 𝑅𝑥. In terms of performance we show 

this method is noisy and hard to interpret [17]. On the other hand, with amplitude encoding we 

apply a much more complex solution which only grows more complex as the dimensionality of a 

dataset increases. With a more complex circuit or increased circuit depth amplitude encoding 

begins to be concerned with issues such as decoherence. With time and developments in QC 

amplitude encoding will likely become more broadly adopted. This method is vastly superior to 

angle encoding and we show these findings in our experiments. 

5.2 TFQ Experimental Setup 
 Although the experiments in this portion are performed in a classical device which simulate 

a quantum computer the methodology and setup are the same. Again, this was done mainly because 

there is currently no quantum computer publicly made available from Google for TFQ. We 

perform two sets of experiments based on the number of training epochs the first being eight-

epochs (experiment one) and the second is fifty-epochs (experiment two). In both cases the task is 

to classify the two classes -1 and +1. Our hypothesis was to evaluate the training behavior in order 

to show (i) amplitude encoding leads to a model which will converge at a higher accuracy sooner 

and (ii) that amplitude encoding leads less erratically and therefore more effective training over 

time. 
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Figure 21. Simplified architecture implemented for each TFQ model. This is the entire architecture for the QCNN model we 

develop here uses. The additional two models add an MLP between the 'Readout' and 'MSE' blocks.  

The models we mainly compare in this section are of the type quantum-classical meaning 

that a portion of the network is developed using quantum methods and another portion is classically 

developed. As we have said the classical component is an MLP. The model’s quantum component 

is a Quantum Convolution Neural Network (QCNN). The QCNN model architecture we used is 

shown in Figure 21. This is the core of our model which can be found in the TFQ documentation 

and it is also used in the analysis but left unchanged as a baseline. The model consists of some 

number of one dimensional quantum convolutions (QConv1D) as the, in our case there are two, 

with a quantum pooling (QPool) layer immediately following each QConv1D. Readout of the 

quantum state performed after the circuit is done by applying a  𝑍 gate on the qubits after the final 

layer of pooling. The circuit for QConv1D is shown at the top of Figure 22. as well as the QPool 

circuit which is below. As you may notice the QPool layer is non-parametric, it simply applies the 

Pauli X, Y, and Z gates to the circuit. 

 

Figure 22. Quantum circuits used in the QCNN for parametric 1D quantum convolution (Top) and quantum pooling (bottom). 

Our TFQ experiments here use three models, two of these models follow from TFQ’s 

documentation for Quantum Convolutional Neural Networks (QCNN). The third is of our own 

design. We call TFQ’s models (a) QCNN as the base model which contains the fundamental 

quantum layers in all three models, (b) Angle-Hybrid which applies angle encoding for state 

preparation, and (c) Amplitude-Hybrid which applies amplitude encoding for state preparation. 

The latter two are hybrid models so they will contain the QCNN and MLP in a sequential order. 

Our methodology is applied to the MakeBlobs datasets shown in Figure 23. In total, for both eight 

and fifty-epochs, we use eight datasets. Each dataset is given in a two-dimensional plot to show 

the range of difficulties based on centroid. The data begins with a centroid of 0.6 where the two 

classes are mostly overlapping and ends with a centroid of 2.0 where the two classes are much 
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more separable. We do not include any noise for these datasets. The datasets each contain four 

features and we split the data to have 2,048 samples for training, 512 for validation within the 

model, and 512 for testing or evaluation after training.  

 

 

Figure 23. The eight MakeBlobs datasets used in throughout the TFQ experiment process. Data Centroid or CenterBox was 

moved progressively by 0.2 for each dataset to have a range of complexities. 

We next show the models’ function parameters and the metric calculations we apply in the 

analysis. We calculate and show the results for loss, accuracy, precision, recall, and F1-score. 

