
University of Dayton University of Dayton 

eCommons eCommons 

Electrical and Computer Engineering Faculty 
Publications 

Department of Electrical and Computer 
Engineering 

3-11-2021 

The Physics of Fire by Friction The Physics of Fire by Friction 

Bradley D. Duncan 

Follow this and additional works at: https://ecommons.udayton.edu/ece_fac_pub 

 Part of the Physics Commons 

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/ece_fac_pub
https://ecommons.udayton.edu/ece_fac_pub
https://ecommons.udayton.edu/ece
https://ecommons.udayton.edu/ece
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages


1 
 

The Physics of  

Fire by Friction 
 

by Bradley D. Duncan, Ph.D. 
January, 2021 

 
1. Introduction 
 
I made my first bow drill kit, and lit my first friction fire, at Ransburg Scout Reservation in June, 2016.  
I was there with my Boy Scout troop (Troop 516, Centerville, OH) for our annual summer camp 
adventure. Ransburg is, of course, the modern day home of Firecrafter [1]. Our troop has a rich, 
decade’s long history of active participation in the Firecrafter program and I’d been watching our 
scouts pursue the various rank requirements with increasing interest since I joined the troop as an 
assistant Scoutmaster in early 2014. I was especially intrigued by the almost mystical way our 
Firecrafters and Firecrafter candidates could conjure smoke and fire by merely “rubbing sticks 
together.”  
 
My obvious interest eventually led to me being invited to join the organization as an adult member 
of the Firecrafter Alumni Association. Those nominated to become Firecrafters as adults are actually 
not required to submit to any of the grueling ordeals experienced by youth candidates. Nevertheless, 
I felt duty and honor bound to try and master all the requirements of the three Scout ranks; Camper, 
Woodsman and Firecrafter. My fascination with the idea of making fire by friction made this quest 
especially exciting! Four and a half years later I am still fascinated by it all. Studying fire by friction 
and other primitive firemaking methods has actually become quite an entertaining little hobby of 
mine. My wife and kids think I’m nuts, but becoming a Firecrafter has been one of the most rewarding 
and fun things I’ve ever done. I love it! 
 
I am also an engineer with a Ph.D. in Electrical Engineering (VA Tech, vintage of 1991). I’ve spent 
most of the past 30 years as a Professor and researcher at the University of Dayton, Dayton, OH, with 
the majority of my scientific pursuits focusing on the areas of fiber optics, optical remote sensing and 
laser radar. This, of course, leaves me almost completely unqualified to attempt to write an article on 
the physics of fire by friction, but I decided to give it a try anyway. It’s difficult to pursue a meaningful 
research career without crossing a few disciplinary boundaries from time to time. If nothing else, I’m 
pretty good with math. With a little patient reflection, I thought, maybe I can pull together enough 
fragments from my long ago studies of mechanics, dynamics and thermodynamics to pull it off. We’ll 
see. In true Firecrafter fashion, I will certainly do my best!, but you my dear reader must ultimately 
be the judge. As I tell my graduate students, it’s the peer review process that separates the discovery 
of authentic new knowledge from mere conjecture and opinion. 
 
In what follows I will attempt to produce a rigorous, macroscopic, time averaged model of the process 
of creating fire by friction – up to the point of initial ember formation. I will employ reasonable, 
practical approximations with the goal of developing mathematical results that are experimentally 
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verifiable. Although force, velocity, pressure and the like are actually vector quantities, due to the 
symmetry of the problem I will perform a scalar analysis only. Also, to simplify the analysis I will 
assume that the assortment of variables we will encounter are independent. Mostly this assumption 
is valid, though on occasion I will point out where the assumption is, or may be weak. I will also 
occasionally point out where further research and analysis may be of interest to pursue.  
 
There are, of course, a variety of methods for creating fire by friction. This article will focus 
exclusively on fire drills with solid rotating spindles. The initial analysis will focus on the bow drill, 
though near the end I’ll describe some modifications that will make the models I’ll develop 
appropriate for the pump drill as well. I have made no attempt to model the fire thong, fire saw, fire 
plow or any other method of fire by friction. 
 
What about hand drills, you might ask? Well, hand drill methods commonly employ spindles made 
from wild flower stalks that have hollow or pith filled cores. To a first order, then, hand drill fire by 
friction can be described by the results developed within, if we agree to subtract off the effects of a 
hypothetical spindle with a diameter equal to that of the pith/hollow core, where little if any friction 
heat is developed. It’s actually a bit more complicated than that and I’d be happy to share my notes 
on the subject with anyone who might be interested. Lastly, my discussions throughout will tacitly 
assume a reader who knows at least the fundamentals of fire by friction using a bow drill kit. If not, 
it’s probably best to stop reading and go practice. This article will serve as a lousy tutorial for practical 
firemaking, though an experienced firemaker may gain some insights for further refining their craft. 
 
 

2. Kinetic Friction 
 
Any article on fire by friction must start with at least a brief discussion of friction itself. Simply, 
friction is a resistive force between two surfaces that are sliding, or trying to slide, across one another. 
As shown in Figure 1 for the simple case of horizontal linear motion, friction always opposes motion. 
 

FR = mkFN  [N]

FN

Direction 

of Motion

 
 

Figure 1: The friction force FR is proportional to the total normal force 
FN, and always opposes motion. 

 
There are two main types of friction, static and kinetic. Static friction operates between two surfaces 
that aren’t yet moving relative to one another, while kinetic friction acts between objects in motion. 
As shown in Figure 1, assuming the rectangular object is currently in motion the kinetic friction force 
FR is directly proportional to the total normal force FN acting perpendicular to the interaction surface. 
Simply put, FR = mkFN [N], where mk is the coefficient of kinetic friction and the unit of force is the 
Newton (See Appendix A) [2]. 
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When two surfaces move with respect to one another the kinetic frictional force is almost constant 
over a wide range of low speeds. The coefficient of kinetic friction mk is also typically less than the 
coefficient of static friction ms, reflecting the common experience that it is easier to keep something 
in motion across another surface than it is to start it in motion from rest [3]. For this article I will 
limit my discussion exclusively to kinetic friction. All references hereafter to “coefficient of friction” 
will therefore imply “kinetic coefficient of friction” without ambiguity.  
 