Many of the same model functions are applied from the TFQ documentation. The accuracy is 

calculated as the sum of correct predictions in Equation 14. and loss is calculated using mean 

square error (MSE) in Equation 15. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
∑(𝑦𝑖 = 𝑦�̃�)

𝑛

𝑖=0

                                                             (14) 

𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸 =
1

𝑛
𝑅 ∑(𝑦

𝑖
− 𝑦

�̃�
)

2
𝑛

𝑖=0

                                                      (15) 

 In both equations for accuracy and loss 𝑦𝑖  is the observed or real value and 𝑦�̃� is the 

predicted value. The optimizer used in the MLP of the model is Adaptive Moment Estimation 

(Adam) optimizer. We set the learning rate 𝜂 equal to 0.02, following the same approach as the 

TFQ documentation. In Equation 16. 𝜃𝑡+1 is the current gradient of the stochastic gradient descent 

(SGD) based on the previous gradient 𝜃𝑡 , 
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𝜃𝑡+1 = 𝜃𝑡 −
𝜂 

√𝑣�̂�

𝑚�̂� ,                                                            (16) 

where the weight 𝑣�̂�  in Equation 17., and momentum 𝑚�̂� in Equation 18. are defined as: 

𝑣�̂� =
𝛽2𝑣𝑡−1 + (1 − 𝐵2)𝑔𝑡

2

1 − 𝛽2
𝑡                                                       (17) 

𝑚�̂� =
𝛽1𝑣𝑡−1 + (1 − 𝐵1 )𝑔𝑡

1 − 𝛽1
𝑡 .                                                      (18) 

Therefore, 𝑣�̂�  and 𝑚�̂� are estimates of the gradients’ mean and variance respectively, and 

𝛽1 and 𝛽 2 are the forgetting factors. Momentum and forgetting are the two key factors which make 

Adam widely adopted optimizer over the standard SGD. The final dense layer of each model 

(QCNN, Angle Hybrid, and Amplitude-Hybrid) apply a 𝑡𝑎𝑛ℎ as the activation function since the 

two classes we are trying to classify are (-1, +1). The tanh function or hyperbolic tangent is defined 

using the exponential in Equation 19. where  𝑥 is the current sample weight 

tanh(𝑥) =
𝑒𝑥 − 𝑒 −𝑥

𝑒𝑥 + 𝑒−𝑥 .                                                           (19) 

Precision in Equation 20. is calculated as a ratio of true positive (TP) and false positive (FP) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,                                                         (20) 

whereas recall in Equation 21. is calculated as a ratio of TP and false negative (FN) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.                                                             (21) 

F1-score is calculated as the relationship or harmonic mean between precision and recall in 

Equation 22.  

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                   (22) 

It can also be shown that F1-score, Precision, and Recall derive accuracy. These last three 

Equations 20, 21, and 22. are used to gather additional statistics about each model’s behavior not 

only in this section but also later in the section with PennyLane. 

5.3 Analysis of TFQ Experiments – Hybrid Models 
In our first set of tests we discuss and run the eight datasets for eight-epochs. In general, 

we hypothesized that running the model for a short number of epochs with amplitude encoding 

would lead to better learning results. This would also imply that fewer training epochs are needed 

to achieve better results. The values (-1) and (+1) in the two tables of this subsection header refer 

to the class label’s individual metric. The second set of tests we let the model run for fifty-epochs 

to get a representative sample of the learning history. The major analysis comes from the 
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combination of both the training plots and table. We note that the QCNN model is mostly included 

for reference as we go through the analysis. This section is mainly concerned with the two hybrid 

models’ ability to perform and the results the two encoding methods provided. 

5.3.1 Experiment: Eight-epochs 
The training validation results are given in Table 3. These results indicate Amplitude-

Hybrid was the top performer in every evaluation metric. Let us first take a look at the cluster’s 

centroid distance as our metric for classification difficulty. For the first two centroids, 0.6 and 0.8, 

the most difficult datasets of these experiments, the Amplitude-Hybrid model achieved roughly 

2% better results for accuracy than the Angle-Hybrid model. Working down through the table we 

see that at 1.4 centroid distance the Amplitude-Hybrid model achieves an accuracy of 90%. In 

contrast Angle-Hybrid’s achieves an accuracy of 90% only at the 2.0 centroid distance.  

For each model we see that it improves as the centroid distances spreads further apart or as 

we move down through the table. For Angle-Hybrid by the time we are at 1.4 centroid distance we 

see that almost every metric, excluding loss, for each class is above 90%. What we show in the 

plots of Figure 24. are rather interesting when evaluating Angle-Hybrid with Amplitude Hybrid. 

These plots show the training validation accuracy and loss of each dataset per each model (QCNN, 

Angle-Hybrid, and Amplitude-Hybrid). Plotting here shows that with Angle-Hybrid the models 

learning behavior is flat which does not associate steady optimization and learning. The opposite 

can be said about the Amplitude-Hybrid models. Aside from the 1.8 and 2.0 centroid distances 

(which are the easiest) the models appeared to learn fast and consistently over the eight epochs. 

These results with Table 3’s results paint a compelling picture that in just a few epochs a model 

using amplitude encoding is far superior.  

Averaging the results of Table 3. shows some additional results, these are also in favor of 

Amplitude-Hybrid. We determine the best model here again by looking at accuracy and the 

combined class results per metric. With the QCNN and Angle-Hybrid results show they are similar 

in many cases. These results are not surprising as they utilize the same angle encoding method and 

because of this the results are tightly correlated for every difficulty. Therefore, with or without the 

addition of the classical/hybrid component there is little accuracy improvement over the eight 

epochs. In the best case, Angle-Hybrid was only two percent better in accuracy over the QCNN 

model but in the majority of cases the accuracy was within 0.5% for both these models. It follows 

that the models utilizing angle encoding limit the ability of overall learning and from Table 3. the 

additional components of the Angle-Hybrid model do not improve the performance. In the next 

experiment there are similarities that are reminiscent of these results. 
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Table 3. Eight-Epoch Post Analysis Model Metrics.

 

 

 



44 
 

 

Figure 24. Training histories of each model over eight epochs. Top to bottom are the models QCNN, Angle-Hybrid, and 

Amplitude-Hybrid. Left to right we show each model's Accuracy and Loss history. 
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5.3.2 Experiment: Fifty-epochs 

 We share the same form of output in the plot of Figure 25. and Table 4. for the results here 

but this time allow the model to run for fifty epochs. Here we are looking to show consistency over 

the learning period and any scenarios that stick out as red flags. First, we recap that over the eight 

epochs of training, where things generally looked to be increasing in the right places for each 

model. This trend for the most part continues again but it is apparent that a few models performed 

worse than they did after fifty epochs. Glancing at Table 3. and comparing it with Table 4. will 

show that in some cases Angle-Hybrid overall now appears more appealing than before. We must 

mention that arbitrarily training for a larger number of epochs is not always an effective means of 

achieving increased accuracy or any other metric for that matter.  

 Much of the evaluation is given graphically for the fifty-epoch experiment. This is in part 

because we want to look at the history and see what behavior the model exhibits. Why does the 

table of metrics not answer these questions? Table 4. results occur after fifty-epochs and shows 

the testing of data on the final epoch of the model. These singular values do little to shed light on 

the history.  

Taking a look at the Amplitude-Hybrid plots at the bottom of Figure 25. the range of 10-

20 epochs is a region that answers our hypothesis. It is in this range that every model appears to 

have fit to the data as best as it can, by the peaks in accuracy, drops in loss, and what appears to 

be gradual overfitting after. In a sense we wanted to show the model overfitting after some number 

of epochs. It is by chance that several of these were in a range of roughly ten epochs. The 

appearance of overfitting as we discussed implies the model will begin to retain to much influence 

from the training data. Overfitting here signals the model has done all it can to learn the information 

present in the data. This behavior to some degree is desirable because it s ignals our model is 

learning from the data in a consistent expected behavior whereas we will soon discuss angle 

encoding appears to not. Overall, this implies the best learning behavior that can be achieved is by 

using Amplitude encoding and it is consistent. 

With the QCNN and Angle-Hybrid models we can see the difference in historical outcomes 

from epoch to epoch in Figure 25. Results for both indicate these models never had a best fit to the 

data. In a few cases the models made good improvements to their overall metrics. However, in 

several cases some of the outcomes train well over the first two dozen epochs and then again 

appear to improve after another two dozen later. Key to this analysis is this appearance things are 

improving. Looking again at the 10-20 epoch region it is clear previous conclusions for Amplitude-

Hybrid cannot be draw here. The Angle-Hybrid model in this region jumps from a “high” accuracy 

and then in a few epochs drops 5% to 15%. This occurs not only here but during the entire training 

period. This behavior implies that learning is failing as the heuristic tries to “guess” a better 

solution than it did in a previous iteration or epoch guessing is a much less consistent behavior we 

would want to see in our models. 