The coefficient of friction is a unitless quantity less than unity that depends on a variety of variables 
including the material(s) under consideration, surface condition, lubrication, etc. For dry wood 
moving across dry wood, of interest to us, the coefficient of kinetic friction varies between 0.17 ≤ mk 
≤ 0.48, with most references putting mk in the range of 0.2-0.3 [e.g., 3, 4, 5]. For oak-on-oak with 
perpendicular gains, mk ≈ 0.32 [3]. Determining the coefficient of kinetic friction for a variety of 
charred woods commonly used in fire by friction would make a very interesting project for further 
research. In the absence of better data to work from, though, I’ll assume a mid-range value of mk = 
0.25 in order to allow me to perform some computations later on. This is probably the weakest 
assumption I will make, yet it will yield surprisingly good results later on and so may be reasonable. 
 
 

3. Net Moment Due to Friction 
 
The moment M of a force F is a measure of its tendency to cause a body to rotate, or resist rotation, 
about an axis. Moment and torque (possibly a more familiar term) are largely synonymous and 
increase in direct proportion to the lever arm length d. As shown in Figure 2, below, moment is simply 
M = Fd [N-m]. 

F

d

M = Fd [N-m]

 
Figure 2: A simple moment diagram. 

 
In the case of fire by friction employing a solid spindle rotating against a stationary fireboard, we 
must first distribute the normal force FN across the interaction surface between the spindle and 
fireboard. I will assume the interface to be spherical in shape – a very good assumption that I’ll 
demonstrate later on. To determine the net, or aggregate moment due to friction opposing spindle 
motion, we must then employ calculus to integrate (i.e., sum up) the incremental moments across the 
entire contact area. In our case, this will require a two dimensional surface integration in spherical 
coordinates. Please hang on if this calculus is unfamiliar to you. It will be over soon enough. 
 
The geometry of the problem is shown in Figure 3. The spherical coordinate variables are (r, , ) and 
the figure is drawn to show a right handed coordinate system. The center of curvature of the spherical 
interface is designated by C. The polar angle  is then taken with respect to the central axis, r is the 
radial distance from the center of curvature and the azimuth angle  is defined in a plane 
perpendicular to the total normal force FN (which includes the weight of the spindle itself, plus all 
applied external forces). The radius of curvature of the spherical interface is Rc and the maximum 
polar angle at the edge of the interaction area is o. The radius of the spindle is then Ro = Rcsin(o), 
while the depth of the fireboard divot is ho. Finally, the pressure P results from distributing FN across  
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Figure 3: Spherical geometry of the spindle-fireboard interface. 
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the interaction area, Ai is the area of the spherical interface, and Ai’ = pRo
2 is the area of the spherical 

interface projected onto a plane perpendicular to the central axis. 
 
With the additional assumptions that the spindle and fireboard are inelastic (i.e., there is no 
deformation of either due to the applied normal force FN) and that there is negligible clearance at the 
spindle-fireboard interface (i.e., their curved shapes are perfectly matched after initial burn-in), then 
it can be shown that the pressure P across the interface is uniform and expressed by [6] 
 

𝑃 =
𝐹𝑁

𝐴𝑖
′ =  

𝐹𝑁

𝜋𝑅𝑜
2  [N/m2] .                                                                  (1) 

 
The calculation of the net friction induced moment Ms at the spherical interface now proceeds in a 
manner inspired by the calculation of net moment in disc brake systems [7]. To begin we have 
 

𝑀𝑠 =  ∫ ∫ 𝑓(𝜃, 𝜑) 𝑑𝐴
𝜑𝑜

0

2𝜋

0
  [N-m] ,                                                        (2) 

 
where in spherical coordinates the differential area dA = Rc2 sin()d d [m2], and the incremental 
moment per unit area f (, ) is given by 
 

𝑓(𝜃, 𝜑) =  𝜇𝑘𝑃𝑅𝑐sin (𝜑)  [N/m].                                                        (3) 
 

Notice that since equation (2) represents an area integral, the integrand f(, ) must have units of 
[N/m] in order for Ms to have the proper units of [N-m]. The expression in equation (3) ensures this 
result since pressure P (force per unit area) has units of [N/m2] and the moment arm Rcsin() has 
units of [m]. Also notice that the incremental moment of equation (3) is uniform with respect to the 
azimuth angle . Proceeding with the integration and simplifying the result we find that 
 

𝑀𝑠 = 2𝜋 𝜇𝑘  
𝐹𝑁

𝜋𝑅𝑜
2

 ∫ 𝑅𝑐
3 𝑠𝑖𝑛2(𝜑)

𝜑𝑜

0

𝑑𝜑 

 

𝑀𝑠 = 𝜇𝑘 𝐹𝑁 𝑅𝑜 (
𝑅𝑐

𝑅𝑜
)

3

[𝜑𝑜 −  
sin (2𝜑𝑜)

2
] 

 

𝑀𝑠 = 𝜇𝑘 𝐹𝑁 𝑅𝑜 (
𝑅𝑐

𝑅𝑜
)

3

[𝜑𝑜 −  sin (𝜑𝑜)cos (𝜑𝑜)] 

 

𝑀𝑠 = 𝜇𝑘 𝐹𝑁 𝑅𝑜 (
𝑅𝑐

𝑅𝑜
)

3

[𝑠𝑖𝑛−1 (
𝑅𝑜

𝑅𝑐
) −  

𝑅𝑜

𝑅𝑐
𝑐𝑜𝑠 (𝑠𝑖𝑛−1 (

𝑅𝑜

𝑅𝑐
))] 

 

𝑀𝑠 = 𝜇𝑘 𝐹𝑁 𝑅𝑜 [(
𝑅𝑐

𝑅𝑜
)

3

𝑠𝑖𝑛−1 (
𝑅𝑜

𝑅𝑐
)  −  (

𝑅𝑐

𝑅𝑜
)

2

√1 − (
𝑅𝑜

𝑅𝑐
)

2

 ] 

 

𝑀𝑠 =
2

3
 𝜇𝑘 𝐹𝑁 𝑅𝑜 𝑆𝑀(𝜌)  [N-m] ,                                                         (4) 
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where  = (Rc/Ro) ≥ 1, and SM() is a unitless spherical moment factor we will examine shortly. In 
arriving at equation (4) I also employed the following trigonometric identities: 
 

sin(2𝑥) = 2 sin(𝑥) 𝑐𝑜𝑠(𝑥)     and     cos(𝑠𝑖𝑛−1(𝑥)) =  √1 − 𝑥2 . 

 
To examine the spherical moment factor in more detail let’s first write it out explicitly as 
 

𝑆𝑀(𝜌) =  
3

2
[𝜌3𝑠𝑖𝑛−1 (

1

𝜌
)  −  𝜌2√1 − (

1

𝜌
)

2

] .                                              (5) 

 
Despite the apparent complexity of SM() it is actually very well behaved, as demonstrated in Figure 
(4). For large , indicating a nearly planar spindle-fireboard interface, the spherical moment factor 
approaches unity, as confirmed in [7]. By contrast, for a hemispherical interface for which Rc = Ro, or 
 =1, we find that SM() = 1.5(p/2) = 3p/4 = ~2.356.  
 