Now that we have discussed the visual observation of the histories let us go back to Table 

4. and make a few more remarks. Reviewing the two hybrid models for centroid distances 1.0, 1.2, 

and 1.4 we see that the difference in accuracy, in favor of Amplitude-Hybrid, is 0.0%, 0.976%, 



Exploring Information for Quantum Machine Learning Models 

 

46 
 

and 3.125% respectively. Not only accuracy but also the other metrics such as F1-score show there 

is little difference between these models. The Recall and Precision of the Angle-Hybrid model is 

actually better here than Amplitude-Hybrid. Although this is the case, the information in Table 4. 

is misleading and we show it here to disprove any counter arguments for what we have discussed 

so far. Over the training period for these datasets we can see each Angle-Hybrid model is bouncing 

5-10% epoch to epoch while the Amplitude-Hybrid model is very slightly changing for these 

datasets. Again, looking at 1.2 more specifically in terms of Figure 25. we can see that the 

Amplitude Model roughly peaks at 14 epochs stays there for a few epochs and slowly declines for 

the rest of training. When we look for similar behavior in Amplitude-Hybrid we can see the same 

thing is happening for every other dataset. However, this is not visible in the Angle-Hybrid model. 

When considered with Table 4. we conclude that the table results are not as strong because of 

overfitting. The same is not true for the Angle-Hybrid model. We believe the training in Angle-

Hybrid was so erratic that the model performance cannot be accurately assessed other than to say 

it improved over fifty-epochs, though we could go so far as to say this improvement is no more 

than coincidence. 
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Table 4. Fifty-Epoch Post Analysis Model Metrics. 
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Figure 25. Training histories of each model over fifty epochs. Top to bottom are the models QCNN, Angle-Hybrid, and 

Amplitude-Hybrid. Left to right we show each model's Accuracy and Loss history. 
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5.4 Transformation for Learning in Quantum Models  
The experimentation process of this section is done using the PennyLane Variational 

Quantum Classifier (VQC) to evaluate how certain preprocessing steps can impact the training of 

fully quantum algorithms. We cannot cover every method that can be applied to the dataset but 

test several and evaluate them on different data sources. Most of the methods here stray from any 

hyperparameter tunning as that is not the same as preprocessing data. We show one example of 

this tuning and note that increased performance would undoubtedly be achieved via 

hyperparameter tunning. We want to focus more on generalizations of the methods for 

preprocessing and whether there is some commonality among them. Many of the transformations 

of the data are easily performed by software packages, here we develop most methods using either 

simply Numpy array manipulations or packaged Scikit-Learn functions. Each dataset was created 

with a sample size of 400 points and a random state of 11.  

5.4.1 Analysis of Make Blobs Dataset 
The MakeBlobs generator we have mentioned above has the ability to control several 

parameters when generating a dataset. This ability is utilized in the generation of three datasets we 

call Blobs-4F, Blobs-3F, and Blobs-2F. The three datasets are created with the intention of 

performing binary classification with only two features. The following explanation of the three 

blob datasets is given with a note that the reader could implement a similar solution using different 

methods. In Blobs-4F we define the number of features to be four and the number of target output 

classes (centers in the function parameter list) as three, and set the CenterBox equal to (-3.5, 3.5). 

These parameters generate different distributions for the features than if we used two classes and 

two features. This different distribution is what we aimed to capture using these features.  The plot 

of the points below in Figure 26. contains these three datasets. It shows how the points are spread 

out differently than intuition would initially guide the user of the generator function to believe. 

The third parameter of CenterBox is chosen as reasonably simple so the classifiers would not need 

to formulate highly non-linear solutions in determining the decision boundary of the two classes. 

 

Figure 26. Three blobs datasets before any preprocessing or transformations. Left to right are Blobs-4F, Blobs-3F, and Blobs-

2F. 