 

 
 

Figure 4:  The spherical moment factor approaches unity for a nearly 
flat spindle-fireboard interface surface, and approaches 3p/4 as the 
interface becomes increasingly hemispherical. The red dot represents 
the value realized in the experiment discussed later in Section 6. 
 

Since SM() is a purely geometric shape factor, one early conclusion we can draw from examination 
of equations (4) and (5) is that highly hemispherical spindles and mating fireboard divots will 
generally be to our advantage in making embers more quickly. That is, all things being equal we will 
soon see the heat energy we can generate per unit time increases in direct proportion to the net 
moment due to friction and that, somewhat surprisingly,  is directly influenced by spindle shape. Ah, 
the beauty of scientific discovery! 
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The astute reader may now be wondering about the notch we typically cut into our fireboards after 
burning in a new divot. The notch is required in order for charcoal dust to collect as the spindle and 
divot heat up while we bow. The notch is also required in order for friction heat to be conductively 
transferred to the dust, allowing ember ignition to take place. So, would accounting for the notch 
affect the calculations above? As it turns out, no. Nominally, if we remove the area of the notch from 
the fireboard, the normal force FN is distributed over a smaller area, meaning the pressure P 
increases. This increased pressure is then integrated over a correspondingly smaller area in the 
integral of equation (2). The effects then cancel and the results of this section would be unchanged. 
If you are interested, I demonstrate this more explicitly in Appendix B. 
 
 
4. Rotational Work, Energy and Power 
 
For a force F acting linearly, the work W done by F is the energy expended in moving an object a 
distance d.  Expressed mathematically, W = Fd [N-m]. Note, though, that since work is an expression 
of expended energy it must have units of Joules, or [J]. Indeed 1 [N-m] of work is equal to 1 [J] of 
energy.  Similarly, for moments and torques (i.e., rotational forces), energy is expended when the 
moment or torque acts on, or rotates, an object through an angle , expressed in radians [rad]. 
Mathematically, for a moment M, work W = M [N-m] or [J] [8, 9, 10, 11].  
 
Note that in Section 3 we calculated the net moment due to friction and found that it had units of [N-
m]. Although net moment appears to have units of energy, it isn’t appropriate for us to express 
moments in units of [J] until they are allowed to act over some angle . Note also that this implies the 
unitless nature of angle . If this is surprising to you, please see Appendix C for a discussion of the 
unitless nature of angular measurements such as radians [rad]. 
 
For the net moment due to friction expressed in equation (4), the work WF done when a spindle is 
made to rotate through an angle  can be written simply as 
 

𝑊𝐹 =
2

3
 𝜇𝑘 𝐹𝑁 𝑅𝑜 𝑆𝑀(𝜌) 𝜃  [J] .                                                           (6) 

 
Keep in mind now that as we drive our bow drills the spindles periodically rotate clockwise (CW), 
then counterclockwise (CCW). These periodic changes in rotation direction don’t matter at all, 
though, since friction always opposes motion, or in this case, rotation. Therefore   in equation (6) 
represents the cumulative angular rotation, both CW and CCW, through which the spindle is made to 
rotate as we bow.  
 
Similar to work, power is energy expended per unit of time. Power has units of [J/s] = [Watts] or [W]. 
The frictional power, or energy released per unit of time, can then be found by simply replacing the 
cumulative angle of rotation  in equation (6) with the spindle’s time averaged rotational angular 
velocity   according to 

𝑃𝐹 =
2

3
 𝜇𝑘 𝐹𝑁 𝑅𝑜 𝑆𝑀(𝜌) 𝜔  [W] .                                                          (7) 

 
However, it is probably more useful and interesting to express PF in terms of the average speed VB at 
which we manipulate our bows. This conversion is aided by examining the geometry of Figure 5, 
where the outer surface of our spindle is assumed to be moving at speed VB. By simple inspection we 
see that  

𝑉𝐵 =  
𝑆

∆𝑡
 =  

𝑅𝑜𝜃

∆𝑡
= 𝑅𝑜𝜔  ,                                                                (8) 
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

Ro

S = Ro



VB

VB

VB

 = (VB/Ro)

 
 

Figure 5: Linear bow speed VB, acting on a spindle with radius Ro, causes 
the spindle to rotate with angular velocity  = VB/Ro [1/s]. 
 

where S is the arc length subtended by angle , and t is the time it takes for the spindle to rotate by 
angle . Solving equation (8) for  and inserting the result into equation (7) then yields 
 

𝑃𝐹 =
2

3
 𝜇𝑘 𝐹𝑁 𝑆𝑀(𝜌) 𝑉𝐵  [W] .                                                           (9) 

 
Once again, keep in mind that VB in equation (9) is the average bow speed, taking into account the 
stopping, starting, accelerations, decelerations and assorted direction changes that take place as we 
bow. It will be less than the peak bow speed at mid-stroke. This will perhaps become a bit clearer in 
the experimental section below. 
 
Also notice, somewhat surprisingly, that equation (9) is independent of spindle radius Ro. This is 
because angular velocity  is inversely related to spindle radius when substituting equation (8) into 
equation (7). That is, for a given bow speed VB, as the spindle radius Ro goes up, the angular velocity 
 goes down, cancelling the increased power we might expect by examining equation (7) in isolation. 
This is somewhat contrary to the common observation that smaller diameter spindles aid in faster 
ember formation. While this is mostly true (assuming spindles aren’t so thin that structural integrity 
is compromised), the effect is actually due to the stronger concentration of heat energy on the face of 
the forming ember, as we will see in the next section.   
 
Before moving on there are two other observations worth mentioning. First, we have all probably 
seen scouts and adults who’ve leaned on their spindles so hard that they’ve seized and stopped 
spinning. In the introduction to this article I mentioned that I would assume variable independence. 
Well, at least in the extreme, average bow speed VB depends on the normal force FN. Remember that 
the power expressed in equation (9) is actually coming from the firemaker him/herself! If the 
firemaker has sufficient strength and stamina to maintain bow speed, then by all means lean away 
and increase FN as much as possible. For most of us though, it’s probably best to lean on our spindles 
only to the point just before we are unable to sustain a healthy bow speed for a minute or so.  
 
Lastly, from time to time you may encounter a bow drill spindle that has been carved into an 
hourglass shape. Does that help? Well, maybe. See Appendix D for details.  
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5. Ember Ignition 
 
In this section I will develop a relationship for the lower bound tmin on the time required to ignite 
an ember. This lower bound will be for initial ember ignition only, without consideration of additional 
time a firemaker may allow a young ember to grow prior to transferring it to a tinder bundle. I will 
start by assuming that the heat generated by friction is uniformly distributed across the interface of 
the spindle and fireboard divot. I will also assume a common starting temperature (typically the 
ambient environmental temperature) for both the spindle and fireboard, and I must assume that the 
firemaker is experienced, uses good technique, and that the fireboard notch is initially filled with 
charcoal dust. I have no way to mathematically model and account for awkwardness, nor have I made 
any attempt to model the chemical-mechanical processes by which woods are charred and ground 
away to create charcoal dust. 
 
 

Fireboard

Ai

A
Spindle

Cross Section

 
 

Figure 6: Initial ember ignition takes place where the 
charcoal dust directly contacts the heated spindle face.  

 
Energy created by friction heats the charcoal dust up to its ignition temperature, at which time an 
ember begins to form at the top of the fireboard notch where the dust comes into direct contact with 
the heated spindle face. By inspection of Figure 6, the fraction of the friction generated heat WE that 
is exposed to the forming ember is 
 

𝑊𝐸 =  𝑊𝐹
∆𝐴

𝐴𝑖
=  𝑊𝐹

∆𝐴

𝜋(𝑅𝑜
2+ ℎ𝑜

2)
  [J] ,                                                    (10) 

 
where WF is the total heat energy (or work) due to friction as expressed in equation (6), A is the 
area (estimated or measured) of the spindle face exposed to the charcoal dust, Ai = p(Ro2 + ho2) is the 
area of the spherical spindle-divot interface, Ro is the spindle radius and ho is the divot depth as shown 
in Figure 23 [12]. An example image of the ignition area of an actual fireboard notch is provided in 
Figure 7. 
 
Next, the heat energy Q required to raise a material by T degrees is given by 
 

∆𝑄 = m 𝐶𝑝 ∆𝑇  [J] ,                                                                    (11) 

 
where m is the mass of the material being heated in grams [g], the change in temperature T has 
units of degrees Celsius [°C] and Cp is the material’s Specific Heat Capacity (or just Specific Heat) [13, 
14, 15].  
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Figure 7: Example ignition area of a fireboard notch. 
 
I will use specific heat values expressed in units of [J/g-°C] (there are others). Specific heat therefore 
represents the energy required to raise one gram of a material by one degree Celsius.  That is, as Cp 
increases it takes more heat energy to increase the temperature of the material. (Thermal insulators 
generally have larger specific heats than thermal conductors, for example.) Most woods have specific 
heats in the range 2 (Oak) < Cp < 2.9 (Balsa). White pine has an average specific heat of 2.5 [J/g-°C], 
cast iron’s specific heat is approximately 0.46 [J/g-°C] and, of particular interest to us, charcoal has a 
specific heat of about 1.0 [J/g-°C]. Future experiments to measure Cp for charcoal dusts created from 
a variety of common friction fire woods might be of interest to pursue. 
 
In our case Q = WE, the fraction of the friction created heat exposed to the face of the forming ember. 
Using equations (6) and (10) in equation (11) thus yields 
 

(
2

3
 𝜇𝑘 𝐹𝑁 𝑅𝑜 𝑆𝑀(𝜌) 𝜃) (

∆𝐴

𝜋(𝑅𝑜
2+ ℎ𝑜

2)
) =  m 𝐶𝑝 ∆𝑇  ,                                   (12) 

 
where m is now the mass of charcoal dust required for initial ember ignition (typically small). Notice, 
though, that the cumulative angle of rotation  can be expressed as 
 

𝜃 = 𝜔 ∆𝑡 =  
𝑉𝐵

𝑅𝑜
 ∆𝑡  [rad],                                                           (13) 

 
where t is the total time the spindle rotates at average angular velocity  (either clockwise or 
counterclockwise). By inserting equation (13) into equation (12), rearranging terms and changing 
notation slightly we can find the relationship for tmin, the lower bound on the amount of time (i.e., 
the minimum time) it takes for initial ember ignition, under the conditions discussed at the start of 
this section. That is, 

∆𝑡𝑚𝑖𝑛 =  ∆𝑇 
3

2
 

𝐶𝑝

𝜇𝑘
 

𝑚

𝐹𝑁
 
𝜋(𝑅𝑜

2+ ℎ𝑜
2)

∆𝐴 𝑆𝑀(𝜌)
 

1

𝑉𝐵
  [s]  .                                               (14) 

 
Equation (14) is the principle result of this article. It provides the lower bound on the time to ember 
ignition based upon assumptions stated at the beginning of this section, and the assorted variable 
values that will necessarily change according to the firemaker, kit and circumstances. In all cases, 
starting with an empty notch and using poor technique will result in a longer ignition time than tmin.  
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Despite the mathematical gymnastics required to arrive at equation (14), the result is simple, elegant 
and complete. All the variables interact in ways that are intuitively pleasing and in keeping with 
common experience. In particular, as alluded to in Section 4, notice that tmin decreases due to 
increased heat concentration as the spindle radius Ro, and thus the interface area Ai = p(Ro2 + ho2), 
decreases. Though not accounted for above, increased heat concentration as Ro decreases will no 
doubt also lead to faster wood charring and dust formation as well. 
 
As a final thought for this section, notice that the interface area Ai, and the spherical moment factor 
SM() both depend on the spindle radius Ro. That is, they are not independent. In light of this fact I 
take a more nuanced look at equation (14) in Appendix E.  However, I suggest you study Appendix E 
only after you’ve read through the rest of this article.  
 
 
6. Experimental Verification 
 
In order to test the validity of equation (14) I set up some experiments in my basement one evening. 
Out of a sense of nostalgia I decided to use my very first Slippery Elm (a.k.a. Red Elm) bow drill set – 
the one I made at Camp Ransburg in 2016. Although I am now fairly experienced with the bow drill, 
I hadn’t used this particular kit in a long time and so I thought some practice was in order. I ended up 
making three embers from scratch (i.e., I did not initially fill the notch with charcoal dust), which I 
then quickly put out and weighed. The average mass of the piles of dust that formed these three 
embers was only 0.8 grams. Of course, most of the dust does not come into close contact with the 
base of the spindle at the top of the fireboard notch. No more than a fraction of the dust pile is actually 
required for initial ignition and so I decided to set m = 0.1 [g] in equation (14).  
 
Next, I placed the fireboard on my digital bathroom scale and leaned on it just as I do when bowing 
up an ember. So that I would not be prone to influencing the results, I asked my daughter to read the 
scale and record the measurements for me. We repeated this measurement four times and found that 
I was applying an average normal/downward force of 13.5 pounds. Converting to SI units, I will use 
a value of FN = 60 [N] in later calculations. This is consistent with prior measurements made by me 
and others [16, 17, 18]. 
 