We then select the first two features of the dataset. As the Blobs-4F dataset has four features 

this is the zeroth and first columns of the data. We choose these essentially because in Blobs-3F 

we must choose two columns again and in Blobs-2F we only have two columns to choose from. 
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In general, we are purely interested in gathering three slightly different distributions of points such 

that the datasets can vary in complexity and representation. Following the  selection of columns, 

we begin to formally apply methods of preprocessing and then aim to answer a few questions that 

will become apparent and will be elaborated on shortly. So, the reader is comfortable in our 

explanation of dataset creation we consider the extreme case of a philosophical dataset we could 

have created with fifty-four features and twelve output classes. In this case, we perform the same 

selection process where we would choose the zeroth and first columns and just two of the output 

classes. The systematic process of this decision must be kept the same for Blobs-3F and Blobs-2F 

as different results can be gathered from different features e.g. features twenty seven and thirty 

four might be perfectly separable for the two classes with the naked  eye while features two and 

three may might share large overlap for the two classes.  

We now develop the preprocessing that was gathered from the initial investigation into the 

Iris dataset and apply additional steps to garner more comprehension of the VQC capacity with 

two dimensional datasets for binary classification. The preprocessing steps were applied to the 

datasets in different combinations to individually test which combinations would perform better 

collectively or individually. Preprocessing is often performed in an iterative manner and we 

develop the applications of each method here in an iterative manner. When reading this section, 

we build on points made and briefly refer back to them again as they steps are repeated or slightly 

changed.  

We begin the preprocessing phase by utilizing the MinMaxScalar function on each of the 

datasets Blobs-4F, Blobs-3F, and Blobs-2F. MinMaxScalar is applied using the same generalized 

minimum maximum normalization in Equation 23. with the additional piece for scaling given in 

Equation 24 where 𝑋 is the feature vector or column and 𝑥 is the column value, 𝑥𝑛𝑜𝑟𝑚𝑙𝑖𝑧𝑒𝑑 is  the 

intermediate min-max normalization performed. Each dataset is therefore normalized roughly 

between [0,1]  

𝑥𝑛𝑜𝑟𝑚𝑙𝑖𝑧𝑒𝑑 =
𝑥 − min(𝑋)

max(𝑋) − min(𝑋)
                                                 (23) 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥𝑛𝑜𝑟𝑚𝑙𝑖𝑧𝑒𝑑 ∗
1

2
(max(𝑋) − min(𝑋)) + min(𝑋)                             (24) 

 

Figure 27. Blobs after applying PennyLane normalization. Left to right are Blobs-4F, Blobs-3F, and Blobs-2F. 
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The application of the transformation is performed column wise such that each column is 

normalized within itself, values from other columns do not have influence outside of their column. 

The utilization of MinMaxScalar follows from the Iris dataset. The Iris dataset in the example 

online was scaled first using this technique. Additionally, we found that in the preprocessing of 

Iris each feature is multiplied by a coefficient; however, the reason for this additional constant 

coefficient bewilders the authors comprehension. We test results of this scaling coefficient on 

several datasets and, in some cases, it led to better results in several cases. The coefficient is 

calculated column wise similar to Equation 22. where the final addition of the minimum of a 

column is replaced with division by two. We produced this conclusion after several tests. At best 

we understand that this might have been to separate the features from one another making the data 

have more space between classes [52], but this essentially rescales the data to a larger feature space 

than normalization left it. We include this step of preprocessing as we investigate the methods 

further, each dataset set is tested with and without this constant coefficient. 

Once scaled via MinMaxScalar and/or multiplied via the coefficients the data is padded to 

four dimensions with two columns of all 0.3 and 0.0 for features three and four respectively. This 

was done in the Iris example in the PennyLane documentation and padding by the specific value 

does not have a large impact on the learning behavior. The padding of the features must be done 

here because the VQC function utilizes two qubits. The two qubits encode four features in the 

amplitude encoding method by the angle method described above in Quantum State Preparation. 

Once in their angle form state preparation is applied and the classifier can be applied to the data to 

calculate loss and accuracy as any other learning model. The data by this point looks oldly 

dissimilar from the initial blobs of data generated. This is in part because an additional 

normalization is applied to the data aside from MinMaxScalar. This follows from PennyLane as 

well and is shown in Equation 25. where 𝑥𝑖 is the value of a column.  