 

 
 

Figure 8: A freshly burned-in Slippery Elm spindle. 
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I then trimmed the sides of my spindle a bit, after which I burned-in and notched a new, freshly carved 
divot in my fireboard. The charred spindle tip is shown in Figure 8. To create the condition assumed 
for equation (14) to apply, I then filled the notch with dust I had collected earlier in the evening and 
asked my teenage children to help record a video of me bowing up an ember. For your inspection, 
this video can be accessed through the following link [19] 
 

Data Video Link: https://youtu.be/K0CPU6TCYZw 
 

After carefully inspecting this video I made the following observations. First, I counted 35 full (i.e., 
forward and backward) bow strokes over a period of 21 seconds (I started counting at 1:54 and 
concluded at 2:15). By observing how/where I was holding and manipulating my bow, I also 
estimated that my average bow stroke length (forward or backward) was 22 inches – see Figure 9. 
This results in an average bow speed of  
 

𝑉𝐵 =  
2∙22∙35

21
= 73

1

3
  [in/sec]   . 

 
Converting to SI units gives us VB = 1.86 [m/s]. Recall that as an average bow speed, VB takes into 
account all the starting, stopping and direction reversals, etc., observed in the data video. 
 

 
 

Figure 9: I generally prefer longer bows. From the video referenced 
above, I estimated that full bow strokes were about 22 inches long on 
average. 

 
Upon further inspection of the video I noted that I bowed for a total time of 25 seconds (starting at 
1:53 and stop at 2:18). However, an experienced firemaker can typically tell that an ember has ignited 
when smoke is seen emanating from the dust in front of, and noticeably distant from, where the 
spindle and fireboard divot are tangent to one another in the area of the fireboard notch. I made this 
observation shortly before I stopped bowing. My best estimate of the time till initial ember formation 
is therefore in the range of 23 < t < 24 [s]. You’ll also notice in the video that it took some time for 
the new ember to eventually grow to appreciable size. Recall, though, that it’s the time till initial 
ignition that is of interest here. 
 
After disposing of the ember I inspected the spindle and fireboard and made some more 
measurements. As seen in the images of Figure 10, the charred spindle/divot diameter is 
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approximately one inch, yielding a measured spindle radius of Ro = 0.5 [in.]. The average diameter 
of the spindle where the bow string was attached was also very nearly one inch. Next, by examination 
of the charred region of the spindle using my digital calipers, the depth of the divot was determined 
to be ho = 0.166 [in.]. Next, the triangular ignition area of my fireboard notch was carefully measured 
to yield a base length of 0.309 [in.] and a depth of 0.407 [in.], yielding a value of A = (base x 
depth)/2 = 0.0629 [in.2]. 
 
Others have previously done experiments to determine the temperature at which fire by friction 
charcoal dust ignites. Most measurements have yielded results in the range of 650-800 [°F], with the 
most reliable estimates on the order of 700 [°F] [20, 21]. The thermometer in my basement read 63 
[°F] during the time of my experiments, meaning that I needed to create friction heat sufficient 
enough to raise the dust by T = (700-63)/1.8 = 354 [°C]. 
 

     
 

Figure 10: Spindle diameter and divot depth measurements. 
 
Next we need to determine the value of the spherical moment factor SM() applicable to the 
experiment. To make the calculation, we first need to know the radius of curvature Rc of the very 
nearly spherical spindle-divot interface. This can be determined from the relationship for the area Ai 
of a spherical cap expressed as [12] 
 

𝐴𝑖 =  𝜋(𝑅𝑜
2 + ℎ𝑜

2) = 2𝜋 𝑅𝑐  ℎ𝑜  [in.2] .                                                (15) 
 

Solving for Rc we find 

𝑅𝑐 =  
𝑅𝑜

2+ ℎ𝑜
2

2 ℎ𝑜
  [in.] .                                                                     (16) 

 
Using the previously stated measured values for Ro and ho, from equation (16) we find that Rc = 0.836 
[in.]. This in turn yields a value of  = Rc/Ro = 1.672, after which equation (5) gives us a spherical 
moment factor for this experiment of SM() = 1.134, shown by the red dot in Figure 4. The nearly 
spherical shape of the spindle is confirmed in Figure 11. 
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Figure 11: The spindle-divot interface is 
very nearly spherical in shape. 

 
In order to use equation (14) to calculate the expected minimum time for initial ember ignition 
according to the parameters of my experiment, as stated in Sections 2 and 5 I will assume values of 
mk = 0.25 and Cp = 1.0 [J/g-°C] for the kinetic coefficient of friction and specific heat, respectively. 
Inserting these values, and the other appropriate bold faced values of this section into equation (14) 
then yields an expected minimum time to ignition of tmin = 23.27 [s]. This is remarkably close to my 
observed estimate of 23-24 [s]. With some admitted uncertainty in my measurements and also in the 
values used for mk, Cp and the temperature required for ember ignition (though in all cases reasonable 
best estimates were used), where additional experimentation might be of interest, I believe the 
results of Section 5, equation (14) in particular, have been confirmed. Only the test of time, with 
further analysis and more careful experimentation, will confirm this with certainty. 
 
 

 
 

Figure 12: Twenty-one Watts is enough to power five night light bulbs. 
 

Finally, I was curious to see how much power I was generating to create my ember. Using the 
appropriate values from this section in equation (9) I calculated just a bit over 21 [W]. That’s enough 
to power five of the little 4W night light bulbs shown in Figure 12. It doesn’t seem like much, but most 
would agree that driving a bow drill can on occasion be a tiring experience.  
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7. Pump Drill Modifications 

 
Before concluding I want to spend some time considering the pump drill method of fire by friction 
and what might be required for equation (14), which expresses the lower bound tmin on the time 
required for initial ember ignition, to apply. It turns out that we need only make modifications to the 
normal force FN and the “effective” bow speed VB. Beginning with the normal force, for the pump drill 
we can use 

𝐹𝑁 =  
1

2
(𝐹𝑃 +  𝑚𝑝𝑑 9.81)  [N] ,                                                         (17) 

 
where mpd is the mass of the pump drill apparatus in [kg] and FP is the total force applied during the 
downward pump cycle. For equation (17) I am assuming a 50% duty cycle between the up/down 
power and spin-up strokes, in keeping with observations I’ve made when using my own pump drills 
[22]. The effective normal pump drill force FN is thus the simple average of FP and the weight (mass 
times acceleration due to gravity) of the pump drill itself. That is, on the spin-up portion of each cycle, 
only the weight of the pump drill apparatus causes a downward force on the spindle/fireboard 
interface.  
 
For us to determine an effective bow speed VBeff  for the pump drill we need to recall that it is the 
cyclic pumping action, not bowing, that causes spindle rotation.  To proceed I will need to define two 
new variables, NR and PS. The first variable, NR, is the number of shaft rotations per up or down stroke 
(i.e., during one half cycle) on the pump bar. This is probably best measured by hand winding the 
pump bar on the pump drill shaft. Note that it is possible for NR to be fractional, so careful 
measurements are in order. Note also that NR is unitless. As an example, for my own pump drills NR 
is ~3.  
 
The next new variable, PS, is the time averaged pump rate (i.e., it accounts for all pump bar starts, 
stops and direction reversals, etc.). The units of PS is [1/s] and a single pump period is taken to mean 
a full up/down power stroke and spin-up cycle. This parameter will be highly dependent on the pump 
drill itself as well as the firemaker’s skill, strength and stamina. For my largest pump drill, I have 
measured a value of Ps = 1.86 [1/s] with the aid of video [22]. 
 
The number of spindle rotations per second Rs can now be written as  
 

𝑅𝑠 = 2 𝑃𝑆 𝑁𝑅  [1/s].                                                                     (18) 
 

The angular velocity of the spindle is then  = 2pRs = 4pPSNR [1/s]. Using this result in equation (8) 
and rearranging we find that the effective bow speed VBeff is 
 

𝑉𝐵𝑒𝑓𝑓 = 4𝜋 𝑅𝑜 𝑃𝑆 𝑁𝑅  [m/s]  .                                                          (19) 

 
Now we merely need to use the results of equations (17) and (19) in equation (14) to determine the 
lower bound tmin-pump on the time till initial ember ignition for the pump drill. Specifically, 

 

∆𝑡𝑚𝑖𝑛−𝑝𝑢𝑚𝑝 =  ∆𝑇 
3

4𝜋
 

𝐶𝑝

𝜇𝑘
 

𝑚

(𝐹𝑃 + 𝑚𝑝𝑑 9.81)
 
𝜋(𝑅𝑜

2+ ℎ𝑜
2)

∆𝐴 𝑆𝑀(𝜌)
 

1

𝑅𝑜 𝑃𝑆 𝑁𝑅
  [s] .                          (20) 

 
Aside from my estimates of Ps, Nr and the 50% up/down duty cycle mentioned above I have not yet 
done further work to experimentally verify equation (20). Perhaps that’s something I’ll pursue that 
when the weather is warmer. You might give it a try as well.  
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To conclude this section I should point out that while the pump drill may for many be easier to learn 
than the bow drill, my personal observation is that it is slower to form embers and less efficient 
overall. The pump drill is disadvantaged by the reduced downward force during the spin-up portion 
of the pump cycle. To reduce this effect it helps to have a heavy pump drill apparatus. In particular it 
helps to have a heavy flywheel. It also helps to use a flywheel with a large moment of inertia – i.e., one 
for which the bulk of the flywheel mass is positioned far from the axis of rotation. I like to use cast 
iron caster wheels in my pump drills [22]. A high moment of inertial flywheel will also help on the 
spin-up cycle by preserving rotational momentum, thereby increasing both pump speed and the 
effective bow speed. Note that while these effects are implied, they are not explicitly accounted for in 
equation (20). 
 
 

8. Conclusion 

 
So, what have we learned? From a practical firemaking perspective maybe we haven’t learned all that 
much. The main result of this article is equation (14) (rewritten as equation (E6) in Appendix E), and 
that doesn’t tell us a great deal beyond what many of us already know from experience – i.e., you can 
make faster embers if you press on the spindle harder, bow faster, etc. Perhaps, though, you might 
find it satisfying, as I do, that the physical principles of fire by friction can be so well described 
mathematically, with all the variables coming together in such an intuitive way. I was also quite 
surprised to learn that the speed of ember formation is so strongly influenced by the shape of the 
spindle and fireboard divot interface. Have you read Appendix E? If not, please go read it. There I 
demonstrate that by carefully carving our spindles to be hemispherical in shape we can potentially 
reduce the minimum time to ember ignition by an extraordinary 15%. Wow!   
 
If I get the chance there are a few things I’d like to investigate further. Perhaps we could collaborate 
if you are interested. In particular, I’d like to determine better values for the coefficients of kinetic 
friction mk for charred woods commonly used in fire by friction kits. I’d also like to further investigate 
the specific heats Cp and ignition temperatures of charcoal dusts created from these woods. It’s 
probably beyond my own capabilities, but some really ambitious soul might look into the effects of 
heat transfer at the spindle-fireboard interface. I didn’t account for any differences in thermal 
diffusivity for wood and charcoal dust, for example. I just assumed friction generated heat was 
uniformly distributed across the spindle-fireboard interface. A more careful analysis of the heat 
transfer characteristics might also yield a better estimate of the minimum dust mass m required for 
ignition. Someone might even take on the challenge of modeling the chemical-mechanical processes 
by which woods are charred, ground away and collected in the fireboard notch. Lastly, it might be 
fun to set up a mechanically controlled system what would allow the normal force FN and spindle 
angular velocity  to be precisely fixed. This would allow equation (14) to be tested without the 
uncertain effects of human imprecision and error. 
 
Till then, keep practicing and be mindful of the variables you can control to make faster embers. Use 
a thin fireboard for faster dust accumulation if you can’t start with a filled notch. Use a skinny spindle, 
as long as structural integrity isn’t compromised. Carve a hemispherical tip onto your spindle, for up 
to 15% faster ember formation than with a blunt spindle. Press down as hard as you can without 
seizing the spindle. Eat your Wheaties. Be in good shape. Breathe! And bow like mad using full 
strokes! 
 
That’s it. If you’ve made it to the end, thank you for the time you’ve invested. I hope I got it right and 
that you’ve learned some things of interest and perhaps valuable to your continued firemaking 
adventures. If you have questions or suggestions for improvement, I’d love to hear from you. 
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Figure 13: My first friction fire. Firecrafter shelter, 
Ransburg Scout Reservation, June, 2016. 

 
 
 
Best Wishes, 
 

 
 

Bradley D. Duncan XXX 
Assistant Scoutmaster, Troop 516, Centerville, OH 
Advisor, Miami Shawnee Ember of Firecrafter 
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Appendix A: What’s a Newton of Force? 
 