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = √∑ 𝑥𝑖
2

𝑛

𝑖=0

                                                       (25) 

 

This is applied column wise to each feature in the data. The plot of the data is shown in 

Figure 28. where the second row of scatter plots is the zeroth and third features of the padded then 

normalized data after applying the angle method. The angles method essentially creates three 

angles with the input vector and outputs five values as a feature vector. The values are most heavily 

represented in the zeroth and third features of the feature vector.  
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Figure 28. Top: blobs datasets after applying MinMaxScalar and padding to four features. Bottom: feature vectors after applying 

angle translation method to data above. Note these are only two features of the feature vectors. 

We continue here with the model parameters defined in Table 5. below. We use the same 

random seed as in the documentation to keep consistent with the starting point of the random batch 

values. The same is true for number of layers and starting point of optimizer and the optimizer’s 

step size. We do not use any momentum. The training of every model discussed in the following 

analysis utilizes this configuration and later an additional two layers are used and discussed.  

 

Table 5. Parameters utilized in basic VQC from PennyLane Documentation 

Qubits Layers Optimizer Step Size Optimizer 
Shape 

Training 
Set 

Test 
Set 

Batch 
Size 

2 6 Nesterov 0.01 (6,2,3) 75% 25% 5 
 

As a method of confirmation, we develop and perform the same preprocessing explained 

above as the PennyLane documentation utilizing the Iris dataset within Scikit-Learn and achieve 

essentially the same results. This sanity check is a vital component to the rest of the analysis. The 

preprocessing of the Iris dataset is not made publicly available, the steps discussed so far were 

captured after several iterations of trial and error. Training the Iris dataset with the values as is or 

with a different normalization such as L1 normalization or L2 normalization can yield exceptional 

post training results for accuracy, precision, recall, and F1-Score. However, the results and the 

behavior of training are different from the PennyLane documentation. We admit at this time we 

found no reasonable conclusion for scaling the data the way which is given in the Iris dataset and 
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also consider the possibility the data was scaled using a set of different steps but produces the same 

values of the features. We include the training results for the Iris dataset below in Figure 29. for 

the Scikit Learn dataset we processed to match PennyLane’s in the form of the VQC kernel and 

hyperplane plotted over both datasets after learning.  

 

Figure 29. VQC decision boundaries for the Iris datasets. Left: PennyLane sample of data from already preprocessed. Right: Scikit-

Learn Iris dataset after discovering and applying the preprocessing methods as the PennyLane dataset.  

Before proceeding we describe two final characteristics of the two datasets. The first being 

the order of values in the dataset we processed is not the same as PennyLanes. Order of samples 

can have some influence on the training behavior and results of the model. We choose to ignore 

this as the Iris dataset is not truly focal point of this work and once finding the preprocessing steps 

we move on to its application to other datasets. The second is that the output classes (originally 

the flower name in the genuine dataset), in the Scikit Learn dataset were converted from (0,1) to 

(-1, 1). This involved removing the third class as we mentioned above the problem at hand is binary 

classification, therefore only two classes can exist. The values (-1, 1) are specific to quantum 

machine learning the polarity of the values is better suited for the Hilbert space than (0, 1) which 

is traditionally used in classical techniques. 

One change we made is to rotate the datasets by -90 degrees about the origin. This change 

was done with the intention of making the dataset separable with a line having slope one. This 

intentionally is done to gauge whether the classifier can fit to the simplified decision boundary 

better. We assumed this would greatly simplify the fitting function and lead to faster converging 

of the classifier. The question we ask here is why is it better at splitting the data this way versus 

the same amount of space between the two classes rotated differently? The results are as we 

expected, the classifier achieves a significant improvement for each case, even  for Blobs-2F. 

Although none of the datasets are classified perfectly, we achieve roughly the same results for both 

Blobs-4F and Blobs-3F when using the additional two layers. The resulting decision boundaries 

for both datasets are also much more linear as we expected.  

Interestingly, this is the single best change we make for Blobs-2F dataset. The change in 

coordinate space does improves the learning ability. Consider the decision boundaries for the 

baseline, additional two layers, and here with a rotation about the origin by -90 degrees. We can 

see that even with additional layers the classifier tries to produce a vertical line even though it 
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classifies roughly fifty percent of the samples incorrectly. The result when rotating is a again a 

vertical line but is much more accurate after the rotation. In the case of the former two, similar 

results should have been achieved by some horizontal line. This rotation begs the question of other 

rotations, which improve, and which further hinder the classifier? Before answering that question, 

we add here that including the coefficients to the features for rotation appeared to show no 

additional outstanding improvement with rotations. Therefore, we exclude it in the analysis of 

rotations as we continue. The equation for the rotation is show in Equation 26 where 𝑥1 and 𝑦1 are 

the two feature values, 𝜃 is the angle to rotate by, and 𝑥0 and 𝑦0 are the coordinates of the origin 

(0,0). 