From Newton’s second law we know that force F equals mass m times acceleration a, or 
 

𝐹 = 𝑚𝑎 [𝑁] ,                                                                         (A1) 
 
where mass is expressed in kilograms [kg] and acceleration has units of meters per second-squared 
[m/s2]. If we assume we have a mass acted upon only by the acceleration due to gravity, 9.81 [m/s2], 
we might ask ourselves what mass m1N is required to create a downward gravitational force of only 
1 [N]. Solving [A1] for m1N easily yields 
 

𝑚1𝑁 =
1

9.81
[𝑘𝑔] = 0.102 𝑘𝑔 = 102𝑔. 

 
As I was preparing to write this article, I went around my house one afternoon and weighed a variety 
of objects with my digital kitchen scale. Interestingly, I discovered a bag of medium sized Honey Crisp 
apples whose mass averaged just a bit over 200 grams. So, on average, if you hold a medium sized 
apple in your hand, it exerts an approximately 2N downward force against you. Likewise, due to 
Newton’s third law, assuming you hold the apple stationary you are also exerting an upward force of 
2N on it. 
 
Cool!  
 

 
 

Figure 1A: An approximately two Newton apple!  
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Appendix B: Effect of the Fireboard Notch on Net Moment 
 
What happens to the net moment due to friction if we exclude a wedge shaped notch from our 
calculations where charcoal dust collects and the ember ultimately ignites? To address this question 
most easily I will first assume a planar spindle-fireboard interface, for which Rc >>> Ro in Figure 3. 
  

x

y

Ro 

A

A = pRo
2
(/2p) = Ro

2
/2

r



A = pRo
2

 
 

Figure 1B: Geometry of a planar spindle-fireboard interface 
from which a notch of area A has been removed. 

 
The geometry of the problem in planar polar coordinates is shown in Figure 1B. The radial variable 
is r, the azimuth angle is  and the spindle/divot radius is Ro. The cross sectional area of the spindle 
and divot is A = pRo2, and the wedge shaped notch, shaded gray, has an area A = Ro2 /2, where  
is the angular extent of the notch. The net moment at the flat/planar interface is then expressed as 
 

𝑀𝑓 =  ∫ ∫ 𝑓(𝑟, 𝜃) 𝑑𝐴
2𝜋

∆𝜃

𝑅0

0
  [N-m] ,                                                       (B1) 

 
where the incremental moment per unit area f (r, ) = mk P r [N/m], and where in polar coordinates 
the differential area dA = r dr d [m2]. The pressure P is in turn given by 

 

𝑃 =
𝐹𝑁

𝐴 − ∆𝐴
=

2𝐹𝑁

𝑅𝑜
2 (2𝜋− ∆𝜃) 

  [N/m2] .                                                       (B2) 

 

If we insert f(r, ) and equation (B2) into equation (B1), then integrate and simplify we find 
 

𝑀𝑓 =  𝜇𝑘
2𝐹𝑁

𝑅𝑜
2(2𝜋− ∆𝜃)

∫ ∫  𝑟22𝜋

∆𝜃

𝑅0

0
𝑑𝑟𝑑𝜃  [N-m] 

 

𝑀𝑓 =  𝜇𝑘
2𝐹𝑁

𝑅𝑜
2(2𝜋− ∆𝜃)

(2𝜋 − ∆𝜃) ∫ 𝑟2𝑅𝑜

0
𝑑𝑟  [N-m] 

 

𝑀𝑓 =  𝜇𝑘
2𝐹𝑁

𝑅𝑜
2

𝑅𝑜
3

3
=  

2

3
 𝜇𝑘 𝐹𝑁 𝑅𝑜  [N-m] .                                                  (B3) 

 

Notice that the result of equation (B3) is identical to the result of equation (4) if the spherical moment 
factor SM() is set to unity (i.e., when Rc >>> Ro). We therefore conclude that consideration of the 
notch does not affect the calculation of net moment due to friction. As mentioned earlier, the 
increased pressure when the notch is removed is integrated over a correspondingly smaller area. The 
effects then cancel and the net moment results are unaffected.  
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Appendix C: “Radians” – a Unitless Unit 
 
An often confusing and unexpected fact is that angular measurements are actually unitless. We 
typically express angles in degrees, radians and even gradians. These are, however, unitless 
dimensions that merely serve to tell us how finely we can divide up our circles. To demonstrate we 
will consider the “radian.” 
 



r

r

S = r
S

 
 

Figure 1C: The basic geometry of a circle. 
 
Recall from an introductory course in Geometry that the arc length S shown in Figure 1C is the 
physical distance between two points along a section of a circle. The arc length is calculated as follows 
 

𝑆 = 𝑟 𝜃  [m]  ,                                                                       (C1) 
 
where r is the radius of the circle and  is the angle subtending S. Since both arc length S and the 
radius r have units of meters [m], the angle   must be unitless. In other words,   is just a factor that 
tells us how long the arc length S is in relation to the circle’s radius. 
 
Rearranging equation (C1) we find 

𝜃 =  
𝑆

𝑟
 [𝑟𝑎𝑑]  .                                                                      (C2) 

 
Notice, though, that [rad] = [m/m] = 1, meaning that the radian is indeed a unitless unit. Moreover, 
it’s important to note that angular velocity  and angular acceleration  also have units as follows 
 

[𝜔]  =   
𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 =   

1

𝑠
  ,                                                                  (C3) 

 
and  

[𝛼]  =  
𝑟𝑎𝑑𝑖𝑎𝑛𝑠

(𝑠𝑒𝑐𝑜𝑛𝑑)2  =   
1

𝑠2  ,                                                                (C4) 

 
 
where the notation [variable] means “units of” the variable, and [second] = [s]. 
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Appendix D: Effect of Hourglass Shaped Spindles 
 
On occasion you might encounter a firemaker who likes to carve his/her bow drill spindle into an 
hourglass shape. You might wonder if this makes any difference. In some cases it might, as we can 
determine by examining Figure 1D, below. 
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Figure 1D: An hourglass shaped spindle 
may aid in faster ember formation.  