𝑟𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛𝑥 = cos𝜃 ∗ (𝑥1 − 𝑥0) − sin 𝜃 ∗ (y1 − y0) 

           (26)   

𝑟𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛𝑦 = sin 𝜃 ∗ (𝑥1 − 𝑥0) + cos𝜃 ∗ (𝑦1 − 𝑦0) 

We hypothesized that some rotations would lead to very poor performance while others 

increased it. With this in mind we applied the rotations from -90 to +90 by three in total training 

61 times. This was done to evaluation if there is a periodic pattern related to the rotations performed 

on the datasets. In Figure 27. we have plotted the AUC score of each training outcome. The figure 

below shows that roughly every fifty degrees we end up with repeated behavior. These results are 

for Blobs-4F and best results appear to occur every 60 degrees. Although we apply the rotation to 

just two features a rotation matrix can be created for n-dimensional datasets applied in a similar 

way. 

 

Figure 30. AUC scores of 61 models trained based on rotations of the dataset. Rotations are done every three degrees. Obvious 

periodic behavior can be seen from the results roughly every fifty degrees.  

5.4.2 Additional Analysis Leading to Future Work 
We have covered all of the work developed in this master thesis. Over the experimentation 

process we have been left with several partially developed insights. We include this section as it 

is not removed from the work we present here, albeit less analytical and more descriptive. We have 
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developed several datasets but only discussed MakeBlobs and the transformations applied to Iris. 

We continue here with shallow exploration into the other datasets. We will begin with the Wine 

dataset and continue with the other generator datasets. 

The Wine dataset possess several interesting challenges in order train it using the quantum 

methods we have described. The primary problem being which features are best for a quantum 

device or more generally which features are separable enough to learn from. In terms of binary 

classification this problem is not difficult, and it is trivial to show that the first and third classes 

are dissimilar in many of the features. This can be seen in Figure 18. We have trained on several 

of these features and applied the basic steps for state preparation and from the Iris dataset. Several 

of the training samples performed well but for the features selected these results were expected. 

We then selected “less” separable features and the training of these data performed poorly. We 

expect these can be improved either by applying rotations or different scaling/normalization 

methods. Further analysis here would need to be performed on each of the subsets utilized for 

with/without rotations of varying degrees. 

We also tested different factors applied to the data after the initial normalization. These 

factors were applied to two datasets, Wine and MakeSwissRolls. The factors as we have shown 

separate the data more than normalization initially intends. Although there is little evidence for 

this application on other datasets, we considered it in our analysis. We note that applying this factor 

performed well in many cases, including MakeBlobs, when the factor is a multiple of the computed 

factor. Taking that into account, random factors appear to cause poor learning. Simply multiplying 

one feature by ten and the other by five cause decreased performance for Iris, Wine, MakeBlobs, 

and MakeSwissRolls. Additional analysis should be applied to determine if factors correspond to 

a distribution of values and testing of interval values should be evaluated. 

We also applied Stokes parameters after padding and then removing the third feature from 

the analysis. Stokes parameters have been leveraged in QML methodologies and have shown 

applicable results for preprocessing. In terms of effectiveness we applied it to MakeBlobs, 

MakeCircles, and MakeMoons. For MakeBlobs the application of Stokes parameters was a top 

performer for Blobs-4F but performed worse than the baseline in all other cases. For MakeCircles 

Stokes parameters worked only when the data was highly separated which provided little insight. 

For MakeCircles the results were poor but marginally worse than the baseline model.  

In the majority we have developed and tested our methods on two dimensional samples, 

but we have additionally expanded to three, four, and five dimensional datasets. The conclusion 

of the experimentation with larger higher dimensional samples is that the simplicity of  the VQC 

model impedes anything other than a shallow level of optimization across all of the tested datasets. 