 
If we attach our bow string to the middle of the spindle where the radius is R1, then the angular 
velocity of the spindle becomes  = VB/R1, where VB is the time averaged bow speed. Inserting the 
new value for angular velocity into equation (7) results in the following relationship for friction 
induced power generation (i.e., energy released per unit time) 
 

𝑃𝐹 =
2

3
 𝜇𝑘 𝐹𝑁  

𝑅𝑜

𝑅1
𝑆𝑀(𝜌) 𝑉𝐵  [W] ,                                                     (D1) 

 
where as before, the nominal radius of the spindle is Ro. Since R1<Ro it therefore appears that an 
hourglass shaped spindle does serve to increase power generation for a given bow speed VB. 
However, assuming structural integrity of the spindle is not compromised, it would probably be 
better to carve the spindle from top-to-bottom with the smaller radius R1 from the start. As discussed 
in Section 5, a thinner spindle will concentrate the friction induced heat energy into a smaller area, 
thereby aiding in more rapid ember formation.  
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What about the more common situation shown in Figure 2D? Here we see a uniform radius spindle 
that does not fully engage the fireboard divot. This situation might arise when a new divot has 
recently been carved into the fireboard and freshly burned-in. It might also arise when a spindle is 
trimmed to avoid side friction in a deeper divot. Regardless, the radius R1 of the spindle where the 
bow string is attached is larger than the radius Ro of the spindle where it actually engages the 
fireboard. Just as above, the angular velocity of the spindle is  = VB/R1, where VB is the time averaged 
bow speed, and the relationship for friction induced power generation in equation (D1) remains 
unchanged. In this case, though, R1>Ro and power generation is reduced. 
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Figure 2D: Power generation is reduced 
when a uniform diameter spindle does 
not fully engage the fireboard divot. 

 
 
As a general observation, note that throughout this article if the radius R1 of the spindle where the 
bow string is attached is different from the radius Ro of the spindle where it engages the fireboard, 
the average bow speed VB should be multiplied by Ro/R1. Compare, for example, equations (9) and 
(D1). 
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Appendix E: Another Look at the Relationship for Minimum Time to Ignition tmin 
 
As I mentioned briefly at the end of Section 5, the spindle-fireboard interface area Ai, and the spherical 
moment factor SM() both depend on the spindle radius Ro, meaning that they are not independent. 
It’s actually a bit more involved than that. Notice, for example, that in Figure 3 I have tacitly assumed 
that the spherically curved shape extends over the full extent of the spindle endface.  Therefore, as 
the radius of curvature Rc decreases toward the spindle radius Ro, the divot depth ho must increase. 
Likewise, as Rc grows large, the divot depth approaches zero. In the extreme limits we have 
 

as  Rc  Ro,  ho  Ro,    1,  SM()  3p/4  and  Ai = p(Ro
2 + ho

2)  2pRo
2 

 
and, as  Rc  ∞,  ho  0,    ∞,  SM()  1  and  Ai  pRo2 . 

 
We can also see the coupling of these variables in the alternative relationships for Ai given in equation 
(15), which I repeat here 

𝐴𝑖 =  𝜋(𝑅𝑜
2 + ℎ𝑜

2) = 2𝜋 𝑅𝑐  ℎ𝑜  [in.2] .                                                (E1) 
 
Due to these variables interactions it is possible to express equation (14) in a somewhat more 
compact form that will provide an interesting insight into the effect of spindle/divot shape on the 
expected minimum time required for ember formation. To begin, I repeat equation (14) here 
 

∆𝑡𝑚𝑖𝑛 =  ∆𝑇 
3

2
 

𝐶𝑝

𝜇𝑘
 

𝑚

𝐹𝑁
 
𝜋(𝑅𝑜

2+ ℎ𝑜
2)

∆𝐴 𝑆𝑀(𝜌)
 

1

𝑉𝐵
  [s]  .                                            (E2) 

 
Then, after a great deal of mathematical gymnastics (i.e., mostly algebra, with a little trigonometry), 
the factors of equation (E2) that I have highlighted in red can be written as 
 

𝜋(𝑅𝑜
2+ ℎ𝑜

2)

𝑆𝑀(𝜌)
=  

2𝜋𝑅𝑐ℎ𝑜

𝑆𝑀(𝜌)
= ⋯ =  (𝜋𝑅𝑜

2) 𝑆𝑀
∗ (𝜌)   ,                                        (E3) 

 
where 

𝑆𝑀
∗ (𝜌) =  

4

3
 

1−√1−(
1

𝜌
)

2

𝜌 𝑠𝑖𝑛−1(
1

𝜌
)−√1−(

1

𝜌
)

2
   .                                                     (E4) 

 
SM*() is now an aggregate spherical shape factor where, as before,  = Rc/Ro. In deriving equations 
(E3) and (E4) I used a variety of mathematical steps similar to those employed in earlier sections. I 
also used the fact that (see Figure 3) 
 

ℎ𝑜 =  𝑅𝑐 − 𝑅𝑐 cos(𝜑0) = 𝑅𝑐 (1 − 𝑐𝑜𝑠 (𝑠𝑖𝑛−1 (
𝑅𝑜

𝑅𝑐
))) =  𝑅𝑐 (1 − √1 − (

1

𝜌
)

2
) .           (E5) 

 
 We can then rewrite equation (E2) as 
 

∆𝑡𝑚𝑖𝑛 =  ∆𝑇 
3

2
 

𝐶𝑝

𝜇𝑘
 

𝑚

𝐹𝑁
 

1

𝑉𝐵

𝜋𝑅𝑜
2

∆𝐴 
 𝑆𝑀

∗ (𝜌)   [s]  .                                            (E6) 

 
As with the spherical moment factor discussed in Section 3, at first glance the new aggregate spherical 
shape factor appears daunting. It too, however, is very well behaved as shown in Figure 1E. 
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Figure 1E:  The aggregate spherical shape factor approaches unity for a 
nearly flat spindle-fireboard interface surface, and approaches 8/3p as 
the interface becomes increasingly hemispherical. The red dot 
represents the value realized in the experiment discussed in Section 6. 

 
Notice that for an increasingly blunt spindle endface, as the radius of curvature Rc increases the 
parameter  also increases and SM*() approaches unity. However, for a highly hemispherical 
spindle-fireboard interface, for which Rc = Ro or  =1, the shape factor approaches 8/3p = ~0.8488. 
In other words, by carefully carving our spindles to have hemispherical shapes we can potentially 
reduce the minimum time to ember ignition by 15%. This is extraordinary! Rarely does the physical 
world offer us the opportunity to increase efficiencies so dramatically by such easily controlled 
means.  
 
Finally, as a matter of completeness, using equations (E3) and (E4) the lower bound tmin-pump on the 
time till initial ember ignition for the pump drill can be rewritten as 

 

∆𝑡𝑚𝑖𝑛−𝑝𝑢𝑚𝑝 =  ∆𝑇 
3

4𝜋
 

𝐶𝑝

𝜇𝑘
 

𝑚

(𝐹𝑃 + 𝑚𝑝𝑑 9.81)
 
𝜋𝑅𝑜

2

∆𝐴
 

𝑆𝑀
∗ (𝜌)

𝑅𝑜 𝑃𝑆 𝑁𝑅
   [s]  ,                          (E7) 

 
where all the variables in equation (E7) remain as they have been defined in preceding sections. 
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