We tried to apply the VQC to for more than two dimensions of data but basic hyperparameter 

tuning and several different preprocessing steps, some of which we have not discussed, appeared 

to have no success. This conclusion although useless in terms of quantification shows that the 

VQC model is not truly suited for complex feature spaces. More generally, there are several VQC 

models in existence and other parametric quantum classifiers such as QSVM and QAOA that are 

able to hand a spectrum of problems. We additionally note that the model as presented in the 

documentation of PennyLane is misleading. To an extent, the VQC applied to Iris is deceiving and 
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has little computational applicability outside of the discussion we have developed. The root of this 

stems from the preprocessing applied to the Iris dataset. There is little doubt to the authors that the 

data was prepared in the way it was for the applied method. 

The last transformation we discuss was the applying a transformation typically performed 

after Stokes parameters but in this case we did so intentionally without doing so. The plots of this 

data are shown in Figure 31. for two of the datasets, although it was applied to each Generator 

dataset. This method of preprocessing we will call “Poincare transformation” because it plots the 

data to the Poincare sphere without applying Stokes parameters first. The two datasets in Figure 

31. originally have two features only. For each generator with only two features we padded a third 

feature in two different ways: by a constant or set of constants and by some distribution of values. 

We varied the distributions and constants to find interesting samples that may or may not perform 

well in a quantum model. The datasets in Figure 31are among the most promising of these 

generated datasets. Among these promising datasets are also MakeGaussianQuantiles, 

MakeSCurve, and MakeSwissRolls (for certain class pairs). Two of these, 

MakeGaussianQuantiles and MakeSCurve we have not developed as they were only tested in this 

Poincare transformation unlike the other datasets.  

We also applied different normalization methods to some of the Poincare data. The images 

in Figure 31 use L-1, L-2, and L-Maximum normalization. We tested these different 

normalizations on Iris, MakeBlobs, MakeMoons, and MakeSwissRoll. Of these, Iris was the only 

dataset that classified with an accuracy above 90%. The rest of the datasets performed better when 

applying MinMaxScalar to the data.  

 

Figure 31. Examples of manipulated datasets in 3D. Left are three transformations applied to the MakeMoons dataset and right 

are three similar transformations to the MakeCircles dataset.  
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6. Conclusion 
We have worked through and implemented components of preprocessing and QML models. In the 

first half of our experimentation we have applied and tested the method of state preparation known as 

amplitude encoding. We achieved benchmark like results for two applications of state preparation and in 

doing so have essentially removed most doubt about other state preparation methods. These experiments 

were performed using the TensorFlow Quantum framework. The second half of this work has tried to 

explain several steps that make the training of quantum models more robust. These methods in part were 

performed as an analysis to understand what needs to be considered in order to prepare methods in the 

future for QML. We have applied our methods to several synthetic datasets in this portion of the work using 

PennyLane’s framework. We have developed essentially only binary methods in this work as much of the 

literature in this field boasts results of the same type. Future work in this area will require expansions into 

multiclass classification techniques which are developed enough to be applicable in works such as this one.  

6.1 Future Discussion 
 Although NISQ era devices are faulty and have a long way to go they are appropriate for 

testing datasets with small number features. The utilization of a NISQ device on the 

transformations and analysis applied in this thesis would be the immediate next step. There are 

many issues with using modern NISQ era devices from noise and decoherence to allotted time and 

space constraints. These things among others are what discouraged their use in place of the more 

widely available simulated devices. Quantum simulators have come a long way and have provided 

viable and we believe acceptable results to move forward using a noisy implementation of a 

quantum computer. Due to the capabilities of quantum devices today, we expect the results to be 

generally worse. The hope is that similar results or patterns with the learning outcomes appear. We 

can say for certain that the methods applied here are not guaranteed to behave the same but with 

anticipation expect large similarities. 
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Appendix X 
Link to code for reproducing many of the components in this thesis: 

https://github.com/m0tela01/  

The code is open source and has no copyright, so you are free to use it in any capacity. While 

cleaning many of the irrelevant notebooks and scripts some of the examples or components may 

have been lost. I have tried to comment code as much as it makes sense. Many of the notebooks 

use the submodule created in the folder /MEngCode. 

  

https://github.com/m0tela01/
https://github.com/m0tela01/
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